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A language for high-level modeling of digital systems.

Has tools for checking those models.

Most important tool: the TLC model checker.

TLA+ is a language for high-level modeling of digital systems.

It has tools for checking those high-level models.

The most important of these tools is the TLC model checker.

Another tool is TLAPS, the TLA+ proof system.
But writing and checking proofs is a lot of work,
and it will rarely be used by engineers.
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A language for high-level modeling of digital systems.

Has tools for checking those models.

Most important tool: the TLC model checker.

The TLA+ Toolbox, an IDE.

There’s also the TLA+ Toolbox, an Integrated Development Environment for
writing specifications and running the tools on them.
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A language for high-level modeling of digital systems.

High-level means

– At the design level

– Above the code level

Digital systems include algorithms, programs, and computer systems.

For those digital systems, high-level means at the design level,
above the code level.
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To model critical parts of digital systems

Abstract away

– Less-critical parts

– Lower-level implementation details

TLA+ is used to model critical parts of digital systems

While abstracting away both less-critical parts

and lower-level implementation details.
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For concurrent and distributed systems

Can help find and correct design errors

– Errors hard to find by testing

– Before writing any code

TLA+ was designed for modeling concurrent and distributed systems.

It can help you find and correct design errors

– including errors that are extremely difficult to detect by testing

– before you write a single line of code
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For concurrent and distributed systems

If you design them and care if they work,

you should use TLA+ or some other method

to precisely specify and check your designs.

If you design such systems

and care about whether they work properly,

you should be using TLA+ or some other method

for precisely specifying and checking your designs.
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I don’t know exactly what else TLA+ is useful for.

– In my programming, sometimes it’s useful.

– Sometimes it isn’t.

For most computer programmers and engineers

– It provides a new way of thinking.

– Makes them better programmers and engineers
even when TLA+ and its tools are not useful.

I don’t know exactly what else TLA+ is good for.

In the small amount of programming that I do, sometimes I find it to be very useful.
Sometimes it’s of no use.
I do know that for most computer programmers and engineers

TLA+ provides a new way of thinking about what they do.

And that this way of thinking can make them better programmers and engineers,

even in cases where the TLA+ language and tools are not useful.
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ABSTRACTION

Abstraction.



Who am I?

I’ve done seminal research in the theory
of concurrent and distributed systems.

I won the Turing award.

Look me up on the Web.

What kind of clown am I?. . . claiming that I know what can make you think
better?

Why should you pay attention to me?

This is not the time to be modest.
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I invented algorithms and proved theorems.

I understand the needs of engineers who build systems.
My research had practical goals.

My Paxos algorithm is widely used.
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I’ve invented algorithms and proved theorems.

But I understand the needs of computer engineers who build real systems,
and my research always had practical goals.

My Paxos algorithm is widely used to implement fault-tolerant distributed
systems.
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My most important contributions were not solutions,
but recognizing important problems
that had been obscured by details.

My Time Clocks paper is still read after 40 years.

My most important contributions have not been solutions to recognized
problems,
but rather precisely stating important problems that had not been recognized
because they were obscured by irrelevant details.

This ability to recognize fundamental ideas is why my Time Clocks paper is
still required reading in university system-building courses, 40 years after it
was written.
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Simplifying by removing details is called abstraction.

Abstraction is the most important part of engineering.

It lets us understand complex systems.

We can’t get systems right if we don’t understand them.

TLA+ will teach you to be better at abstraction.

The process of simplification by removing irrelevant details is called abstraction

Abstraction is perhaps the most important part of engineering.

Only through abstraction can we understand complex systems.

And we can’t get systems right if we don’t understand them.

I’m very good at abstraction, and I believe that
using TLA+ will teach you to be better at it.
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Brannon Batson:

Here’s what Brannon Batson, a former Intel Engineer, said:

[When quoting what people wrote, I have made some small changes to eliminate
unimportant details while preserving the intended meaning.]

Brannon said: The hard part of learning to write TLA+ specs is learning to think
abstractly about the system.

With experience, engineers learn how to do it.

Being able to think abstractly improves their design process.
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WHAT ENGINEERS SAY



This is pretty abstract.

Engineers want help designing systems now.

What do engineers think of TLA+ ?

Engineers in industry don’t say what they do.

An exception: a team at Amazon Web Services.

All this talk of abstraction is pretty abstract.
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Amazon a leader in cloud services.

Amazon Web Services builds their cloud infrastructure.

They build large, complex systems.

They care about getting them right.

Amazon is currently the leading provider of cloud services,

and Amazon Web Services builds and maintains their cloud infrastructure.

They build large, complex systems, and they care about getting them right
because their customers rely on them.
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I have no official connection with Amazon.

Chris Newcombe contacted me and told me how they
were using TLA+.

