
TLA+ Video Course – Lecture 10, Part 2
Leslie Lamport

IMPLEMENTATION
WITH REFINEMENT

REFINEMENT MAPPINGS

This video should be viewed in conjunction with a Web page.
To find that page, search the Web for TLA+ Video Course .

The TLA+ Video Course
Lecture 10
Implementation with Refinement

Having finished the preliminaries, we head to our main goal: understanding
what it means in general for one specification to implement another, and how
we can check that it does. We will take a rather long path, and it may not
always be clear where it’s leading. But just follow it step by step. The
destination is worth the effort.

[slide 2]

AB2 IMPLEMENTS AB

[slide 3]

The AB2 protocol doesn’t just implement the ABSpec spec.

It implements the AB protocol, where a LoseMsg step
of AB is implemented by a CorruptMsg step of AB2 .

Programmers find this confusing.

They don’t think losing a message is a
step of the AB protocol, but rather a
step of the environment.

The AB2 protocol doesn’t just implement the high level spec of module
ABSpec.

It actually implements the AB protocol, where an AB protocol step that loses
a message is implemented by the AB2 protocol step that corrupts the
message.

Most programmers will find this confusing.

[slide 4]

The AB2 protocol doesn’t just implement the ABSpec spec.

It implements the AB protocol, where a LoseMsg step
of AB is implemented by a CorruptMsg step of AB2 .

Programmers find this confusing.

They don’t think losing a message is a
step of the AB protocol, but rather a
step of the environment.

The AB2 protocol doesn’t just implement the high level spec of module
ABSpec.

It actually implements the AB protocol, where an AB protocol step that loses
a message is implemented by the AB2 protocol step that corrupts the
message.

Most programmers will find this confusing.

[slide 5]

The AB2 protocol doesn’t just implement the ABSpec spec.

It implements the AB protocol, where a LoseMsg step
of AB is implemented by a CorruptMsg step of AB2 .

Programmers find this confusing.

They don’t think losing a message is a
step of the AB protocol, but rather a
step of the environment.

The AB2 protocol doesn’t just implement the high level spec of module
ABSpec.

It actually implements the AB protocol, where an AB protocol step that loses
a message is implemented by the AB2 protocol step that corrupts the
message.

Most programmers will find this confusing.

[slide 6]

The AB2 protocol doesn’t just implement the ABSpec spec.

It implements the AB protocol, where a LoseMsg step
of AB is implemented by a CorruptMsg step of AB2 .

Programmers find this confusing.

They don’t think losing a message is a
step of the AB protocol, but rather a
step of the environment.

They don’t think of losing a message as a step of the AB protocol, but rather
as a step taken by the environment in which the protocol is executed.

[slide 7]

Our specifications say nothing about who performs what steps.

We think that in the AB spec:
Sender A performs ASnd and ARcv steps.
Receiver B performs BSnd and BRcv steps.
The communication infrastructure performs LoseMsg steps.

That’s just an interpretation we put on the spec.

It would be easy to make the spec suggest
a different interpretation.

Our specifications say nothing about who performs what steps.

We think that in the AB protocol spec: Sender A performs ASnd and ARcv

steps.
Receiver B performs BSnd and BRcv steps.
And the communication infrastructure performs LoseMsg steps.

[slide 8]

Our specifications say nothing about who performs what steps.

We think that in the AB spec:
Sender A performs ASnd and ARcv steps.
Receiver B performs BSnd and BRcv steps.
The communication infrastructure performs LoseMsg steps.

That’s just an interpretation we put on the spec.

It would be easy to make the spec suggest
a different interpretation.

Our specifications say nothing about who performs what steps.

We think that in the AB protocol spec: Sender A performs ASnd and ARcv

steps.
Receiver B performs BSnd and BRcv steps.
And the communication infrastructure performs LoseMsg steps.

[slide 9]

Our specifications say nothing about who performs what steps.

We think that in the AB spec:
Sender A performs ASnd and ARcv steps.
Receiver B performs BSnd and BRcv steps.
The communication infrastructure performs LoseMsg steps.

That’s just an interpretation we put on the spec.

It would be easy to make the spec suggest
a different interpretation.

Our specifications say nothing about who performs what steps.

We think that in the AB protocol spec: Sender A performs ASnd and ARcv

steps.
Receiver B performs BSnd and BRcv steps.
And the communication infrastructure performs LoseMsg steps.

[slide 10]

Our specifications say nothing about who performs what steps.

We think that in the AB spec:
Sender A performs ASnd and ARcv steps.
Receiver B performs BSnd and BRcv steps.
The communication infrastructure performs LoseMsg steps.

That’s just an interpretation we put on the spec.

It would be easy to make the spec suggest
a different interpretation.

Our specifications say nothing about who performs what steps.

We think that in the AB protocol spec: Sender A performs ASnd and ARcv

steps.
Receiver B performs BSnd and BRcv steps.
And the communication infrastructure performs LoseMsg steps.

[slide 11]

Our specifications say nothing about who performs what steps.

We think that in the AB spec:
Sender A performs ASnd and ARcv steps.
Receiver B performs BSnd and BRcv steps.
The communication infrastructure performs LoseMsg steps.

That’s just an interpretation we put on the spec.

It would be easy to make the spec suggest
a different interpretation.

But that’s just an interpretation that we put on the spec, suggested by the way
we write the next-state action as the disjunction of subactions.

It would be easy to make the spec suggest a different interpretation–for
example by decomposing the next-state action to suggest that A and B both
send messages and cause the messages to be lost.

[slide 12]

Our specifications say nothing about who performs what steps.

We think that in the AB spec:
Sender A performs ASnd and ARcv steps.
Receiver B performs BSnd and BRcv steps.
The communication infrastructure performs LoseMsg steps.

That’s just an interpretation we put on the spec.

It would be easy to make the spec suggest
a different interpretation.

But that’s just an interpretation that we put on the spec, suggested by the way
we write the next-state action as the disjunction of subactions.

It would be easy to make the spec suggest a different interpretation–for
example by decomposing the next-state action to suggest that A and B both
send messages and cause the messages to be lost.

[slide 13]

The AB2 protocol implements the AB protocol,
where CorruptMsg steps implement LoseMsg steps.

The goal: convince ourselves that this is true.

This requires answering two questions:

1. What does it mean?

2. How do we check it?

The AB2 protocol implements the AB protocol, where CorruptMsg steps
implement LoseMsg steps.

Our goal goal now is to convince ourselves that this is true.

Reaching it requires answering two questions:

[slide 14]

The AB2 protocol implements the AB protocol,
where CorruptMsg steps implement LoseMsg steps.

The goal: convince ourselves that this is true.

This requires answering two questions:

1. What does it mean?

2. How do we check it?

The AB2 protocol implements the AB protocol, where CorruptMsg steps
implement LoseMsg steps.

Our goal goal now is to convince ourselves that this is true.

Reaching it requires answering two questions:

[slide 15]

The AB2 protocol implements the AB protocol,
where CorruptMsg steps implement LoseMsg steps.

The goal: convince ourselves that this is true.

This requires answering two questions:

1. What does it mean?

2. How do we check it?

The AB2 protocol implements the AB protocol, where CorruptMsg steps
implement LoseMsg steps.

Our goal goal now is to convince ourselves that this is true.

Reaching it requires answering two questions:

[slide 16]

The AB2 protocol implements the AB protocol,
where CorruptMsg steps implement LoseMsg steps.

The goal: convince ourselves that this is true.

This requires answering two questions:

1. What does it mean?

2. How do we check it?

The first is: What does it mean?

And the second is: How do we check it?

[slide 17]

The AB2 protocol implements the AB protocol,
where CorruptMsg steps implement LoseMsg steps.

The goal: convince ourselves that this is true.

This requires answering two questions:

1. What does it mean?

2. How do we check it?

The first is: What does it mean?

And the second is: How do we check it?

[slide 18]

The AB2 protocol implements the AB

protocol, where CorruptMsg steps implement
LoseMsg steps.

What does it mean?

For every behavior of AB2 we can obtain a behavior
of AB by changing the state as follows:

State of AB2

→

State of AB

AVar = 〈“Tom”, 1〉
BVar = 〈“Ann”, 0〉
AtoB2 = 〈Bad , 〈“Tom”, 1〉〉
BtoA2 = 〈0,Bad , 0,Bad〉

AVar = 〈“Tom”, 1〉
BVar = 〈“Ann”, 0〉
AtoB = 〈〈“Tom”, 1〉〉
BtoA = 〈0, 0〉

First, exactly what does this mean?

It means that for every behavior of the AB2 protocol we can obtain a behavior
of the AB protocol by changing the state as shown in the following example:

[slide 19]

The AB2 protocol implements the AB

protocol, where CorruptMsg steps implement
LoseMsg steps.

What does it mean?

For every behavior of AB2 we can obtain a behavior
of AB by changing the state as follows:

State of AB2

→

State of AB

AVar = 〈“Tom”, 1〉
BVar = 〈“Ann”, 0〉
AtoB2 = 〈Bad , 〈“Tom”, 1〉〉
BtoA2 = 〈0,Bad , 0,Bad〉

AVar = 〈“Tom”, 1〉
BVar = 〈“Ann”, 0〉
AtoB = 〈〈“Tom”, 1〉〉
BtoA = 〈0, 0〉

First, exactly what does this mean?

It means that for every behavior of the AB2 protocol we can obtain a behavior
of the AB protocol by changing the state as shown in the following example:

[slide 20]

The AB2 protocol implements the AB

protocol, where CorruptMsg steps implement
LoseMsg steps.

What does it mean?

For every behavior of AB2 we can obtain a behavior
of AB by changing the state as follows:

State of AB2

→

State of AB

AVar = 〈“Tom”, 1〉
BVar = 〈“Ann”, 0〉
AtoB2 = 〈Bad , 〈“Tom”, 1〉〉
BtoA2 = 〈0,Bad , 0,Bad〉

AVar = 〈“Tom”, 1〉
BVar = 〈“Ann”, 0〉
AtoB = 〈〈“Tom”, 1〉〉
BtoA = 〈0, 0〉

For this state in a behavior of AB2 here’s how we get the corresponding
state in a behavior of AB .

The values of AVar and BVar are the same.

We obtain the sequence of messages AtoB from the sequence of messages
AtoB2 by deleting the Bad messages.

[slide 21]

The AB2 protocol implements the AB

protocol, where CorruptMsg steps implement
LoseMsg steps.

What does it mean?

For every behavior of AB2 we can obtain a behavior
of AB by changing the state as follows:

State of AB2

→

State of AB

AVar = 〈“Tom”, 1〉
BVar = 〈“Ann”, 0〉
AtoB2 = 〈Bad , 〈“Tom”, 1〉〉
BtoA2 = 〈0,Bad , 0,Bad〉

AVar = 〈“Tom”, 1〉
BVar = 〈“Ann”, 0〉
AtoB = 〈〈“Tom”, 1〉〉
BtoA = 〈0, 0〉

For this state in a behavior of AB2 here’s how we get the corresponding
state in a behavior of AB .

The values of AVar and BVar are the same.

We obtain the sequence of messages AtoB from the sequence of messages
AtoB2 by deleting the Bad messages.

[slide 22]

The AB2 protocol implements the AB

protocol, where CorruptMsg steps implement
LoseMsg steps.

What does it mean?

For every behavior of AB2 we can obtain a behavior
of AB by changing the state as follows:

State of AB2

→

State of AB

AVar = 〈“Tom”, 1〉
BVar = 〈“Ann”, 0〉
AtoB2 = 〈Bad , 〈“Tom”, 1〉〉
BtoA2 = 〈0,Bad , 0,Bad〉

AVar = 〈“Tom”, 1〉
BVar = 〈“Ann”, 0〉
AtoB = 〈〈“Tom”, 1〉〉
BtoA = 〈0, 0〉

For this state in a behavior of AB2 here’s how we get the corresponding
state in a behavior of AB .

The values of AVar and BVar are the same.

We obtain the sequence of messages AtoB from the sequence of messages
AtoB2 by deleting the Bad messages.

[slide 23]

The AB2 protocol implements the AB

protocol, where CorruptMsg steps implement
LoseMsg steps.

What does it mean?

For every behavior of AB2 we can obtain a behavior
of AB by changing the state as follows:

State of AB2

→

State of AB

AVar = 〈“Tom”, 1〉
BVar = 〈“Ann”, 0〉
AtoB2 = 〈Bad , 〈“Tom”, 1〉〉
BtoA2 = 〈0,Bad , 0,Bad〉

AVar = 〈“Tom”, 1〉
BVar = 〈“Ann”, 0〉
AtoB = 〈〈“Tom”, 1〉〉
BtoA = 〈0, 0〉

For this state in a behavior of AB2 here’s how we get the corresponding
state in a behavior of AB .

The values of AVar and BVar are the same.

We obtain the sequence of messages AtoB from the sequence of messages
AtoB2 by deleting the Bad messages.

[slide 24]

The AB2 protocol implements the AB

protocol, where CorruptMsg steps implement
LoseMsg steps.

What does it mean?

For every behavior of AB2 we can obtain a behavior
of AB by changing the state as follows:

State of AB2

→

State of AB

AVar = 〈“Tom”, 1〉
BVar = 〈“Ann”, 0〉
AtoB2 = 〈Bad , 〈“Tom”, 1〉〉
BtoA2 = 〈0,Bad , 0,Bad〉

AVar = 〈“Tom”, 1〉
BVar = 〈“Ann”, 0〉
AtoB = 〈〈“Tom”, 1〉〉
BtoA = 〈0, 0〉

For this state in a behavior of AB2 here’s how we get the corresponding
state in a behavior of AB .

The values of AVar and BVar are the same.

We obtain the sequence of messages AtoB from the sequence of messages
AtoB2 by deleting the Bad messages.

[slide 25]

The AB2 protocol implements the AB

protocol, where CorruptMsg steps implement
LoseMsg steps.

What does it mean?

For every behavior of AB2 we can obtain a behavior
of AB by changing the state as follows:

State of AB2

→

State of AB

AVar = 〈“Tom”, 1〉
BVar = 〈“Ann”, 0〉
AtoB2 = 〈Bad , 〈“Tom”, 1〉〉
BtoA2 = 〈0,Bad , 0,Bad〉

AVar = 〈“Tom”, 1〉
BVar = 〈“Ann”, 0〉
AtoB = 〈〈“Tom”, 1〉〉
BtoA = 〈0, 0〉

And we do the same thing to obtain the sequence of messages BtoA from
the sequence of messages BtoA2.

[slide 26]

The AB2 protocol implements the AB

protocol, where CorruptMsg steps implement
LoseMsg steps.

What does it mean?

For every behavior of AB2 we can obtain a behavior
of AB by changing the state as follows:

State of AB2

→

State of AB

AVar = 〈“Tom”, 1〉
BVar = 〈“Ann”, 0〉
AtoB2 = 〈Bad , 〈“Tom”, 1〉〉
BtoA2 = 〈0,Bad , 0,Bad〉

AVar = 〈“Tom”, 1〉
BVar = 〈“Ann”, 0〉
AtoB = 〈〈“Tom”, 1〉〉
BtoA = 〈0, 0〉

And we do the same thing to obtain the sequence of messages BtoA from
the sequence of messages BtoA2.

