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The concept of implementation as implication we’ve been using works only
when all the high-level specification’s variables appear in the low-level spec.
This lecture explains what implementation means when that isn’t the case. It
provides important insight into implementation, including what it means for a
program to implement a TLA+ spec. But that comes in the second part. In
this part, we discuss recursion and substitution, and then introduce our
motivating example: another version of the Alternating Bit protocol.
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RECURSIVE DEFINITIONS
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Problem:

Define an operator RemoveX that removes
all instances of “X ” from a sequence of strings.

Example:
RemoveX ( 〈“Tom”, “X ”, “Dick ”, “Harry”, “X ”〉 )

= 〈“Tom”, “Dick ”, “Harry”〉

Suppose we need to define an operator RemoveX that removes all
instances of the string X from a sequence of strings.

For example, applying RemoveX to the sequence consisting of the five
strings Tom, X , Dick , Harry , and X

yields the value obtained by removing the two X s to obtain
the string Tom, Dick , Harry .
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Solution: A recursive definition.

RemoveX (sequence) ∆
=

. . . RemoveX (shorter sequence) . . .

RemoveX ( 〈 〉 ) ∆
= 〈 〉

We do this with a recursive definition.

A recursive definition defines RemoveX of a sequence in terms of RemoveX
of a shorter sequence.

This means that RemoveX of this shorter sequence is defined to equal some
expression involving RemoveX of a still shorter sequence.
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We can keep going like this, obtaining expressions containing RemoveX

applied to shorter and shorter sequences.

Eventually we reach an expression containing RemoveX of the empty
sequence which of course equals the empty sequence.

So we have to do two things.
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Solution: A recursive definition.

RemoveX (sequence) ∆
=

. . . RemoveX (shorter sequence) . . .

RemoveX ( 〈“X ”, . . .〉 ) ∆
= RemoveX (〈. . .〉)
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Define RemoveX of the empty sequence. And define the value of RemoveX
of a non-empty sequence in terms of RemoveX of a shorter sequence.

RemoveX of a sequence beginning with X equals RemoveX applied to the
rest of the sequence.
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And RemoveX of a sequence beginning with another value, such as Tom,
equals the sequence that begins with Tom and is followed by the result of
applying RemoveX to the rest of the sequence.

So we just have to write this as a single TLA+ definition.
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RemoveX ( 〈“X ”, . . .〉 ) ∆
= RemoveX (〈. . .〉)

RemoveX ( 〈“Tom”, . . .〉 ) ∆
= 〈“Tom”〉 ◦ RemoveX (〈. . .〉)

RemoveX ( 〈 〉 ) ∆
= 〈 〉

RECURSIVE RemoveX (_)

RemoveX (seq)
∆
=

IF seq = 〈 〉
THEN 〈 〉
ELSE IF Head(seq) = “X ”

THEN RemoveX (Tail(seq))

ELSE 〈Head(seq)〉 ◦ RemoveX (Tail(seq))

Here’s the definition.

If seq is the empty sequence, then RemoveX of seq equals the empty
sequence.

Otherwise if the head of seq (its first element) equals the string X , then
RemoveX of seq equals RemoveX of the tail of seq .
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Else, it equals the sequence obtained by prepending the head of seq to the
front of RemoveX of the tail of seq .

This is a recursive definition because the symbol we’re defining appears in its
definition.
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Such a definition must be preceded by a RECURSIVE declaration of the
symbol being defined, with its arguments indicated by underscore characters.

This is the complete definition of RemoveX .
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If you’ve used a “functional” programming language, recursive
definitions will seem natural.

If not, think of using a recursive definition when implementing
the operator with a program requires a loop.

If you’ve used a “functional” programming language, recursive definitions will
seem natural.

If not, think of using a recursive definition when implementing the operator
with a program requires a loop.
[ slide 29 ]



If you’ve used a “functional” programming language, recursive
definitions will seem natural.

If not, think of using a recursive definition when implementing
the operator with a program requires a loop.

If you’ve used a “functional” programming language, recursive definitions will
seem natural.

If not, think of using a recursive definition when implementing the operator
with a program requires a loop.
[ slide 30 ]



SUBSTITUTION
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Substitution is a fundamental operation of mathematics.

There’s no standard notation for expressing it.

In this lecture I will write the expression obtained
by substituting an expression e for the symbol v
in an expression f like this

f WITH v ← e

Substitution is a fundamental operation of mathematics.

But mathematicians have no standard notation for expressing it.

In this lecture I will write the expression obtained by substituting an
expression e for the symbol v in an expression f like this,
which I’ll read as “f with e substituted for v .”
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Substitution is a fundamental operation of mathematics.

There’s no standard notation for expressing it.

In this lecture I will write the expression obtained
by substituting an expression e for the symbol v
in an expression f like this

f WITH v ← e

For example (y3 − y) WITH y ← x + 2

equals (x + 2)3 − (x + 2) .

For example y3 − y with x + 2 substituted for y
equals the expression (x + 2) cubed minus the expression (x + 2) .

This is not TLA+ notation. I’m using it only for this lecture.
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A Fundamental Law of Ordinary Math

For any variable v and expressions e and f

v = e implies f = (f WITH v ← e)

Let’s write it as

THEOREM (v = e) ⇒ (f = (f WITH v ← e))

I’ll call this the Simple Substitution Law

There’s a fundamental law of substitution in ordinary math.

It says that for any variable v and expressions e and f ,
v equals e implies that f equals the expression f with e substituted for v .

Let’s write it as this theorem.

I’ll call this law the Simple Substitution Law, though it’s not what
mathematicians call it.
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Ordinary math corresponds to the constant expressions
of TLA+.

Mathematicians’ variables are the CONSTANTS of TLA+.

Nothing in ordinary math corresponds to the VARIABLES

and non-constant operators of TLA+.

Ordinary math corresponds to the constant expressions of TLA+.

Mathematicians’ variables are the declared constants of TLA+.

Nothing in ordinary math corresponds to the declared variables and
non-constant operators of TLA+.

They belong to temporal logic, a special kind of math that’s not as simple as
ordinary math.
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Ordinary math corresponds to the constant expressions
of TLA+.

Mathematicians’ variables are the CONSTANTS of TLA+.

Nothing in ordinary math corresponds to the VARIABLES

and non-constant operators of TLA+.

Temporal Logic of Actions

And T-L-A stands for the temporal logic of actions.
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THEOREM (v = e) ⇒ ( f = (f WITH v ← e))

This is not true if v is a variable or e is a non-constant
expression.

Example v ← y , e ← x + 2, f ← y ′ where x and y are variables

THEOREM (y = x + 2) ⇒ (y ′ = (x + 2)′)

This is an assertion about a behavior.

Asserts y = x + 2 in first state of behavior.

Asserts y = x + 2 in second state of behavior.

The Simple Substitution Law is not true if v is a variable or e is a
non-constant expression.

Here’s an example that shows it’s not true.