I suggested that they write a paper, and they wrote:

How Amazon Web Services Uses Formal Methods

I have no official connection with Amazon,

but Chris Newcombe who was then at Amazon Web Services contacted me
with some questions about TLA+

and told me a little about how they were using it.

I suggested that they write a paper about their experience, and the result
was:
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I have no official connection with Amazon.

Chris Newcombe contacted me and told me how they
were using TLA+.

I suggested that they write a paper, and they wrote:

How Amazon Web Services Uses Formal Methods

Chris Newcombe, Tim Rath, Fan Zhang, Bogdan Munteanu,
Marc Brooker, and Michael Deardeuff

Communications of the ACM

April 2015, Vol. 58, No. 4, pages 66–73

How Amazon Web Services Uses Formal Methods by Chris and others.

Here’s a quote from the paper
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Amazon has used TLA+ on 10 large complex systems.
In each, TLA+ has added significant value, either finding
subtle bugs we would not have found by other means,
or giving us enough confidence to make aggressive
optimizations without sacrificing correctness.
Amazon has 7 teams using TLA+, with encouragement
from senior management and technical leadership.
Engineers at all levels have been able to learn TLA+

from scratch and get useful results in 2 to 3 weeks.

Amazon engineers have used TLA+ on 10 large complex real-world systems.

In each, TLA+ has added significant value,

either finding subtle bugs we are sure we would not have found by other
means,
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Amazon has used TLA+ on 10 large complex systems.
In each, TLA+ has added significant value, either finding
subtle bugs we would not have found by other means,
or giving us enough confidence to make aggressive
optimizations without sacrificing correctness.
Amazon has 7 teams using TLA+, with encouragement
from senior management and technical leadership.
Engineers at all levels have been able to learn TLA+
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They used TLA+ on 10 systems.

That number 10 came from late 2013.

By some time in 2014 they had used it in 14 systems.

I don’t have any later information.
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Amazon has used TLA+ on 10
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large complex systems.
In each, TLA+ has added significant value, either finding
subtle bugs we would not have found by other means,
or giving us enough confidence to make aggressive
optimizations without sacrificing correctness.
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Amazon has used TLA+ on 10
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large complex systems.
In each, TLA+ has added significant value, either finding
subtle bugs we would not have found by other means,
or giving us enough confidence to make aggressive
optimizations without sacrificing correctness.
Amazon has 7 teams using TLA+, with encouragement
from senior management and technical leadership.
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Amazon has used TLA+ on large complex systems.
In each, TLA+ has added significant value, either finding
subtle bugs we would not have found by other means,
or giving us enough confidence to make aggressive
optimizations without sacrificing correctness.
Amazon has 7 teams using TLA+, with encouragement
from senior management and technical leadership.
Engineers at all levels have been able to learn TLA+

from scratch and get useful results in 2 to 3 weeks.

You can download the paper.

They used TLA+ on 10 systems.

That number 10 came from late 2013.

By some time in 2014 they had used it in 14 systems.

I don’t have any later information.

You might want to download the complete paper now.
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Precise high-level models are called specifications.

TLA+ can specify algorithms and high-level designs.

You can’t generate code from a TLA+ spec.

Why not just code?

Precise high-level models are called specifications.

TLA+ can specify algorithms and high-level system designs.

But you can’t automatically generate code from a TLA+ specification.
So, what good is a spec if it doesn’t produce code?

Instead of writing a spec, why not spend the time improving the code?
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A real-time operating system
designed using TLA+.

The team leader was Eric Verhulst.

Here’s what he wrote to me about
using TLA+.

This book describes how a real-time operating system was
designed using TLA+.

The team that built the system was led by Eric Verhulst.

Here is what he wrote to me about their experience using TLA+.
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The TLA+ abstraction helped a lot in coming to a
much cleaner architecture.

(We witnessed first hand the brain washing done
by years of C programming).

One of the results was that the code size is about
10× less than the previous version.

The TLA+ abstraction helped a lot in coming to a much cleaner architecture.

(We witnessed first hand the brain washing done by years of C
programming).

One of the results was that the code size is about 10 times less
than the previous version.
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The code size is 10× less than the previous version.

When building a spacecraft, you try to
make the code small.

10 times less than the previous version.

The previous version was flown on the European Space Agency’s
Rosetta spacecraft that orbited a comet from 2014 to 2016.

And when you’re building a spacecraft, you try to make the code that
goes into it small.
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You don’t get a 10× reduction in code size by
better coding.

You get it by “coming to a cleaner architecture”.

An architecture is a higher-level specification –
higher than the code level.

They described the architecture as a TLA+ spec
and debugged it using the TLA+ tools.

You don’t get a factor of 10 reduction in the size of code that flies in a
spacecraft by better coding.

You get it by "coming to a cleaner architecture".
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Don’t expect TLA+ to yield a 10× reduction in code size
on your project.

