TLA+ Video Course - Lecture 10, Part 1

Leslie Lamport

IMPLEMENTATION WITH REFINEMENT

PRELIMINARIES

This video should be viewed in conjunction with a Web page.
To find that page, search the Web for TLA+Video Course .

The TLA ${ }^{+}$Video Course
Lecture 10
Implementation With Refinement

The concept of implementation as implication we've been using works only when all the high-level specification's variables appear in the low-level spec. This lecture explains what implementation means when that isn't the case. It provides important insight into implementation, including what it means for a program to implement a TLA+ spec. But that comes in the second part. In this part, we discuss recursion and substitution, and then introduce our motivating example: another version of the Alternating Bit protocol.

RECURSIVE DEFINITIONS

Problem:

Define an operator Remove X that removes all instances of " X " from a sequence of strings.

Suppose we need to define an operator Remove X that removes all instances of the string X from a sequence of strings.

Problem:

Define an operator RemoveX that removes all instances of " X " from a sequence of strings.

Example:
RemoveX (〈"Tom", "X", "Dick", "Harry", "X"〉)

Suppose we need to define an operator Remove X that removes all instances of the string X from a sequence of strings.

For example, applying Remove X to the sequence consisting of the five strings Tom, X, Dick, Harry, and X

Problem:

Define an operator RemoveX that removes all instances of " X " from a sequence of strings.

Example:
RemoveX (〈"Tom", "X", "Dick", "Harry", "X"〉)

Suppose we need to define an operator Remove X that removes all instances of the string X from a sequence of strings.

For example, applying Remove X to the sequence consisting of the five strings Tom, X, Dick, Harry, and X
yields the value obtained by removing the two $X \mathrm{~s}$ to obtain

Problem:

Define an operator Remove X that removes all instances of " X " from a sequence of strings.

Example:

$$
\begin{gathered}
\text { RemoveX(〈"Tom","X","Dick","Harry","X"〉) } \\
=\langle " T o m ", " D i c k ", " H a r r y "\rangle
\end{gathered}
$$

Suppose we need to define an operator Remove X that removes all instances of the string X from a sequence of strings.

For example, applying Remove X to the sequence consisting of the five strings Tom, X, Dick, Harry, and X yields the value obtained by removing the two X s to obtain the string Tom, Dick, Harry.
[slide 7]

Solution: A recursive definition.

We do this with a recursive definition.

Solution: A recursive definition.

```
Remove }X\mathrm{ (sequence) }
    ... RemoveX(shorter sequence) ...
```


We do this with a recursive definition.

A recursive definition defines RemoveX of a sequence in terms of RemoveX of a shorter sequence.

Solution: A recursive definition.

Remove X (sequence) \triangleq
... RemoveX (shorter sequence) ...
Remove $X($ shorter sequence) \triangleq
... RemoveX (still shorter sequence) ...

We do this with a recursive definition.

A recursive definition defines Remove X of a sequence in terms of Remove X of a shorter sequence.

This means that RemoveX of this shorter sequence is defined to equal some expression involving RemoveX of a still shorter sequence.

Solution: A recursive definition.

> Remove X (sequence) \triangleq
> ... Remove X (shorter sequence) ...
> RemoveX(shorter sequence) \triangleq Remove X (still shorter sequence)
> :

We can keep going like this, obtaining expressions containing Remove X applied to shorter and shorter sequences.

Solution: A recursive definition.

```
Remove \(X\) (sequence) \(\triangleq\)
    ... Remove \(X\) (shorter sequence) ...
RemoveX(shorter sequence) \(\triangleq\)
        Remove \(X\) (still shorter sequence)
\(\ldots \triangleq \ldots\) Remove \(X(\rangle) \ldots\)
```

We can keep going like this, obtaining expressions containing Remove X applied to shorter and shorter sequences.

Eventually we reach an expression containing Remove X of the empty sequence

Solution: A recursive definition.

```
RemoveX(sequence) \triangleq
    RemoveX(shorter sequence)
RemoveX(shorter sequence) \triangleq
    RemoveX(still shorter sequence)
        \vdots
    \Delta ...RemoveX(\langle\rangle)
RemoveX (\langle\rangle) \triangleq <\rangle
```

We can keep going like this, obtaining expressions containing Remove X applied to shorter and shorter sequences.

Eventually we reach an expression containing RemoveX of the empty

 sequence which of course equals the empty sequence.So we have to do two things.

Solution: A recursive definition.

> Remove X (sequence) \triangleq RemoveX (shorter sequence)

> Remove $X(\rangle) \triangleq\rangle$

Define Remove X of the empty sequence.

Solution: A recursive definition.

Remove X (sequence) \triangleq
... Remove X (shorter sequence) ...

Remove $X(\rangle) \triangleq\rangle$

Define Remove X of the empty sequence. And define the value of RemoveX of a non-empty sequence in terms of RemoveX of a shorter sequence.

Solution: A recursive definition.

$$
\begin{aligned}
& \text { Remove } X(\text { sequence }) \triangleq \\
& \quad \ldots \text { Remove } X(\text { shorter sequence }) \ldots \\
& \text { Remove } X(\langle " X ", \ldots\rangle) \triangleq \operatorname{Remove} X(\langle\ldots\rangle) \\
& \text { Remove } X(\rangle) \triangleq\rangle
\end{aligned}
$$

Define Remove X of the empty sequence. And define the value of RemoveX of a non-empty sequence in terms of Remove X of a shorter sequence.

Remove X of a sequence beginning with X equals Remove X applied to the rest of the sequence.
[slide 16]

Solution: A recursive definition.

```
RemoveX(sequence) \triangleq
    ... RemoveX(shorter sequence) ...
RemoveX(\langle"X", ...\rangle) \triangleqRemoveX(\langle...)
RemoveX(\langle"Tom", ...\rangle)\triangleq \"Tom"\rangle}\circ RemoveX(\langle...\rangle
RemoveX(<\rangle) \triangleq\langle\rangle
```

And RemoveX of a sequence beginning with another value, such as Tom, equals the sequence that begins with Tom and is followed by the result of applying RemoveX to the rest of the sequence.

Solution: A recursive definition.

Remove $X(\langle " X ", \ldots\rangle) \triangleq \operatorname{Remove} X(\langle\ldots\rangle)$
Remove $X(\langle " T o m ", \ldots\rangle) \triangleq\langle " T o m "\rangle \circ R e m o v e X(\langle\ldots\rangle)$
Remove $X(\rangle) \triangleq\rangle$

And Remove X of a sequence beginning with another value, such as Tom, equals the sequence that begins with Tom and is followed by the result of applying Remove X to the rest of the sequence.

So we just have to write this as a single TLA ${ }^{+}$definition.

```
RemoveX \((\langle " X ", \ldots\rangle) \triangleq \operatorname{Remove} X(\langle\ldots\rangle)\)
RemoveX \((\langle " T o m ", \ldots\rangle) \triangleq\langle " T o m "\rangle \circ R e m o v e X(\langle\ldots\rangle)\)
Remove \(X(\rangle) \triangleq\rangle\)
```

And Remove X of a sequence beginning with another value, such as Tom, equals the sequence that begins with Tom and is followed by the result of applying RemoveX to the rest of the sequence.

So we just have to write this as a single TLA ${ }^{+}$definition.

```
RemoveX \((\langle " X ", \ldots\rangle) \triangleq \operatorname{Remove} X(\langle\ldots\rangle)\)
RemoveX \((\langle " T o m ", \ldots\rangle) \triangleq\langle " T o m "\rangle \circ R e m o v e X(\langle\ldots\rangle)\)
Remove \(X(\rangle) \triangleq\rangle\)
```

And Remove X of a sequence beginning with another value, such as Tom, equals the sequence that begins with Tom and is followed by the result of applying RemoveX to the rest of the sequence.

So we just have to write this as a single TLA ${ }^{+}$definition.

```
RemoveX(\langle"X", ..\rangle)) \triangleq RemoveX(\langle...\rangle)
RemoveX(〈"Tom", ..\rangle) \triangleq \langle"Tom"\rangle}\circ\mathrm{ RemoveX(〈...〉)
RemoveX(<\rangle)\triangleq\langle\rangle
RemoveX (seq)\triangleq
```

Here＇s the definition．

```
RemoveX(\langle"X", ...\rangle) \triangleq RemoveX (\langle\ldots.\rangle)
RemoveX(\langle"Tom", ...\rangle)\triangleq\"Tom"\rangle\circRemoveX(\langle\ldots.\rangle)
RemoveX (\langle\rangle)\triangleq\langle\rangle
RemoveX(seq) \triangleq
    IF seq = < >
        THEN <>
        ELSE
```

Here's the definition.

If $s e q$ is the empty sequence, then Remove X of seq equals the empty sequence.

```
RemoveX(\langle"X", ...\rangle) \triangleq RemoveX(\langle...\rangle)
RemoveX(\langle"Tom", ...\rangle)\triangleq\"Tom"\rangle ○ RemoveX(\langle\ldots.\rangle)
RemoveX ( < ) ) \triangleq <\rangle
RemoveX(seq) \triangleq
    IF seq = < >
        THEN <>
        ELSE IF Head(seq) = "X"
        THEN
        ELSE
```

Here's the definition.
If seq is the empty sequence, then RemoveX of seq equals the empty sequence.

Otherwise if the head of $s e q$ (its first element) equals the string X,

```
RemoveX(\langle"X", ...\rangle)\triangleq & RemoveX (\langle\ldots.\rangle)
RemoveX(\langle"Tom", ...\rangle)\triangleq\langle"Tom"\rangle○ RemoveX(\langle...\rangle)
RemoveX ( <\rangle) \triangleq <\rangle
RemoveX(seq) \triangleq
    IF seq = < >
        THEN <>
        ELSE IF Head(seq) = "X"
        THEN RemoveX(Tail(seq))
        ELSE
```

Here's the definition.
If seq is the empty sequence, then Remove X of seq equals the empty
sequence.