[slide 27]

The AB2 protocol implements the AB

protocol, where CorruptMsg steps implement
LoseMsg steps.

What does it mean?

For every behavior of AB2 we can obtain a behavior
of AB by changing the state as follows:

State of AB2

→

State of AB

AVar = 〈“Tom”, 1〉
BVar = 〈“Ann”, 0〉
AtoB2 = 〈Bad , 〈“Tom”, 1〉〉
BtoA2 = 〈0,Bad , 0,Bad〉

AVar = 〈“Tom”, 1〉
BVar = 〈“Ann”, 0〉
AtoB = 〈〈“Tom”, 1〉〉
BtoA = 〈0, 0〉

And we do the same thing to obtain the sequence of messages BtoA from
the sequence of messages BtoA2.

[slide 28]

State of AB2

→

State of AB

AVar = 〈“Tom”, 1〉
BVar = 〈“Ann”, 0〉
AtoB2 = 〈Bad , 〈“Tom”, 1〉〉
BtoA2 = 〈0,Bad , 0,Bad〉

AVar = 〈“Tom”, 1〉
BVar = 〈“Ann”, 0〉
AtoB = 〈〈“Tom”, 1〉〉
BtoA = 〈0, 0〉

State of SpecH

AVar = 〈“Tom”, 1〉
BVar = 〈“Ann”, 0〉
AtoB2 = 〈Bad , 〈“Tom”, 1〉〉
BtoA2 = 〈0,Bad , 0,Bad〉
AtoB2 = 〈〈“Tom”, 1〉〉
BtoA = 〈0, 0〉

“AB2 implements AB ” means that this transformation of states of the AB2
protocol to states of the AB protocol
transforms a behavior of the AB2 protocol to a behavior of the AB protocol.

[slide 29]

State of AB2

→

State of AB

AVar = 〈“Tom”, 1〉
BVar = 〈“Ann”, 0〉
AtoB2 = 〈Bad , 〈“Tom”, 1〉〉
BtoA2 = 〈0,Bad , 0,Bad〉

AVar = 〈“Tom”, 1〉
BVar = 〈“Ann”, 0〉
AtoB = 〈〈“Tom”, 1〉〉
BtoA = 〈0, 0〉

Behavior of AB2 → Behavior of AB

State of SpecH

AVar = 〈“Tom”, 1〉
BVar = 〈“Ann”, 0〉
AtoB2 = 〈Bad , 〈“Tom”, 1〉〉
BtoA2 = 〈0,Bad , 0,Bad〉
AtoB2 = 〈〈“Tom”, 1〉〉
BtoA = 〈0, 0〉

“AB2 implements AB ” means that this transformation of states of the AB2
protocol to states of the AB protocol
transforms a behavior of the AB2 protocol to a behavior of the AB protocol.

[slide 30]

State of AB2

→

State of AB

AVar = 〈“Tom”, 1〉
BVar = 〈“Ann”, 0〉
AtoB2 = 〈Bad , 〈“Tom”, 1〉〉
BtoA2 = 〈0,Bad , 0,Bad〉

AVar = 〈“Tom”, 1〉
BVar = 〈“Ann”, 0〉
AtoB = 〈〈“Tom”, 1〉〉
BtoA = 〈0, 0〉

Behavior of AB2 → Behavior of AB

State of SpecH

AVar = 〈“Tom”, 1〉
BVar = 〈“Ann”, 0〉
AtoB2 = 〈Bad , 〈“Tom”, 1〉〉
BtoA2 = 〈0,Bad , 0,Bad〉
AtoB2 = 〈〈“Tom”, 1〉〉
BtoA = 〈0, 0〉

To show this implementation, we first transform states of the AB2 protocol to
produce behaviors satisfying a new specification SpecH . We obtain a state of
SpecH by starting with a state of AB2

and then adding the values of the variables AtoB and BtoA from the state of
AB .

[slide 31]

State of AB2

→

State of AB

AVar = 〈“Tom”, 1〉
BVar = 〈“Ann”, 0〉
AtoB2 = 〈Bad , 〈“Tom”, 1〉〉
BtoA2 = 〈0,Bad , 0,Bad〉

AVar = 〈“Tom”, 1〉
BVar = 〈“Ann”, 0〉
AtoB = 〈〈“Tom”, 1〉〉
BtoA = 〈0, 0〉

State of SpecH

AVar = 〈“Tom”, 1〉
BVar = 〈“Ann”, 0〉
AtoB2 = 〈Bad , 〈“Tom”, 1〉〉
BtoA2 = 〈0,Bad , 0,Bad〉
AtoB2 = 〈〈“Tom”, 1〉〉
BtoA = 〈0, 0〉

To show this implementation, we first transform states of the AB2 protocol to
produce behaviors satisfying a new specification SpecH . We obtain a state of
SpecH by starting with a state of AB2

and then adding the values of the variables AtoB and BtoA from the state of
AB .

[slide 32]

State of AB2

→

State of AB

AVar = 〈“Tom”, 1〉
BVar = 〈“Ann”, 0〉
AtoB2 = 〈Bad , 〈“Tom”, 1〉〉
BtoA2 = 〈0,Bad , 0,Bad〉

AVar = 〈“Tom”, 1〉
BVar = 〈“Ann”, 0〉
AtoB = 〈〈“Tom”, 1〉〉
BtoA = 〈0, 0〉

State of SpecH

AVar = 〈“Tom”, 1〉
BVar = 〈“Ann”, 0〉
AtoB2 = 〈Bad , 〈“Tom”, 1〉〉
BtoA2 = 〈0,Bad , 0,Bad〉
AtoB2 = 〈〈“Tom”, 1〉〉
BtoA = 〈0, 0〉

To show this implementation, we first transform states of the AB2 protocol to
produce behaviors satisfying a new specification SpecH . We obtain a state of
SpecH by starting with a state of AB2

and then adding the values of the variables AtoB and BtoA from the state of
AB .

[slide 33]

State of AB2

→

State of AB

AVar = 〈“Tom”, 1〉
BVar = 〈“Ann”, 0〉
AtoB2 = 〈Bad , 〈“Tom”, 1〉〉
BtoA2 = 〈0,Bad , 0,Bad〉

AVar = 〈“Tom”, 1〉
BVar = 〈“Ann”, 0〉
AtoB = 〈〈“Tom”, 1〉〉
BtoA = 〈0, 0〉

State of SpecH

AVar = 〈“Tom”, 1〉
BVar = 〈“Ann”, 0〉
AtoB2 = 〈Bad , 〈“Tom”, 1〉〉
BtoA2 = 〈0,Bad , 0,Bad〉
AtoB2 = 〈〈“Tom”, 1〉〉
BtoA = 〈0, 0〉

To show this implementation, we first transform states of the AB2 protocol to
produce behaviors satisfying a new specification SpecH . We obtain a state of
SpecH by starting with a state of AB2

and then adding the values of the variables AtoB and BtoA from the state of
AB .

[slide 34]

State of AB2

→

State of AB

AVar = 〈“Tom”, 1〉
BVar = 〈“Ann”, 0〉
AtoB2 = 〈Bad , 〈“Tom”, 1〉〉
BtoA2 = 〈0,Bad , 0,Bad〉

AVar = 〈“Tom”, 1〉
BVar = 〈“Ann”, 0〉
AtoB = 〈〈“Tom”, 1〉〉
BtoA = 〈0, 0〉

State of SpecH

AVar = 〈“Tom”, 1〉
BVar = 〈“Ann”, 0〉
AtoB2 = 〈Bad , 〈“Tom”, 1〉〉
BtoA2 = 〈0,Bad , 0,Bad〉
AtoB2 = 〈〈“Tom”, 1〉〉
BtoA = 〈0, 0〉

To show this implementation, we first transform states of the AB2 protocol to
produce behaviors satisfying a new specification SpecH . We obtain a state of
SpecH by starting with a state of AB2

and then adding the values of the variables AtoB and BtoA from the state of
AB .

[slide 35]

State of SpecH

AVar = 〈“Tom”, 1〉
BVar = 〈“Ann”, 0〉
AtoB2 = 〈Bad , 〈“Tom”, 1〉〉
BtoA2 = 〈0,Bad , 0,Bad〉
AtoB2 = 〈〈“Tom”, 1〉〉
BtoA = 〈0, 0〉

The AB2 protocol implements the AB protocol iff every
behavior allowed by SpecH is a behavior of the AB protocol.

THEOREM SpecH ⇒ formula Spec of module AB

The AB2 protocol implements the AB protocol if and only if every behavior
allowed by formula SpecH is a behavior of the AB protocol.

This condition is expressed by the theorem that formula SpecH implies
formula Spec of module AB .

[slide 36]

State of SpecH

AVar = 〈“Tom”, 1〉
BVar = 〈“Ann”, 0〉
AtoB2 = 〈Bad , 〈“Tom”, 1〉〉
BtoA2 = 〈0,Bad , 0,Bad〉
AtoB2 = 〈〈“Tom”, 1〉〉
BtoA = 〈0, 0〉

The AB2 protocol implements the AB protocol iff every
behavior allowed by SpecH is a behavior of the AB protocol.

THEOREM SpecH ⇒ formula Spec of module AB

The AB2 protocol implements the AB protocol if and only if every behavior
allowed by formula SpecH is a behavior of the AB protocol.

This condition is expressed by the theorem that formula SpecH implies
formula Spec of module AB .

[slide 37]

State of SpecH

AVar = 〈“Tom”, 1〉
BVar = 〈“Ann”, 0〉
AtoB2 = 〈Bad , 〈“Tom”, 1〉〉
BtoA2 = 〈0,Bad , 0,Bad〉
AtoB2 = 〈〈“Tom”, 1〉〉
BtoA = 〈0, 0〉

The AB2 protocol implements the AB protocol iff every
behavior allowed by SpecH is a behavior of the AB protocol.

THEOREM SpecH ⇒ formula Spec of module AB

The AB2 protocol implements the AB protocol if and only if every behavior
allowed by formula SpecH is a behavior of the AB protocol.

This condition is expressed by the theorem that formula SpecH implies
formula Spec of module AB .

[slide 38]

THEOREM SpecH ⇒ formula Spec of module AB

This answers the first question:

What does it mean for AB2 to implement AB ?

We now answer the second question:

How do we check it?

To do this, we first write SpecH in TLA+.

This answers our first question: What does it mean for AB2 to implement
AB ?

We now answer the second question: How do we check it?

To do this, we first actually write the formula SpecH in TLA+.

[slide 39]

THEOREM SpecH ⇒ formula Spec of module AB

This answers the first question:

What does it mean for AB2 to implement AB ?

We now answer the second question:

How do we check it?

To do this, we first write SpecH in TLA+.

This answers our first question: What does it mean for AB2 to implement
AB ?

We now answer the second question: How do we check it?

To do this, we first actually write the formula SpecH in TLA+.

[slide 40]

THEOREM SpecH ⇒ formula Spec of module AB

This answers the first question:

What does it mean for AB2 to implement AB ?

We now answer the second question:

How do we check it?

To do this, we first write SpecH in TLA+.

This answers our first question: What does it mean for AB2 to implement
AB ?

We now answer the second question: How do we check it?

To do this, we first actually write the formula SpecH in TLA+.

[slide 41]

THEOREM SpecH ⇒ formula Spec of module AB

This answers the first question:

What does it mean for AB2 to implement AB ?

We now answer the second question:

How do we check it?

To do this, we first write SpecH in TLA+.

This answers our first question: What does it mean for AB2 to implement
AB ?

We now answer the second question: How do we check it?

To do this, we first actually write the formula SpecH in TLA+.

[slide 42]

SPECIFYING SpecH

[slide 43]

A behavior should satisfy SpecH iff:

– The values of AVar , BVar , AtoB2 , BtoA2 satisfy the AB2 spec.
– In every state:

– AtoB = AtoB2 without corrupted messages.
– BtoA = BtoA2 without corrupted messages.

SpecH should equal

∧ Formula Spec of module AB2

∧ 2 ∧ AtoB = AtoB2 without corrupted messages.
∧ BtoA = BtoA2 without corrupted messages.

A behavior should satisfy SpecH if and only if the following conditions hold.

First, the values of the four variables of the AB2 spec should satisfy that
spec.

Second, in every state of the behavior, AtoB should equal the sequence
obtained from AtoB2 by removing corrupted messages.

[slide 44]

A behavior should satisfy SpecH iff:

– The values of AVar , BVar , AtoB2 , BtoA2 satisfy the AB2 spec.
– In every state:

– AtoB = AtoB2 without corrupted messages.
– BtoA = BtoA2 without corrupted messages.

SpecH should equal

∧ Formula Spec of module AB2

∧ 2 ∧ AtoB = AtoB2 without corrupted messages.
∧ BtoA = BtoA2 without corrupted messages.

A behavior should satisfy SpecH if and only if the following conditions hold.

First, the values of the four variables of the AB2 spec should satisfy that
spec.

Second, in every state of the behavior, AtoB should equal the sequence
obtained from AtoB2 by removing corrupted messages.

[slide 45]

A behavior should satisfy SpecH iff:

– The values of AVar , BVar , AtoB2 , BtoA2 satisfy the AB2 spec.
– In every state:

– AtoB = AtoB2 without corrupted messages.
– BtoA = BtoA2 without corrupted messages.

SpecH should equal

∧ Formula Spec of module AB2

∧ 2 ∧ AtoB = AtoB2 without corrupted messages.
∧ BtoA = BtoA2 without corrupted messages.

A behavior should satisfy SpecH if and only if the following conditions hold.

First, the values of the four variables of the AB2 spec should satisfy that
spec.

Second, in every state of the behavior, AtoB should equal the sequence
obtained from AtoB2 by removing corrupted messages.

[slide 46]

A behavior should satisfy SpecH iff:

– The values of AVar , BVar , AtoB2 , BtoA2 satisfy the AB2 spec.
– In every state:

– AtoB = AtoB2 without corrupted messages.
– BtoA = BtoA2 without corrupted messages.

SpecH should equal

∧ Formula Spec of module AB2

∧ 2 ∧ AtoB = AtoB2 without corrupted messages.
∧ BtoA = BtoA2 without corrupted messages.

A behavior should satisfy SpecH if and only if the following conditions hold.

First, the values of the four variables of the AB2 spec should satisfy that
spec.

Second, in every state of the behavior, AtoB should equal the sequence
obtained from AtoB2 by removing corrupted messages.

[slide 47]

A behavior should satisfy SpecH iff:

– The values of AVar , BVar , AtoB2 , BtoA2 satisfy the AB2 spec.
– In every state:

– AtoB = AtoB2 without corrupted messages.
– BtoA = BtoA2 without corrupted messages.

SpecH should equal

∧ Formula Spec of module AB2

∧ 2 ∧ AtoB = AtoB2 without corrupted messages.
∧ BtoA = BtoA2 without corrupted messages.

And BtoA should equal the sequence obtained from BtoA2 by removing
corrupted messages.