Let’s substitute y for v , x + 2 for e, and y prime for f in the law – where x and
y are variables.
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THEOREM (v = e) ⇒ ( f = (f WITH v ← e))

This is not true if v is a variable or e is a non-constant
expression.

Example v ← y , e ← x + 2, f ← y ′ where x and y are variables

THEOREM (y = x + 2) ⇒ (y ′ = (x + 2)′)

This is an assertion about a behavior.

Asserts y = x + 2 in first state of behavior.

Asserts y = x + 2 in second state of behavior.

The Simple Substitution Law is not true if v is a variable or e is a
non-constant expression.

Here’s an example that shows it’s not true.

Let’s substitute y for v , x + 2 for e, and y prime for f in the law – where x and
y are variables.
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THEOREM (v = e) ⇒ ( f = (f WITH v ← e))

This is not true if v is a variable or e is a non-constant
expression.

Example v ← y , e ← x + 2, f ← y ′ where x and y are variables

THEOREM (y = x + 2) ⇒ (y ′ = (x + 2)′)

This is an assertion about a behavior.

Asserts y = x + 2 in first state of behavior.

Asserts y = x + 2 in second state of behavior.

The Simple Substitution Law is not true if v is a variable or e is a
non-constant expression.

Here’s an example that shows it’s not true.

Let’s substitute y for v , x + 2 for e, and y prime for f in the law – where x and
y are variables.
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THEOREM (v = e) ⇒ ( f = (f WITH v ← e))

This is not true if v is a variable or e is a non-constant
expression.

Example v ← y , e ← x + 2, f ← y ′ where x and y are variables

THEOREM (y = x + 2) ⇒ (y ′ = (x + 2)′)

This is an assertion about a behavior.

Asserts y = x + 2 in first state of behavior.

Asserts y = x + 2 in second state of behavior.

The Simple Substitution Law is not true if v is a variable or e is a
non-constant expression.

Here’s an example that shows it’s not true.

Let’s substitute y for v , x + 2 for e, and y prime for f in the law – where x and
y are variables.
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THEOREM (v = e) ⇒ ( f = (f WITH v ← e))

This is not true if v is a variable or e is a non-constant
expression.

Example v ← y , e ← x + 2, f ← y ′ where x and y are variables

THEOREM (y = x + 2) ⇒ (y ′ = (x + 2)′)

This is an assertion about a behavior.

Asserts y = x + 2 in first state of behavior.

Asserts y = x + 2 in second state of behavior.

The law states that

“v equals e”, which is “y equals x + 2”, implies that

f , which is y prime, equals

“the expression f with x + 2 substituted for y”, which is x + 2 prime.
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THEOREM (v = e) ⇒ ( f = (f WITH v ← e))

This is not true if v is a variable or e is a non-constant
expression.

Example v ← y , e ← x + 2, f ← y ′ where x and y are variables

THEOREM (y = x + 2) ⇒ (y ′ = (x + 2)′)

This is an assertion about a behavior.

Asserts y = x + 2 in first state of behavior.

Asserts y = x + 2 in second state of behavior.

The law states that

“v equals e”, which is “y equals x + 2”, implies that

f , which is y prime, equals

“the expression f with x + 2 substituted for y”, which is x + 2 prime.
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THEOREM (v = e) ⇒ ( f = (f WITH v ← e))

This is not true if v is a variable or e is a non-constant
expression.

Example v ← y , e ← x + 2, f ← y ′ where x and y are variables

THEOREM (y = x + 2) ⇒ (y ′ = (x + 2)′)

This is an assertion about a behavior.

Asserts y = x + 2 in first state of behavior.

Asserts y = x + 2 in second state of behavior.

The law states that

“v equals e”, which is “y equals x + 2”, implies that

f , which is y prime, equals

“the expression f with x + 2 substituted for y”, which is x + 2 prime.
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THEOREM (v = e) ⇒ ( f = (f WITH v ← e))

This is not true if v is a variable or e is a non-constant
expression.

Example v ← y , e ← x + 2, f ← y ′ where x and y are variables

THEOREM (y = x + 2) ⇒ (y ′ = (x + 2)′)

This is an assertion about a behavior.

Asserts y = x + 2 in first state of behavior.

Asserts y = x + 2 in second state of behavior.

The law states that

“v equals e”, which is “y equals x + 2”, implies that

f , which is y prime, equals

“the expression f with x + 2 substituted for y”, which is x + 2 prime.
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THEOREM (v = e) ⇒ ( f = (f WITH v ← e))

This is not true if v is a variable or e is a non-constant
expression.

Example v ← y , e ← x + 2, f ← y ′ where x and y are variables

THEOREM (y = x + 2) ⇒ (y ′ = (x + 2)′)

This is an assertion about a behavior.

Asserts y = x + 2 in first state of behavior.

Asserts y = x + 2 in second state of behavior.

This formula is an assertion about a behavior, and the theorem asserts that
it’s true for all behaviors.

This is a state formula, so it asserts that y = x + 2 is true in the first state of
the behavior.
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THEOREM (v = e) ⇒ ( f = (f WITH v ← e))

This is not true if v is a variable or e is a non-constant
expression.

Example v ← y , e ← x + 2, f ← y ′ where x and y are variables

THEOREM (y = x + 2) ⇒ (y ′ = (x + 2)′)

This is an assertion about a behavior.

Asserts y = x + 2 in first state of behavior.

Asserts y = x + 2 in second state of behavior.

This formula is an assertion about a behavior, and the theorem asserts that
it’s true for all behaviors.

This is a state formula, so it asserts that y = x + 2 is true in the first state of
the behavior.

[ slide 59 ]



THEOREM (v = e) ⇒ ( f = (f WITH v ← e))

This is not true if v is a variable or e is a non-constant
expression.

Example v ← y , e ← x + 2, f ← y ′ where x and y are variables

THEOREM (y = x + 2) ⇒ (y ′ = (x + 2)′)

This is an assertion about a behavior.

Asserts y = x + 2 in first state of behavior.

Asserts y = x + 2 in second state of behavior.

This action formula asserts that the value of y in the second state of the
behavior equals the value of x plus two in that second state – in other words,
that y = x + 2 is true in the second state of the behavior.

So this formula asserts that y = x + 2 true in the first state implies that it’s
also true in the second state.

Which is not true for all behaviors.
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THEOREM (v = e) ⇒ ( f = (f WITH v ← e))

This is not true if v is a variable or e is a non-constant
expression.

Example v ← y , e ← x + 2, f ← y ′ where x and y are variables

THEOREM (y = x + 2) ⇒ (y ′ = (x + 2)′)

This is an assertion about a behavior.

Asserts y = x + 2 in first state of behavior.

Asserts y = x + 2 in second state of behavior.

This action formula asserts that the value of y in the second state of the
behavior equals the value of x plus two in that second state – in other words,
that y = x + 2 is true in the second state of the behavior.