Otherwise if the head of seq (its first element) equals the string X, then RemoveX of seq equals Remove X of the tail of seq.

```
RemoveX(\langle"X",\ldots.\rangle)\triangleq RemoveX(\langle\ldots\rangle)
RemoveX(\langle"Tom", ...\rangle) \triangleq \langle"Tom"\rangle ○ RemoveX (\langle...\rangle)
RemoveX ( <\rangle) \triangleq <\rangle
RemoveX(seq) \triangleq
    IF seq = < >
        THEN <>
        ELSE IF Head(seq) = "X"
        THEN RemoveX(Tail(seq))
        ELSE <Head(seq)\rangle\circ RemoveX(Tail(seq))
```

Else, it equals the sequence obtained by prepending the head of $s e q$ to the front of Remove X of the tail of seq.

```
RemoveX \((\) seq \() \triangleq\)
    IF \(s e q=\langle \rangle\)
        THEN 〈〉
        ELSE IF Head (seq) \(=\) " \(X\) "
        THEN RemoveX (Tail(seq))
        ELSE \(\langle\operatorname{Head}(s e q)\rangle \circ \operatorname{RemoveX}(\operatorname{Tail}(s e q))\)
```


Else, it equals the sequence obtained by prepending the head of seq to the front of Remove X of the tail of seq.

This is a recursive definition because the symbol we're defining appears in its definition.

RECURSIVE Remove $X\left(_\right)$

RemoveX $($ seq $) \triangleq$ IF $s e q=\langle \rangle$ THEN 〈〉
ELSE IF Head（seq）$=$＂X＂
THEN RemoveX（Tail（seq））
ELSE 〈Head（seq）〉○ RemoveX（Tail（seq））

Such a definition must be preceded by a RECURSIVE declaration of the symbol being defined，with its arguments indicated by underscore characters．

RECURSIVE RemoveX（＿）
RemoveX $($ seq $) \triangleq$
IF $s e q=\langle \rangle$
THEN 〈〉
ELSE IF Head（seq）$=$＂X＂
then RemoveX（Tail（seq））
ELSE 〈Head（seq）〉○ RemoveX（Tail（seq））

Such a definition must be preceded by a RECURSIVE declaration of the symbol being defined，with its arguments indicated by underscore characters．

This is the complete definition of RemoveX．

If you've used a "functional" programming language, recursive definitions will seem natural.

If you've used a "functional" programming language, recursive definitions will seem natural.

If you've used a "functional" programming language, recursive definitions will seem natural.

If not, think of using a recursive definition when implementing the operator with a program requires a loop.

If you've used a "functional" programming language, recursive definitions will seem natural.

If not, think of using a recursive definition when implementing the operator with a program requires a loop.
[slide 30]

SUBSTITUTION

Substitution is a fundamental operation of mathematics.

Substitution is a fundamental operation of mathematics.

Substitution is a fundamental operation of mathematics.

There's no standard notation for expressing it.

Substitution is a fundamental operation of mathematics.
But mathematicians have no standard notation for expressing it.

Substitution is a fundamental operation of mathematics.
There's no standard notation for expressing it.
In this lecture I will write the expression obtained by substituting an expression e for the symbol v in an expression f like this

Substitution is a fundamental operation of mathematics.
But mathematicians have no standard notation for expressing it.
In this lecture I will write the expression obtained by substituting an expression e for the symbol v in an expression f like this,

Substitution is a fundamental operation of mathematics.
There's no standard notation for expressing it.
In this lecture I will write the expression obtained by substituting an expression e for the symbol v in an expression f like this

$$
f \text { WITH } v \leftarrow e
$$

Substitution is a fundamental operation of mathematics.
But mathematicians have no standard notation for expressing it.
In this lecture I will write the expression obtained by substituting an expression e for the symbol v in an expression f like this, which l'll read as " f with e substituted for v."

Substitution is a fundamental operation of mathematics.
There's no standard notation for expressing it.
In this lecture I will write the expression obtained by substituting an expression e for the symbol v
in an expression f like this

$$
f \text { WITH } v \leftarrow e
$$

For example $\left(y^{3}-y\right)$ WITH $y \leftarrow x+2$

For example $y^{3}-y$ with $x+2$ substituted for y

Substitution is a fundamental operation of mathematics.
There's no standard notation for expressing it.
In this lecture I will write the expression obtained by substituting an expression e for the symbol v
in an expression f like this
f WITH $v \leftarrow e$
For example $\left(y^{3}-y\right)$ WITH $y \leftarrow x+2$ equals $(x+2)^{3}-(x+2)$.

For example $y^{3}-y$ with $x+2$ substituted for y
equals the expression $(x+2)$ cubed minus the expression $(x+2)$.

Substitution is a fundamental operation of mathematics.
There's no standard notation for expressing it.
In this lecture I will write the expression obtained by substituting an expression e for the symbol v
in an expression f like this
f WITH $v \leftarrow e$
This is not TLA ${ }^{+}$notation.

For example $y^{3}-y$ with $x+2$ substituted for y
equals the expression $(x+2)$ cubed minus the expression $(x+2)$.
This is not TLA ${ }^{+}$notation. I'm using it only for this lecture.

A Fundamental Law of Ordinary Math

There's a fundamental law of substitution in ordinary math.
It says that

A Fundamental Law of Ordinary Math

For any variable v and expressions e and f

There's a fundamental law of substitution in ordinary math.
It says that for any variable v and expressions e and f,

A Fundamental Law of Ordinary Math

For any variable v and expressions e and f

$$
v=e \text { implies } f=(f \text { WITH } v \leftarrow e)
$$

There's a fundamental law of substitution in ordinary math.
It says that for any variable v and expressions e and f,
v equals e implies that f equals the expression f with e substituted for v.

A Fundamental Law of Ordinary Math

For any variable v and expressions e and f
$v=e$ implies $f=(f$ WITH $v \leftarrow e)$
Let's write it as
THEOREM $(v=e) \Rightarrow(f=(f$ WITH $v \leftarrow e))$

There's a fundamental law of substitution in ordinary math.
It says that for any variable v and expressions e and f,
v equals e implies that f equals the expression f with e substituted for v.
Let's write it as this theorem.

A Fundamental Law of Ordinary Math

For any variable v and expressions e and f
$v=e$ implies $f=(f$ WITH $v \leftarrow e)$
Let's write it as
THEOREM $(v=e) \Rightarrow(f=(f$ WITH $v \leftarrow e))$
I'll call this the Simple Substitution Law

There's a fundamental law of substitution in ordinary math.
It says that for any variable v and expressions e and f,
v equals e implies that f equals the expression f with e substituted for v.
Let's write it as this theorem.
I'll call this law the Simple Substitution Law, though it's not what mathematicians call it.

Ordinary math corresponds to the constant expressions of TLA+

Ordinary math corresponds to the constant expressions of TLA ${ }^{+}$.

Ordinary math corresponds to the constant expressions of TLA+

Mathematicians' variables are the constants of TLA+ ${ }^{+}$

Ordinary math corresponds to the constant expressions of TLA+.
Mathematicians' variables are the declared constants of TLA ${ }^{+}$.

Ordinary math corresponds to the constant expressions of TLA+.
 Mathematicians' variables are the constants of TLA+.

Nothing in ordinary math corresponds to the VARIABLES and non-constant operators of TLA ${ }^{+}$.

Ordinary math corresponds to the constant expressions of TLA+
Mathematicians' variables are the declared constants of TLA+
Nothing in ordinary math corresponds to the declared variables and non-constant operators of TLA ${ }^{+}$.

Ordinary math corresponds to the constant expressions of TLA+.

Mathematicians' variables are the constants of TLA+.
Nothing in ordinary math corresponds to the VARIABLES and non-constant operators of TLA+ .

They belong to temporal logic,

Ordinary math corresponds to the constant expressions of TLA+
Mathematicians' variables are the declared constants of TLA+ ${ }^{+}$
Nothing in ordinary math corresponds to the declared variables and non-constant operators of TLA ${ }^{+}$.

They belong to temporal logic,

Ordinary math corresponds to the constant expressions of TLA+

Mathematicians' variables are the constants of TLA+.
Nothing in ordinary math corresponds to the VARIABLES and non-constant operators of TLA+ .

They belong to temporal logic, a special kind of math that's not as simple as ordinary math.

Ordinary math corresponds to the constant expressions of TLA+.
Mathematicians' variables are the declared constants of TLA+ ${ }^{+}$
Nothing in ordinary math corresponds to the declared variables and non-constant operators of TLA ${ }^{+}$.

They belong to temporal logic, a special kind of math that's not as simple as ordinary math.

Ordinary math corresponds to the constant expressions of TLA+

Mathematicians' variables are the constants of TLA+.
Nothing in ordinary math corresponds to the VARIABLES and non-constant operators of TLA ${ }^{+}$.

Temporal Logic of Actions

And T-L-A stands for the temporal logic of actions.

THEOREM $(v=e) \Rightarrow(f=(f$ WITH $v \leftarrow e))$

The Simple Substitution Law

THEOREM $(v=e) \Rightarrow(f=(f$ WITH $v \leftarrow e))$
This is not true if v is a variable or e is a non-constant expression.

The Simple Substitution Law is not true if v is a variable or e is a non-constant expression.

THEOREM $(v=e) \Rightarrow(f=(f$ WITH $v \leftarrow e))$
This is not true if v is a variable or e is a non-constant expression.

Example

The Simple Substitution Law is not true if v is a variable or e is a non-constant expression.

Here's an example that shows it's not true.

THEOREM $(v=e) \Rightarrow(f=(f$ WITH $v \leftarrow e))$

This is not true if v is a variable or e is a non-constant expression.

Example $v \leftarrow y, e \leftarrow x+2, f \leftarrow y^{\prime}$ where x and y are variables

The Simple Substitution Law is not true if v is a variable or e is a non-constant expression.

Here's an example that shows it's not true.
Let's substitute y for $v, x+2$ for e, and y prime for f in the law - where x and y are variables.
[slide 53]
$\operatorname{THEOREM}(v=e) \Rightarrow(f=(f$ WITH $v \leftarrow e))$

This is not true if v is a variable or e is a non-constant expression.

Example $v \leftarrow y, e \leftarrow x+2, f \leftarrow y^{\prime}$ where x and y are variables THEOREM

The law states that

THEOREM $(v=e) \Rightarrow(f=(f$ WITH $v \leftarrow e))$
This is not true if v is a variable or e is a non-constant expression.

Example $v \leftarrow y, e \leftarrow x+2, f \leftarrow y^{\prime}$ where x and y are variables
THEOREM $(y=x+2) \Rightarrow$

The law states that
" v equals e ", which is " y equals $x+2$ ", implies that

THEOREM $(v=e) \Rightarrow(f=(f$ WITH $v \leftarrow e))$
This is not true if v is a variable or e is a non-constant expression.