This is just one case.

But remember what the Amazon people wrote:

In every case TLA+ has added significant value.

Specifying and testing above the code level is crucial
for concurrent / distributed systems.

Don’t expect TLA+ to yield such a reduction in code size on your project.

This is just one case.
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WHAT CAN YOU CHECK

WITH TLA+ ?



We use TLA+ to ensure the systems we build “work right”.

Working right means satisfying certain properties.

The properties TLA+ can check are conditions on
individual executions.

We use TLA+ to try to ensure that the systems we build “work right”.

Working right means satisfying certain properties.

The class of properties that we can check with TLA+ are ones that express
conditions on individual executions.

One example of such a property is: The system doesn’t produce a wrong
answer.
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You can examine an individual execution and see whether or not it produced
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We use TLA+ to ensure the systems we build “work right”.

Working right means satisfying certain properties.

The properties TLA+ can check are conditions on
individual executions.

A property TLA+ can’t check

99% of executions produce the right answer.

Not a condition on a single execution.

Here’s a property that TLA+ can’t check

99% of system executions produce the right answer

This doesn’t express a condition on an individual execution
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THE BASIC ABSTRACTION



The basic abstraction underlying TLA+

An execution of a system is represented
as a sequence of discrete steps.

Digital system: we can abstract its continuous evolution
as a sequence of discrete events.

The basic abstraction underlying TLA+ is that an execution of a digital
system is represented as a sequence of discrete steps.

There are three important ideas there sequence discrete, and step. Let’s
start with discrete

A digital system is a physical system in which we can abstract its continuous
evolution as a sequence of discrete events.
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An execution of a system is represented
as a sequence of discrete steps.

Digital system: we can abstract its continuous evolution
as a sequence of discrete events.

The first digital system.

A continuous physical system.

Can describe it by an abstract clock
advancing in discrete ticks.

The first self-powered digital system was the escapement clock.

Although all the parts of the clock move continuously, we can describe the
real clock by an abstract clock that advances in discrete ticks.

A computer is also a continuously evolving physical system, designed so we
can abstract the execution of a program by the computer as consisting of
discrete steps.
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An execution of a system is represented
as a sequence of discrete steps.

Strange to describe a concurrent system
as a sequence of steps.

It’s possible.

It’s not just possible. It’s simple and works well.

What about “sequence”?

It may seem strange to describe a concurrent system, in which multiple
things can be going on at the same time, as a sequence of steps.

We know that it’s possible to do this because we can simulate a concurrent
system with a sequential program.
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An execution of a system is represented
as a sequence of discrete steps.

Strange to describe a concurrent system
as a sequence of steps.

It’s possible.

It’s not just possible. It’s simple and works well.

As you learn TLA+, you’ll see that it’s not just possible. It’s simple and it
works really well.
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An execution of a system is represented
as a sequence of discrete steps.

TLA+ describes a step as a state change.

An execution is represented as a sequence of states.
A step is the change from one state to the next.

What’s a step?

TLA+ describes a step as a state change.

An execution is represented as a sequence of states,
and a step is the change from one state to the next.

I find this very natural because
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An execution of a system is represented
as a sequence of discrete steps.

TLA+ describes a step as a state change.

An execution is represented as a sequence of states.
A step is the change from one state to the next.

Science models systems by a state changing
with time, usually continuously.

in most sciences, systems are modeled by a state that changes with time.
Most often, the state is described as changing continuously.

But we model digital systems by a state that changes in discrete steps.

As in most sciences, TLA+ describes a state as an assignment of values to
variables.
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An execution is represented as a sequence of states.
A step is the change from one state to the next.
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assignment of values to variables.
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Most often, the state is described as changing continuously.

But we model digital systems by a state that changes in discrete steps.

As in most sciences, TLA+ describes a state as an assignment of values to
variables.
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STATE MACHINES



An execution is represented as a sequence of states.

We want to all possible of a system.

How do we do that?

An execution of a digital system is represented as a sequence of states.

Let’s call a sequence of states a behavior,
so an execution of a digital system is represented as a behavior.

Where a behavior is a sequence of states.
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An execution is represented as a behavior.

A behavior is a sequence of states.

We want to describe all possible executions of a system.

How do we do that?

What we want to describe are all the possible executions of a system

which means specifying all its possible behaviors.

How do we do that?
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An execution is represented as a behavior.
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An execution is represented as a behavior.

A behavior is a sequence of states.

We want to specify all possible of a system.

How do we do that?

What we want to describe are all the possible executions of a system

which means specifying all its possible behaviors.

How do we do that?
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There are many ways of describing digital systems.

Here are a few
Programming languages
Turing machines
Many different kinds of automata

Hardware description languages

People have used many ways of describing digital systems.