So this formula asserts that y = x + 2 true in the first state implies that it’s
also true in the second state.

Which is not true for all behaviors.
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THEOREM (v = e) ⇒ ( f = (f WITH v ← e))

This is not true if v is a variable or e is a non-constant
expression.

Example v ← y , e ← x + 2, f ← y ′ where x and y are variables

THEOREM (y = x + 2) ⇒ (y ′ = (x + 2)′)

Asserts y = x + 2 in the first state
implies y = x + 2 in the second state.

Not true for all behaviors

This action formula asserts that the value of y in the second state of the
behavior equals the value of x plus two in that second state – in other words,
that y = x + 2 is true in the second state of the behavior.

So this formula asserts that y = x + 2 true in the first state implies that it’s
also true in the second state.

Which is not true for all behaviors.
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THEOREM (v = e) ⇒ ( f = (f WITH v ← e))

This is not true if v is a variable or e is a non-constant
expression.

Example v ← y , e ← x + 2, f ← y ′ where x and y are variables

THEOREM (y = x + 2) ⇒ (y ′ = (x + 2)′)

Asserts y = x + 2 in the first state
implies y = x + 2 in the second state.

Not true for all behaviors

This action formula asserts that the value of y in the second state of the
behavior equals the value of x plus two in that second state – in other words,
that y = x + 2 is true in the second state of the behavior.

So this formula asserts that y = x + 2 true in the first state implies that it’s
also true in the second state.

Which is not true for all behaviors.
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THEOREM (v = e) ⇒ ( f = (f WITH v ← e))

This is not true if v is a variable or e is a non-constant
expression.

Example v ← y , e ← x + 2, f ← y ′ where x and y are variables

THEOREM (y = x + 2) ⇒ (y ′ = (x + 2)′)

Asserts y = x + 2 in the first state
implies y = x + 2 in the second state.

Not true for all behaviors

The law is not true if v is a variable or e is a non-constant expression.
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The Temporal Substitution Law

THEOREM (2 (v = e)) ⇒ ( f = (f WITH v ← e))

Asserts that, for every behavior:

if v = e is true in all states of the behavior
then f = (f WITH v ← e) is true on the behavior

Example v ← y , e ← x + 2, f ← y ′ where x and y are variables
THEOREM 2 (y = x + 2) ⇒ (y ′ = (x + 2)′)

Asserts: if y = x + 2 in all states of a behavior
then y = x + 2 in the second state of the behavior

To obtain the substitution law for temporal logic, which I will call the Temporal
Substitution Law
We change the Simple Substitution Law by adding this always operator.

The statement of the theorem is parsed like this,

So the law now asserts that, for every behavior: if v = e is true in all states
of the behavior, then the formula “f equals f with e substituted for v ” is true
on the behavior.
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The Temporal Substitution Law

THEOREM (2 (v = e)) ⇒ ( f = (f WITH v ← e))

Asserts that, for every behavior:

if v = e is true in all states of the behavior
then f = (f WITH v ← e) is true on the behavior

Example v ← y , e ← x + 2, f ← y ′ where x and y are variables
THEOREM 2 (y = x + 2) ⇒ (y ′ = (x + 2)′)

Asserts: if y = x + 2 in all states of a behavior
then y = x + 2 in the second state of the behavior

To obtain the substitution law for temporal logic, which I will call the Temporal
Substitution Law
We change the Simple Substitution Law by adding this always operator.

The statement of the theorem is parsed like this,

So the law now asserts that, for every behavior: if v = e is true in all states
of the behavior, then the formula “f equals f with e substituted for v ” is true
on the behavior.
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The Temporal Substitution Law

THEOREM (2 (v = e)) ⇒ ( f = (f WITH v ← e))

Asserts that, for every behavior:

if v = e is true in all states of the behavior
then f = (f WITH v ← e) is true on the behavior

Example v ← y , e ← x + 2, f ← y ′ where x and y are variables
THEOREM 2 (y = x + 2) ⇒ (y ′ = (x + 2)′)

Asserts: if y = x + 2 in all states of a behavior
then y = x + 2 in the second state of the behavior

To obtain the substitution law for temporal logic, which I will call the Temporal
Substitution Law
We change the Simple Substitution Law by adding this always operator.

The statement of the theorem is parsed like this,

So the law now asserts that, for every behavior: if v = e is true in all states
of the behavior, then the formula “f equals f with e substituted for v ” is true
on the behavior.
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The Temporal Substitution Law

THEOREM (2 (v = e)) ⇒ ( f = (f WITH v ← e))

Asserts that, for every behavior:

if v = e is true in all states of the behavior
then f = (f WITH v ← e) is true on the behavior

Example v ← y , e ← x + 2, f ← y ′ where x and y are variables
THEOREM 2 (y = x + 2) ⇒ (y ′ = (x + 2)′)

Asserts: if y = x + 2 in all states of a behavior
then y = x + 2 in the second state of the behavior

To obtain the substitution law for temporal logic, which I will call the Temporal
Substitution Law
We change the Simple Substitution Law by adding this always operator.

The statement of the theorem is parsed like this,

So the law now asserts that, for every behavior: if v = e is true in all states
of the behavior, then the formula “f equals f with e substituted for v ” is true
on the behavior.
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The Temporal Substitution Law

THEOREM (2 (v = e)) ⇒ ( f = (f WITH v ← e))

Asserts that, for every behavior:

if v = e is true in all states of the behavior
then f = (f WITH v ← e) is true on the behavior

Example v ← y , e ← x + 2, f ← y ′ where x and y are variables
THEOREM 2 (y = x + 2) ⇒ (y ′ = (x + 2)′)

Asserts: if y = x + 2 in all states of a behavior
then y = x + 2 in the second state of the behavior

To obtain the substitution law for temporal logic, which I will call the Temporal
Substitution Law
We change the Simple Substitution Law by adding this always operator.

The statement of the theorem is parsed like this,

So the law now asserts that, for every behavior: if v = e is true in all states
of the behavior, then the formula “f equals f with e substituted for v ” is true
on the behavior.
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The Temporal Substitution Law

THEOREM (2 (v = e)) ⇒ ( f = (f WITH v ← e))

Asserts that, for every behavior:

if v = e is true in all states of the behavior
then f = (f WITH v ← e) is true on the behavior

Example v ← y , e ← x + 2, f ← y ′ where x and y are variables
THEOREM 2 (y = x + 2) ⇒ (y ′ = (x + 2)′)

Asserts: if y = x + 2 in all states of a behavior
then y = x + 2 in the second state of the behavior

To obtain the substitution law for temporal logic, which I will call the Temporal
Substitution Law
We change the Simple Substitution Law by adding this always operator.