So, SpecH should be the conjunction of two formulas.

The first formula, which expresses this condition, is just formula Spec of
module AB2.

The second formula asserts that something is true in every state,

[slide 48]

A behavior should satisfy SpecH iff:

– The values of AVar , BVar , AtoB2 , BtoA2 satisfy the AB2 spec.
– In every state:

– AtoB = AtoB2 without corrupted messages.
– BtoA = BtoA2 without corrupted messages.

SpecH should equal

∧ Formula Spec of module AB2

∧ 2 ∧ AtoB = AtoB2 without corrupted messages.
∧ BtoA = BtoA2 without corrupted messages.

And BtoA should equal the sequence obtained from BtoA2 by removing
corrupted messages.

So, SpecH should be the conjunction of two formulas.

The first formula, which expresses this condition, is just formula Spec of
module AB2.

The second formula asserts that something is true in every state,

[slide 49]

A behavior should satisfy SpecH iff:

– The values of AVar , BVar , AtoB2 , BtoA2 satisfy the AB2 spec.
– In every state:

– AtoB = AtoB2 without corrupted messages.
– BtoA = BtoA2 without corrupted messages.

SpecH should equal

∧ Formula Spec of module AB2

∧ 2 ∧ AtoB = AtoB2 without corrupted messages.
∧ BtoA = BtoA2 without corrupted messages.

And BtoA should equal the sequence obtained from BtoA2 by removing
corrupted messages.

So, SpecH should be the conjunction of two formulas.

The first formula, which expresses this condition, is just formula Spec of
module AB2.

The second formula asserts that something is true in every state,

[slide 50]

A behavior should satisfy SpecH iff:

– The values of AVar , BVar , AtoB2 , BtoA2 satisfy the AB2 spec.
– In every state:

– AtoB = AtoB2 without corrupted messages.
– BtoA = BtoA2 without corrupted messages.

SpecH should equal

∧ Formula Spec of module AB2

∧ 2 ∧ AtoB = AtoB2 without corrupted messages.
∧ BtoA = BtoA2 without corrupted messages.

And BtoA should equal the sequence obtained from BtoA2 by removing
corrupted messages.

So, SpecH should be the conjunction of two formulas.

The first formula, which expresses this condition, is just formula Spec of
module AB2.

The second formula asserts that something is true in every state,

[slide 51]

A behavior should satisfy SpecH iff:

– The values of AVar , BVar , AtoB2 , BtoA2 satisfy the AB2 spec.
– In every state:

– AtoB = AtoB2 without corrupted messages.
– BtoA = BtoA2 without corrupted messages.

SpecH should equal

∧ Formula Spec of module AB2

∧ 2 ∧ AtoB = AtoB2 without corrupted messages.
∧ BtoA = BtoA2 without corrupted messages.

And BtoA should equal the sequence obtained from BtoA2 by removing
corrupted messages.

So, SpecH should be the conjunction of two formulas.

The first formula, which expresses this condition, is just formula Spec of
module AB2.

The second formula asserts that something is true in every state,

[slide 52]

A behavior should satisfy SpecH iff:

– The values of AVar , BVar , AtoB2 , BtoA2 satisfy the AB2 spec.
– In every state:

– AtoB = AtoB2 without corrupted messages.
– BtoA = BtoA2 without corrupted messages.

SpecH should equal

∧ Formula Spec of module AB2

∧ 2 ∧ AtoB = AtoB2 without corrupted messages.
∧ BtoA = BtoA2 without corrupted messages.

which is expressed by the temporal operator always.

The condition satisfied by every state
is the conjunction of these two conditions.

So here’s what SpecH should equal.

[slide 53]

A behavior should satisfy SpecH iff:

– The values of AVar , BVar , AtoB2 , BtoA2 satisfy the AB2 spec.
– In every state:

– AtoB = AtoB2 without corrupted messages.
– BtoA = BtoA2 without corrupted messages.

SpecH should equal

∧ Formula Spec of module AB2

∧ 2 ∧ AtoB = AtoB2 without corrupted messages.
∧ BtoA = BtoA2 without corrupted messages.

which is expressed by the temporal operator always.

The condition satisfied by every state
is the conjunction of these two conditions.

So here’s what SpecH should equal.

[slide 54]

A behavior should satisfy SpecH iff:

– The values of AVar , BVar , AtoB2 , BtoA2 satisfy the AB2 spec.
– In every state:

– AtoB = AtoB2 without corrupted messages.
– BtoA = BtoA2 without corrupted messages.

SpecH should equal

∧ Formula Spec of module AB2

∧ 2 ∧ AtoB = AtoB2 without corrupted messages.
∧ BtoA = BtoA2 without corrupted messages.

which is expressed by the temporal operator always.

The condition satisfied by every state
is the conjunction of these two conditions.

So here’s what SpecH should equal.

[slide 55]

A behavior should satisfy SpecH iff:

– The values of AVar , BVar , AtoB2 , BtoA2 satisfy the AB2 spec.
– In every state:

– AtoB = AtoB2 without corrupted messages.
– BtoA = BtoA2 without corrupted messages.

SpecH should equal

∧ Formula Spec of module AB2

∧ 2 ∧ AtoB = AtoB2 without corrupted messages.
∧ BtoA = BtoA2 without corrupted messages.

which is expressed by the temporal operator always.

The condition satisfied by every state
is the conjunction of these two conditions.

So here’s what SpecH should equal.

[slide 56]

SpecH
∆
= ∧ Formula Spec of module AB2
∧ 2 ∧ AtoB = AtoB2 without corrupted messages.

∧ BtoA = BtoA2 without corrupted messages.

SpecH is defined in module AB2H .

Stop the video and download that module now.

So the definition of SpecH should look like this.

We define SpecH in another module called AB2H .

Stop the video and download that module now.

[slide 57]

SpecH
∆
= ∧ Formula Spec of module AB2
∧ 2 ∧ AtoB = AtoB2 without corrupted messages.

∧ BtoA = BtoA2 without corrupted messages.

SpecH is defined in module AB2H .

Stop the video and download that module now.

So the definition of SpecH should look like this.

We define SpecH in another module called AB2H .

Stop the video and download that module now.

[slide 58]

SpecH
∆
= ∧ Formula Spec of module AB2
∧ 2 ∧ AtoB = AtoB2 without corrupted messages.

∧ BtoA = BtoA2 without corrupted messages.

SpecH is defined in module AB2H .

Stop the video and download that module now.

So the definition of SpecH should look like this.

We define SpecH in another module called AB2H .

Stop the video and download that module now.

[slide 59]

SpecH
∆
= ∧ Formula Spec of module AB2
∧ 2 ∧ AtoB = AtoB2 without corrupted messages.

∧ BtoA = BtoA2 without corrupted messages.

We start by writing this conjunct.

[slide 60]

SpecH
∆
= ∧ Formula Spec of module AB2
∧ 2 ∧ AtoB = AtoB2 without corrupted messages.

∧ BtoA = BtoA2 without corrupted messages.

To permit AB2H to import Spec from AB2 , it extends the same
modules and declares the same constants and variables as AB2 .

EXTENDS Integers, Sequences

CONSTANTS Data, Bad

ASSUME Bad /∈ (Data × {0,1}) ∪ {0,1}
VARIABLES AVar , BVar , AtoB , BtoA

To permit module AB2H to import formula Spec from module AB2
AB2H begins by extending the same modules and declaring the same
constants and variables as module AB2 .

[slide 61]

SpecH
∆
= ∧ Formula Spec of module AB2
∧ 2 ∧ AtoB = AtoB2 without corrupted messages.

∧ BtoA = BtoA2 without corrupted messages.

To permit AB2H to import Spec from AB2 , it extends the same
modules and declares the same constants and variables as AB2 .

EXTENDS Integers, Sequences

CONSTANTS Data, Bad

ASSUME Bad /∈ (Data × {0,1}) ∪ {0,1}
VARIABLES AVar , BVar , AtoB , BtoA

To permit module AB2H to import formula Spec from module AB2
AB2H begins by extending the same modules and declaring the same
constants and variables as module AB2 .

[slide 62]

SpecH
∆
= ∧ Formula Spec of module AB2
∧ 2 ∧ AtoB = AtoB2 without corrupted messages.

∧ BtoA = BtoA2 without corrupted messages.

To permit AB2H to import Spec from AB2 , it extends the same
modules and declares the same constants and variables as AB2 .

EXTENDS Integers, Sequences

CONSTANTS Data, Bad

ASSUME Bad /∈ (Data × {0,1}) ∪ {0,1}
VARIABLES AVar , BVar , AtoB , BtoA

To permit module AB2H to import formula Spec from module AB2
AB2H begins by extending the same modules and declaring the same
constants and variables as module AB2 .

[slide 63]

SpecH
∆
= ∧ Formula Spec of module AB2
∧ 2 ∧ AtoB = AtoB2 without corrupted messages.

∧ BtoA = BtoA2 without corrupted messages.

AB2 ∆
= INSTANCE AB2

VARIABLES AtoB , BtoA

Defines RemoveBad(seq) to be the sequence
obtained by removing Bad elements from
a sequence seq .

The module next imports the definitions from module AB2 with this instance
statement.

This imports formula Spec of module AB2 as AB2 bang Spec.

To write this part of the definition of SpecH ,

the module has to declare the variables AtoB and BtoA.

[slide 64]

SpecH
∆
= ∧ Formula Spec of module AB2
∧ 2 ∧ AtoB = AtoB2 without corrupted messages.

∧ BtoA = BtoA2 without corrupted messages.

AB2 ∆
= INSTANCE AB2

VARIABLES AtoB , BtoA

Defines RemoveBad(seq) to be the sequence
obtained by removing Bad elements from
a sequence seq .

The module next imports the definitions from module AB2 with this instance
statement.

This imports formula Spec of module AB2 as AB2 bang Spec.

To write this part of the definition of SpecH ,

the module has to declare the variables AtoB and BtoA.

[slide 65]

SpecH
∆
= ∧ AB2!Spec
∧ 2 ∧ AtoB = AtoB2 without corrupted messages.

∧ BtoA = BtoA2 without corrupted messages.

AB2 ∆
= INSTANCE AB2

VARIABLES AtoB , BtoA

Defines RemoveBad(seq) to be the sequence
obtained by removing Bad elements from
a sequence seq .

The module next imports the definitions from module AB2 with this instance
statement.

This imports formula Spec of module AB2 as AB2 bang Spec.

To write this part of the definition of SpecH ,

the module has to declare the variables AtoB and BtoA.

[slide 66]

SpecH
∆
= ∧ AB2!Spec
∧ 2 ∧ AtoB = AtoB2 without corrupted messages.

∧ BtoA = BtoA2 without corrupted messages.

AB2 ∆
= INSTANCE AB2

VARIABLES AtoB , BtoA

Defines RemoveBad(seq) to be the sequence
obtained by removing Bad elements from
a sequence seq .

The module next imports the definitions from module AB2 with this instance
statement.

This imports formula Spec of module AB2 as AB2 bang Spec.

To write this part of the definition of SpecH ,

the module has to declare the variables AtoB and BtoA.

[slide 67]

SpecH
∆
= ∧ AB2!Spec
∧ 2 ∧ AtoB = AtoB2 without corrupted messages.

∧ BtoA = BtoA2 without corrupted messages.

AB2 ∆
= INSTANCE AB2

VARIABLES AtoB , BtoA

Defines RemoveBad(seq) to be the sequence
obtained by removing Bad elements from
a sequence seq .

The module next imports the definitions from module AB2 with this instance
statement.

This imports formula Spec of module AB2 as AB2 bang Spec.

To write this part of the definition of SpecH ,

the module has to declare the variables AtoB and BtoA.

[slide 68]

SpecH
∆
= ∧ AB2!Spec
∧ 2 ∧ AtoB = AtoB2 without corrupted messages.

∧ BtoA = BtoA2 without corrupted messages.

AB2 ∆
= INSTANCE AB2

VARIABLES AtoB , BtoA

Defines RemoveBad(seq) to be the sequence
obtained by removing Bad elements from
a sequence seq .

To write this part of the definition,
the module next defines the operator RemoveBad so that RemoveBad of seq
is the sequence obtained by removing elements equal to Bad from a
sequence seq .

[slide 69]

SpecH
∆
= ∧ AB2!Spec
∧ 2 ∧ AtoB = AtoB2 without corrupted messages.

∧ BtoA = BtoA2 without corrupted messages.

AB2 ∆
= INSTANCE AB2

VARIABLES AtoB , BtoA

Defines RemoveBad(seq) to be the sequence
obtained by removing Bad elements from
a sequence seq .

To write this part of the definition,
the module next defines the operator RemoveBad so that RemoveBad of seq
is the sequence obtained by removing elements equal to Bad from a
sequence seq .

[slide 70]

SpecH
∆
= ∧ AB2!Spec
∧ 2 ∧ AtoB = AtoB2 without corrupted messages.

∧ BtoA = BtoA2 without corrupted messages.

RECURSIVE RemoveBad(_)

RemoveBad(seq)
∆
=

IF seq = 〈 〉
THEN 〈 〉
ELSE IF Head(seq) = Bad

THEN RemoveBad(Tail(seq))

ELSE 〈Head(seq)〉 ◦ RemoveBad(Tail(seq))

The definition of course is almost identical to the recursive definition of
RemoveX in part 1 of this lecture. It begins with a RECURSIVE declaration.

It then defines RemoveBad of seq to be If seq is the empty sequence, then
the empty sequence.

else if the head of seq equals Bad , then RemoveBad of the tail of seq .

[slide 71]

SpecH
∆
= ∧ AB2!Spec
∧ 2 ∧ AtoB = AtoB2 without corrupted messages.

∧ BtoA = BtoA2 without corrupted messages.

RECURSIVE RemoveBad(_)

RemoveBad(seq)
∆
=

IF seq = 〈 〉
THEN 〈 〉
ELSE IF Head(seq) = Bad

THEN RemoveBad(Tail(seq))

ELSE 〈Head(seq)〉 ◦ RemoveBad(Tail(seq))

The definition of course is almost identical to the recursive definition of
RemoveX in part 1 of this lecture. It begins with a RECURSIVE declaration.

It then defines RemoveBad of seq to be If seq is the empty sequence, then
the empty sequence.

else if the head of seq equals Bad , then RemoveBad of the tail of seq .

[slide 72]

SpecH
∆
= ∧ AB2!Spec
∧ 2 ∧ AtoB = AtoB2 without corrupted messages.

∧ BtoA = BtoA2 without corrupted messages.

RECURSIVE RemoveBad(_)

RemoveBad(seq)
∆
=

IF seq = 〈 〉
THEN 〈 〉
ELSE IF Head(seq) = Bad

THEN RemoveBad(Tail(seq))

ELSE 〈Head(seq)〉 ◦ RemoveBad(Tail(seq))

The definition of course is almost identical to the recursive definition of
RemoveX in part 1 of this lecture. It begins with a RECURSIVE declaration.

It then defines RemoveBad of seq to be If seq is the empty sequence, then
the empty sequence.

else if the head of seq equals Bad , then RemoveBad of the tail of seq .