Example $v \leftarrow y, e \leftarrow x+2, f \leftarrow y^{\prime}$ where x and y are variables
THEOREM $(y=x+2) \Rightarrow\left(y^{\prime}=\right.$

The law states that
" v equals e ", which is " y equals $x+2$ ", implies that
f, which is y prime, equals

THEOREM $(v=e) \Rightarrow(f=(f$ WITH $v \leftarrow e))$
This is not true if v is a variable or e is a non-constant expression.

Example $v \leftarrow y, e \leftarrow x+2, f \leftarrow y^{\prime}$ where x and y are variables
THEOREM $(y=x+2) \Rightarrow\left(y^{\prime}=(x+2)^{\prime}\right)$

The law states that

" v equals e ", which is " y equals $x+2$ ", implies that
f, which is y prime, equals
"the expression f with $x+2$ substituted for y ", which is $x+2$ prime.
[slide 57]

THEOREM $(v=e) \Rightarrow(f=(f$ WITH $v \leftarrow e))$
This is not true if v is a variable or e is a non-constant expression.

Example $v \leftarrow y, e \leftarrow x+2, f \leftarrow y^{\prime}$ where x and y are variables

$$
\text { THEOREM }(y=x+2) \Rightarrow\left(y^{\prime}=(x+2)^{\prime}\right)
$$

This is an assertion about a behavior.

This formula is an assertion about a behavior, and the theorem asserts that it's true for all behaviors.

THEOREM $(v=e) \Rightarrow(f=(f$ WITH $v \leftarrow e))$
This is not true if v is a variable or e is a non-constant expression.

Example $v \leftarrow y, e \leftarrow x+2, f \leftarrow y^{\prime}$ where x and y are variables
THEOREM $(y=x+2) \Rightarrow\left(y^{\prime}=(x+2)^{\prime}\right)$
This is an assertion about a behavior.
Asserts $y=x+2$ in first state of behavior.

This formula is an assertion about a behavior, and the theorem asserts that it's true for all behaviors.

This is a state formula, so it asserts that $y=x+2$ is true in the first state of the behavior.

THEOREM $(v=e) \Rightarrow(f=(f$ WITH $v \leftarrow e))$
This is not true if v is a variable or e is a non-constant expression.

Example $v \leftarrow y, e \leftarrow x+2, f \leftarrow y^{\prime}$ where x and y are variables
THEOREM $(y=x+2) \Rightarrow\left(y^{\prime}=(x+2)^{\prime}\right)$
This is an assertion about a behavior.
Asserts $y=x+2$ in first state of behavior.

This action formula asserts that the value of y in the second state of the behavior equals the value of x plus two in that second state -

THEOREM $(v=e) \Rightarrow(f=(f$ WITH $v \leftarrow e))$
This is not true if v is a variable or e is a non-constant expression.

Example $v \leftarrow y, e \leftarrow x+2, f \leftarrow y^{\prime}$ where x and y are variables
THEOREM $(y=x+2) \Rightarrow\left(y^{\prime}=(x+2)^{\prime}\right)$
This is an assertion about a behavior.
Asserts $y=x+2$ in first state of behavior.
Asserts $y=x+2$ in second state of behavior.

This action formula asserts that the value of y in the second state of the behavior equals the value of x plus two in that second state - in other words, that $y=x+2$ is true in the second state of the behavior.

THEOREM $(v=e) \Rightarrow(f=(f$ WITH $v \leftarrow e))$
This is not true if v is a variable or e is a non-constant expression.

Example $v \leftarrow y, e \leftarrow x+2, f \leftarrow y^{\prime}$ where x and y are variables

$$
\text { THEOREM }(y=x+2) \Rightarrow\left(y^{\prime}=(x+2)^{\prime}\right)
$$

Asserts $y=x+2$ in the first state implies $y=x+2$ in the second state.

This action formula asserts that the value of y in the second state of the behavior equals the value of x plus two in that second state - in other words, that $y=x+2$ is true in the second state of the behavior.

So this formula asserts that $y=x+2$ true in the first state implies that it's also true in the second state.

THEOREM $(v=e) \Rightarrow(f=(f$ WITH $v \leftarrow e))$
This is not true if v is a variable or e is a non-constant expression.

Example $v \leftarrow y, e \leftarrow x+2, f \leftarrow y^{\prime}$ where x and y are variables

Asserts $y=x+2$ in the first state implies $y=x+2$ in the second state.

Not true for all behaviors

This action formula asserts that the value of y in the second state of the behavior equals the value of x plus two in that second state - in other words, that $y=x+2$ is true in the second state of the behavior.

So this formula asserts that $y=x+2$ true in the first state implies that it's also true in the second state.

Which is not true for all behaviors.
[slide 63]

THEOREM $(v=e) \Rightarrow(f=(f$ WITH $v \leftarrow e))$
This is not true if v is a variable or e is a non-constant expression.

Example $v \leftarrow y, e \leftarrow x+2, f \leftarrow y^{\prime}$ where x and y are variables
THEOREM $(y=x+2) \Rightarrow\left(y^{\prime}=(x+2)^{\prime}\right)$
Asserts $y=x+2$ in the first state
implies $y=x+2$ in the second state.
Not true for all behaviors

The law is not true if v is a variable or e is a non-constant expression.

The Temporal Substitution Law

To obtain the substitution law for temporal logic, which I will call the Temporal Substitution Law

The Temporal Substitution Law

THEOREM $\quad(v=e) \Rightarrow(f=(f$ WITH $v \leftarrow e))$

To obtain the substitution law for temporal logic, which I will call the Temporal Substitution Law
We change the Simple Substitution Law

The Temporal Substitution Law

THEOREM $\square(v=e) \Rightarrow(f=(f$ WITH $v \leftarrow e))$

To obtain the substitution law for temporal logic, which I will call the Temporal Substitution Law
We change the Simple Substitution Law by adding this always operator.

The Temporal Substitution Law

$\operatorname{THEOREM}(\square(v=e)) \Rightarrow(f=(f$ WITH $v \leftarrow e))$

To obtain the substitution law for temporal logic, which I will call the Temporal Substitution Law
We change the Simple Substitution Law by adding this always operator.
The statement of the theorem is parsed like this,

The Temporal Substitution Law

THEOREM $\square(v=e) \Rightarrow(f=(f$ WITH $v \leftarrow e))$

To obtain the substitution law for temporal logic, which I will call the Temporal Substitution Law
We change the Simple Substitution Law by adding this always operator.
The statement of the theorem is parsed like this,

The Temporal Substitution Law

THEOREM $\square(v=e) \Rightarrow(f=(f$ WITH $v \leftarrow e))$
Asserts that, for every behavior:

To obtain the substitution law for temporal logic, which I will call the Temporal Substitution Law
We change the Simple Substitution Law by adding this always operator.
The statement of the theorem is parsed like this,
So the law now asserts that, for every behavior:

The Temporal Substitution Law

THEOREM $\square(v=e) \Rightarrow(f=(f$ WITH $v \leftarrow e))$
Asserts that, for every behavior:
if $\quad v=e$ is true in all states of the behavior

To obtain the substitution law for temporal logic, which I will call the Temporal Substitution Law
We change the Simple Substitution Law by adding this always operator.
The statement of the theorem is parsed like this,
So the law now asserts that, for every behavior: if $v=e$ is true in all states of the behavior,

The Temporal Substitution Law

THEOREM $\square(v=e) \Rightarrow(f=(f$ WITH $v \leftarrow e))$
Asserts that, for every behavior:
if $\quad v=e$ is true in all states of the behavior then $f=(f$ WITH $v \leftarrow e)$ is true on the behavior

To obtain the substitution law for temporal logic, which I will call the Temporal Substitution Law
We change the Simple Substitution Law by adding this always operator.
The statement of the theorem is parsed like this,
So the law now asserts that, for every behavior: if $v=e$ is true in all states of the behavior, then the formula " f equals f with e substituted for v " is true on the behavior.
[slide 72]

The Temporal Substitution Law

THEOREM $\square(v=e) \Rightarrow(f=(f$ WITH $v \leftarrow e))$
Asserts that, for every behavior:
if $\quad v=e$ is true in all states of the behavior
then $f=(f$ WITH $v \leftarrow e)$ is true on the behavior

Example

Let's look at the same example as before.

The Temporal Substitution Law

THEOREM $\square(v=e) \Rightarrow(f=(f$ WITH $v \leftarrow e))$
Asserts that, for every behavior:
if $\quad v=e$ is true in all states of the behavior
then $f=(f$ WITH $v \leftarrow e)$ is true on the behavior
Example $v \leftarrow y, e \leftarrow x+2, f \leftarrow y^{\prime}$ where x and y are variables

Let's look at the same example as before.

With y substituted for $v, x+2$ substituted for e and y prime substituted for f, where x and y are variables.

The Temporal Substitution Law

THEOREM $\square(v=e) \Rightarrow(f=(f$ WITH $v \leftarrow e))$
Asserts that, for every behavior:
if $\quad v=e$ is true in all states of the behavior
then $f=(f$ WITH $v \leftarrow e)$ is true on the behavior
Example $v \leftarrow y, e \leftarrow x+2, f \leftarrow y^{\prime}$ where x and y are variables THEOREM $\square(y=x+2) \Rightarrow\left(y^{\prime}=(x+2)^{\prime}\right)$

Let's look at the same example as before.
With y substituted for $v, x+2$ substituted for e and y prime substituted for f, where x and y are variables.

The law now
[slide 75]

The Temporal Substitution Law

THEOREM $\square(v=e) \Rightarrow(f=(f$ WITH $v \leftarrow e))$

Asserts that, for every behavior:

if $\quad v=e$ is true in all states of the behavior
then $f=(f$ WITH $v \leftarrow e)$ is true on the behavior
Example $v \leftarrow y, e \leftarrow x+2, f \leftarrow y^{\prime}$ where x and y are variables THEOREM $\square(y=x+2) \Rightarrow\left(y^{\prime}=(x+2)^{\prime}\right)$
Asserts: if $\quad y=x+2$ in all states of a behavior

Let's look at the same example as before.

With y substituted for $v, x+2$ substituted for e and y prime substituted for f, where x and y are variables.