The statement of the theorem is parsed like this,

So the law now asserts that, for every behavior: if v = e is true in all states
of the behavior, then the formula “f equals f with e substituted for v ” is true
on the behavior.
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The Temporal Substitution Law

THEOREM (2 (v = e)) ⇒ ( f = (f WITH v ← e))

Asserts that, for every behavior:

if v = e is true in all states of the behavior
then f = (f WITH v ← e) is true on the behavior

Example v ← y , e ← x + 2, f ← y ′ where x and y are variables
THEOREM 2 (y = x + 2) ⇒ (y ′ = (x + 2)′)

Asserts: if y = x + 2 in all states of a behavior
then y = x + 2 in the second state of the behavior

To obtain the substitution law for temporal logic, which I will call the Temporal
Substitution Law
We change the Simple Substitution Law by adding this always operator.

The statement of the theorem is parsed like this,

So the law now asserts that, for every behavior: if v = e is true in all states
of the behavior, then the formula “f equals f with e substituted for v ” is true
on the behavior.
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The Temporal Substitution Law

THEOREM (2 (v = e)) ⇒ ( f = (f WITH v ← e))

Asserts that, for every behavior:

if v = e is true in all states of the behavior
then f = (f WITH v ← e) is true on the behavior

Example v ← y , e ← x + 2, f ← y ′ where x and y are variables
THEOREM 2 (y = x + 2) ⇒ (y ′ = (x + 2)′)

Asserts: if y = x + 2 in all states of a behavior
then y = x + 2 in the second state of the behavior

To obtain the substitution law for temporal logic, which I will call the Temporal
Substitution Law
We change the Simple Substitution Law by adding this always operator.

The statement of the theorem is parsed like this,

So the law now asserts that, for every behavior: if v = e is true in all states
of the behavior, then the formula “f equals f with e substituted for v ” is true
on the behavior.
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The Temporal Substitution Law

THEOREM (2 (v = e)) ⇒ ( f = (f WITH v ← e))

Asserts that, for every behavior:

if v = e is true in all states of the behavior
then f = (f WITH v ← e) is true on the behavior

Example v ← y , e ← x + 2, f ← y ′ where x and y are variables
THEOREM 2 (y = x + 2) ⇒ (y ′ = (x + 2)′)

Asserts: if y = x + 2 in all states of a behavior
then y = x + 2 in the second state of the behavior

Let’s look at the same example as before.

With y substituted for v , x + 2 substituted for e and y prime substituted for f ,
where x and y are variables.

The law now asserts that if y equals x + 2 in all states of a behavior
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The Temporal Substitution Law

THEOREM (2 (v = e)) ⇒ ( f = (f WITH v ← e))

Asserts that, for every behavior:

if v = e is true in all states of the behavior
then f = (f WITH v ← e) is true on the behavior

Example v ← y , e ← x + 2, f ← y ′ where x and y are variables
THEOREM 2 (y = x + 2) ⇒ (y ′ = (x + 2)′)

Asserts: if y = x + 2 in all states of a behavior
then y = x + 2 in the second state of the behavior

Let’s look at the same example as before.

With y substituted for v , x + 2 substituted for e and y prime substituted for f ,
where x and y are variables.

The law now asserts that if y equals x + 2 in all states of a behavior
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The Temporal Substitution Law

THEOREM (2 (v = e)) ⇒ ( f = (f WITH v ← e))

Asserts that, for every behavior:

if v = e is true in all states of the behavior
then f = (f WITH v ← e) is true on the behavior

Example v ← y , e ← x + 2, f ← y ′ where x and y are variables
THEOREM 2 (y = x + 2) ⇒ (y ′ = (x + 2)′)

Asserts: if y = x + 2 in all states of a behavior
then y = x + 2 in the second state of the behavior

Let’s look at the same example as before.

With y substituted for v , x + 2 substituted for e and y prime substituted for f ,
where x and y are variables.

The law now asserts that if y equals x + 2 in all states of a behavior
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The Temporal Substitution Law

THEOREM (2 (v = e)) ⇒ ( f = (f WITH v ← e))

Asserts that, for every behavior:

if v = e is true in all states of the behavior
then f = (f WITH v ← e) is true on the behavior

Example v ← y , e ← x + 2, f ← y ′ where x and y are variables
THEOREM 2 (y = x + 2) ⇒ (y ′ = (x + 2)′)

Asserts: if y = x + 2 in all states of a behavior
then y = x + 2 in the second state of the behavior

Let’s look at the same example as before.

With y substituted for v , x + 2 substituted for e and y prime substituted for f ,
where x and y are variables.

The law now asserts that if y equals x + 2 in all states of a behavior
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The Temporal Substitution Law

THEOREM (2 (v = e)) ⇒ ( f = (f WITH v ← e))

Asserts that, for every behavior:

if v = e is true in all states of the behavior
then f = (f WITH v ← e) is true on the behavior

Example v ← y , e ← x + 2, f ← y ′ where x and y are variables
THEOREM 2 (y = x + 2) ⇒ (y ′ = (x + 2)′)

Asserts: if y = x + 2 in all states of a behavior
then y = x + 2 in the second state of the behavior

then y equals x + 2 in the second state of the behavior.

Which is obviously true of all behaviors.
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The Temporal Substitution Law

THEOREM (2 (v = e)) ⇒ ( f = (f WITH v ← e))

Asserts that, for every behavior:

if v = e is true in all states of the behavior
then f = (f WITH v ← e) is true on the behavior

Example v ← y , e ← x + 2, f ← y ′ where x and y are variables
THEOREM 2 (y = x + 2) ⇒ (y ′ = (x + 2)′)

Asserts: if y = x + 2 in all states of a behavior
then y = x + 2 in the second state of the behavior

then y equals x + 2 in the second state of the behavior.

Which is obviously true of all behaviors.
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The Temporal Substitution Law

THEOREM (2 (v = e)) ⇒ ( f = (f WITH v ← e))

then y equals x + 2 in the second state of the behavior.

Which is obviously true of all behaviors.
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The Temporal Substitution Law

THEOREM (2 (v = e)) ⇒ ( f = (f WITH v ← e))

True when v a VARIABLE and e a state expression.

Also true when v a CONSTANT and e a constant expression,
in which case their values don’t depend on the state
and in any behavior v = e is true iff 2(v = e) is.

So we get the Ordinary Substitution Law:

THEOREM (v = e) ⇒ ( f = (f WITH v ← e))

This law is true when v is a declared VARIABLE and e is a state expression.

The law is also true when v is a declared CONSTANT and e is a constant
expression,
in which case the values of v and e don’t depend on the state,
and therefore, in any behavior, v = e is true in the initial state
if and only if it’s true in all states of the behavior.
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The Temporal Substitution Law

THEOREM (2 (v = e)) ⇒ ( f = (f WITH v ← e))

True when v a VARIABLE and e a state expression.

Also true when v a CONSTANT and e a constant expression,
in which case their values don’t depend on the state
and in any behavior v = e is true iff 2(v = e) is.

So we get the Ordinary Substitution Law:

THEOREM (v = e) ⇒ ( f = (f WITH v ← e))

This law is true when v is a declared VARIABLE and e is a state expression.