[slide 73]

SpecH
∆
= ∧ AB2!Spec
∧ 2 ∧ AtoB = AtoB2 without corrupted messages.

∧ BtoA = BtoA2 without corrupted messages.

RECURSIVE RemoveBad(_)

RemoveBad(seq)
∆
=

IF seq = 〈 〉
THEN 〈 〉
ELSE IF Head(seq) = Bad

THEN RemoveBad(Tail(seq))

ELSE 〈Head(seq)〉 ◦ RemoveBad(Tail(seq))

The definition of course is almost identical to the recursive definition of
RemoveX in part 1 of this lecture. It begins with a RECURSIVE declaration.

It then defines RemoveBad of seq to be If seq is the empty sequence, then
the empty sequence.

else if the head of seq equals Bad , then RemoveBad of the tail of seq .

[slide 74]

SpecH
∆
= ∧ AB2!Spec
∧ 2 ∧ AtoB = AtoB2 without corrupted messages.

∧ BtoA = BtoA2 without corrupted messages.

RECURSIVE RemoveBad(_)

RemoveBad(seq)
∆
=

IF seq = 〈 〉
THEN 〈 〉
ELSE IF Head(seq) = Bad

THEN RemoveBad(Tail(seq))

ELSE 〈Head(seq)〉 ◦ RemoveBad(Tail(seq))

The definition of course is almost identical to the recursive definition of
RemoveX in part 1 of this lecture. It begins with a RECURSIVE declaration.

It then defines RemoveBad of seq to be If seq is the empty sequence, then
the empty sequence.

else if the head of seq equals Bad , then RemoveBad of the tail of seq .

[slide 75]

SpecH
∆
= ∧ AB2!Spec
∧ 2 ∧ AtoB = AtoB2 without corrupted messages.

∧ BtoA = BtoA2 without corrupted messages.

RECURSIVE RemoveBad(_)

RemoveBad(seq)
∆
=

IF seq = 〈 〉
THEN 〈 〉
ELSE IF Head(seq) = Bad

THEN RemoveBad(Tail(seq))

ELSE 〈Head(seq)〉 ◦ RemoveBad(Tail(seq))

Else, the sequence obtained by prepending the head of seq to the front of
RemoveBad of the tail of seq .

We can use it to replace these pseudo-expressions with real expressions.

This completes the definition of SpecH , which comes next in the module.

[slide 76]

SpecH
∆
= ∧ AB2!Spec
∧ 2 ∧ AtoB = AtoB2 without corrupted messages.

∧ BtoA = BtoA2 without corrupted messages.

RECURSIVE RemoveBad(_)

RemoveBad(seq)
∆
=

IF seq = 〈 〉
THEN 〈 〉
ELSE IF Head(seq) = Bad

THEN RemoveBad(Tail(seq))

ELSE 〈Head(seq)〉 ◦ RemoveBad(Tail(seq))

Else, the sequence obtained by prepending the head of seq to the front of
RemoveBad of the tail of seq .

We can use it to replace these pseudo-expressions with real expressions.

This completes the definition of SpecH , which comes next in the module.

[slide 77]

SpecH
∆
= ∧ AB2!Spec
∧ 2 ∧ AtoB = RemoveBad(AtoB2)

∧ BtoA = RemoveBad(BtoA2)

RECURSIVE RemoveBad(_)

RemoveBad(seq)
∆
=

IF seq = 〈 〉
THEN 〈 〉
ELSE IF Head(seq) = Bad

THEN RemoveBad(Tail(seq))

ELSE 〈Head(seq)〉 ◦ RemoveBad(Tail(seq))

Else, the sequence obtained by prepending the head of seq to the front of
RemoveBad of the tail of seq .

We can use it to replace these pseudo-expressions with real expressions.

This completes the definition of SpecH , which comes next in the module.

[slide 78]

SpecH
∆
= ∧ AB2!Spec
∧ 2 ∧ AtoB = RemoveBad(AtoB2)

∧ BtoA = RemoveBad(BtoA2)

RECURSIVE RemoveBad(_)

RemoveBad(seq)
∆
=

IF seq = 〈 〉
THEN 〈 〉
ELSE IF Head(seq) = Bad

THEN RemoveBad(Tail(seq))

ELSE 〈Head(seq)〉 ◦ RemoveBad(Tail(seq))

Else, the sequence obtained by prepending the head of seq to the front of
RemoveBad of the tail of seq .

We can use it to replace these pseudo-expressions with real expressions.

This completes the definition of SpecH , which comes next in the module.

[slide 79]

SpecH
∆
= ∧ AB2!Spec
∧ 2 ∧ AtoB = RemoveBad(AtoB2)

∧ BtoA = RemoveBad(BtoA2)

AtoB and BtoA are imaginary variables added to AB2!Spec
to show that it implements the AB protocol spec.

They are not meant to be implemented by the AB2 protocol.

If we ignore the values of AtoB and BtoA , then
SpecH and AB2!Spec allow the same behaviors.

AtoB and BtoA are imaginary variables added to AB2!Spec to show that it
implements the AB protocol spec.

They are not meant to be implemented by the AB2 protocol.

If we ignore the values of AtoB and BtoA , then SpecH and AB2!Spec
allow the same behaviors.

[slide 80]

SpecH
∆
= ∧ AB2!Spec
∧ 2 ∧ AtoB = RemoveBad(AtoB2)

∧ BtoA = RemoveBad(BtoA2)

AtoB and BtoA are imaginary variables added to AB2!Spec
to show that it implements the AB protocol spec.

They are not meant to be implemented by the AB2 protocol.

If we ignore the values of AtoB and BtoA , then
SpecH and AB2!Spec allow the same behaviors.

AtoB and BtoA are imaginary variables added to AB2!Spec to show that it
implements the AB protocol spec.

They are not meant to be implemented by the AB2 protocol.

If we ignore the values of AtoB and BtoA , then SpecH and AB2!Spec
allow the same behaviors.

[slide 81]

SpecH
∆
= ∧ AB2!Spec
∧ 2 ∧ AtoB = RemoveBad(AtoB2)

∧ BtoA = RemoveBad(BtoA2)

AtoB and BtoA are imaginary variables added to AB2!Spec
to show that it implements the AB protocol spec.

They are not meant to be implemented by the AB2 protocol.

If we ignore the values of AtoB and BtoA , then
SpecH and AB2!Spec allow the same behaviors.

AtoB and BtoA are imaginary variables added to AB2!Spec to show that it
implements the AB protocol spec.

They are not meant to be implemented by the AB2 protocol.

If we ignore the values of AtoB and BtoA , then SpecH and AB2!Spec
allow the same behaviors.

[slide 82]

SpecH
∆
= ∧ AB2!Spec
∧ 2 ∧ AtoB = RemoveBad(AtoB2)

∧ BtoA = RemoveBad(BtoA2)

AtoB and BtoA are imaginary variables added to AB2!Spec
to show that it implements the AB protocol spec.

They are not meant to be implemented by the AB2 protocol.

If we ignore the values of AtoB and BtoA , then
SpecH and AB2!Spec allow the same behaviors.

AtoB and BtoA are imaginary variables added to AB2!Spec to show that it
implements the AB protocol spec.

They are not meant to be implemented by the AB2 protocol.

If we ignore the values of AtoB and BtoA , then SpecH and AB2!Spec
allow the same behaviors.

[slide 83]

CHECKING IMPLEMENTATION

[slide 84]

Our goal is to check:

THEOREM SpecH ⇒ formula Spec of module AB

AB
∆
= INSTANCE AB

THEOREM SpecH ⇒ AB !Spec

Remember that our goal is to check this theorem which asserts that the
AB2 protocol implements the AB protocol.

But first we have to write it in TLA+.

We just defined SpecH in module AB2H .

We now have to write formula Spec of module AB in module AB2H . But
that’s easy.

[slide 85]

Our goal is to check:

THEOREM SpecH ⇒ formula Spec of module AB

which asserts that AB2 implements AB .

AB
∆
= INSTANCE AB

THEOREM SpecH ⇒ AB !Spec

Remember that our goal is to check this theorem which asserts that the
AB2 protocol implements the AB protocol.

But first we have to write it in TLA+.

We just defined SpecH in module AB2H .

We now have to write formula Spec of module AB in module AB2H . But
that’s easy.

[slide 86]

Our goal is to check:

THEOREM SpecH ⇒ formula Spec of module AB

This is defined in AB2H .

AB
∆
= INSTANCE AB

THEOREM SpecH ⇒ AB !Spec

Remember that our goal is to check this theorem which asserts that the
AB2 protocol implements the AB protocol.

But first we have to write it in TLA+.

We just defined SpecH in module AB2H .

We now have to write formula Spec of module AB in module AB2H . But
that’s easy.

[slide 87]

Our goal is to check:

THEOREM SpecH ⇒ formula Spec of module AB

Have to write in AB2H .

AB
∆
= INSTANCE AB

THEOREM SpecH ⇒ AB !Spec

Remember that our goal is to check this theorem which asserts that the
AB2 protocol implements the AB protocol.

But first we have to write it in TLA+.

We just defined SpecH in module AB2H .

We now have to write formula Spec of module AB in module AB2H . But
that’s easy.

[slide 88]

Our goal is to check:

THEOREM SpecH ⇒ formula Spec of module AB

AB
∆
= INSTANCE AB

THEOREM SpecH ⇒ AB !Spec

We just add this INSTANCE statement to module AB2H .

which defines AB bang Spec to be this formula.

[slide 89]

Our goal is to check:

THEOREM SpecH ⇒ formula Spec of module AB

AB
∆
= INSTANCE AB

THEOREM SpecH ⇒ AB !Spec

We just add this INSTANCE statement to module AB2H .

which defines AB bang Spec to be this formula.

[slide 90]

Our goal is to check:

THEOREM SpecH ⇒ formula Spec of module AB

AB
∆
= INSTANCE AB

THEOREM SpecH ⇒ AB !Spec

We just add this INSTANCE statement to module AB2H .

which defines AB bang Spec to be this formula.

[slide 91]

Our goal is to check:

THEOREM SpecH ⇒ formula Spec of module AB

AB
∆
= INSTANCE AB

THEOREM SpecH ⇒ AB !Spec

TLC can’t check this theorem

because SpecH doesn’t have the standard form for a TLA+ safety spec —
which has an initial-state formula and a next-state action.

[slide 92]

SpecH
∆
= ∧ AB2!Spec
∧ 2 ∧ AtoB = RemoveBad(AtoB2)

∧ BtoA = RemoveBad(BtoA2)

THEOREM SpecH ⇒ AB !Spec

TLC can’t check this theorem

because SpecH doesn’t have the standard form for a TLA+ safety spec —
which has an initial-state formula and a next-state action.

[slide 93]

SpecH
∆
= ∧ AB2!Spec
∧ 2 ∧ AtoB = RemoveBad(AtoB2)

∧ BtoA = RemoveBad(BtoA2)

THEOREM SpecH ⇒ AB !Spec

TLC can’t check this theorem because SpecH doesn’t
have the standard form for a TLA+ safety spec:

InitH ∧ 2 [NextH]varsH

TLC can’t check this theorem

because SpecH doesn’t have the standard form for a TLA+ safety spec —
which has an initial-state formula and a next-state action.

[slide 94]

SpecH
∆
= ∧ AB2!Spec
∧ 2 ∧ AtoB = RemoveBad(AtoB2)

∧ BtoA = RemoveBad(BtoA2)

THEOREM SpecH ⇒ AB !Spec

TLC can’t check this theorem because SpecH doesn’t
have the standard form for a TLA+ safety spec:

InitH ∧ 2 [NextH]varsH

TLC can’t check this theorem

because SpecH doesn’t have the standard form for a TLA+ safety spec —
which has an initial-state formula and a next-state action.

[slide 95]

SpecH
∆
= ∧ AB2!Spec
∧ 2 ∧ AtoB = RemoveBad(AtoB2)

∧ BtoA = RemoveBad(BtoA2)

THEOREM SpecH ⇒ AB !Spec

TLC can’t check this theorem because SpecH doesn’t
have the standard form for a TLA+ safety spec:

InitH ∧ 2 [NextH]varsH

TLC can’t check this theorem

because SpecH doesn’t have the standard form for a TLA+ safety spec —
which has an initial-state formula and a next-state action.

[slide 96]

We could solve this problem be rewriting SpecH .

This is done in module AB2H by defining
a specification SpecHH that TLC can handle
and is equivalent to SpecH .

You can read module AB2H to see how it’s done.

I’ll take a longer approach that leads to greater insight
into implementation.

We could solve this problem be rewriting SpecH .

This is done in module AB2H by defining a specification SpecHH that TLC
can handle and is equivalent to SpecH .

You can read module AB2H to see how it’s done.

Here, I’ll take a longer approach that leads to greater insight into
implementation.

[slide 97]

We could solve this problem be rewriting SpecH .

This is done in module AB2H by defining
a specification SpecHH that TLC can handle
and is equivalent to SpecH .

You can read module AB2H to see how it’s done.

I’ll take a longer approach that leads to greater insight
into implementation.

We could solve this problem be rewriting SpecH .

This is done in module AB2H by defining a specification SpecHH that TLC
can handle and is equivalent to SpecH .

You can read module AB2H to see how it’s done.

Here, I’ll take a longer approach that leads to greater insight into
implementation.

[slide 98]

We could solve this problem be rewriting SpecH .

This is done in module AB2H by defining
a specification SpecHH that TLC can handle
and is equivalent to SpecH .

You can read module AB2H to see how it’s done.

I’ll take a longer approach that leads to greater insight
into implementation.

We could solve this problem be rewriting SpecH .

This is done in module AB2H by defining a specification SpecHH that TLC
can handle and is equivalent to SpecH .

You can read module AB2H to see how it’s done.

Here, I’ll take a longer approach that leads to greater insight into
implementation.

[slide 99]

We could solve this problem be rewriting SpecH .

This is done in module AB2H by defining
a specification SpecHH that TLC can handle
and is equivalent to SpecH .

You can read module AB2H to see how it’s done.

I’ll take a longer approach that leads to greater insight
into implementation.

We could solve this problem be rewriting SpecH .

This is done in module AB2H by defining a specification SpecHH that TLC
can handle and is equivalent to SpecH .

You can read module AB2H to see how it’s done.

Here, I’ll take a longer approach that leads to greater insight into
implementation.

[slide 100]

We could solve this problem be rewriting SpecH .

This is done in module AB2H by defining
a specification SpecHH that TLC can handle
and is equivalent to SpecH .

You can read module AB2H to see how it’s done.

I’ll take a longer approach that leads to greater insight
into implementation.

We could solve this problem be rewriting SpecH .

This is done in module AB2H by defining a specification SpecHH that TLC
can handle and is equivalent to SpecH .

You can read module AB2H to see how it’s done.

Here, I’ll take a longer approach that leads to greater insight into
implementation.

[slide 101]

We could solve this problem be rewriting SpecH .

This is done in module AB2H by defining
a specification SpecHH that TLC can handle
and is equivalent to SpecH .

You can read module AB2H to see how it’s done.

I’ll take a longer approach that leads to greater insight
into implementation.