The law now asserts that if y equals $x+2$ in all states of a behavior

The Temporal Substitution Law

THEOREM $\square(v=e) \Rightarrow(f=(f$ WITH $v \leftarrow e))$
Asserts that, for every behavior:
if $\quad v=e$ is true in all states of the behavior
then $f=(f$ WITH $v \leftarrow e)$ is true on the behavior
Example $v \leftarrow y, e \leftarrow x+2, f \leftarrow y^{\prime}$ where x and y are variables THEOREM $\square(y=x+2) \Rightarrow\left(y^{\prime}=(x+2)^{\prime}\right)$
Asserts: if $\quad y=x+2$ in all states of a behavior
then $y=x+2$ in the second state of the behavior
then y equals $x+2$ in the second state of the behavior.

The Temporal Substitution Law

$$
\text { THEOREM } \square(v=e) \Rightarrow(f=(f \text { WITH } v \leftarrow e))
$$

Asserts that, for every behavior:

if $\quad v=e$ is true in all states of the behavior
then $f=(f$ WITH $v \leftarrow e)$ is true on the behavior
Example $v \leftarrow y, e \leftarrow x+2, f \leftarrow y^{\prime}$ where x and y are variables THEOREM $\square(y=x+2) \Rightarrow\left(y^{\prime}=(x+2)^{\prime}\right)$
Asserts: if $\quad y=x+2$ in all states of a behavior
then $y=x+2$ in the second state of the behavior

then y equals $x+2$ in the second state of the behavior.

Which is obviously true of all behaviors.

The Temporal Substitution Law

$$
\text { THEOREM } \square(v=e) \Rightarrow(f=(f \text { WITH } v \leftarrow e))
$$

then y equals $x+2$ in the second state of the behavior.

Which is obviously true of all behaviors.

The Temporal Substitution Law

THEOREM $\square(v=e) \Rightarrow(f=(f$ WITH $v \leftarrow e))$
True when v a variable and e a state expression.

This law is true when v is a declared VARIAbLE and e is a state expression.

The Temporal Substitution Law

THEOREM $\square(v=e) \Rightarrow(f=(f$ WITH $v \leftarrow e))$
True when v a VARIABLE and e a state expression.
Also true when v a CONSTANT and e a constant expression

This law is true when v is a declared VARIABLE and e is a state expression.
The law is also true when v is a declared CONSTANT and e is a constant expression,

The Temporal Substitution Law

THEOREM $\square(v=e) \Rightarrow(f=(f$ WITH $v \leftarrow e))$
True when v a VARIABLE and e a state expression.
Also true when v a CONSTANT and e a constant expression, in which case their values don't depend on the state

This law is true when v is a declared VARIABLE and e is a state expression.
The law is also true when v is a declared CONSTANT and e is a constant expression,
in which case the values of v and e don't depend on the state,

The Temporal Substitution Law

THEOREM $\square(v=e) \Rightarrow(f=(f$ WITH $v \leftarrow e))$
True when v a VARIABLE and e a state expression.
Also true when v a CONSTANT and e a constant expression, in which case their values don't depend on the state and in any behavior

This law is true when v is a declared VARIABLE and e is a state expression.
The law is also true when v is a declared CONSTANT and e is a constant expression,
in which case the values of v and e don't depend on the state,
and therefore, in any behavior,

The Temporal Substitution Law

THEOREM $\square(v=e) \Rightarrow(f=(f$ WITH $v \leftarrow e))$
True when v a VARIABLE and e a state expression.
Also true when v a CONSTANT and e a constant expression, in which case their values don't depend on the state and in any behavior $v=e$ is true

This law is true when v is a declared VARIABLE and e is a state expression.
The law is also true when v is a declared CONSTANT and e is a constant expression,
in which case the values of v and e don't depend on the state, and therefore, in any behavior, $v=e$ is true in the initial state

The Temporal Substitution Law

THEOREM $\square(v=e) \Rightarrow(f=(f$ WITH $v \leftarrow e))$
True when v a VARIABLE and e a state expression.
Also true when v a CONSTANT and e a constant expression, in which case their values don't depend on the state and in any behavior $v=e$ is true iff $\square(v=e)$ is.

This law is true when v is a declared VARIABLE and e is a state expression.
The law is also true when v is a declared CONSTANT and e is a constant expression,
in which case the values of v and e don't depend on the state, and therefore, in any behavior, $v=e$ is true in the initial state
if and only if it's true in all states of the behavior.

The Temporal Substitution Law

> THEOREM $\square(v=e) \Rightarrow(f=(f$ WITH $v \leftarrow e))$
> True when v a VARIABLE and e a state expression.
> Also true when v a CONSTANT and e a constant expression,
> in which case their values don't depend on the state and in any behavior $v=e$ is true iff $\square(v=e)$ is.

So we get the Ordinary Substitution Law:
THEOREM $(v=e) \Rightarrow(f=(f$ WITH $v \leftarrow e))$

So The Temporal Substitution Law becomes the Ordinary Substitution Law.

The General Temporal Substitution Law

THEOREM $\square(v=e) \Rightarrow(f=(f$ WITH $v \leftarrow e))$

There's a straightforward generalization of the Temporal Substitution Law ...

The General Temporal Substitution Law

THEOREM $\square(v=e) \Rightarrow(f=(f$ WITH $v \leftarrow e))$

THEOREM $\square\left(\left(v_{1}=e_{1}\right) \wedge\left(v_{2}=e_{2}\right)\right)$

$$
\Rightarrow\left(f=\left(f \text { WITH } v_{1} \leftarrow e_{1}, v_{2} \leftarrow e_{2}\right)\right)
$$

There's a straightforward generalization of the Temporal Substitution Law to substitution for two variables.

The General Temporal Substitution Law

THEOREM $\square(v=e) \Rightarrow(f=(f$ WITH $v \leftarrow e))$

THEOREM $\square\left(\left(v_{1}=e_{1}\right) \wedge\left(v_{2}=e_{2}\right)\right)$

$$
\Rightarrow\left(f=\left(f \text { WITH } v_{1} \leftarrow e_{1}, v_{2} \leftarrow e_{2}\right)\right)
$$

There's a straightforward generalization of the Temporal Substitution Law to substitution for two variables.

The meaning of this WITH expression should be obvious, except perhaps for the fact that

The General Temporal Substitution Law

THEOREM $\square(v=e) \Rightarrow(f=(f$ WITH $v \leftarrow e))$

THEOREM $\square\left(\left(v_{1}=e_{1}\right) \wedge\left(v_{2}=e_{2}\right)\right)$

$$
\Rightarrow\left(f=\frac{\left.\left(f \text { WITH } v_{1} \leftarrow e_{1}, v_{2} \leftarrow e_{2}\right)\right)}{\frac{\text { simultaneous substitution }}{}}\right.
$$

the substitutions for v-one and v-two have to be done simultaneously, not one after the other. (This makes a difference if $v 2$ appears in expression $e 1$.)

The General Temporal Substitution Law

THEOREM $\square(v=e) \Rightarrow(f=(f$ WITH $v \leftarrow e))$

THEOREM $\square\left(\left(v_{1}=e_{1}\right) \wedge\left(v_{2}=e_{2}\right)\right)$

$$
\Rightarrow\left(f=\left(f \text { WITH } v_{1} \leftarrow e_{1}, v_{2} \leftarrow e_{2}\right)\right)
$$

the substitutions for v-one and v-two have to be done simultaneously, not one after the other. (This makes a difference if $v 2$ appears in expression $e 1$.)

The General Temporal Substitution Law

THEOREM $\square(v=e) \Rightarrow(f=(f$ WITH $v \leftarrow e))$

THEOREM $\square\left(\left(v_{1}=e_{1}\right) \wedge\left(v_{2}=e_{2}\right)\right)$

$$
\Rightarrow\left(f=\left(f \text { WITH } v_{1} \leftarrow e_{1}, v_{2} \leftarrow e_{2}\right)\right)
$$

THEOREM

$$
\square\left(\left(v_{1}=e_{1}\right) \wedge\left(v_{2}=e_{2}\right) \wedge \ldots\right)
$$

$$
\Rightarrow\left(f=\left(f \text { WITH } v_{1} \leftarrow e_{1}, v_{2} \leftarrow e_{2}, \ldots\right)\right)
$$

the substitutions for v-one and v-two have to be done simultaneously, not one after the other. (This makes a difference if $v 2$ appears in expression $e 1$.)

And this obviously generalizes to substitution for any number of variables.

The Temporal Substitution Law

THEOREM $\square(v=e) \Rightarrow(f=(f$ WITH $v \leftarrow e))$

THEOREM $\square\left(\left(v_{1}=e_{1}\right) \wedge\left(v_{2}=e_{2}\right)\right)$

$$
\Rightarrow\left(f=\left(f \text { WITH } v_{1} \leftarrow e_{1}, v_{2} \leftarrow e_{2}\right)\right)
$$

THEOREM

$$
\square
$$

$$
\left(\left(v_{1}=e_{1}\right) \wedge\left(v_{2}=e_{2}\right) \wedge \ldots\right)
$$

$$
\Rightarrow\left(f=\left(f \text { WITH } v_{1} \leftarrow e_{1}, v_{2} \leftarrow e_{2}, \ldots\right)\right)
$$

the substitutions for v-one and v-two have to be done simultaneously, not one after the other. (This makes a difference if $v 2$ appears in expression $e 1$.)

And this obviously generalizes to substitution for any number of variables.
It's this general version that l'll refer to as the Temporal Substitution Law. [slide 93]

THE AB2 PROTOCOL

We now come to the motivating example of this lecture, the AB2 protocol.

The AB2 protocol is $A B$ protocol with one simple modification:

The AB2 protocol is the same as the Alternating Bit protocol of Lecture 9 except for one simple modification:

The AB2 protocol is AB protocol with one simple modification:
Messages are detectably corrupted rather than lost.

The AB2 protocol is the same as the Alternating Bit protocol of Lecture 9 except for one simple modification:

Messages are detectably corrupted rather than lost.

The $A B 2$ protocol is $A B$ protocol with one simple modification:

Messages are detectably corrupted rather than lost.

A corrupted message is represented by a value Bad unequal to any message that can be sent.

The AB2 protocol is the same as the Alternating Bit protocol of Lecture 9 except for one simple modification:

Messages are detectably corrupted rather than lost.
A corrupted message is represented by a special value Bad that doesn't equal any message that can be sent.
[slide 97]

The AB2 protocol is AB protocol with one simple modification:
Messages are detectably corrupted rather than lost.
A corrupted message is represented by a value $B a d$ unequal to any message that can be sent.