The law is also true when v is a declared CONSTANT and e is a constant
expression,
in which case the values of v and e don’t depend on the state,
and therefore, in any behavior, v = e is true in the initial state
if and only if it’s true in all states of the behavior.

[ slide 81 ]



The Temporal Substitution Law

THEOREM (2 (v = e)) ⇒ ( f = (f WITH v ← e))

True when v a VARIABLE and e a state expression.

Also true when v a CONSTANT and e a constant expression,
in which case their values don’t depend on the state
and in any behavior v = e is true iff 2(v = e) is.

So we get the Ordinary Substitution Law:

THEOREM (v = e) ⇒ ( f = (f WITH v ← e))

This law is true when v is a declared VARIABLE and e is a state expression.

The law is also true when v is a declared CONSTANT and e is a constant
expression,
in which case the values of v and e don’t depend on the state,
and therefore, in any behavior, v = e is true in the initial state
if and only if it’s true in all states of the behavior.
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The Temporal Substitution Law

THEOREM (2 (v = e)) ⇒ ( f = (f WITH v ← e))

True when v a VARIABLE and e a state expression.

Also true when v a CONSTANT and e a constant expression,
in which case their values don’t depend on the state
and in any behavior v = e is true iff 2(v = e) is.

So we get the Ordinary Substitution Law:

THEOREM (v = e) ⇒ ( f = (f WITH v ← e))

This law is true when v is a declared VARIABLE and e is a state expression.

The law is also true when v is a declared CONSTANT and e is a constant
expression,
in which case the values of v and e don’t depend on the state,
and therefore, in any behavior, v = e is true in the initial state
if and only if it’s true in all states of the behavior.
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The Temporal Substitution Law

THEOREM (2 (v = e)) ⇒ ( f = (f WITH v ← e))

True when v a VARIABLE and e a state expression.

Also true when v a CONSTANT and e a constant expression,
in which case their values don’t depend on the state
and in any behavior v = e is true iff 2(v = e) is.

So we get the Ordinary Substitution Law:

THEOREM (v = e) ⇒ ( f = (f WITH v ← e))

This law is true when v is a declared VARIABLE and e is a state expression.

The law is also true when v is a declared CONSTANT and e is a constant
expression,
in which case the values of v and e don’t depend on the state,
and therefore, in any behavior, v = e is true in the initial state
if and only if it’s true in all states of the behavior.

[ slide 84 ]



The Temporal Substitution Law

THEOREM (2 (v = e)) ⇒ ( f = (f WITH v ← e))

True when v a VARIABLE and e a state expression.

Also true when v a CONSTANT and e a constant expression,
in which case their values don’t depend on the state
and in any behavior v = e is true iff 2(v = e) is.

So we get the Ordinary Substitution Law:

THEOREM (v = e) ⇒ ( f = (f WITH v ← e))

This law is true when v is a declared VARIABLE and e is a state expression.

The law is also true when v is a declared CONSTANT and e is a constant
expression,
in which case the values of v and e don’t depend on the state,
and therefore, in any behavior, v = e is true in the initial state
if and only if it’s true in all states of the behavior.
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The Temporal Substitution Law

THEOREM (2 (v = e)) ⇒ ( f = (f WITH v ← e))

True when v a VARIABLE and e a state expression.

Also true when v a CONSTANT and e a constant expression,
in which case their values don’t depend on the state
and in any behavior v = e is true iff 2(v = e) is.

So we get the Ordinary Substitution Law:

THEOREM (v = e) ⇒ ( f = (f WITH v ← e))

So The Temporal Substitution Law becomes the Ordinary Substitution Law.
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The General Temporal Substitution Law

THEOREM (2 (v = e)) ⇒ ( f = (f WITH v ← e))

THEOREM 2 ((v1 = e1) ∧ (v2 = e2))

⇒ ( f = (f WITH v1 ← e1, v2 ← e2) )

THEOREM 2 ((v1 = e1) ∧ (v2 = e2) ∧ . . .)

⇒ ( f = (f WITH v1 ← e1, v2 ← e2, . . . ) )

There’s a straightforward generalization of the Temporal Substitution Law . . .
to substitution for two variables.

The meaning of this WITH expression should be obvious, except perhaps for
the fact that
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The General Temporal Substitution Law

THEOREM (2 (v = e)) ⇒ ( f = (f WITH v ← e))

THEOREM 2 ((v1 = e1) ∧ (v2 = e2))

⇒ ( f = (f WITH v1 ← e1, v2 ← e2) )

simultaneous substitution

THEOREM 2 ((v1 = e1) ∧ (v2 = e2) ∧ . . .)

⇒ ( f = (f WITH v1 ← e1, v2 ← e2, . . . ) )

the substitutions for v -one and v -two have to be done simultaneously, not one
after the other. (This makes a difference if v2 appears in expression e1.)

And this obviously generalizes to substitution for any number of variables.

It’s this general version that I’ll refer to as the Temporal Substitution Law.
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The Temporal Substitution Law

THEOREM (2 (v = e)) ⇒ ( f = (f WITH v ← e))

THEOREM 2 ((v1 = e1) ∧ (v2 = e2))

⇒ ( f = (f WITH v1 ← e1, v2 ← e2) )

THEOREM 2 ((v1 = e1) ∧ (v2 = e2) ∧ . . .)

⇒ ( f = (f WITH v1 ← e1, v2 ← e2, . . . ) )

the substitutions for v -one and v -two have to be done simultaneously, not one
after the other. (This makes a difference if v2 appears in expression e1.)

And this obviously generalizes to substitution for any number of variables.

It’s this general version that I’ll refer to as the Temporal Substitution Law.
[ slide 93 ]



THE AB2 PROTOCOL

We now come to the motivating example of this lecture, the AB2 protocol.
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The AB2 protocol is AB protocol with one simple modification:

Messages are detectably corrupted rather than lost.

A corrupted message is represented by a value Bad

unequal to any message that can be sent.

The specification is in module AB2 , which
you can now download.

The AB2 protocol is the same as the Alternating Bit protocol of Lecture 9
except for one simple modification:

Messages are detectably corrupted rather than lost.

A corrupted message is represented by a special value Bad that doesn’t
equal any message that can be sent.
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The AB2 protocol is AB protocol with one simple modification:

Messages are detectably corrupted rather than lost.

A corrupted message is represented by a value Bad

unequal to any message that can be sent.

The specification is in module AB2 , which
you can now download.
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Module AB2 is obtained by modifying module AB.

EXTENDS Integers, Sequences

CONSTANT Data

ASSUME Bad /∈

Module AB2 is obtained by making simple modifications to module AB.

If starts like AB by extending the Integers and Sequences modules, and
declaring the constant Data, the set of possible data values that can be sent.

It also declares the constant Bad , and adds the assumption
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Module AB2 is obtained by modifying module AB.