We could solve this problem be rewriting SpecH .

This is done in module AB2H by defining a specification SpecHH that TLC
can handle and is equivalent to SpecH .

You can read module AB2H to see how it’s done.

Here, I’ll take a longer approach that leads to greater insight into
implementation.

[slide 102]

SIMPLIFYING REFINEMENT

[slide 103]

SpecH
∆
= ∧ AB2!Spec
∧ 2 ∧ AtoB = RemoveBad(AtoB2)

∧ BtoA = RemoveBad(BtoA2)

AB
∆
= INSTANCE AB

THEOREM SpecH ⇒ AB !Spec

THEOREM SpecH ⇒ (AB !Spec WITH AtoB ← RemoveBad(AtoB2),
BtoA ← RemoveBad(BtoA2))

This is where we are in Module AB2H .

By the Temporal Substitution Rule this always formula implies that AB bang
Spec equals AB bang Spec with this substitution.

[slide 104]

SpecH
∆
= ∧ AB2!Spec
∧ 2 ∧ AtoB = RemoveBad(AtoB2)

∧ BtoA = RemoveBad(BtoA2)

AB
∆
= INSTANCE AB

THEOREM SpecH ⇒ AB !Spec

THEOREM SpecH ⇒ (AB !Spec WITH AtoB ← RemoveBad(AtoB2),
BtoA ← RemoveBad(BtoA2))

By the Temporal Substitution Rule

This is where we are in Module AB2H .

By the Temporal Substitution Rule this always formula implies that AB bang
Spec equals AB bang Spec with this substitution.

[slide 105]

SpecH
∆
= ∧ AB2!Spec
∧ 2 ∧ AtoB = RemoveBad(AtoB2)

∧ BtoA = RemoveBad(BtoA2)

AB
∆
= INSTANCE AB

THEOREM SpecH ⇒ AB !Spec

THEOREM SpecH ⇒ (AB !Spec WITH AtoB ← RemoveBad(AtoB2),
BtoA ← RemoveBad(BtoA2))

By the Temporal Substitution Rule, this formula implies

This is where we are in Module AB2H .

By the Temporal Substitution Rule this always formula implies that AB bang
Spec equals AB bang Spec with this substitution.

[slide 106]

SpecH
∆
= ∧ AB2!Spec
∧ 2 ∧ AtoB = RemoveBad(AtoB2)

∧ BtoA = RemoveBad(BtoA2)

AB
∆
= INSTANCE AB

THEOREM SpecH ⇒ AB !Spec

THEOREM SpecH ⇒ (AB !Spec WITH AtoB ← RemoveBad(AtoB2),
BtoA ← RemoveBad(BtoA2))

By the Temporal Substitution Rule, this formula implies
AB !Spec = (AB !Spec WITH AtoB ← RemoveBad(AtoB2),

BtoA ← RemoveBad(BtoA2))

This is where we are in Module AB2H .

By the Temporal Substitution Rule this always formula implies that AB bang
Spec equals AB bang Spec with this substitution.

[slide 107]

SpecH
∆
= ∧ AB2!Spec
∧ 2 ∧ AtoB = RemoveBad(AtoB2)

∧ BtoA = RemoveBad(BtoA2)

AB
∆
= INSTANCE AB

THEOREM SpecH ⇒ AB !Spec

THEOREM SpecH ⇒ (AB !Spec WITH AtoB ← RemoveBad(AtoB2),
BtoA ← RemoveBad(BtoA2))

SpecH implies
AB !Spec = (AB !Spec WITH AtoB ← RemoveBad(AtoB2),

BtoA ← RemoveBad(BtoA2))

And since SpecH implies the always formula, it also implies this equality.

Therefore, this theorem is equivalent to the theorem we get by replacing AB

bang Spec by AB bang Spec with the substitutions.

[slide 108]

SpecH
∆
= ∧ AB2!Spec
∧ 2 ∧ AtoB = RemoveBad(AtoB2)

∧ BtoA = RemoveBad(BtoA2)

AB
∆
= INSTANCE AB

THEOREM SpecH ⇒ AB !Spec

THEOREM SpecH ⇒ (AB !Spec WITH AtoB ← RemoveBad(AtoB2),
BtoA ← RemoveBad(BtoA2))

SpecH implies
AB !Spec = (AB !Spec WITH AtoB ← RemoveBad(AtoB2),

BtoA ← RemoveBad(BtoA2))

And since SpecH implies the always formula, it also implies this equality.

Therefore, this theorem is equivalent to the theorem we get by replacing AB

bang Spec by AB bang Spec with the substitutions.

[slide 109]

SpecH
∆
= ∧ AB2!Spec
∧ 2 ∧ AtoB = RemoveBad(AtoB2)

∧ BtoA = RemoveBad(BtoA2)

AB
∆
= INSTANCE AB

THEOREM SpecH ⇒ AB !Spec

THEOREM SpecH ⇒ (AB !Spec WITH AtoB ← RemoveBad(AtoB2),
BtoA ← RemoveBad(BtoA2))

SpecH implies
AB !Spec = (AB !Spec WITH AtoB ← RemoveBad(AtoB2),

BtoA ← RemoveBad(BtoA2))

And since SpecH implies the always formula, it also implies this equality.

Therefore, this theorem is equivalent to the theorem we get by replacing AB

bang Spec by AB bang Spec with the substitutions.

[slide 110]

SpecH
∆
= ∧ AB2!Spec
∧ 2 ∧ AtoB = RemoveBad(AtoB2)

∧ BtoA = RemoveBad(BtoA2)

AB
∆
= INSTANCE AB

THEOREM SpecH ⇒ AB !Spec

THEOREM SpecH ⇒ (AB !Spec WITH AtoB ← RemoveBad(AtoB2),
BtoA ← RemoveBad(BtoA2))

And since SpecH implies the always formula, it also implies this equality.

Therefore, this theorem is equivalent to the theorem we get by replacing AB

bang Spec by AB bang Spec with the substitutions.

[slide 111]

SpecH
∆
= ∧ AB2!Spec
∧ 2 ∧ AtoB = RemoveBad(AtoB2)

∧ BtoA = RemoveBad(BtoA2)

AB
∆
= INSTANCE AB

THEOREM SpecH ⇒ AB !Spec

Does not contain AtoB or BtoA .

THEOREM SpecH ⇒ (AB !Spec WITH AtoB ← RemoveBad(AtoB2),
BtoA ← RemoveBad(BtoA2))

Since this formula is obtained by substituting for AtoB and BtoA, it does not
contain those two variables.

Hence, in the theorem, this always conjunct of SpecH is irrelevant.

So we can replace SpecH in the theorem by just this conjunct to get this
equivalent theorem.

[slide 112]

SpecH
∆
= ∧ AB2!Spec
∧ 2 ∧ AtoB = RemoveBad(AtoB2)

∧ BtoA = RemoveBad(BtoA2)

AB
∆
= INSTANCE AB

THEOREM SpecH ⇒ AB !Spec

Does not contain AtoB or BtoA .

THEOREM SpecH ⇒ (AB !Spec WITH AtoB ← RemoveBad(AtoB2),
BtoA ← RemoveBad(BtoA2))

Since this formula is obtained by substituting for AtoB and BtoA, it does not
contain those two variables.

Hence, in the theorem, this always conjunct of SpecH is irrelevant.

So we can replace SpecH in the theorem by just this conjunct to get this
equivalent theorem.

[slide 113]

((((
(((

((((
((((hhhhhhhhhhhhhhh((((

(((
((((

((((hhhhhhhhhhhhhhh

SpecH
∆
= ∧ AB2!Spec
∧ 2 ∧ AtoB = RemoveBad(AtoB2)

∧ BtoA = RemoveBad(BtoA2)

AB
∆
= INSTANCE AB

THEOREM SpecH ⇒ AB !Spec

Does not contain AtoB or BtoA .

THEOREM SpecH ⇒ (AB !Spec WITH AtoB ← RemoveBad(AtoB2),
BtoA ← RemoveBad(BtoA2))

Since this formula is obtained by substituting for AtoB and BtoA, it does not
contain those two variables.

Hence, in the theorem, this always conjunct of SpecH is irrelevant.

So we can replace SpecH in the theorem by just this conjunct to get this
equivalent theorem.

[slide 114]

((((
(((

((((
((((hhhhhhhhhhhhhhh((((

(((
((((

((((hhhhhhhhhhhhhhh

SpecH
∆
= ∧ AB2!Spec
∧ 2 ∧ AtoB = RemoveBad(AtoB2)

∧ BtoA = RemoveBad(BtoA2)

AB
∆
= INSTANCE AB

THEOREM SpecH ⇒ AB !Spec

THEOREM SpecH ⇒ (AB !Spec WITH AtoB ← RemoveBad(AtoB2),
BtoA ← RemoveBad(BtoA2))

Since this formula is obtained by substituting for AtoB and BtoA, it does not
contain those two variables.

Hence, in the theorem, this always conjunct of SpecH is irrelevant.

So we can replace SpecH in the theorem by just this conjunct to get this
equivalent theorem.

[slide 115]

SpecH
∆
= ∧ AB2!Spec
∧ 2 ∧ AtoB = RemoveBad(AtoB2)

∧ BtoA = RemoveBad(BtoA2)

AB
∆
= INSTANCE AB

THEOREM SpecH ⇒ AB !Spec

THEOREM SpecH ⇒ (AB !Spec WITH AtoB ← RemoveBad(AtoB2),
BtoA ← RemoveBad(BtoA2))

Since this formula is obtained by substituting for AtoB and BtoA, it does not
contain those two variables.

Hence, in the theorem, this always conjunct of SpecH is irrelevant.

So we can replace SpecH in the theorem by just this conjunct to get this
equivalent theorem.

[slide 116]

SpecH
∆
= ∧ AB2!Spec
∧ 2 ∧ AtoB = RemoveBad(AtoB2)

∧ BtoA = RemoveBad(BtoA2)

AB
∆
= INSTANCE AB

THEOREM SpecH ⇒ AB !Spec

THEOREM SpecH ⇒ (AB !Spec WITH AtoB ← RemoveBad(AtoB2),
BtoA ← RemoveBad(BtoA2))

THEOREM AB2!Spec ⇒ (AB !Spec WITH AtoB ← RemoveBad(AtoB2),
BtoA ← RemoveBad(BtoA2))

Since this formula is obtained by substituting for AtoB and BtoA, it does not
contain those two variables.

Hence, in the theorem, this always conjunct of SpecH is irrelevant.

So we can replace SpecH in the theorem by just this conjunct to get this
equivalent theorem.

[slide 117]

SpecH
∆
= ∧ AB2!Spec
∧ 2 ∧ AtoB = RemoveBad(AtoB2)

∧ BtoA = RemoveBad(BtoA2)

AB
∆
= INSTANCE AB

THEOREM SpecH ⇒ AB !Spec

THEOREM SpecH ⇒ (AB !Spec WITH AtoB ← RemoveBad(AtoB2),
BtoA ← RemoveBad(BtoA2))

THEOREM AB2!Spec ⇒ (AB !Spec WITH AtoB ← RemoveBad(AtoB2),
BtoA ← RemoveBad(BtoA2))

Since this formula is obtained by substituting for AtoB and BtoA, it does not
contain those two variables.

Hence, in the theorem, this always conjunct of SpecH is irrelevant.

So we can replace SpecH in the theorem by just this conjunct to get this
equivalent theorem.

[slide 118]

SpecH
∆
= ∧ AB2!Spec
∧ 2 ∧ AtoB = RemoveBad(AtoB2)

∧ BtoA = RemoveBad(BtoA2)

AB
∆
= INSTANCE AB

THEOREM SpecH ⇒ AB !Spec

THEOREM SpecH ⇒ (AB !Spec WITH AtoB ← RemoveBad(AtoB2),
BtoA ← RemoveBad(BtoA2))

THEOREM AB2!Spec ⇒ (AB !Spec WITH AtoB ← RemoveBad(AtoB2),
BtoA ← RemoveBad(BtoA2))

So we can replace the theorem we want to prove

by this one.

[slide 119]

SpecH
∆
= ∧ AB2!Spec
∧ 2 ∧ AtoB = RemoveBad(AtoB2)

∧ BtoA = RemoveBad(BtoA2)

AB
∆
= INSTANCE AB

THEOREM SpecH ⇒ AB !Spec

THEOREM SpecH ⇒ (AB !Spec WITH AtoB ← RemoveBad(AtoB2),
BtoA ← RemoveBad(BtoA2))

THEOREM AB2!Spec ⇒ (AB !Spec WITH AtoB ← RemoveBad(AtoB2),
BtoA ← RemoveBad(BtoA2))

So we can replace the theorem we want to prove

by this one.

[slide 120]

SpecH
∆
= ∧ AB2!Spec
∧ 2 ∧ AtoB = RemoveBad(AtoB2)

∧ BtoA = RemoveBad(BtoA2)

AB
∆
= INSTANCE AB

THEOREM AB2!Spec ⇒ (AB !Spec WITH AtoB ← RemoveBad(AtoB2),
BtoA ← RemoveBad(BtoA2))

And we can just check this theorem.

First, notice that SpecH doesn’t appear in the theorem any more, so we don’t
need to define it.

The instance statement and the theorem are in module AB2H .

Let’s move them to module AB2.

[slide 121]

hhhhhhhhhhhhhhhhhhh((((
(((

((((
(((

((((
(hhhhhhhhhhhhhhhhhhh(((

((((
(((

((((
(((

((
SpecH

∆
= ∧ AB2!Spec
∧ 2 ∧ AtoB = RemoveBad(AtoB2)

∧ BtoA = RemoveBad(BtoA2)

AB
∆
= INSTANCE AB

THEOREM AB2!Spec ⇒ (AB !Spec WITH AtoB ← RemoveBad(AtoB2),
BtoA ← RemoveBad(BtoA2))

And we can just check this theorem.

First, notice that SpecH doesn’t appear in the theorem any more, so we don’t
need to define it.

The instance statement and the theorem are in module AB2H .

Let’s move them to module AB2.

[slide 122]

SpecH
∆
= ∧ AB2!Spec
∧ 2 ∧ AtoB = RemoveBad(AtoB2)

∧ BtoA = RemoveBad(BtoA2)

AB
∆
= INSTANCE AB

THEOREM AB2!Spec ⇒ (AB !Spec WITH AtoB ← RemoveBad(AtoB2),
BtoA ← RemoveBad(BtoA2))

And we can just check this theorem.

First, notice that SpecH doesn’t appear in the theorem any more, so we don’t
need to define it.

The instance statement and the theorem are in module AB2H .

Let’s move them to module AB2.

[slide 123]

SpecH
∆
= ∧ AB2!Spec
∧ 2 ∧ AtoB = RemoveBad(AtoB2)

∧ BtoA = RemoveBad(BtoA2)

These statements are in module AB2H .

Let’s move them to module AB2.

AB
∆
= INSTANCE AB

THEOREM AB2!Spec ⇒ (AB !Spec WITH AtoB ← RemoveBad(AtoB2),
BtoA ← RemoveBad(BtoA2))

And we can just check this theorem.