The specification is in module $A B 2$

The specification is in module $A B 2$,

The $A B 2$ protocol is $A B$ protocol with one simple modification:
Messages are detectably corrupted rather than lost.
A corrupted message is represented by a value Bad unequal to any message that can be sent.

The specification is in module $A B 2$, which you can now download.

The specification is in module $A B 2$, which you can now download.

Module AB2 is obtained by modifying module AB.

Module AB2 is obtained by making simple modifications to module AB.
If starts like AB by

Module $A B 2$ is obtained by modifying module $A B$.

EXTENDS Integers, Sequences

Module AB2 is obtained by making simple modifications to module AB.

If starts like AB by extending the Integers and Sequences modules, and

Module $A B 2$ is obtained by modifying module $A B$.

EXTENDS Integers, Sequences
CONSTANT Data

Module AB2 is obtained by making simple modifications to module AB.

If starts like AB by extending the Integers and Sequences modules, and declaring the constant Data, the set of possible data values that can be sent. It also declares

Module AB2 is obtained by modifying module AB.

EXTENDS Integers, Sequences
cONSTANTS Data, Bad

Module AB2 is obtained by making simple modifications to module AB.
If starts like AB by extending the Integers and Sequences modules, and declaring the constant Data, the set of possible data values that can be sent.

It also declares the constant Bad, and adds the assumption

Module $A B 2$ is obtained by modifying module $A B$.

EXTENDS Integers, Sequences
constants Data, Bad
ASSUME Bad \notin the set of possible messages
that $B a d$ is not an element of the set of possible messages that can be sent, which equals

Module AB2 is obtained by modifying module AB.

EXTENDS Integers, Sequences
cONSTANTS Data, Bad
ASSUME Bad $\notin($ Data $\times\{0,1\})$
the set of possible messages
from A to B
that $B a d$ is not an element of the set of possible messages that can be sent,
which equals the set of possible messages that can be sent from A to B

Module AB2 is obtained by modifying module AB.

EXTENDS Integers, Sequences
cONSTANTS Data, Bad
ASSUME Bad $\notin($ Data $\times\{0,1\}) \cup\{0,1\}$
the set of possible messages
from B to A
that $B a d$ is not an element of the set of possible messages that can be sent, which equals the set of possible messages that can be sent from A to B
union with the set of possible messages that can be sent from B to A, which contains the two values 0 and 1.

Module AB2 is obtained by modifying module AB.

EXTENDS Integers, Sequences
CONSTANTS Data, Bad
ASSUME $B a d \notin(D a t a \times\{0,1\}) \cup\{0,1\}$
that $B a d$ is not an element of the set of possible messages that can be sent, which equals the set of possible messages that can be sent from A to B
union with the set of possible messages that can be sent from B to A, which contains the two values 0 and 1.

VARIABLES AVar, BVar,

The variables $A V a r$ and B Var are the same as as in module $A B$, but

VARIABLES A Var, B Var, $A t o B, B t o A$

The variables A Var and B Var are the same as as in module $A B$, but the message sequences $A t o B$ and $B t o A$ are renamed
variables AVar, BVar, AtoB2, BtoA2

The variables A Var and B Var are the same as as in module $A B$, but the message sequences $A t o B$ and Bto A are renamed Ato 12 and BtoA2.

```
VARIABLES AVar, BVar, AtoB2, BtoA2
vars \triangleq <AVar, BVar, AtoB2, BtoA2\rangle
```

The variables A Var and B Var are the same as as in module $A B$, but the message sequences $A t o B$ and $B t o A$ are renamed Ato $B 2$ and BtoA2.
vars is again defined to be the tuple of all variables.

VARIABLES AVar, BVar, AtoB2, BtoA2
vars $\triangleq\langle A V a r, B V a r, A t o B 2, B t o A 2\rangle$
Type $O K \triangleq \wedge$ AVar $\in \operatorname{Data} \times\{0,1\}$
\wedge BVar $\in \operatorname{Data} \times\{0,1\}$
\wedge AtoB $\in \operatorname{Seq}($ Data $\times\{0,1\})$
$\wedge B t o A \in \operatorname{Seq}(\{0,1\})$

The variables A Var and B Var are the same as as in module $A B$, but the message sequences $A t o B$ and $B t o A$ are renamed Ato B2 and BtoA2.
vars is again defined to be the tuple of all variables.
Here's the definition of Type $O K$ from $A B$.
[slide 112]

VARIABLES AVar, AVar, AtoB2, BtoA2

vars $\triangleq\langle A V a r, B V a r, A t o B 2, B t o A 2\rangle$

$$
\begin{aligned}
\text { Type OK } \triangleq & \wedge \text { AVar } \in \operatorname{Data} \times\{0,1\} \\
& \wedge B \operatorname{Var} \in \operatorname{Data} \times\{0,1\} \\
& \wedge \operatorname{AtoB} \in \operatorname{Seq}(\operatorname{Data} \times\{0,1\}) \\
& \wedge \operatorname{Bto} \in \operatorname{Seq}(\{0,1\})
\end{aligned}
$$

The type assertions for $A V a r$ and B Var are the same as in $A B$

VARIABLES AVar, AVar, AtoB2, BtoA2

vars $\triangleq\langle A V a r, B \operatorname{Var}, A t o B 2, B t o A 2\rangle$
Type OK $\triangleq \wedge$ AVar $\in \operatorname{Data} \times\{0,1\}$

\wedge Aton $\in \operatorname{Seq}($ Data $\times\{0,1\})$
$\wedge \operatorname{BtoA} \in \operatorname{Seq}(\{0,1\})$

The type assertions for $A V a r$ and $B V a r$ are the same as in $A B$
In module $A B$, the variable $A t o B$ equals a sequence of Data, bit pairs,

VARIABLES AVar, AVar, AtoB2, BtoA2
vars $\triangleq\langle A V a r, B V a r, A t o B 2, B t o A 2\rangle$
Type $O K \triangleq \wedge$ AVar $\in \operatorname{Data} \times\{0,1\}$ \wedge AVar $\in \operatorname{Data} \times\{0,1\}$
$\wedge A t o B 2 \in \operatorname{Seq}(($ Data $\times\{0,1\}) \cup\{$ Bad $\})$
$\wedge B t o A \in \operatorname{Seq}(\{0,1\})$

The type assertions for $A V a r$ and B Var are the same as in $A B$
In module $A B$, the variable $A t o B$ equals a sequence of Data, bit pairs, while the elements of the sequence $A t o B 2$ are either Data, bit pairs or else equal to Bad.

VARIABLES AVar, AVar, AtoB2, BtoA2
vars $\triangleq\langle A V a r, B V a r, A t o B 2, B t o A 2\rangle$
Type OK $\triangleq \wedge$ AVar $\in \operatorname{Data} \times\{0,1\}$
\wedge AVar $\in \operatorname{Data} \times\{0,1\}$
$\wedge A t o B 2 \in \operatorname{Seq}(($ Data $\times\{0,1\}) \cup\{$ Bad $\})$
$\wedge B t o A \in \operatorname{Seq}(\{0,1\})$

The type assertions for A Var and B Var are the same as in $A B$
In module $A B$, the variable $A t o B$ equals a sequence of Data, bit pairs, while the elements of the sequence $A t o B 2$ are either Data, bit pairs or else equal to Bad.

Stop the video and make sure you understand this formula.

VARIABLES AVar, BVar, AtoB2, BtoA2

vars $\triangleq\langle A V a r, B \operatorname{Var}, A t o B 2, B t o A 2\rangle$

$$
\begin{aligned}
\text { TypeOK } \triangleq & \wedge A \operatorname{Var} \in \operatorname{Data} \times\{0,1\} \\
& \wedge B \operatorname{Var} \in \operatorname{Data} \times\{0,1\} \\
& \wedge \operatorname{AtoB} 2 \in \operatorname{Seq}((\operatorname{Data} \times\{0,1\}) \cup\{\operatorname{Bad}\}) \\
& \wedge \operatorname{BtoA} \in \operatorname{Seq}(\{0,1\})
\end{aligned}
$$

Similarly, where $B t o A$ of module $A B$ is a sequence of zeros or ones,

VARIABLES AVar, BVar, AtoB2, BtoA2 vars $\triangleq\langle A V a r, B V a r$, AtoB2, BtoA2 \rangle TypeOK $\triangleq \wedge$ AVar $\in \operatorname{Data} \times\{0,1\}$ \wedge BVar \in Data $\times\{0,1\}$ $\wedge \operatorname{AtoB2} \in \operatorname{Seq}(($ Data $\times\{0,1\}) \cup\{\operatorname{Bad}\})$
$\wedge B t o A 2 \in \operatorname{Seq}(\{0,1, B a d\})$

Similarly, where $B t o A$ of module $A B$ is a sequence of zeros or ones,
$B t o A 2$ is a sequence of the values zero, one, or Bad.

VARIABLES AVar, BVar, AtoB2, BtoA2

vars $\triangleq\langle A V a r, B \operatorname{Var}, A t o B 2, B t o A 2\rangle$

$$
\begin{aligned}
\text { TypeOK } \triangleq & \wedge \text { AVar } \in \operatorname{Data} \times\{0,1\} \\
& \wedge B \operatorname{Var} \in \operatorname{Data} \times\{0,1\} \\
& \wedge \operatorname{AtoB} 2 \in \operatorname{Seq}((\operatorname{Data} \times\{0,1\}) \cup\{\operatorname{Bad}\}) \\
& \wedge \operatorname{BtoA} 2 \in \operatorname{Seq}(\{0,1, \operatorname{Bad}\})
\end{aligned}
$$

Similarly, where B to A of module $A B$ is a sequence of zeros or ones,
$B t o A 2$ is a sequence of the values zero, one, or Bad.

Init, ASnd, BSnd are the same except with

$$
\text { AtoB } \leftarrow A t o B 2 \quad \text { BtoA } \leftarrow B t o A 2
$$

The initial-state formula and the actions in which A and B send messages are the same except for renaming the variables $A t o B$ and $B t o A$.

Init, ASnd, BSnd are the same except with AtoB \leftarrow AtoB2 BtoA \leftarrow BtoA2

Init $\triangleq \wedge$ AVar \in Data $\times 1$
$\wedge B \operatorname{Var}=A V a r$
\wedge AtoB2 $=\langle \rangle$
$\wedge B t o A 2=\langle \rangle$

The initial-state formula and the actions in which A and B send messages are the same except for renaming the variables AtoB and BtoA.