EXTENDS Integers, Sequences

CONSTANTS Data, Bad

ASSUME Bad /∈

Module AB2 is obtained by making simple modifications to module AB.

If starts like AB by extending the Integers and Sequences modules, and
declaring the constant Data, the set of possible data values that can be sent.

It also declares the constant Bad , and adds the assumption
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Module AB2 is obtained by modifying module AB.

EXTENDS Integers, Sequences

CONSTANTS Data, Bad

ASSUME Bad /∈ the set of possible messages

that Bad is not an element of the set of possible messages that can be sent,
which equals the set of possible messages that can be sent from A to B

union with the set of possible messages that can be sent from B to A, which
contains the two values 0 and 1.
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Module AB2 is obtained by modifying module AB.

EXTENDS Integers, Sequences

CONSTANTS Data, Bad

ASSUME Bad /∈ (Data × {0,1}) ∪ {0,1}
the set of possible messages
from A to B

that Bad is not an element of the set of possible messages that can be sent,
which equals the set of possible messages that can be sent from A to B

union with the set of possible messages that can be sent from B to A, which
contains the two values 0 and 1.
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Module AB2 is obtained by modifying module AB.

EXTENDS Integers, Sequences

CONSTANTS Data, Bad

ASSUME Bad /∈ (Data × {0,1}) ∪ {0,1}
the set of possible messages
from B to A

that Bad is not an element of the set of possible messages that can be sent,
which equals the set of possible messages that can be sent from A to B

union with the set of possible messages that can be sent from B to A, which
contains the two values 0 and 1.
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Module AB2 is obtained by modifying module AB.

EXTENDS Integers, Sequences

CONSTANTS Data, Bad

ASSUME Bad /∈ (Data × {0,1}) ∪ {0,1}

that Bad is not an element of the set of possible messages that can be sent,
which equals the set of possible messages that can be sent from A to B

union with the set of possible messages that can be sent from B to A, which
contains the two values 0 and 1.
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VARIABLES AVar , BVar ,

vars
∆
= 〈AVar , BVar , AtoB2, BtoA2〉

TypeOK
∆
= ∧ AVar ∈ Data × {0,1}
∧ BVar ∈ Data × {0,1}

The variables AVar and BVar are the same as as in module AB , but
the message sequences AtoB and BtoA are renamed
AtoB2 and BtoA2.

vars is again defined to be the tuple of all variables.

Here’s the definition of TypeOK from AB .
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VARIABLES AVar , BVar , AtoB2, BtoA2

vars
∆
= 〈AVar , BVar , AtoB2, BtoA2〉

TypeOK
∆
= ∧ AVar ∈ Data × {0,1}
∧ BVar ∈ Data × {0,1}
∧ AtoB ∈ Seq(Data × {0,1})
∧ BtoA ∈ Seq({0,1})

The variables AVar and BVar are the same as as in module AB , but
the message sequences AtoB and BtoA are renamed
AtoB2 and BtoA2.

vars is again defined to be the tuple of all variables.

Here’s the definition of TypeOK from AB .
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VARIABLES AVar , BVar , AtoB2, BtoA2

vars
∆
= 〈AVar , BVar , AtoB2, BtoA2〉

TypeOK
∆
= ∧ AVar ∈ Data × {0,1}
∧ BVar ∈ Data × {0,1}
∧ AtoB ∈ Seq(Data × {0,1})
∧ BtoA ∈ Seq({0,1})

The type assertions for AVar and BVar are the same as in AB

In module AB , the variable AtoB equals a sequence of Data, bit pairs,
while the elements of the sequence AtoB2 are either Data, bit pairs or else
equal to Bad .

Stop the video and make sure you understand this formula.
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VARIABLES AVar , BVar , AtoB2, BtoA2

vars
∆
= 〈AVar , BVar , AtoB2, BtoA2〉

TypeOK
∆
= ∧ AVar ∈ Data × {0,1}
∧ BVar ∈ Data × {0,1}
∧ AtoB2 ∈ Seq((Data × {0,1}) ∪ {Bad})
∧ BtoA ∈ Seq({0,1})

Similarly, where BtoA of module AB is a sequence of zeros or ones,
BtoA2 is a sequence of the values zero, one, or Bad .
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Init , ASnd , BSnd are the same except with

AtoB ← AtoB2 BtoA ← BtoA2

Init
∆
= ∧ AVar ∈ Data × 1
∧ BVar = AVar

∧ AtoB2 = 〈 〉
∧ BtoA2 = 〈 〉

ASnd
∆
= ∧ AtoB2′ = Append(AtoB2,AVar)
∧ UNCHANGED 〈AVar , BtoA2, BVar〉

BSnd
∆
= ∧ BtoA2′ = Append(BtoA2,BVar [2])
∧ UNCHANGED 〈AVar , BVar , AtoB2〉

The initial-state formula and the actions in which A and B send messages
are the same except for renaming the variables AtoB and BtoA.

Here’s the initial-state formula.

A’s send-message action.

And B ’s send-message action.
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ARcv and BRcv must ignore Bad messages.

The receive actions of A and B must ignore corrupted messages, which
equal Bad .

A’s receive action is the same as before, except for the change of variables.
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ARcv and BRcv must ignore Bad messages.

ARcv is the same as before.
If Head(BtoA2) = Bad

ASSUME Bad /∈ (Data × {0, 1}) ∪ {0, 1}

ARcv
∆
= ∧ BtoA2 6= 〈 〉
∧ IF Head(BtoA2) = AVar [2]

THEN ∃ d ∈ Data : AVar ′ = 〈d , 1−AVar [2]〉
ELSE AVar ′ = AVar

∧ BtoA2′ = Tail(BtoA2)

∧ UNCHANGED 〈AtoB2, BVar〉

The receive actions of A and B must ignore corrupted messages, which
equal Bad .

A’s receive action is the same as before, except for the change of variables.
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ARcv and BRcv must ignore Bad messages.

ARcv is the same as before.
If Head(BtoA2) = Bad

ASSUME Bad /∈ (Data × {0, 1}) ∪ {0, 1}

ARcv
∆
= ∧ BtoA2 6= 〈 〉
∧ IF Head(BtoA2) = AVar [2]

THEN ∃ d ∈ Data : AVar ′ = 〈d , 1−AVar [2]〉
ELSE AVar ′ = AVar

∧ BtoA2′ = Tail(BtoA2)

∧ UNCHANGED 〈AtoB2, BVar〉

That’s because if the message being received, which is at the head of the
sequence of messages sent by B, equals Bad ,

then our assumption means that Bad doesn’t equal 0 or 1,

but AVar [2] does equal either 0 or 1

So the if condition is false, and the action leaves AVar unchanged,
meaning that A ignores the message.
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ARcv and BRcv must ignore Bad messages.

BRcv must be modified.
Message ignored if Head(BtoA2) = Bad .