First, notice that SpecH doesn’t appear in the theorem any more, so we don’t
need to define it.

The instance statement and the theorem are in module AB2H .

Let’s move them to module AB2.

[slide 124]

SpecH
∆
= ∧ AB2!Spec
∧ 2 ∧ AtoB = RemoveBad(AtoB2)

∧ BtoA = RemoveBad(BtoA2)

These statements are in module AB2H .

Let’s move them to module AB2.

AB
∆
= INSTANCE AB

THEOREM AB2!Spec ⇒ (AB !Spec WITH AtoB ← RemoveBad(AtoB2),
BtoA ← RemoveBad(BtoA2))

And we can just check this theorem.

First, notice that SpecH doesn’t appear in the theorem any more, so we don’t
need to define it.

The instance statement and the theorem are in module AB2H .

Let’s move them to module AB2.

[slide 125]

SpecH
∆
= ∧ AB2!Spec
∧ 2 ∧ AtoB = RemoveBad(AtoB2)

∧ BtoA = RemoveBad(BtoA2)

These statements are in module AB2H .

Let’s move them to module AB2.

AB
∆
= INSTANCE AB

THEOREM AB2!Spec ⇒ (AB !Spec WITH AtoB ← RemoveBad(AtoB2),
BtoA ← RemoveBad(BtoA2))

When we do that, the formula called AB2!Spec in module AB2H is simply
called Spec.

Inside module AB2, Spec is an ordinary specification that TLC can handle.

But this WITH formula is just a notation that I’m using here. It’s not legal TLA+.

To see how to write it in TLA+, we need to examine the INSTANCE statement.

[slide 126]

SpecH
∆
= ∧ AB2!Spec
∧ 2 ∧ AtoB = RemoveBad(AtoB2)

∧ BtoA = RemoveBad(BtoA2)

These statements are in module AB2H .

Let’s move them to module AB2.

AB
∆
= INSTANCE AB

THEOREM AB2!Spec ⇒ (AB !Spec WITH AtoB ← RemoveBad(AtoB2),
BtoA ← RemoveBad(BtoA2))

When we do that, the formula called AB2!Spec in module AB2H is simply
called Spec.

Inside module AB2, Spec is an ordinary specification that TLC can handle.

But this WITH formula is just a notation that I’m using here. It’s not legal TLA+.

To see how to write it in TLA+, we need to examine the INSTANCE statement.

[slide 127]

SpecH
∆
= ∧ AB2!Spec
∧ 2 ∧ AtoB = RemoveBad(AtoB2)

∧ BtoA = RemoveBad(BtoA2)

These statements are in module AB2H .

Let’s move them to module AB2.

AB
∆
= INSTANCE AB

THEOREM Spec ⇒ (AB !Spec WITH AtoB ← RemoveBad(AtoB2),
BtoA ← RemoveBad(BtoA2))

When we do that, the formula called AB2!Spec in module AB2H is simply
called Spec.

Inside module AB2, Spec is an ordinary specification that TLC can handle.

But this WITH formula is just a notation that I’m using here. It’s not legal TLA+.

To see how to write it in TLA+, we need to examine the INSTANCE statement.

[slide 128]

SpecH
∆
= ∧ AB2!Spec
∧ 2 ∧ AtoB = RemoveBad(AtoB2)

∧ BtoA = RemoveBad(BtoA2)

These statements are in module AB2H .

Let’s move them to module AB2.

AB
∆
= INSTANCE AB

THEOREM Spec ⇒ (AB !Spec WITH AtoB ← RemoveBad(AtoB2),
BtoA ← RemoveBad(BtoA2))

TLC can handle this specification.

When we do that, the formula called AB2!Spec in module AB2H is simply
called Spec.

Inside module AB2, Spec is an ordinary specification that TLC can handle.

But this WITH formula is just a notation that I’m using here. It’s not legal TLA+.

To see how to write it in TLA+, we need to examine the INSTANCE statement.

[slide 129]

SpecH
∆
= ∧ AB2!Spec
∧ 2 ∧ AtoB = RemoveBad(AtoB2)

∧ BtoA = RemoveBad(BtoA2)

These statements are in module AB2H .

Let’s move them to module AB2.

AB
∆
= INSTANCE AB

THEOREM Spec ⇒ (AB !Spec WITH AtoB ← RemoveBad(AtoB2),
BtoA ← RemoveBad(BtoA2))

But this isn’t TLA+.

When we do that, the formula called AB2!Spec in module AB2H is simply
called Spec.

Inside module AB2, Spec is an ordinary specification that TLC can handle.

But this WITH formula is just a notation that I’m using here. It’s not legal TLA+.

To see how to write it in TLA+, we need to examine the INSTANCE statement.

[slide 130]

SpecH
∆
= ∧ AB2!Spec
∧ 2 ∧ AtoB = RemoveBad(AtoB2)

∧ BtoA = RemoveBad(BtoA2)

These statements are in module AB2H .

Let’s move them to module AB2.

AB
∆
= INSTANCE AB

THEOREM Spec ⇒ (AB !Spec WITH AtoB ← RemoveBad(AtoB2),
BtoA ← RemoveBad(BtoA2))

When we do that, the formula called AB2!Spec in module AB2H is simply
called Spec.

Inside module AB2, Spec is an ordinary specification that TLC can handle.

But this WITH formula is just a notation that I’m using here. It’s not legal TLA+.

To see how to write it in TLA+, we need to examine the INSTANCE statement.

[slide 131]

MODULE M
...

AB
∆
= INSTANCE AB WITH Data ← . . . ,

AVar ← . . . , BVar ← . . . ,
AtoB ← . . . , BtoA ← . . .

After expanding all definitions, formula Spec of module AB contains only
TLA+ operators and the declared symbols of the module, which are: The
constant Data and the module’s four variables.

To import a definition from module AB into an arbitrary module M ,
we must substitute expressions of module M for those symbols.

[slide 132]

MODULE M
...

AB
∆
= INSTANCE AB WITH Data ← . . . ,

AVar ← . . . , BVar ← . . . ,
AtoB ← . . . , BtoA ← . . .

After expanding all definitions, formula Spec of AB contains only
TLA+ operators and the declared symbols of AB :

Data, AVar , BVar , AtoB , BtoA

To import a definition from AB into an arbitrary module M ,
we must substitute expressions of M for those symbols.

This is done by a WITH clause.

After expanding all definitions, formula Spec of module AB contains only
TLA+ operators and the declared symbols of the module, which are: The
constant Data and the module’s four variables.

To import a definition from module AB into an arbitrary module M ,
we must substitute expressions of module M for those symbols.

[slide 133]

MODULE M
...

AB
∆
= INSTANCE AB WITH Data ← . . . ,

AVar ← . . . , BVar ← . . . ,
AtoB ← . . . , BtoA ← . . .

After expanding all definitions, formula Spec of AB contains only
TLA+ operators and the declared symbols of AB :

Data, AVar , BVar , AtoB , BtoA

To import a definition from AB into an arbitrary module M ,
we must substitute expressions of M for those symbols.

This is done by a WITH clause.

After expanding all definitions, formula Spec of module AB contains only
TLA+ operators and the declared symbols of the module, which are: The
constant Data and the module’s four variables.

To import a definition from module AB into an arbitrary module M ,
we must substitute expressions of module M for those symbols.

[slide 134]

MODULE M
...

AB
∆
= INSTANCE AB WITH Data ← . . . ,

AVar ← . . . , BVar ← . . . ,
AtoB ← . . . , BtoA ← . . .

After expanding all definitions, formula Spec of AB contains only
TLA+ operators and the declared symbols of AB :

Data, AVar , BVar , AtoB , BtoA

To import a definition from AB into an arbitrary module M ,
we must substitute expressions of M for those symbols.

This is done by a WITH clause.

After expanding all definitions, formula Spec of module AB contains only
TLA+ operators and the declared symbols of the module, which are: The
constant Data and the module’s four variables.

To import a definition from module AB into an arbitrary module M ,
we must substitute expressions of module M for those symbols.

[slide 135]

MODULE M
...

AB
∆
= INSTANCE AB WITH Data ← . . . ,

AVar ← . . . , BVar ← . . . ,
AtoB ← . . . , BtoA ← . . .

After expanding all definitions, formula Spec of AB contains only
TLA+ operators and the declared symbols of AB :

Data, AVar , BVar , AtoB , BtoA

To import a definition from AB into an arbitrary module M ,
we must substitute expressions of M for those symbols.

This is done by a WITH clause.

After expanding all definitions, formula Spec of module AB contains only
TLA+ operators and the declared symbols of the module, which are: The
constant Data and the module’s four variables.

To import a definition from module AB into an arbitrary module M ,
we must substitute expressions of module M for those symbols.

[slide 136]

MODULE M
...

AB
∆
= INSTANCE AB WITH Data ← . . . ,

AVar ← . . . , BVar ← . . . ,
AtoB ← . . . , BtoA ← . . .

After expanding all definitions, formula Spec of AB contains only
TLA+ operators and the declared symbols of AB :

Data, AVar , BVar , AtoB , BtoA

To import a definition from AB into an arbitrary module M ,
we must substitute expressions of M for those symbols.

This is done by a WITH clause.

After expanding all definitions, formula Spec of module AB contains only
TLA+ operators and the declared symbols of the module, which are: The
constant Data and the module’s four variables.

To import a definition from module AB into an arbitrary module M ,
we must substitute expressions of module M for those symbols.

[slide 137]

MODULE M
...

AB
∆
= INSTANCE AB WITH Data ← . . . ,

AVar ← . . . , BVar ← . . . ,
AtoB ← . . . , BtoA ← . . .

After expanding all definitions, formula Spec of AB contains only
TLA+ operators and the declared symbols of AB :

Data, AVar , BVar , AtoB , BtoA

To import a definition from AB into an arbitrary module M ,
we must substitute expressions of M for those symbols.

This is done by a WITH clause.

After expanding all definitions, formula Spec of module AB contains only
TLA+ operators and the declared symbols of the module, which are: The
constant Data and the module’s four variables.

To import a definition from module AB into an arbitrary module M ,
we must substitute expressions of module M for those symbols.

[slide 138]

MODULE M
...

AB
∆
= INSTANCE AB WITH Data ← . . . ,

AVar ← . . . , BVar ← . . . ,
AtoB ← . . . , BtoA ← . . .

After expanding all definitions, formula Spec of AB contains only
TLA+ operators and the declared symbols of AB :

Data, AVar , BVar , AtoB , BtoA

To import a definition from AB into an arbitrary module M ,
we must substitute expressions of M for those symbols.

This is done by a WITH clause.

After expanding all definitions, formula Spec of module AB contains only
TLA+ operators and the declared symbols of the module, which are: The
constant Data and the module’s four variables.

To import a definition from module AB into an arbitrary module M ,
we must substitute expressions of module M for those symbols.

[slide 139]

MODULE M
...

AB
∆
= INSTANCE AB WITH Data ← . . . ,

AVar ← . . . , BVar ← . . . ,
AtoB ← . . . , BtoA ← . . .

After expanding all definitions, formula Spec of AB contains only
TLA+ operators and the declared symbols of AB :

Data, AVar , BVar , AtoB , BtoA

To import a definition from AB into an arbitrary module M ,
we must substitute expressions of M for those symbols.

This is done by a WITH clause.

This is done by a WITH clause

having this syntax,
where these are the declared constants and variables of the instantiated
module AB .

And these are the expressions of the current module M to be substituted for
them.

[slide 140]

MODULE M
...

AB
∆
= INSTANCE AB WITH Data ← . . . ,

AVar ← . . . , BVar ← . . . ,
AtoB ← . . . , BtoA ← . . .

This is done by a WITH clause

having this syntax,
where these are the declared constants and variables of the instantiated
module AB .

And these are the expressions of the current module M to be substituted for
them.

[slide 141]

MODULE M
...

AB
∆
= INSTANCE AB WITH Data ← . . . ,

AVar ← . . . , BVar ← . . . ,
AtoB ← . . . , BtoA ← . . .

The declared constants and variables of AB .

The expressions of module M to be substituted for them.

This is done by a WITH clause

having this syntax,
where these are the declared constants and variables of the instantiated
module AB .

And these are the expressions of the current module M to be substituted for
them.

[slide 142]

MODULE M
...

AB
∆
= INSTANCE AB WITH Data ← . . . ,

AVar ← . . . , BVar ← . . . ,
AtoB ← . . . , BtoA ← . . .

The declared constants and variables of AB .

The expressions of module M to be substituted for them.

This is done by a WITH clause

having this syntax,
where these are the declared constants and variables of the instantiated
module AB .

And these are the expressions of the current module M to be substituted for
them.

[slide 143]

MODULE M
...

AB
∆
= INSTANCE AB WITH Data ← . . . ,

AVar ← . . . , BVar ← . . . ,
AtoB ← . . . , BtoA ← . . .

This is done by a WITH clause

having this syntax,
where these are the declared constants and variables of the instantiated
module AB .

And these are the expressions of the current module M to be substituted for
them.

[slide 144]

MODULE AB2H
...

AB
∆
= INSTANCE AB WITH Data ← . . . ,

AVar ← . . . , BVar ← . . . ,
AtoB ← . . . , BtoA ← . . .

When we instantiated module AB in module AB2H , for each of these
declared symbols of module AB we substituted the symbols of the same
name from module AB2H .

Substituting a symbol of the same name for a symbol of the instantiated
module is the default
if we omit a substitution for that symbol from the WITH clause.

[slide 145]

MODULE AB2H
...

AB
∆
= INSTANCE AB WITH Data ← . . . ,

AVar ← . . . , BVar ← . . . ,
AtoB ← . . . , BtoA ← . . .

When we instantiated module AB in module AB2H , for each of these
declared symbols of module AB we substituted the symbols of the same
name from module AB2H .

Substituting a symbol of the same name for a symbol of the instantiated
module is the default
if we omit a substitution for that symbol from the WITH clause.

[slide 146]

MODULE AB2H
...

AB
∆
= INSTANCE AB WITH Data ← Data ,

AVar ← AVar , BVar ← BVar ,

AtoB ← AtoB , BtoA ← BtoA

When we instantiated module AB in module AB2H , for each of these
declared symbols of module AB we substituted the symbols of the same
name from module AB2H .

Substituting a symbol of the same name for a symbol of the instantiated
module is the default
if we omit a substitution for that symbol from the WITH clause.

[slide 147]

MODULE AB2H
...

AB
∆
= INSTANCE AB WITH Data ← Data ,

AVar ← AVar , BVar ← BVar ,

AtoB ← AtoB , BtoA ← BtoA

This is the default if we omit a substitution from the WITH clause.

So we could eliminate the WITH clause in module AB2H .

When we instantiated module AB in module AB2H , for each of these
declared symbols of module AB we substituted the symbols of the same
name from module AB2H .

Substituting a symbol of the same name for a symbol of the instantiated
module is the default
if we omit a substitution for that symbol from the WITH clause.

[slide 148]

MODULE AB2H
...

AB
∆
= INSTANCE AB WITH Data ← Data ,

AVar ← AVar , BVar ← BVar ,

AtoB ← AtoB , BtoA ← BtoA

This is the default if we omit a substitution from the WITH clause.