Here's the initial-state formula.

Init, ASnd, BSnd are the same except with

$$
A t o B \leftarrow A t o B 2 \quad B t o A \leftarrow B t o A 2
$$

$$
\text { Init } \triangleq \wedge \text { AVar } \in \text { Data } \times 1
$$

$$
\wedge B \operatorname{Var}=A \operatorname{Var}
$$

$$
\wedge A t o B 2=\langle \rangle
$$

$$
\wedge B t o A 2=\langle \rangle
$$

ASnd $\triangleq \wedge A t o B 2^{\prime}=\operatorname{Append}(A t o B 2, A V a r)$ \wedge UNCHANGED $\langle A V a r, B t o A 2, B$ Var \rangle

The initial-state formula and the actions in which A and B send messages are the same except for renaming the variables AtoB and BtoA.

Here's the initial-state formula.
A 's send-message action.

Init, ASnd, BSnd are the same except with

$$
\text { Ato } B \leftarrow A t o B 2 \quad B t o A \leftarrow B t o A 2
$$

$$
\text { Init } \triangleq \wedge \text { AVar } \in \text { Data } \times 1
$$

$$
\wedge B \operatorname{Var}=A \operatorname{Var}
$$

$$
\wedge A t o B 2=\langle \rangle
$$

$$
\wedge B t o A 2=\langle \rangle
$$

$$
A S n d \triangleq \wedge A t o B 2^{\prime}=\operatorname{Append}(\text { AtoB2, AVar })
$$

$$
\wedge \text { UNCHANGED }\langle\text { AVar, BtoA2, BVar }\rangle
$$

$B S n d \triangleq \wedge B t o A 2^{\prime}=\operatorname{Append}(B t o A 2, B \operatorname{Var}[2])$
\wedge Unchanged \langle AVar, BVar, AtoB2〉

The initial-state formula and the actions in which A and B send messages are the same except for renaming the variables AtoB and BtoA.

Here's the initial-state formula.
A's send-message action.
And B 's send-message action.
[slide 123]
$A R c v$ and $B R c v$ must ignore Bad messages.

The receive actions of A and B must ignore corrupted messages, which equal Bad.

$A R c v$ and $B R c v$ must ignore Bad messages.

$A R c v$ is the same as before.

$$
\begin{aligned}
A R c v \triangleq & \wedge \\
& \text { Bto } A 2 \neq\langle \rangle \\
& \wedge \text { IF } H e a d(\text { BtoA2 })=A \operatorname{Var}[2] \\
& \text { THEN } \exists d \in \text { Data }: A \operatorname{Var}^{\prime}=\langle d, 1-A \operatorname{Var}[2]\rangle \\
& \text { ELSE } A \operatorname{Var}^{\prime}=A \operatorname{Var} \\
\wedge & \text { BtoA2 }^{\prime}=\operatorname{Tail}(\text { BtoA } 2) \\
& \wedge
\end{aligned}
$$

The receive actions of A and B must ignore corrupted messages, which equal Bad.
A 's receive action is the same as before, except for the change of variables.

$A R c v$ and $B R c v$ must ignore Bad messages.

$A R c v$ is the same as before.

If $\operatorname{Head}(B t o A 2)=B a d$
$A R c v \triangleq \wedge B t o A 2 \neq\langle \rangle$
$\wedge \mathrm{IF} \operatorname{Head}(B t o A 2)=A \operatorname{Var}[2]$ THEN $\exists d \in$ Data $: A \operatorname{Var}^{\prime}=\langle d, 1-A \operatorname{Var}[2]\rangle$
ELSE $A V a r^{\prime}=A V a r$
$\wedge B t o A 2^{\prime}=\operatorname{Tail}($ BtoA2 $)$
\wedge UNCHANGED $\langle A t o B 2, B$ Var \rangle

That's because if the message being received, which is at the head of the sequence of messages sent by B, equals Bad,

$A R c v$ and $B R c v$ must ignore Bad messages.

$A R c v$ is the same as before.

If $\operatorname{Head}($ BtoA2 $)=$ Bad
ASSUME Bad $\notin($ Data $\times\{0,1\}) \cup\{0,1\}$
$A R c v \triangleq \wedge B t o A 2 \neq\langle \rangle$
$\wedge \mathrm{IF} \operatorname{Head}($ BtoA2 $)=A \operatorname{Var}[2]$
THEN $\exists d \in$ Data $: A \operatorname{Var}^{\prime}=\langle d, 1-A \operatorname{Var}[2]\rangle$
ELSE $A V a r^{\prime}=A V a r$
\wedge BtoA2' $=\operatorname{Tail}($ BtoA2 $)$
\wedge UNCHANGED $\langle A t o B 2, B$ Var \rangle

That's because if the message being received, which is at the head of the sequence of messages sent by B, equals $B a d$,
then our assumption means that Bad doesn't equal 0 or 1,

$A R c v$ and $B R c v$ must ignore Bad messages.

$A R c v$ is the same as before.
If $\operatorname{Head}($ BtoA2 $)=$ Bad
ASSUME Bad $\notin($ Data $\times\{0,1\}) \cup\{0,1\}$
ARcv $\triangleq \wedge$ BtoA2 $\neq\langle \rangle$
$\wedge \mathrm{IF} \operatorname{Head}($ BtoA2 $)=A \operatorname{Var}[2]$
THEN $\exists d \in$ Data $: A \operatorname{Var}^{\prime}=\langle d, 1-A \operatorname{Var}[2]\rangle$
ELSE $A V a r^{\prime}=A V a r$
$\wedge B t o A 2^{\prime}=\operatorname{Tail}($ BtoA2 $)$
\wedge UNCHANGED \langle Ato $B 2, B$ Var \rangle

That's because if the message being received, which is at the head of the sequence of messages sent by B, equals $B a d$,
then our assumption means that Bad doesn't equal 0 or 1 ,
but $A \operatorname{Var}[2]$ does equal either 0 or 1

ARcv and BRcv must ignore Bad messages.

$A R c v$ is the same as before.
If $\operatorname{Head}($ BtoA2 $)=$ Bad
ASSUME Bad $\notin(\operatorname{Data} \times\{0,1\}) \cup\{0,1\}$
$A R c v \triangleq \wedge B t o A 2 \neq\langle \rangle$
\wedge IF Head $($ BtoA2 $)=A \operatorname{Var}[2]$ FALSE
THEN $\exists d \in$ Data $: A \operatorname{Var}^{\prime}=\langle d, 1-A \operatorname{Var}[2]\rangle$
ELSE $A V a r^{\prime}=A V a r$
\wedge BtoA2' $=\operatorname{Tail}($ BtoA2 $)$
\wedge UNCHANGED \langle Ato $B 2, B$ Var \rangle

That's because if the message being received, which is at the head of the sequence of messages sent by B, equals $B a d$,
then our assumption means that Bad doesn't equal 0 or 1 ,
but $A \operatorname{Var}[2]$ does equal either 0 or 1
So the if condition is false, and the action leaves AVar unchanged, meaning that A ignores the message.
[slide 129]

$A R c v$ and BRcv must ignore Bad messages.

$B R c v$ must be modified.

To ignore corrupted messages, BRcv must be modified beyond just renaming the variables $A t o B$ and $B t o A$.

$A R c v$ and $B R c v$ must ignore Bad messages.

$B R c v$ must be modified.

$$
\begin{aligned}
B R c v \triangleq & \wedge \\
& \wedge \\
& \text { AtoB } 2 \neq\langle \rangle \\
& \text { THead }(\text { AtoB2 }) \neq \text { Bad }) \wedge(\text { Head }(\text { AtoB2 } 2)[2] \neq \text { BVar }[2]) \\
& \text { ELSE } B \operatorname{Var}^{\prime}=B \operatorname{Var}(\text { AtoB } 2) \\
& \wedge \text { AtoB2' }=\operatorname{Tail}(\text { AtoB } 2) \\
& \wedge \text { UNCHANGED }\langle\text { AVar }, \text { BtoA2 }\rangle
\end{aligned}
$$

To ignore corrupted messages, BRcv must be modified beyond just renaming the variables $A t o B$ and $B t o A$.

Here's the new definition.

$A R c v$ and $B R c v$ must ignore Bad messages.

$B R c v$ must be modified.

```
BRcv}\triangleq\wedge AtoB2\not=\langle
    ^IF (Head (AtoB2) \not= Bad) ^(Head(AtoB2)[2] # B Var[2])
    THEN BVar' = Head(AtoB2)
    ELSE BVar' = BVar
    A AtoB2' = Tail(AtoB2)
    ^ UNCHANGED <AVar, BtoA2\rangle
```

To ignore corrupted messages, BRcv must be modified beyond just renaming the variables AtoB and BtoA.

Here's the new definition.
In the if formula

$A R c v$ and $B R c v$ must ignore Bad messages.

$B R c v$ must be modified.

```
BRcv}\triangleq\wedge AtoB2\not=\langle
    ^IF (Head (AtoB2) # Bad ) ^(Head(AtoB2)[2] # BVar[2])
    THEN BVar' = Head(AtoB2)
    ELSE BVar' = BVar
    A AtoB2' = Tail(AtoB2)
    ^ UNCHANGED <AVar, BtoA2\rangle
```

To ignore corrupted messages, BRcv must be modified beyond just renaming the variables AtoB and BtoA.

Here's the new definition.
In the if formula this conjunct has been added to the test.

$A R c v$ and $B R c v$ must ignore Bad messages.

$B R c v$ must be modified.

Message ignored if $\operatorname{Head}($ BtoA2 $)=B a d$.

```
BRcv}\triangleq\wedge AtoB2\not=\langle
    \IF (Head (AtoB2) \not= Bad) ^(Head(AtoB2)[2] \not= BVar[2])
    THEN BVar' = Head(AtoB2)
    ELSE BVar' = BVar
    AtoB2' = Tail(AtoB2)
    ^ UNCHANGED <AVar, BtoA2\rangle
```

To ignore corrupted messages, BRcv must be modified beyond just renaming the variables AtoB and BtoA.

Here's the new definition.
In the if formula this conjunct has been added to the test.
So BVar is left unchanged and the message being received is ignored if it equals Bad.

LoseMsg is replaced by CorruptMsg

Finally, the LoseMsg action is replaced by a CurruptMsg action,

LoseMsg is replaced by CorruptMsg, which changes messages in AtoB2 and BtoA2 to Bad instead of removing them.