BRcv
∆
= ∧ AtoB2 6= 〈 〉
∧ IF (Head(AtoB2) 6= Bad) ∧ (Head(AtoB2)[2] 6= BVar [2])

THEN BVar ′ = Head(AtoB2)
ELSE BVar ′ = BVar

∧ AtoB2′ = Tail(AtoB2)

∧ UNCHANGED 〈AVar , BtoA2〉

To ignore corrupted messages, BRcv must be modified beyond just
renaming the variables AtoB and BtoA.

Here’s the new definition.

In the if formula this conjunct has been added to the test.

So BVar is left unchanged and the message being received is ignored if it
equals Bad .
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LoseMsg is replaced by CorruptMsg , which
changes messages in AtoB2 and BtoA2
to Bad instead of removing them.

CorruptMsg
∆
= ∧ ∨ ∧ ∃ i ∈ 1..Len(AtoB2) :

AtoB2′ = [AtoB2 EXCEPT ![i ] = Bad ]

∧ BtoA2′ = BtoA2
∨ ∧ ∃ i ∈ 1..Len(BtoA2) :

BtoA2′ = [BtoA2 EXCEPT ![i ] = Bad ]

∧ AtoB2′ = AtoB2
∧ UNCHANGED 〈AVar , BVar〉

Finally, the LoseMsg action is replaced by a CurruptMsg action, which
changes messages in AtoB2 and BtoA2 to Bad instead of removing them.

Here is the definition, which is the same as the LoseMsg action,
except for these parts that describe the change to AtoB2 or BtoA2.
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The definitions of Next and the safety
specification Spec are straightforward.

Next
∆
= ASnd ∨ ARcv ∨ BSnd ∨ BRcv ∨ CorruptMsg

Spec
∆
= Init ∧ 2[Next ]vars

Liveness is discussed later.

The definitions of Next and of the safety specification Spec

are what you should expect.

I’ll discuss liveness later.
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The definitions of Next and the safety
specification Spec are straightforward.
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The AB2 protocol is essentially the same
as the AB protocol.

It too implements the high-level safety
specification in module ABSpec.

ABS
∆
= INSTANCE ABSpec

The AB2 protocol is essentially the same as the ordinary alternating bit
protocol of module AB .

As we expect, it too implements the high-level safety specification of the
protocol in module ABSpec.

This is expressed in module AB2 the same as in module AB ,
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The AB2 protocol is essentially the same
as the AB protocol.

It too implements the high-level safety
specification in module ABSpec.

ABS
∆
= INSTANCE ABSpec

by importing module ABSpec with renaming

and stating this theorem.
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The AB2 protocol is essentially the same
as the AB protocol.

It too implements the high-level safety
specification in module ABSpec.

ABS
∆
= INSTANCE ABSpec

THEOREM Spec ⇒ ABS !Spec

by importing module ABSpec with renaming

and stating this theorem.
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CHECKING AB2
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Now check that the AB2 protocol implements the high-level
safety spec of module ABSpec.

As with the AB spec, a model must provide:

– A value for the constant Data .
Use a set {d1, d2, d3} of model values.

– A state constraint to bound the lengths of
AtoB2 and BtoA2 .

Use (AtoB2 < 4) ∧ (BtoA2 < 4) .

You should now check that the AB2 protocol implements the high-level safety
spec of module ABSpec.
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Now check that the AB2 protocol implements the high-level
safety spec of module ABSpec.

As with the AB spec, a model must provide:

– A value for the constant Data .
Use a set {d1, d2, d3} of model values.

– A state constraint to bound the lengths of
AtoB2 and BtoA2 .

Use (AtoB2 < 4) ∧ (BtoA2 < 4) .

As with the AB spec, a model must provide two things:

First, it has to provide A value for the constant Data .
For example, you can use this set of three model values.

Second, it must provide a state constraint to bound the lengths of the
sequences AtoB2 and BtoA2 .
You can constrain them both to have length less than four.
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Now check that the AB2 protocol implements the high-level
safety spec of module ABSpec.

As with the AB spec, a model must provide:
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– A state constraint to bound the lengths of
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As with the AB spec, a model must provide two things:
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For example, you can use this set of three model values.

Second, it must provide a state constraint to bound the lengths of the
sequences AtoB2 and BtoA2 .
You can constrain them both to have length less than four.

[ slide 152 ]



A model of AB2 most also specify a value for Bad .

It must satisfy

ASSUME Bad /∈ (Data
{d1,d2,d3}

× {0,1}) ∪ {0,1}

A model of specification AB2 most also specify a value for the constant
Bad .

That value must satisfy the module’s assumption,
when Data also equals the value the model assigns to it.

An obvious choice is to let the model assign the string quote-bad to the
constant Bad .
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A model of AB2 most also specify a value for Bad .

It must satisfy

ASSUME Bad /∈ (Data
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A model of AB2 most also specify a value for Bad .

It must satisfy

ASSUME Bad /∈ (Data
{d1,d2,d3}

× {0,1}) ∪ {0,1}

An obvious choice:

A model of specification AB2 most also specify a value for the constant
Bad .

That value must satisfy the module’s assumption,
when Data also equals the value the model assigns to it.

An obvious choice is to let the model assign the string quote-bad to the
constant Bad .
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Running the model produces this TLC error:
Attempted to check equality of integer 0 with
non-integer: "Bad"

We think that “Bad ” and 0 are different, but the
semantics of TLA+ don’t say that they are.

What value of Bad satisfies

Bad /∈ (Data
{d1,d2,d3}

× {0, 1}) ∪ {0, 1} ?

A model value.

But running the model produces this TLC error: Attempted to check equality
of integer 0 with non-integer quote-bad.

What TLC really means is that it tried to check if 0 equals the value
quote-bad, and it doesn’t even know whether or not that value is an integer.
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Running the model produces this TLC error:
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Running the model produces this TLC error:
Attempted to check equality of integer 0 with
non-integer: "Bad"

We think that “Bad ” and 0 are different, but the
semantics of TLA+ don’t say that they are.

What value of Bad satisfies

Bad /∈ (Data
{d1,d2,d3}

× {0, 1}) ∪ {0, 1} ?

A model value.

We naturally think that “Bad ” and 0 are different,
But the semantics of TLA+ doesn’t specify that they’re different. So TLC
doesn’t know whether or not they’re equal.

What value of Bad does satisfy this condition?

We don’t know, and we don’t need to know. To define the model, all we need
to know is:
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Running the model produces this TLC error:
Attempted to check equality of integer 0 with
non-integer: "Bad"

We think that “Bad ” and 0 are different, but the
semantics of TLA+ don’t say that they are.

What value of Bad∧
does TLC think

satisfies

Bad /∈ (Data
{d1,d2,d3}

× {0, 1}) ∪ {0, 1} ?

A model value.

What value does TLC think satisfies the condition? And the answer to that
question is:

A model value.
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TLC assumes a model value does not equal any value
that you might expect it to be different from.

It’s convenient to let the constant Bad equal the
model value Bad .