Here are a few
- Programming languages
- Turing machines
- Lots of different kinds of automata
- Hardware description languages
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There are many ways of describing digital systems.

Here are a few
Programming languages
Turing machines
Many different kinds of automata

Hardware description languages

Their executions can all be described as behaviors.

Their executions can all be described as behaviors.

But we can do better.

We can abstract them all as what I call state machines.
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There are many ways of describing digital systems.

Here are a few
Programming languages
Turing machines
Many different kinds of automata

Hardware description languages

But we can do better.
We can abstract them all as state machines.

Their executions can all be described as behaviors.

But we can do better.

We can abstract them all as what I call state machines.
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A state machine is described by:

1. All possible initial states.

2. What next states can follow any given state.

A state machine is described by two things:

All its possible initial states.

And what the possible next states are that can follow any given state.
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A state machine is described by:

1. All possible initial states.

2. What next states can follow any given state.

It halts if there is no possible next state.

The state machine halts if it reaches a state for which there is no possible
next state.

A state is an assignment of values to variables,
so to describe a state machine we must describe three things:
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A state is an assignment of values to variables,
so a state machine is described by:

0. What the variables are.

1. Possible initial values of variables.

2. A relation between their values in the
current state and their possible values
in the next state.

The state machine halts if it reaches a state for which there is no possible
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1. All possible initial states.

2. What next states can follow any given state.

A state is an assignment of values to variables,
so a state machine is described by:

0. What the variables are.

1. Possible initial values of variables.

2. A relation between their values in the
current state and their possible values
in the next state.

What the variables are.

What the possible initial values of the variables are.

And what the relation is between the values of the variables in the current
state and the their possible values in the next state.
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A TINY EXAMPLE



A C program

int i ;
void main()

{ i = someNumber() ;
i = i + 1 ;

}

someNumber() returns a number
from 0 to 1000.

Possibly different numbers in
different executions.

A possible execution:

[i : 0] → [i : 42] → [i : 43]

The example is a simple C program. It’s not quite legal C because ANSI C
requires main to return an int. But it’s obvious what this program should do
except for the function someNumber .

Let’s assume that a call to someNumber returns an arbitrarily chosen number
from 0 to 1000.
And that it can return different numbers in different executions. Let’s not
worry about how someNumber is implemented in C.
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int i ;
void main()

{ i = someNumber() ;
i = i + 1 ;

}

Obvious representation: a single variable i .

A possible execution:

[i : 0] → [i : 42] → [i : 43]

An obvious way to represent this program as a state machine is with a single
variable i .

Let’s look at one possible execution

Here’s the initial state. It’s a state that assigns the value 0 to i .

It’s the only possible initial state because in C, this declaration
initializes i to 0.
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initializes i to 0.
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int i ;
void main()

{ i = someNumber() ;
i = i + 1 ;

}

A possible execution:

[i : 0] A state in which i has value 0. → [i : 42] → [i :
43]

An obvious way to represent this program as a state machine is with a single
variable i .

Let’s look at one possible execution

Here’s the initial state. It’s a state that assigns the value 0 to i .

It’s the only possible initial state because in C, this declaration
initializes i to 0.
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int i ;
void main()

{ i = someNumber() ;
i = i + 1 ;

}

C initializes i to 0.

A possible execution:

[i : 0] → [i : 42] → [i : 43]

An obvious way to represent this program as a state machine is with a single
variable i .

Let’s look at one possible execution

Here’s the initial state. It’s a state that assigns the value 0 to i .

It’s the only possible initial state because in C, this declaration
initializes i to 0.
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int i ;
void main()

{ i = someNumber() ;
i = i + 1 ;

}

Returns 42.

A possible execution:

[i : 0] → [i : 42] → [i : 43]

In the second state i equals 42 because the call of someNumber

happened to return 42

Execution of the third statement increments i , producing the third state, in
which i equals 43.
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int i ;
void main()

{ i = someNumber() ;
i = i + 1 ;

}

A possible execution:

[i : 0] → [i : 42] → [i : 43]

Current: i = 43, no next value

OK How do we describe this tiny program as a state machine?

Remember, we must describe these three things: The variables, their initial
values, and the relation between their values in the current state and their
possible values in the next state.

We’re representing this program with the single variable i .

There’s only one possible initial value of i : namely, 0.

[ slide 197 ]



int i ;
void main()

{ i = someNumber() ;
i = i + 1 ;

}

A possible execution:

[i : 0] → [i : 42] → [i : 43]

Current: i = 43, no next value

How do we describe this as a state machine?

0. What the variables are.

1. Possible initial values of variables.

2. The relation between their values in the current state
and their possible values in the next state.

OK How do we describe this tiny program as a state machine?

Remember, we must describe these three things: The variables, their initial
values, and the relation between their values in the current state and their
possible values in the next state.