Finally, the LoseMsg action is replaced by a CurruptMsg action, which changes messages in AtoB2 and BtoA2 to Bad instead of removing them.

LoseMsg is replaced by CorruptMsg, which changes messages in AtoB2 and BtoA2
to Bad instead of removing them.

$$
\begin{aligned}
& \text { CorruptMsg } \triangleq \wedge \vee \wedge \exists i \in 1 . . \operatorname{Len}(\text { AtoB } 2): \\
& \text { AtoB2 } 2^{\prime}=[\text { AtoB } 2 \text { EXCEPT }![i]=B a d] \\
& \wedge \text { BtoA2 }=\text { BtoA2 } \\
& \vee \wedge \exists i \in 1 . . \operatorname{Len}(\text { BtoA } 2): \\
& \text { BtoA2 }=[\text { BtoA2 EXCEPT }![i]=\text { Bad }] \\
& \wedge \text { AtoB2 } 2^{\prime}=\text { AtoB2 } \\
& \wedge \text { UNCHANGED }\langle\text { AVar }, \text { BVar }\rangle
\end{aligned}
$$

Finally, the LoseMsg action is replaced by a CurruptMsg action, which changes messages in AtoB2 and BtoA2 to Bad instead of removing them.

Here is the definition, which is the same as the LoseMsg action,

LoseMsg is replaced by CorruptMsg, which changes messages in AtoB2 and BtoA2
to Bad instead of removing them.

$$
\begin{aligned}
& \text { CorruptMsg } \triangleq \wedge \vee \wedge \exists i \in 1 . . \operatorname{Len}(\text { AtoB } 2): \\
& \text { AtoB2 } 2^{\prime}=[\text { AtoB } 2 \text { EXCEPT }![i]=B a d] \\
& \wedge \text { BtoA2' }=\text { BtoA2 } \\
& \vee \wedge \exists i \in 1 . . \operatorname{Len}(\text { BtoA } 2): \\
& \text { BtoA2' }=[\text { BtoA2 EXCEPT }![i]=\text { Bad }] \\
& \wedge \text { AtoB2' }=\text { AtoB2 } \\
& \wedge \text { UNCHANGED }\langle\text { AVar }, \text { BVar }\rangle
\end{aligned}
$$

Finally, the LoseMsg action is replaced by a CurruptMsg action, which changes messages in AtoB2 and BtoA2 to Bad instead of removing them.

Here is the definition, which is the same as the LoseMsg action, except for these parts that describe the change to AtoB2 or BtoA2.

The definitions of Next and the safety specification Spec are straightforward.

The definitions of Next and of the safety specification Spec

The definitions of Next and the safety specification Spec are straightforward.

Next \triangleq ASnd \vee ARcv \vee BSnd \vee BRcv \vee CorruptMsg
Spec \triangleq Init $\wedge \square[N e x t]_{\text {vars }}$

The definitions of Next and of the safety specification Spec are what you should expect.

```
The definitions of Next and the safety
specification Spec are straightforward.
```

```
Next \triangleqASnd \vee ARcv \vee BSnd \vee BRcv \vee CorruptMsg
```

```
Next \triangleqASnd \vee ARcv \vee BSnd \vee BRcv \vee CorruptMsg
```


Liveness is discussed later.

The definitions of Next and of the safety specification Spec
are what you should expect.
I'll discuss liveness later.

The $A B 2$ protocol is essentially the same as the $A B$ protocol.

The $A B 2$ protocol is essentially the same as the ordinary alternating bit protocol of module $A B$.

The $A B 2$ protocol is essentially the same as the $A B$ protocol.

It too implements the high-level safety specification in module ABSpec.

The $A B 2$ protocol is essentially the same as the ordinary alternating bit protocol of module $A B$.

As we expect, it too implements the high-level safety specification of the protocol in module ABSpec.

This is expressed in module $A B 2$ the same as in module $A B$,

The $A B 2$ protocol is essentially the same as the $A B$ protocol.

It too implements the high-level safety specification in module $A B S p e c$.

$A B S \triangleq$ Instance ABSpec

by importing module $A B S p e c$ with renaming

The $A B 2$ protocol is essentially the same as the $A B$ protocol.

It too implements the high-level safety specification in module $A B S p e c$.
$A B S \triangleq$ Instance $A B S p e c$
THEOREM Spec $\Rightarrow A B S!$ Spec
by importing module $A B S$ pec with renaming
and stating this theorem.

CHECKING AB2

Now check that the $A B 2$ protocol implements the high-level safety spec of module ABSpec.

You should now check that the $A B 2$ protocol implements the high-level safety spec of module ABSpec.

Now check that the $A B 2$ protocol implements the high-level

 safety spec of module $A B S$ pec.As with the $A B$ spec, a model must provide:

As with the $A B$ spec, a model must provide two things:

Now check that the $A B 2$ protocol implements the high-level

 safety spec of module $A B S$ pec.As with the $A B$ spec, a model must provide:

- A value for the constant Data .

As with the $A B$ spec, a model must provide two things:

First, it has to provide A value for the constant Data .

Now check that the $A B 2$ protocol implements the high-level safety spec of module $A B S$ pec.

As with the $A B$ spec, a model must provide:

- A value for the constant Data .

Use a set $\{d 1, d 2, d 3\}$ of model values.

As with the $A B$ spec, a model must provide two things:

First, it has to provide A value for the constant Data.

For example, you can use this set of three model values.

Now check that the $A B 2$ protocol implements the high-level safety spec of module $A B S$ pec.

As with the $A B$ spec, a model must provide:

- A value for the constant Data .

Use a set $\{d 1, d 2, d 3\}$ of model values.

- A state constraint to bound the lengths of AtoB2 and BtoA2.

As with the $A B$ spec, a model must provide two things:
First, it has to provide A value for the constant Data .
For example, you can use this set of three model values.
Second, it must provide a state constraint to bound the lengths of the sequences AtoB2 and BtoA2.

Now check that the $A B 2$ protocol implements the high-level safety spec of module $A B S$ pec.

As with the $A B$ spec, a model must provide:

- A value for the constant Data .

Use a set $\{d 1, d 2, d 3\}$ of model values.

- A state constraint to bound the lengths of AtoB2 and BtoA2.

Use $(A t o B 2<4) \wedge(B t o A 2<4)$.

As with the $A B$ spec, a model must provide two things:
First, it has to provide A value for the constant Data.
For example, you can use this set of three model values.
Second, it must provide a state constraint to bound the lengths of the sequences AtoB2 and BtoA2.
You can constrain them both to have length less than four.
[slide 152]

A model of $A B 2$ most also specify a value for $B a d$.

A model of specification $A B 2$ most also specify a value for the constant Bad.

A model of $A B 2$ most also specify a value for Bad.

It must satisfy
ASSUME Bad $\notin($ Data $\times\{0,1\}) \cup\{0,1\}$

A model of specification $A B 2$ most also specify a value for the constant Bad.

That value must satisfy the module's assumption,

A model of $A B 2$ most also specify a value for Bad.

It must satisfy
ASSUME $B a d \notin(\times\{0,1\}) \cup\{0,1\}$

A model of specification $A B 2$ most also specify a value for the constant Bad.

That value must satisfy the module's assumption,
when Data also equals the value the model assigns to it.

A model of $A B 2$ most also specify a value for Bad.

It must satisfy
ASSUME $B a d \notin(\times\{0,1\}) \cup\{0,1\}$

An obvious choice:

조

What is the model?

Specify the values of declared constants.

Bad <- "Bad"

Ordinary assignment
OModel value
Set of model values
\square Symmetry set

> A model of specification $A B 2$ most also specify a value for the constant Bad.

That value must satisfy the module's assumption,
when Data also equals the value the model assigns to it.
An obvious choice is to let the model assign the string quote-bad to the constant Bad.
[slide 156]

Running the model produces this TLC error:

```
Attempted to check equality of integer 0 with
non-integer: "Bad"
```

But running the model produces this TLC error: Attempted to check equality of integer 0 with non-integer quote-bad.

Running the model produces this TLC error:

```
Attempted to check equality of integer 0 with
value I don't know to be an integer: "Bad"
```

But running the model produces this TLC error: Attempted to check equality of integer 0 with non-integer quote-bad.

What TLC really means is that it tried to check if 0 equals the value quote-bad, and it doesn't even know whether or not that value is an integer.

Running the model produces this TLC error:
 Attempted to check equality of integer 0 with
 non-integer: "Bad"

We think that " $B a d$ " and 0 are different

We naturally think that " $B a d$ " and 0 are different,

Running the model produces this TLC error:
 Attempted to check equality of integer 0 with
 non-integer: "Bad"

We think that "Bad" and 0 are different, but the semantics of TLA+ don't say that they are.

We naturally think that "Bad" and 0 are different,

But the semantics of TLA+ doesn't specify that they're different. So TLC doesn't know whether or not they're equal.

Running the model produces this TLC error:

Attempted to check equality of integer 0 with
non-integer: "Bad"
We think that "Bad" and 0 are different, but the semantics of TLA+ don't say that they are.

What value of Bad satisfies

$$
B a \underset{\{d 1, \mathrm{~d} 2, \mathrm{~d} 3\}}{\notin(} \times\{0,1\}) \cup\{0,1\} ?
$$

We naturally think that "Bad" and 0 are different,
But the semantics of TLA+ doesn't specify that they're different. So TLC doesn't know whether or not they're equal.