So we could eliminate the WITH clause in module AB2H .

When we instantiated module AB in module AB2H , for each of these
declared symbols of module AB we substituted the symbols of the same
name from module AB2H .

Substituting a symbol of the same name for a symbol of the instantiated
module is the default
if we omit a substitution for that symbol from the WITH clause.

[slide 149]

MODULE AB2H
...

AB
∆
= INSTANCE AB WITH Data ← Data ,

AVar ← AVar , BVar ← BVar ,

AtoB ← AtoB , BtoA ← BtoA

This is the default if we omit a substitution from the WITH clause.

So we could eliminate the WITH clause in module AB2H .

So we could eliminate the entire WITH clause from the INSTANCE statement in
module AB2H .

[slide 150]

MODULE AB2H
...

AB
∆
= INSTANCE AB WITH Data ← Data ,

AVar ← AVar , BVar ← BVar ,

AtoB ← AtoB , BtoA ← BtoA

In module AB2 we want the default substitutions for Data, AVar , and BVar ,
so we can omit them from the WITH clause.

[slide 151]

MODULE AB2
...

AB
∆
= INSTANCE AB WITH Data ← Data ,

AVar ← AVar , BVar ← BVar ,

AtoB ← AtoB , BtoA ← BtoA

In module AB2 we want the default substitutions for Data, AVar , and BVar ,
so we can omit them from the WITH clause.

[slide 152]

MODULE AB2
...

AB
∆
= INSTANCE AB WITH Data ← Data ,

AVar ← AVar , BVar ← BVar ,

AtoB ← AtoB , BtoA ← BtoA

In module AB2 we want the default substitutions for Data, AVar , and BVar ,
so we can omit them from the WITH clause.

[slide 153]

MODULE AB2
...

AB
∆
= INSTANCE AB WITH Data ← Data ,

AVar ← AVar , BVar ← BVar ,

AtoB ← AtoB , BtoA ← BtoA

In module AB2 we want the default substitutions for Data, AVar , and BVar ,
so we can omit them from the WITH clause.

[slide 154]

MODULE AB2
...

AB
∆
= INSTANCE AB WITH AtoB ← AtoB , BtoA ← BtoA

BtoA ← RemoveBad(BtoA2)

In module AB2 we want the default substitutions for Data, AVar , and BVar ,
so we can omit them from the WITH clause.

[slide 155]

MODULE AB2
...

AB
∆
= INSTANCE AB WITH AtoB ← AtoB , BtoA ← BtoA���PPP ���PPP

BtoA ← RemoveBad(BtoA2)AtoB and BtoA are undefined in AB2 .

The symbols AtoB and BtoA are not declared in module AB2, so we need
to substitute for them some expressions we can write in AB2.

If you remember how we got to this point, you should be able to guess that
we’re going to substitute these expressions for them – after adding the
definition of RemoveBad to module AB2.

[slide 156]

MODULE AB2
...

AB
∆
= INSTANCE AB WITH AtoB ← RemoveBad(AtoB2),

BtoA ← RemoveBad(BtoA2)

The symbols AtoB and BtoA are not declared in module AB2, so we need
to substitute for them some expressions we can write in AB2.

If you remember how we got to this point, you should be able to guess that
we’re going to substitute these expressions for them – after adding the
definition of RemoveBad to module AB2.

[slide 157]

MODULE AB2
...

AB
∆
= INSTANCE AB WITH AtoB ← RemoveBad(AtoB2),

BtoA ← RemoveBad(BtoA2)

THEOREM Spec ⇒ (AB !Spec WITH AtoB ← RemoveBad(AtoB2),
BtoA ← RemoveBad(BtoA2))

Recall that we were trying to check this theorem and we faced the problem
that this isn’t a TLA+ formula.

But this non-TLA+ formula can now be written simply as AB bang Spec

Because the substitutions we wanted the formula to express are performed
by the INSTANCE statement.

[slide 158]

MODULE AB2
...

AB
∆
= INSTANCE AB WITH AtoB ← RemoveBad(AtoB2),

BtoA ← RemoveBad(BtoA2)

THEOREM Spec ⇒ (AB !Spec WITH AtoB ← RemoveBad(AtoB2),
BtoA ← RemoveBad(BtoA2))

This non-TLA+ formula can now be written as AB !Spec .

The substitution is done by the INSTANCE statement.

Recall that we were trying to check this theorem and we faced the problem
that this isn’t a TLA+ formula.

But this non-TLA+ formula can now be written simply as AB bang Spec

Because the substitutions we wanted the formula to express are performed
by the INSTANCE statement.

[slide 159]

MODULE AB2
...

AB
∆
= INSTANCE AB WITH AtoB ← RemoveBad(AtoB2),

BtoA ← RemoveBad(BtoA2)

THEOREM Spec ⇒ (AB !Spec WITH AtoB ← RemoveBad(AtoB2),
BtoA ← RemoveBad(BtoA2))

This non-TLA+ formula can now be written as AB !Spec .

The substitution is done by the INSTANCE statement.

Recall that we were trying to check this theorem and we faced the problem
that this isn’t a TLA+ formula.

But this non-TLA+ formula can now be written simply as AB bang Spec

Because the substitutions we wanted the formula to express are performed
by the INSTANCE statement.

[slide 160]

MODULE AB2
...

AB
∆
= INSTANCE AB WITH AtoB ← RemoveBad(AtoB2),

BtoA ← RemoveBad(BtoA2)

THEOREM Spec ⇒ (AB !Spec WITH AtoB ← RemoveBad(AtoB2),
BtoA ← RemoveBad(BtoA2))((((
((((

(((
((((

(hhhhhhhhhhhhhhhh((((
((((

((((
((((hhhhhhhhhhhhhhhh

This non-TLA+ formula can now be written as AB !Spec .

The substitution is done by the INSTANCE statement.

Recall that we were trying to check this theorem and we faced the problem
that this isn’t a TLA+ formula.

But this non-TLA+ formula can now be written simply as AB bang Spec

Because the substitutions we wanted the formula to express are performed
by the INSTANCE statement.

[slide 161]

MODULE AB2
...

AB
∆
= INSTANCE AB WITH AtoB ← RemoveBad(AtoB2),

BtoA ← RemoveBad(BtoA2)

THEOREM Spec ⇒ (AB !Spec WITH AtoB ← RemoveBad(AtoB2),
BtoA ← RemoveBad(BtoA2))((((
((((

(((
((((

(hhhhhhhhhhhhhhhh((((
((((

((((
((((hhhhhhhhhhhhhhhh

This non-TLA+ formula can now be written as AB !Spec .

The substitution is done by the INSTANCE statement.

Recall that we were trying to check this theorem and we faced the problem
that this isn’t a TLA+ formula.

But this non-TLA+ formula can now be written simply as AB bang Spec

Because the substitutions we wanted the formula to express are performed
by the INSTANCE statement.

[slide 162]

MODULE AB2
...

AB
∆
= INSTANCE AB WITH AtoB ← RemoveBad(AtoB2),

BtoA ← RemoveBad(BtoA2)

THEOREM Spec ⇒ (AB !Spec WITH AtoB ← RemoveBad(AtoB2),
BtoA ← RemoveBad(BtoA2))

Recall that we were trying to check this theorem and we faced the problem
that this isn’t a TLA+ formula.

But this non-TLA+ formula can now be written simply as AB bang Spec

Because the substitutions we wanted the formula to express are performed
by the INSTANCE statement.

[slide 163]

MODULE AB2
...

AB
∆
= INSTANCE AB WITH AtoB ← RemoveBad(AtoB2),

BtoA ← RemoveBad(BtoA2)

THEOREM Spec ⇒ (AB !Spec WITH AtoB ← RemoveBad(AtoB2),
BtoA ← RemoveBad(BtoA2))

TLC can check this theorem.

And TLC can now check this theorem.

Whew! We’ve finally reached our goal. But it took us so long, you may have
forgotten why we wanted to get here. So, let’s review what we’ve
accomplished.

[slide 164]

WHAT WE DID AND WHY

[slide 165]

The AB2 protocol implements the AB protocol, where
RemoveBad(AtoB2) implements AtoB and

RemoveBad(BtoA2) implements BtoA .

means

THEOREM

∧ Spec of AB2
∧ 2 ∧ AtoB =RemoveBad(AtoB2)

∧ BtoA =RemoveBad(BtoA2)

 ⇒ Spec of AB

We saw that the AB2 protocol implements the AB protocol, where
RemoveBad of AtoB2 implements variable AtoB of AB , and RemoveBad of
BtoA2 implements variable BtoA of AB .

We then saw that this means that this theorem is true, where this is the
formula we called SpecH .

[slide 166]

The AB2 protocol implements the AB protocol, where
RemoveBad(AtoB2) implements AtoB and

RemoveBad(BtoA2) implements BtoA .

means

THEOREM

∧ Spec of AB2
∧ 2 ∧ AtoB =RemoveBad(AtoB2)

∧ BtoA =RemoveBad(BtoA2)

 ⇒ Spec of AB

We saw that the AB2 protocol implements the AB protocol, where
RemoveBad of AtoB2 implements variable AtoB of AB , and RemoveBad of
BtoA2 implements variable BtoA of AB .

We then saw that this means that this theorem is true, where this is the
formula we called SpecH .

[slide 167]

The AB2 protocol implements the AB protocol, where
RemoveBad(AtoB2) implements AtoB and

RemoveBad(BtoA2) implements BtoA .

means

THEOREM

∧ Spec of AB2
∧ 2 ∧ AtoB =RemoveBad(AtoB2)

∧ BtoA =RemoveBad(BtoA2)

 ⇒ Spec of AB

We saw that the AB2 protocol implements the AB protocol, where
RemoveBad of AtoB2 implements variable AtoB of AB , and RemoveBad of
BtoA2 implements variable BtoA of AB .

We then saw that this means that this theorem is true, where this is the
formula we called SpecH .

[slide 168]

The AB2 protocol implements the AB protocol, where
RemoveBad(AtoB2) implements AtoB and

RemoveBad(BtoA2) implements BtoA .

means

THEOREM

SpecH

∧ Spec of AB2
∧ 2 ∧ AtoB =RemoveBad(AtoB2)

∧ BtoA =RemoveBad(BtoA2)

 ⇒ Spec of AB

We saw that the AB2 protocol implements the AB protocol, where
RemoveBad of AtoB2 implements variable AtoB of AB , and RemoveBad of
BtoA2 implements variable BtoA of AB .

We then saw that this means that this theorem is true, where this is the
formula we called SpecH .

[slide 169]

The AB2 protocol implements the AB protocol, where
RemoveBad(AtoB2) implements AtoB and

RemoveBad(BtoA2) implements BtoA .

means

THEOREM

∧ Spec of AB2
∧ 2 ∧ AtoB =RemoveBad(AtoB2)

∧ BtoA =RemoveBad(BtoA2)

 ⇒ Spec of AB

We saw that the AB2 protocol implements the AB protocol, where
RemoveBad of AtoB2 implements variable AtoB of AB , and RemoveBad of
BtoA2 implements variable BtoA of AB .

We then saw that this means that this theorem is true, where this is the
formula we called SpecH .

[slide 170]

The AB2 protocol implements the AB protocol, where
RemoveBad(AtoB2) implements AtoB and

RemoveBad(BtoA2) implements BtoA .

means

THEOREM

∧ Spec of AB2
∧ 2 ∧ AtoB =RemoveBad(AtoB2)

∧ BtoA =RemoveBad(BtoA2)

 ⇒ Spec of AB

which in AB2 is equivalent to

AB
∆
= INSTANCE AB WITH AtoB ← RemoveBad(AtoB2),

BtoA ← RemoveBad(BtoA2)
THEOREM Spec ⇒ AB !Spec

And we then saw that in module AB2 we can write an equivalent assertion
as this INSTANCE statement and theorem.

These substitutions are called a refinement mapping.

And we say that the AB2 protocol implements the AB protocol under this
refinement mapping.

[slide 171]

The AB2 protocol implements the AB protocol, where
RemoveBad(AtoB2) implements AtoB and

RemoveBad(BtoA2) implements BtoA .

means

THEOREM

∧ Spec of AB2
∧ 2 ∧ AtoB =RemoveBad(AtoB2)

∧ BtoA =RemoveBad(BtoA2)

 ⇒ Spec of AB

which in AB2 is equivalent to

AB
∆
= INSTANCE AB WITH AtoB ← RemoveBad(AtoB2),

BtoA ← RemoveBad(BtoA2)
THEOREM Spec ⇒ AB !Spec

And we then saw that in module AB2 we can write an equivalent assertion
as this INSTANCE statement and theorem.

These substitutions are called a refinement mapping.

And we say that the AB2 protocol implements the AB protocol under this
refinement mapping.

[slide 172]

The AB2 protocol implements the AB protocol, where
RemoveBad(AtoB2) implements AtoB and

RemoveBad(BtoA2) implements BtoA .

means

THEOREM

∧ Spec of AB2
∧ 2 ∧ AtoB =RemoveBad(AtoB2)

∧ BtoA =RemoveBad(BtoA2)

 ⇒ Spec of AB

which in AB2 is equivalent to

AB
∆
= INSTANCE AB WITH AtoB ← RemoveBad(AtoB2),

refinement mapping

BtoA ← RemoveBad(BtoA2)
THEOREM Spec ⇒ AB !Spec

And we then saw that in module AB2 we can write an equivalent assertion
as this INSTANCE statement and theorem.

These substitutions are called a refinement mapping.

And we say that the AB2 protocol implements the AB protocol under this
refinement mapping.

[slide 173]

The AB2 protocol implements the AB protocol, where
RemoveBad(AtoB2) implements AtoB and

RemoveBad(BtoA2) implements BtoA .

means

THEOREM

∧ Spec of AB2
∧ 2 ∧ AtoB =RemoveBad(AtoB2)

∧ BtoA =RemoveBad(BtoA2)

 ⇒ Spec of AB

which in AB2 is equivalent to

AB
∆
= INSTANCE AB WITH AtoB ← RemoveBad(AtoB2),

refinement mapping

BtoA ← RemoveBad(BtoA2)
THEOREM Spec ⇒ AB !Spec

under the refinement mapping

AtoB ← RemoveBad(AtoB2),
BtoA ← RemoveBad(BtoA2)

means

And we then saw that in module AB2 we can write an equivalent assertion
as this INSTANCE statement and theorem.

These substitutions are called a refinement mapping.

And we say that the AB2 protocol implements the AB protocol under this
refinement mapping.