We’re representing this program with the single variable i .

There’s only one possible initial value of i : namely, 0.

[ slide 198 ]



int i ;
void main()

{ i = someNumber() ;
i = i + 1 ;

}

A possible execution:

[i : 0] → [i : 42] → [i : 43]

Current: i = 43, no next value

How do we describe this as a state machine?

0. What the variables are.

1. Possible initial values of variables.

2. The relation between their values in the current state
and their possible values in the next state.

OK How do we describe this tiny program as a state machine?

Remember, we must describe these three things: The variables, their initial
values, and the relation between their values in the current state and their
possible values in the next state.

We’re representing this program with the single variable i .

There’s only one possible initial value of i : namely, 0.

[ slide 199 ]



int i ;
void main()

{ i = someNumber() ;
i = i + 1 ;

}

A possible execution:

[i : 0] → [i : 42] → [i : 43]

Current: i = 43, no next value

0. The variables: i

1. Initial values: i = 0

2. The relation between the value of i in the current state
and its possible values in the next state.

OK How do we describe this tiny program as a state machine?

Remember, we must describe these three things: The variables, their initial
values, and the relation between their values in the current state and their
possible values in the next state.

We’re representing this program with the single variable i .

There’s only one possible initial value of i : namely, 0.
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int i ;
void main()

{ i = someNumber() ;
i = i + 1 ;

}

A possible execution:

[i : 0] → [i : 42] → [i : 43]

Current: i = 43, no next value

0. The variables: i

1. Initial values: i = 0

2. The relation between the value of i in the current state
and its possible values in the next state.

OK How do we describe this tiny program as a state machine?

Remember, we must describe these three things: The variables, their initial
values, and the relation between their values in the current state and their
possible values in the next state.

We’re representing this program with the single variable i .

There’s only one possible initial value of i : namely, 0.
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int i ;
void main()

{ i = someNumber() ;
i = i + 1 ;

}

A possible execution:

[i : 0] → [i : 42] → [i : 43]

Current: i = 43, no next value

0. The variables: i

1. Initial values: i = 0

2. The relation between the value of i in the current state
and its possible values in the next state.

What about 2, the relation between the current value of i and its possible
values in the next state?

Let’s look at i ’s possible next value when its current value is 43. In this
behavior, there is no possible next value because the program has
terminated.

[ slide 202 ]



int i ;
void main()

{ i = someNumber() ;
i = i + 1 ;

}

A possible execution:

[i : 0] → [i : 42] → [i : 43]

Current: i = 43, no next value

0. The variables: i

1. Initial values: i = 0

2. The relation between the value of i in the current state
and its possible values in the next state.

What about 2, the relation between the current value of i and its possible
values in the next state?

Let’s look at i ’s possible next value when its current value is 43. In this
behavior, there is no possible next value because the program has
terminated.
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int i ;
void main()

{ i = someNumber() ;
i = i + 1 ;

}

Another possible execution:

[i : 0] → [i : 43] → [i : 44]

Current: i = 43, no next value

0. The variables: i

1. Initial values: i = 0

2. The relation between the value of i in the current state
and its possible values in the next state.

Let’s look at another possible execution, in which the call of someNumber

returned the number 43.

In this execution, when the current value of i is 43 its next value must be 44.

This execution and this execution require different next values of i for the
same current value 43.
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int i ;
void main()

{ i = someNumber() ;
i = i + 1 ;

}

Another possible execution:

[i : 0] → [i : 43] → [i : 44]

Current: i = 43, next: i = 44

0. The variables: i

1. Initial values: i = 0

2. The relation between the value of i in the current state
and its possible values in the next state.

Let’s look at another possible execution, in which the call of someNumber

returned the number 43.

In this execution, when the current value of i is 43 its next value must be 44.

This execution and this execution require different next values of i for the
same current value 43.
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int i ;
void main()

{ i = someNumber() ;
i = i + 1 ;

}

A possible execution:

[i : 0] → [i : 42] → [i : 43]

Current: i = 43, no next value

0. The variables: i

1. Initial values: i = 0

2. The relation between the value of i in the current state
and its possible values in the next state.

Let’s look at another possible execution, in which the call of someNumber

returned the number 43.

In this execution, when the current value of i is 43 its next value must be 44.

This execution and this execution require different next values of i for the
same current value 43.
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int i ;
void main()

{ i = someNumber() ;
i = i + 1 ;

}

Another possible execution:

[i : 0] → [i : 43] → [i : 44]

Current: i = 43, next: i = 44

0. The variables: i

1. Initial values: i = 0

2. The relation between the value of i in the current state
and its possible values in the next state.

Let’s look at another possible execution, in which the call of someNumber

returned the number 43.

In this execution, when the current value of i is 43 its next value must be 44.