TLC assumes a model value does not equal any value that you would expect
it to be different from.

You don’t need to know precisely what that means.
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TLC assumes a model value does not equal any value
that you might expect it to be different from.

It’s convenient to let the constant Bad equal the
model value Bad .

It’s convenient to have the model assign to the constant Bad the model
value of the same name.

To do that, in the window for assigning a value to the constant, just select the
model value option
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TLC assumes a model value does not equal any value
that you might expect it to be different from.

It’s convenient to let the constant Bad equal the
model value Bad .

Here’s how:

It’s convenient to have the model assign to the constant Bad the model
value of the same name.

To do that, in the window for assigning a value to the constant, just select the
model value option
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TLC assumes a model value does not equal any value
that you might expect it to be different from.

It’s convenient to let the constant Bad equal the
model value Bad .

Here’s how:

It’s convenient to have the model assign to the constant Bad the model
value of the same name.

To do that, in the window for assigning a value to the constant, just select the
model value option

[ slide 167 ]



You can now run TLC to check that
the AB2 specification implements
the specification of module ABSpec .

You can now run TLC to check that the AB2 specification implements the
specification of module ABSpec .
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LIVENESS OF AB2
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Module AB2 next defines FairSpec to be the
obvious analogue of FairSpec of AB .

But it doesn’t implement ABS !FairSpec .

Fairness requirements on subactions of Next can’t guarantee
that any messages are received before they’re corrupted.

To do that, we change the safety spec.

Module AB2 next defines FairSpec to be the obvious analogue of formula
FairSpec of module AB .

But this specification FairSpec doesn’t implement the high-level specification
FairSpec of module ABSpec.

I believe that fairness requirements on subactions of Next cannot guarantee
that any messages are received before they’re corrupted.
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Module AB2 next defines FairSpec to be the
obvious analogue of FairSpec of AB .

But it doesn’t implement ABS !FairSpec .

Fairness requirements on subactions of Next can’t guarantee
that any messages are received before they’re corrupted.

To do that, we change the safety spec.

To guarantee that, we change the safety spec.
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Sending a message adds something to the state
that determines if the message can be corrupted.

We could add a component to each message.

We let sending a message add something to the state that determines if the
message can be corrupted.

We could add a component to each message. For example We could let a
component with value TRUE mean that the message cannot be corrupted.
And let a component with value FALSE mean that the message can be
corrupted.
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Sending a message adds something to the state
that determines if the message can be corrupted.

We could add a component to each message.

〈“Tom”, 0, TRUE〉
message cannot be corrupted

〈“Tom”, 0, FALSE〉
message can be corrupted

We let sending a message add something to the state that determines if the
message can be corrupted.

We could add a component to each message. For example We could let a
component with value TRUE mean that the message cannot be corrupted.
And let a component with value FALSE mean that the message can be
corrupted.
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Sending a message adds something to the state
that determines if the message can be corrupted.
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message cannot be corrupted
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message can be corrupted
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Sending a message adds something to the state
that determines if the message can be corrupted.

We could add a component to each message.

An imaginary component that’s not meant to be implemented
and serves only to specify liveness.

It’s an imaginary component that’s not meant to be implemented

and serves only to specify liveness.
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Sending a message adds something to the state
that determines if the message can be corrupted.

We could add a component to each message.

An imaginary component that’s not meant to be implemented
and serves only to specify liveness.

It’s an imaginary component that’s not meant to be implemented

and serves only to specify liveness.
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It’s best to keep the real and imaginary
parts of the state separate by putting
them in different variables.

It’s best to keep the real and imaginary parts of the state separate

by putting them in different variables.

Instead of adding an imaginary component to the messages in AtoB2,

We have the same messages in AtoB2 and put the sequence of their
imaginary components into a separate variable AtoBgood .
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It’s best to keep the real and imaginary
parts of the state separate by putting
them in different variables.

Instead of
AtoB2 : 〈 〈“Tom”, 0, TRUE〉, 〈“Tom”, 0, FALSE〉, 〈“Fred ”, 0, FALSE〉 〉

we have
AtoB2 : 〈 〈“Tom”, 0〉, 〈“Tom”, 0〉, 〈“Fred ”, 1〉 〉
AtoBgood : 〈 TRUE , FALSE , FALSE 〉

It’s best to keep the real and imaginary parts of the state separate

by putting them in different variables.

Instead of adding an imaginary component to the messages in AtoB2,

We have the same messages in AtoB2 and put the sequence of their
imaginary components into a separate variable AtoBgood .
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It’s best to keep the real and imaginary
parts of the state separate by putting
them in different variables.
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AtoB2 : 〈 〈“Tom”, 0, TRUE〉, 〈“Tom”, 0, FALSE〉, 〈“Fred ”, 0, FALSE〉 〉

we have
AtoB2 : 〈 〈“Tom”, 0〉, 〈“Tom”, 0〉, 〈“Fred ”, 1〉 〉
AtoBgood : 〈 TRUE , FALSE , FALSE 〉

It’s best to keep the real and imaginary parts of the state separate

by putting them in different variables.

Instead of adding an imaginary component to the messages in AtoB2,

We have the same messages in AtoB2 and put the sequence of their
imaginary components into a separate variable AtoBgood .
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It’s best to keep the real and imaginary
parts of the state separate by putting
them in different variables.

And we similarly have BtoA2 and BtoAgood .

And we similarly have BtoA2 and the imaginary variable BtoAgood .
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The resulting safety specification SpecP is
defined in a module named AB2P , which
EXTENDS module AB2 .

AtoBgood and BtoAgood are imaginary variables,
not meant to be implemented. They are used
only for defining the fairness requirements.

Deciding in advance if a message can be deleted doesn’t
change the values the variables of AB2 can assume.

So if we ignore the values of AtoBgood and BtoAgood ,
then Spec and SpecP allow the same behaviors.

The resulting specification SpecP is defined in a module named AB2P ,
which EXTENDS module AB2 .

The variables AtoBgood and BtoAgood are imaginary variables; they’re not
meant to be implemented.

They are used only for defining the fairness requirements.
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Deciding in advance if a message can be deleted doesn’t change the values
that the variables of AB2 can assume.

So if we ignore the values of the imaginary variables AtoBgood and
BtoAgood , then specifications Spec and SpecP allow the same behaviors.
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You can read the definitions of SpecP and
of specification FairSpecP with fairness
requirements in module AB2P .

Stop the video and download it now.

You can read the definitions of SpecP and of the specification FairSpecP with
fairness requirements in module AB2P .

Stop the video and download that module now.
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You can read the definitions of SpecP and of the specification FairSpecP with
fairness requirements in module AB2P .

Stop the video and download that module now.
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Our discussion of liveness of the AB2 protocol stops here. The second part
of this lecture considers only the protocol’s safety spec, explaining the
precise sense in which it implements the safety spec of the AB protocol, and
how to check that it does. Imaginary variables will appear again.
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