What value of Bad does satisfy this condition?
We don't know, and we don't need to know. To define the model, all we need to know is:

Running the model produces this TLC error:

Attempted to check equality of integer 0 with
non-integer: "Bad"
We think that "Bad" and 0 are different, but the semantics of TLA+ don't say that they are.
does TLC think
What value of $B a d_{\wedge}$ satisfies

$$
B a d \stackrel{\{\mathrm{~d} 1, \mathrm{~d} 2, \mathrm{~d} 3\}}{\notin(} \times\{0,1\}) \cup\{0,1\} ?
$$

What value does TLC think satisfies the condition? And the answer to that question is:

Running the model produces this TLC error:
 ```Attempted to check equality of integer 0 with \\ non-integer: "Bad"```

We think that "Bad" and 0 are different, but the semantics of TLA+ don't say that they are.
does TLC think
What value of $B a d_{\wedge}$ satisfies

$$
B a d \underset{\{d 1, \mathrm{~d} 2, \mathrm{~d} 3\}}{\notin(} \times\{0,1\}) \cup\{0,1\} ?
$$

A model value.

What value does TLC think satisfies the condition? And the answer to that question is:

A model value.

TLC assumes a model value does not equal any value that you might expect it to be different from.

TLC assumes a model value does not equal any value that you would expect it to be different from.

You don't need to know precisely what that means.

TLC assumes a model value does not equal any value that you might expect it to be different from.

It's convenient to let the constant $B a d$ equal the model value Bad.

It's convenient to have the model assign to the constant Bad the model value of the same name.

TLC assumes a model value does not equal any value that you might expect it to be different from.

It's convenient to let the constant Bad equal the model value Bad.

Here's how:
푸
What is the model?
Specify the values of declared constants.

Ordinary assignment

- Model value

OSet of model values
Symmetry set

It's convenient to have the model assign to the constant Bad the model value of the same name.

To do that, in the window for assigning a value to the constant,

TLC assumes a model value does not equal any value

 that you might expect it to be different from.It's convenient to let the constant Bad equal the model value Bad.

Here's how:
\square
What is the model?
Specify the values of declared constants.

Bad $<$

Ordinory assignment
O) Model value

O Set of model values
Symmetry set

It's convenient to have the model assign to the constant Bad the model value of the same name.

To do that, in the window for assigning a value to the constant, just select the model value option

You can now run TLC to check that the $A B 2$ specification implements the specification of module ABSpec .

You can now run TLC to check that the $A B 2$ specification implements the specification of module $A B S p e c$.

LIVENESS OF AB2

Module AB2 next defines FairSpec to be the obvious analogue of FairSpec of $A B$.

Module $A B 2$ next defines FairSpec to be the obvious analogue of formula FairSpec of module $A B$.

Module AB2 next defines FairSpec to be the obvious analogue of FairSpec of $A B$.

But it doesn't implement $A B S$!FairSpec .

> Module AB2 next defines FairSpec to be the obvious analogue of formula FairSpec of module $A B$.

But this specification FairSpec doesn't implement the high-level specification FairSpec of module ABSpec.

Module AB2 next defines FairSpec to be the obvious analogue of FairSpec of $A B$.

But it doesn't implement ABS!FairSpec .

Fairness requirements on subactions of Next can't guarantee that any messages are received before they're corrupted.

> Module AB2 next defines FairSpec to be the obvious analogue of formula FairSpec of module $A B$.

But this specification FairSpec doesn't implement the high-level specification FairSpec of module ABSpec.

I believe that fairness requirements on subactions of Next cannot guarantee that any messages are received before they're corrupted.
[slide 172]

> Module AB2 next defines FairSpec to be the obvious analogue of FairSpec of $A B$.

But it doesn't implement $A B S$!FairSpec .

Fairness requirements on subactions of Next can't guarantee that any messages are received before they're corrupted.

To do that, we change the safety spec.

To guarantee that, we change the safety spec.

Sending a message adds something to the state that determines if the message can be corrupted.

We let sending a message add something to the state that determines if the message can be corrupted.

Sending a message adds something to the state that determines if the message can be corrupted.

We could add a component to each message.

We let sending a message add something to the state that determines if the message can be corrupted.

We could add a component to each message. For example

Sending a message adds something to the state that determines if the message can be corrupted.

We could add a component to each message.
〈"Tom", 0, TRUE〉
message cannot be corrupted

We let sending a message add something to the state that determines if the message can be corrupted.

We could add a component to each message. For example We could let a component with value TRUE mean that the message cannot be corrupted.

Sending a message adds something to the state that determines if the message can be corrupted.

We could add a component to each message.

```
<"Tom", 0, TRUE\rangle
    message cannot be corrupted
<"Tom", 0, FALSE\rangle
    message can be corrupted
```

We let sending a message add something to the state that determines if the message can be corrupted.

We could add a component to each message. For example We could let a component with value TRUE mean that the message cannot be corrupted.
And let a component with value FALSE mean that the message can be corrupted.
[slide 177]

Sending a message adds something to the state that determines if the message can be corrupted.
 We could add a component to each message.

An imaginary component that's not meant to be implemented

It's an imaginary component that's not meant to be implemented

Sending a message adds something to the state that determines if the message can be corrupted.
 We could add a component to each message.

An imaginary component that's not meant to be implemented and serves only to specify liveness.

It's an imaginary component that's not meant to be implemented and serves only to specify liveness.

It's best to keep the real and imaginary parts of the state separate

It's best to keep the real and imaginary parts of the state separate

It's best to keep the real and imaginary parts of the state separate by putting

them in different variables.

It's best to keep the real and imaginary parts of the state separate

by putting them in different variables.

It＇s best to keep the real and imaginary parts of the state separate by putting them in different variables．

Instead of
AtoB2：〈〈＂Tom＂，0，TRUE〉，〈＂Tom＂，0，FALSE〉，〈＂Fred＂，0，FALSE〉〉

It＇s best to keep the real and imaginary parts of the state separate by putting them in different variables．

Instead of adding an imaginary component to the messages in AtoB2，

It's best to keep the real and imaginary

parts of the state separate by putting

them in different variables.

Instead of
AtoB2: $\langle\langle " T o m ", ~ 0, ~ T R U E\rangle,\langle " T o m ", ~ 0, ~ F A L S E\rangle,\langle " F r e d ", ~ 0, ~ F A L S E\rangle\rangle$
we have
AtoB2: $\langle\langle " T o m ", 0\rangle,\langle " T o m ", 0\rangle,\langle " F r e d ", 1\rangle\rangle$

It's best to keep the real and imaginary parts of the state separate by putting them in different variables.

Instead of adding an imaginary component to the messages in AtoB2,
We have the same messages in AtoB2
[slide 183]

It's best to keep the real and imaginary parts of the state separate by putting them in different variables.

Instead of
AtoB2: $\langle\langle " T o m ", ~ 0, ~ T R U E\rangle,\langle " T o m ", ~ 0, ~ F A L S E\rangle,\langle " F r e d ", ~ 0, ~ F A L S E\rangle\rangle$
we have

$$
\begin{array}{ll}
\text { AtoB2: } & \langle\langle\text { "Tom", 0 }\rangle,\langle " T o m ", 0\rangle,\langle " F r e d ", 1\rangle\rangle \\
\text { AtoBgood: } & \langle\text { TRUE , FALSE , FALSE }\rangle
\end{array}
$$

It's best to keep the real and imaginary parts of the state separate by putting them in different variables.

Instead of adding an imaginary component to the messages in AtoB2,
We have the same messages in $A t o B 2$ and put the sequence of their imaginary components into a separate variable AtoBgood.

It's best to keep the real and imaginary parts of the state separate by putting them in different variables.

And we similarly have BtoA2 and BtoAgood.

And we similarly have BtoA2 and the imaginary variable BtoAgood.

The resulting safety specification $S p e c P$ is defined in a module named $A B 2 P$, which EXTENDS module $A B 2$.

The resulting specification $\operatorname{Spec} P$ is defined in a module named $A B 2 P$, which EXTENDS module $A B 2$.

The resulting safety specification SpecP is defined in a module named $A B 2 P$, which EXTENDS module AB2.

AtoBgood and BtoAgood are imaginary variables, not meant to be implemented.

The resulting specification $S p e c P$ is defined in a module named $A B 2 P$, which EXTENDS module $A B 2$.

The variables AtoBgood and BtoAgood are imaginary variables; they're not meant to be implemented.

The resulting safety specification SpecP is defined in a module named $A B 2 P$, which EXTENDS module $A B 2$.

AtoBgood and BtoAgood are imaginary variables, not meant to be implemented. They are used only for defining the fairness requirements.

The resulting specification $S p e c P$ is defined in a module named $A B 2 P$, which EXTENDS module $A B 2$.

The variables AtoBgood and BtoAgood are imaginary variables; they're not meant to be implemented.

They are used only for defining the fairness requirements.
[slide 188]

> The resulting safety specification $S p e c P$ is defined in a module named $A B 2 P$, which EXTENDS module $A B 2$.

> AtoBgood and BtoAgood are imaginary variables, not meant to be implemented. They are used only for defining the fairness requirements.

Deciding in advance if a message can be deleted doesn't change the values the variables of $A B 2$ can assume.

Deciding in advance if a message can be deleted doesn't change the values that the variables of $A B 2$ can assume.

The resulting safety specification SpecP is defined in a module named $A B 2 P$, which EXTENDS module AB2.

AtoBgood and BtoAgood are imaginary variables, not meant to be implemented. They are used only for defining the fairness requirements.

Deciding in advance if a message can be deleted doesn't change the values the variables of $A B 2$ can assume.

So if we ignore the values of AtoBgood and BtoAgood,

Deciding in advance if a message can be deleted doesn't change the values that the variables of $A B 2$ can assume.

So if we ignore the values of the imaginary variables AtoBgood and BtoAgood,

The resulting safety specification SpecP is defined in a module named $A B 2 P$, which EXTENDS module AB2.

AtoBgood and BtoAgood are imaginary variables, not meant to be implemented. They are used only for defining the fairness requirements.

Deciding in advance if a message can be deleted doesn't change the values the variables of $A B 2$ can assume.

So if we ignore the values of AtoBgood and BtoAgood, then Spec and SpecP allow the same behaviors.

Deciding in advance if a message can be deleted doesn't change the values that the variables of $A B 2$ can assume.

So if we ignore the values of the imaginary variables AtoBgood and
BtoAgood, then specifications Spec and SpecP allow the same behaviors.
[slide 191]

You can read the definitions of $S p e c P$ and of specification FairSpecP with fairness requirements in module $A B 2 P$.

You can read the definitions of SpecP and of the specification FairSpecP with fairness requirements in module $A B 2 P$.

You can read the definitions of $S p e c P$ and

 of specification FairSpecP with fairness requirements in module $A B 2 P$.Stop the video and download it now.

You can read the definitions of $\operatorname{Spec} P$ and of the specification FairSpec P with fairness requirements in module $A B 2 P$.

Stop the video and download that module now.
[slide 193]

Our discussion of liveness of the AB2 protocol stops here. The second part of this lecture considers only the protocol's safety spec, explaining the precise sense in which it implements the safety spec of the AB protocol, and how to check that it does. Imaginary variables will appear again.

TLA+ Video Course

End of Lecture 10, Part 1

IMPLEMENTATION WITH REFINEMENT PRELIMINARIES