This execution and this execution require different next values of i for the
same current value 43.
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int i ;
void main()

{ i = someNumber() ;
i = i + 1 ;

}

Another possible execution:

[i : 0] → [i : 43] → [i : 44]

Current: i = 43, next: i = 44

0. The variables: i

1. Initial values: i = 0

2. The relation between the value of i in the current state
and its possible values in the next state.I M P O S S I B L E

So it’s impossible to represent the program as a state machine in this way.
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int i ;
void main()

{ i = someNumber() ;
i = i + 1 ;

}

The problem: the value of i is only part of the program’s state.

The other part of the state:

0. The variables: i , pc

1. Initial values: i = 0 and pc = “start”

The problem is that the value of i is only part of the program’s state.

There’s another part of the state that specifies what statement is to be
executed next.

That part of the state is called the control state.

So let’s introduce another variable called pc (for program control) to
represent the control state.
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int i ;
void main()

{ i = someNumber() ;
i = i + 1 ;

}

The problem: the value of i is only part of the program’s state.

The other part of the state:

0. The variables: i , pc

1. Initial values: i = 0 and pc = “start”

The problem is that the value of i is only part of the program’s state.

There’s another part of the state that specifies what statement is to be
executed next.

That part of the state is called the control state.

So let’s introduce another variable called pc (for program control) to
represent the control state.
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int i ;
void main()

{ i = someNumber() ;
i = i + 1 ;

}

The problem: the value of i is only part of the program’s state.

The other part of the state: what statement is executed next.

0. The variables: i , pc

1. Initial values: i = 0 and pc = “start”

The problem is that the value of i is only part of the program’s state.

There’s another part of the state that specifies what statement is to be
executed next.

That part of the state is called the control state.

So let’s introduce another variable called pc (for program control) to
represent the control state.
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int i ;
void main()

{ i = someNumber() ;
i = i + 1 ;

}

The problem: the value of i is only part of the program’s state.

The other part of the state: the control state.

0. The variables: i , pc

1. Initial values: i = 0 and pc = “start”

The problem is that the value of i is only part of the program’s state.

There’s another part of the state that specifies what statement is to be
executed next.

That part of the state is called the control state.

So let’s introduce another variable called pc (for program control) to
represent the control state.
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int i ;
void main()

{ i = someNumber() ;
i = i + 1 ;

}

The problem: the value of i is only part of the program’s state.

The other part of the state: the control state.

0. The variables: i , pc

1. Initial values: i = 0 and pc = “start”

The problem is that the value of i is only part of the program’s state.

There’s another part of the state that specifies what statement is to be
executed next.

That part of the state is called the control state.

So let’s introduce another variable called pc (for program control) to
represent the control state.
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int i ;
void main()

{ i = someNumber() ;
i = i + 1 ;

}

The problem: the value of i is only part of the program’s state.

The other part of the state: the control state.

0. The variables: i , pc

1. Initial values: i = 0 and pc = “start”

The problem is that the value of i is only part of the program’s state.

There’s another part of the state that specifies what statement is to be
executed next.

That part of the state is called the control state.

So let’s introduce another variable called pc (for program control) to
represent the control state.
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int i ;
void main()

{pc = “start” i = someNumber() ;
i = i + 1 ;

}

The problem: the value of i is only part of the program’s state.

The other part of the state: the control state.

0. The variables: i , pc

1. Initial values: i = 0 and pc = “start”

When pc equals the string “start”, it means that the first assignment
statement is to be executed next.

pc equal to the string “middle” means that the second assignment statement
is to be executed next.

And pc equals “done” means that the program has finished, and there is
nothing left to execute.
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int i ;
void main()

{ i = someNumber() ;
pc = “middle” i = i + 1 ;

}

The problem: the value of i is only part of the program’s state.

The other part of the state: the control state.

0. The variables: i , pc

1. Initial values: i = 0 and pc = “start”

When pc equals the string “start”, it means that the first assignment
statement is to be executed next.

pc equal to the string “middle” means that the second assignment statement
is to be executed next.

And pc equals “done” means that the program has finished, and there is
nothing left to execute.
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int i ;
void main()

{ i = someNumber() ;
i = i + 1 ;

} pc = “done”

The problem: the value of i is only part of the program’s state.

The other part of the state: the control state.

0. The variables: i , pc

1. Initial values: i = 0 and pc = “start”

When pc equals the string “start”, it means that the first assignment
statement is to be executed next.

pc equal to the string “middle” means that the second assignment statement
is to be executed next.

And pc equals “done” means that the program has finished, and there is
nothing left to execute.
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int i ;
void main()

{pc = “start” i = someNumber() ;
i = i + 1 ;

}

The problem: the value of i is only part of the program’s state.

The other part of the state: the control state.

0. The variables: i , pc

1. Initial values: i = 0 and pc = “start”

The initial value of i is 0, and the initial value of pc is the string “start”.

And now we can describe the relation between the current values of i and
pc and their possible next values.

If the current value of pc equals “start”, then

the next value of i can be any number in the set of integers from
0 through 1000
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int i ;
void main()

{ i = someNumber() ;
i = i + 1 ;

}

2. The relation between the current values of i and pc

and their possible next values.

The initial value of i is 0, and the initial value of pc is the string “start”.

And now we can describe the relation between the current values of i and
pc and their possible next values.

If the current value of pc equals “start”, then

the next value of i can be any number in the set of integers from
0 through 1000
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int i ;
void main()

{ i = someNumber() ;
i = i + 1 ;

}

if current value of pc equals “start”
then next value of i in {0, 1, . . . , 1000}

next value of pc equals “middle”
else if current value of pc equals “middle”

then next value of i equals current value of i + 1
next value of pc equals “done”

else no next values

The initial value of i is 0, and the initial value of pc is the string “start”.

And now we can describe the relation between the current values of i and
pc and their possible next values.

If the current value of pc equals “start”, then

the next value of i can be any number in the set of integers from
0 through 1000
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int i ;
void main()

{ i = someNumber() ;
i = i + 1 ;

}

if current value of pc equals “start”
then next value of i in {0, 1, . . . , 1000}

next value of pc equals “middle”
else if current value of pc equals “middle”

then next value of i equals current value of i + 1
next value of pc equals “done”

else no next values

The initial value of i is 0, and the initial value of pc is the string “start”.

And now we can describe the relation between the current values of i and
pc and their possible next values.

If the current value of pc equals “start”, then

the next value of i can be any number in the set of integers from
0 through 1000
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int i ;
void main()

{ i = someNumber() ;
i = i + 1 ;

}

if current value of pc equals “start”
then next value of i in {0, 1, . . . , 1000}

next value of pc equals “middle”
else if current value of pc equals “middle”

then next value of i equals current value of i + 1
next value of pc equals “done”

else no next values

and the next value of pc is the string “middle”.

If not, if the current value of pc equals “middle”, then

the next value of i equals the current value of i plus one

and the next value of pc is the string “done”.
Otherwise, the only remaining possibility is that pc equals “done”
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int i ;
void main()

{ i = someNumber() ;
i = i + 1 ;

}

if current value of pc equals “start”
then next value of i in {0, 1, . . . , 1000}

next value of pc equals “middle”
else if current value of pc equals “middle”

then next value of i equals current value of i + 1
next value of pc equals “done”

else no next values

and the next value of pc is the string “middle”.

If not, if the current value of pc equals “middle”, then

the next value of i equals the current value of i plus one

and the next value of pc is the string “done”.
Otherwise, the only remaining possibility is that pc equals “done”
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int i ;
void main()

{ i = someNumber() ;
i = i + 1 ;

}

if current value of pc equals “start”
then next value of i in {0, 1, . . . , 1000}

next value of pc equals “middle”
else if current value of pc equals “middle”

then next value of i equals current value of i + 1
next value of pc equals “done”

else no next values

and the next value of pc is the string “middle”.

If not, if the current value of pc equals “middle”, then

the next value of i equals the current value of i plus one

and the next value of pc is the string “done”.
Otherwise, the only remaining possibility is that pc equals “done”
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int i ;
void main()

{ i = someNumber() ;
i = i + 1 ;

}

if current value of pc equals “start”
then next value of i in {0, 1, . . . , 1000}

next value of pc equals “middle”
else if current value of pc equals “middle”

then next value of i equals current value of i + 1
next value of pc equals “done”

else no next values

and the next value of pc is the string “middle”.

If not, if the current value of pc equals “middle”, then

the next value of i equals the current value of i plus one

and the next value of pc is the string “done”.
Otherwise, the only remaining possibility is that pc equals “done”
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int i ;
void main()

{ i = someNumber() ;
i = i + 1 ;

}

if current value of pc equals “start”
then next value of i in {0, 1, . . . , 1000}

next value of pc equals “middle”
else if current value of pc equals “middle”

then next value of i equals current value of i + 1
next value of pc equals “done”

else no next values

and the program has finished, so there are no next values of i and pc.
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if current value of pc equals “start”
then next value of i in {0, 1, . . . , 1000}

next value of pc equals “middle”
else if current value of pc equals “middle”

then next value of i equals current value of i + 1
next value of pc equals “done”

else no next values

OK. This isn’t very easy to read.

It’s simpler and more elegant in TLA+, because it’s written as a mathematical
formula.

But we’ll get to that later.
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if current value of pc equals “start”
then next value of i in {0, 1, . . . , 1000}

next value of pc equals “middle”
else if current value of pc equals “middle”

then next value of i equals current value of i + 1
next value of pc equals “done”

else no next values

Not very easy to read.

OK. This isn’t very easy to read.

It’s simpler and more elegant in TLA+, because it’s written as a mathematical
formula.

But we’ll get to that later.
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if current value of pc equals “start”
then next value of i in {0, 1, . . . , 1000}

next value of pc equals “middle”
else if current value of pc equals “middle”

then next value of i equals current value of i + 1
next value of pc equals “done”

else no next values

It’s simpler and more elegant in TLA+, because
it’s written as a mathematical formula.

OK. This isn’t very easy to read.

It’s simpler and more elegant in TLA+, because it’s written as a mathematical
formula.

But we’ll get to that later.
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if current value of pc equals “start”
then next value of i in {0, 1, . . . , 1000}

next value of pc equals “middle”
else if current value of pc equals “middle”

then next value of i equals current value of i + 1
next value of pc equals “done”

else no next values

It’s simpler and more elegant in TLA+, because
it’s written as a mathematical formula.

OK. This isn’t very easy to read.

It’s simpler and more elegant in TLA+, because it’s written as a mathematical
formula.

But we’ll get to that later.
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if current value of pc equals “start”
then next value of i in {0, 1, . . . , 1000}

next value of pc equals “middle”
else if current value of pc equals “middle”

then next value of i equals current value of i + 1
next value of pc equals “done”

else no next values

But we’ll get to that later.

OK. This isn’t very easy to read.

It’s simpler and more elegant in TLA+, because it’s written as a mathematical
formula.

But we’ll get to that later.
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State machines are simpler than programs.

In a state machine, all parts of the state are
represented as values of variables.

State machines are much simpler than programs.

In a state machine, all parts of the state are represented the same way:
as the values of variables.
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State machines are simpler than programs.

In a state machine, all parts of the state are
represented as values of variables.

State machines are much simpler than programs.

In a state machine, all parts of the state are represented the same way:
as the values of variables.
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In programs, different parts of the state are
represented differently:

They’re represented differently because they’re
implemented differently.

State machines eliminate those low-level
implementation details.

They provide a single simple abstraction.

In programs, different parts of the state are represented differently.
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In programs, different parts of the state are
represented differently:

The values of variables.

The control state.

The call stack.

The heap.

They’re represented differently because they’re
implemented differently.

State machines eliminate those low-level
implementation details.

They provide a single simple abstraction.

There are the values of the variables. There’s the control state. There’s the
call stack. There’s the heap. Etcetera. Etcetera.
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In programs, different parts of the state are
represented differently:

The values of variables.

The control state.

The call stack.
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They’re represented differently because they’re
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State machines eliminate those low-level
implementation details.

They provide a single simple abstraction.

There are the values of the variables. There’s the control state. There’s the
call stack. There’s the heap. Etcetera. Etcetera.
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In programs, different parts of the state are
represented differently:

The values of variables.

The control state.

The call stack.

The heap.

They’re represented differently because they’re
implemented differently.

State machines eliminate those low-level
implementation details.

They provide a single simple abstraction.

There are the values of the variables. There’s the control state. There’s the
call stack. There’s the heap. Etcetera. Etcetera.
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In programs, different parts of the state are
represented differently:

The values of variables.

The control state.

The call stack.

The heap.

They’re represented differently because they’re
implemented differently.

State machines eliminate those low-level
implementation details.

They provide a single simple abstraction.

There are the values of the variables. There’s the control state. There’s the
call stack. There’s the heap. Etcetera. Etcetera.
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In programs, different parts of the state are
represented differently.

They’re represented differently because they’re
implemented differently.

State machines eliminate those low-level
implementation details.

They provide a single simple abstraction.

Those different parts of the state are represented differently in programs
because they’re implemented differently.

State machines eliminate those low-level implementation details.

State machines provide a single simple abstraction.
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In programs, different parts of the state are
represented differently.

They’re represented differently because they’re
implemented differently.

State machines eliminate those low-level
implementation details.

They provide a single simple abstraction.

Those different parts of the state are represented differently in programs
because they’re implemented differently.

State machines eliminate those low-level implementation details.

State machines provide a single simple abstraction.
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In programs, different parts of the state are
represented differently.

They’re represented differently because they’re
implemented differently.

State machines eliminate those low-level
implementation details.

They provide a single simple abstraction.

Those different parts of the state are represented differently in programs
because they’re implemented differently.

State machines eliminate those low-level implementation details.

State machines provide a single simple abstraction.
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TLA+ is an elegant, expressive language
for describing state machines.

TLA+ is an elegant, extremely expressive language for describing state
machines.
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TLA+ Video Course

End of Lecture 1

INTRODUCTION TO TLA+

This is the end of Lecture 1 of the TLA+ Video Course
—

Introduction to TLA+.
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