[slide 174]

The AB2 protocol implements the AB protocol, where
RemoveBad(AtoB2) implements AtoB and

RemoveBad(BtoA2) implements BtoA .

means

THEOREM

∧ Spec of AB2
∧ 2 ∧ AtoB =RemoveBad(AtoB2)

∧ BtoA =RemoveBad(BtoA2)

 ⇒ Spec of AB

which in AB2 is equivalent to

AB
∆
= INSTANCE AB WITH AtoB ← RemoveBad(AtoB2),

BtoA ← RemoveBad(BtoA2)
THEOREM Spec ⇒ AB !Spec

under the refinement mapping

AtoB ← RemoveBad(AtoB2),
BtoA ← RemoveBad(BtoA2)

means

So that means

[slide 175]

The AB2 protocol implements the AB protocol, where
RemoveBad(AtoB2) implements AtoB and

RemoveBad(BtoA2) implements BtoA .

means

THEOREM

∧ Spec of AB2
∧ 2 ∧ AtoB =RemoveBad(AtoB2)

∧ BtoA =RemoveBad(BtoA2)

 ⇒ Spec of AB

which in AB2 is equivalent to

AB
∆
= INSTANCE AB WITH AtoB ← RemoveBad(AtoB2),

BtoA ← RemoveBad(BtoA2)
THEOREM Spec ⇒ AB !Spec

under the refinement mapping

AtoB ← RemoveBad(AtoB2),
BtoA ← RemoveBad(BtoA2)

means

So that means that this theorem is true.

And TLC can check the theorem by using a model with Spec as the behavior
specification and AB bang Spec as the temporal property to be checked.

[slide 176]

If Spec2 does not contain all the variables of Spec1 ,
then Spec2 can implement Spec1 only under a
refinement mapping that assigns expressions of
Spec2 to all the variables in Spec1 that are not
also in Spec2.

This is the usual case.

Even if Spec1 and Spec2 have a variable v in common,
the refinement mapping might substitute an expression
of Spec2 other than v for the variable v of Spec1 .

In general, if a specification Spec2 does not contain all the variables of a
specification Spec1 , then Spec2 can implement Spec1 only under a
refinement mapping that assigns expressions of Spec2 to all the variables in
Spec1 that are not also in Spec2.

This is the usual case.

[slide 177]

If Spec2 does not contain all the variables of Spec1 ,
then Spec2 can implement Spec1 only under a
refinement mapping that assigns expressions of
Spec2 to all the variables in Spec1 that are not
also in Spec2.

This is the usual case.

Even if Spec1 and Spec2 have a variable v in common,
the refinement mapping might substitute an expression
of Spec2 other than v for the variable v of Spec1 .

In general, if a specification Spec2 does not contain all the variables of a
specification Spec1 , then Spec2 can implement Spec1 only under a
refinement mapping that assigns expressions of Spec2 to all the variables in
Spec1 that are not also in Spec2.

This is the usual case.

[slide 178]

If Spec2 does not contain all the variables of Spec1 ,
then Spec2 can implement Spec1 only under a
refinement mapping that assigns expressions of
Spec2 to all the variables in Spec1 that are not
also in Spec2.

This is the usual case.

Even if Spec1 and Spec2 have a variable v in common,
the refinement mapping might substitute an expression
of Spec2 other than v for the variable v of Spec1 .

In general, if a specification Spec2 does not contain all the variables of a
specification Spec1 , then Spec2 can implement Spec1 only under a
refinement mapping that assigns expressions of Spec2 to all the variables in
Spec1 that are not also in Spec2.

This is the usual case.

[slide 179]

If Spec2 does not contain all the variables of Spec1 ,
then Spec2 can implement Spec1 only under a
refinement mapping that assigns expressions of
Spec2 to all the variables in Spec1 that are not
also in Spec2.

This is the usual case.

Even if Spec1 and Spec2 have a variable v in common,
the refinement mapping might substitute an expression
of Spec2 other than v for the variable v of Spec1 .

In general, if a specification Spec2 does not contain all the variables of a
specification Spec1 , then Spec2 can implement Spec1 only under a
refinement mapping that assigns expressions of Spec2 to all the variables in
Spec1 that are not also in Spec2.

This is the usual case.

[slide 180]

If Spec2 does not contain all the variables of Spec1 ,
then Spec2 can implement Spec1 only under a
refinement mapping that assigns expressions of
Spec2 to all the variables in Spec1 that are not
also in Spec2.

This is the usual case.

Even if Spec1 and Spec2 have a variable v in common,
the refinement mapping might substitute an expression
of Spec2 other than v for the variable v of Spec1 .

Even if Spec1 and Spec2 have a variable v in common,
the refinement mapping might substitute an expression of Spec2 other than
v for the variable v of Spec1 .

[slide 181]

If Spec2 does not contain all the variables of Spec1 ,
then Spec2 can implement Spec1 only under a
refinement mapping that assigns expressions of
Spec2 to all the variables in Spec1 that are not
also in Spec2.

This is the usual case.

Even if Spec1 and Spec2 have a variable v in common,
the refinement mapping might substitute an expression
of Spec2 other than v for the variable v of Spec1 .

Even if Spec1 and Spec2 have a variable v in common,
the refinement mapping might substitute an expression of Spec2 other than
v for the variable v of Spec1 .

[slide 182]

What does it mean for a program to implement
a TLA+ specification Spec ?

It means that we can, in principle, write a TLA+ specification

SpecPgm of the program, and SpecPgm implements Spec under
a suitable refinement mapping.

We can’t do that in practice, but understanding refinement
mappings can help prevent implementation errors.

What does it mean for a program written in a programming language to
implement a TLA+ specification Spec ?

[slide 183]

What does it mean for a program to implement
a TLA+ specification Spec ?

It means that we can, in principle, write a TLA+ specification

SpecPgm of the program, and SpecPgm implements Spec under
a suitable refinement mapping.

We can’t do that in practice, but understanding refinement
mappings can help prevent implementation errors.

It means that we can, in principle, write a TLA+ specification SpecPgm of the
program, and SpecPgm implements Spec under a suitable refinement
mapping.

We can’t do that in practice because SpecPgm would be much too long and
complicated, but understanding refinement mappings can help prevent
implementation errors.

[slide 184]

What does it mean for a program to implement
a TLA+ specification Spec ?

It means that we can, in principle, write a TLA+ specification

SpecPgm of the program, and SpecPgm implements Spec under
a suitable refinement mapping.

We can’t do that in practice, but understanding refinement
mappings can help prevent implementation errors.

It means that we can, in principle, write a TLA+ specification SpecPgm of the
program, and SpecPgm implements Spec under a suitable refinement
mapping.

We can’t do that in practice because SpecPgm would be much too long and
complicated, but understanding refinement mappings can help prevent
implementation errors.

[slide 185]

What does it mean for a program to implement
a TLA+ specification Spec ?

It means that we can, in principle, write a TLA+ specification

SpecPgm of the program, and SpecPgm implements Spec under
a suitable refinement mapping.

We can’t do that in practice, but understanding refinement
mappings can help prevent implementation errors.

It means that we can, in principle, write a TLA+ specification SpecPgm of the
program, and SpecPgm implements Spec under a suitable refinement
mapping.

We can’t do that in practice because SpecPgm would be much too long and
complicated, but understanding refinement mappings can help prevent
implementation errors.

[slide 186]

What does it mean for a program to implement
a TLA+ specification Spec ?

It means that we can, in principle, write a TLA+ specification

SpecPgm of the program, and SpecPgm implements Spec under
a suitable refinement mapping.

We can’t do that in practice, but understanding refinement
mappings can help prevent implementation errors.

It means that we can, in principle, write a TLA+ specification SpecPgm of the
program, and SpecPgm implements Spec under a suitable refinement
mapping.

We can’t do that in practice because SpecPgm would be much too long and
complicated, but understanding refinement mappings can help prevent
implementation errors.

[slide 187]

Even if you can’t write the refinement mapping
in TLA+, you should be able to explain informally
how the spec’s variables are implemented by the
program’s state.

The informal refinement mapping explains what
the program is doing.

Writing it down can expose errors in the program.

Even if you can’t write the refinement mapping in TLA+, you should be able
to explain informally how the spec’s variables are implemented by the
program’s state.

The informal refinement mapping explains what the program is doing.

Writing it down, perhaps as comments in the code, can expose errors in the
program.

[slide 188]

Even if you can’t write the refinement mapping
in TLA+, you should be able to explain informally
how the spec’s variables are implemented by the
program’s state.

The informal refinement mapping explains what
the program is doing.

Writing it down can expose errors in the program.

Even if you can’t write the refinement mapping in TLA+, you should be able
to explain informally how the spec’s variables are implemented by the
program’s state.

The informal refinement mapping explains what the program is doing.

Writing it down, perhaps as comments in the code, can expose errors in the
program.

[slide 189]

Even if you can’t write the refinement mapping
in TLA+, you should be able to explain informally
how the spec’s variables are implemented by the
program’s state.

The informal refinement mapping explains what
the program is doing.

Writing it down can expose errors in the program.

Even if you can’t write the refinement mapping in TLA+, you should be able
to explain informally how the spec’s variables are implemented by the
program’s state.

The informal refinement mapping explains what the program is doing.

Writing it down, perhaps as comments in the code, can expose errors in the
program.

[slide 190]

Even if you can’t write the refinement mapping
in TLA+, you should be able to explain informally
how the spec’s variables are implemented by the
program’s state.

The informal refinement mapping explains what
the program is doing.

Writing it down can expose errors in the program.

Even if you can’t write the refinement mapping in TLA+, you should be able
to explain informally how the spec’s variables are implemented by the
program’s state.

The informal refinement mapping explains what the program is doing.

Writing it down, perhaps as comments in the code, can expose errors in the
program.

[slide 191]

IMAGINARY VARIABLES

[slide 192]

We added imaginary variables AtoBgood

and BtoAgood to the AB2 protocol spec
to obtain SpecP .

We added imaginary variables AtoB and BtoA

to the AB2 protocol spec to obtain SpecH .

Spec2 obtained by adding imaginary variables to Spec1
means Spec2 and Spec1 allow the same behaviors
if we ignore the values of the imaginary variables.

We added the imaginary variables AtoBgood and BtoAgood to the AB2
protocol specification to obtain specification SpecP .

We did that in order to write a desired liveness property.

We added imaginary variables AtoB and BtoA to the AB2 protocol
specification to obtain specification SpecH .

[slide 193]

We added imaginary variables AtoBgood

and BtoAgood to the AB2 protocol spec
to obtain SpecP .

We did that to write a desired liveness property.

We added imaginary variables AtoB and BtoA

to the AB2 protocol spec to obtain SpecH .

Spec2 obtained by adding imaginary variables to Spec1
means Spec2 and Spec1 allow the same behaviors
if we ignore the values of the imaginary variables.

We added the imaginary variables AtoBgood and BtoAgood to the AB2
protocol specification to obtain specification SpecP .

We did that in order to write a desired liveness property.

We added imaginary variables AtoB and BtoA to the AB2 protocol
specification to obtain specification SpecH .

[slide 194]

We added imaginary variables AtoBgood

and BtoAgood to the AB2 protocol spec
to obtain SpecP .

We added imaginary variables AtoB and BtoA

to the AB2 protocol spec to obtain SpecH .

Spec2 obtained by adding imaginary variables to Spec1
means Spec2 and Spec1 allow the same behaviors
if we ignore the values of the imaginary variables.

We added the imaginary variables AtoBgood and BtoAgood to the AB2
protocol specification to obtain specification SpecP .

We did that in order to write a desired liveness property.

We added imaginary variables AtoB and BtoA to the AB2 protocol
specification to obtain specification SpecH .

[slide 195]

We added imaginary variables AtoBgood

and BtoAgood to the AB2 protocol spec
to obtain SpecP .

We added imaginary variables AtoB and BtoA

to the AB2 protocol spec to obtain SpecH .

We did that to show AB2 implements AB .

Spec2 obtained by adding imaginary variables to Spec1
means Spec2 and Spec1 allow the same behaviors
if we ignore the values of the imaginary variables.

We did that in order to show that the AB2 protocol’s safety spec implements
the AB protocol’s safety spec.

In general, a specification Spec2 is obtained by adding imaginary variables to
a specification Spec1

means that Spec2 and Spec1 allow the same behaviors

if we ignore the values of the imaginary variables.

[slide 196]

We added imaginary variables AtoBgood

and BtoAgood to the AB2 protocol spec
to obtain SpecP .

We added imaginary variables AtoB and BtoA

to the AB2 protocol spec to obtain SpecH .

Spec2 obtained by adding imaginary variables to Spec1
means Spec2 and Spec1 allow the same behaviors
if we ignore the values of the imaginary variables.

We did that in order to show that the AB2 protocol’s safety spec implements
the AB protocol’s safety spec.

In general, a specification Spec2 is obtained by adding imaginary variables to
a specification Spec1

means that Spec2 and Spec1 allow the same behaviors

if we ignore the values of the imaginary variables.

[slide 197]

We added imaginary variables AtoBgood

and BtoAgood to the AB2 protocol spec
to obtain SpecP .

We added imaginary variables AtoB and BtoA

to the AB2 protocol spec to obtain SpecH .

Spec2 obtained by adding imaginary variables to Spec1
means Spec2 and Spec1 allow the same behaviors
if we ignore the values of the imaginary variables.

We did that in order to show that the AB2 protocol’s safety spec implements
the AB protocol’s safety spec.

In general, a specification Spec2 is obtained by adding imaginary variables to
a specification Spec1

means that Spec2 and Spec1 allow the same behaviors

if we ignore the values of the imaginary variables.

[slide 198]

We added imaginary variables AtoBgood

and BtoAgood to the AB2 protocol spec
to obtain SpecP .

We added imaginary variables AtoB and BtoA

to the AB2 protocol spec to obtain SpecH .

Spec2 obtained by adding imaginary variables to Spec1
means Spec2 and Spec1 allow the same behaviors
if we ignore the values of the imaginary variables.

We did that in order to show that the AB2 protocol’s safety spec implements
the AB protocol’s safety spec.

In general, a specification Spec2 is obtained by adding imaginary variables to
a specification Spec1

means that Spec2 and Spec1 allow the same behaviors

if we ignore the values of the imaginary variables.

[slide 199]

We added imaginary variables AtoB and BtoA

to the AB2 protocol spec to obtain SpecH .

We did that to show AB2 implements AB .

This wasn’t necessary because we could use a
refinement mapping instead.

Sometimes we have to add imaginary variables to define a
refinement mapping.

We added imaginary variables to show that the AB2 spec implements the
AB spec.

This wasn’t necessary because we were able to use a refinement mapping
instead.

But sometimes we have to add imaginary variables in order to define a
refinement mapping.

[slide 200]

We added imaginary variables AtoB and BtoA

to the AB2 protocol spec to obtain SpecH .

We did that to show AB2 implements AB .

This wasn’t necessary because we could use a
refinement mapping instead.

Sometimes we have to add imaginary variables to define a
refinement mapping.

We added imaginary variables to show that the AB2 spec implements the
AB spec.

This wasn’t necessary because we were able to use a refinement mapping
instead.

But sometimes we have to add imaginary variables in order to define a
refinement mapping.

[slide 201]

We added imaginary variables AtoB and BtoA

to the AB2 protocol spec to obtain SpecH .

We did that to show AB2 implements AB .

This wasn’t necessary because we could use a
refinement mapping instead.

Sometimes we have to add imaginary variables to define a
refinement mapping.

We added imaginary variables to show that the AB2 spec implements the
AB spec.

This wasn’t necessary because we were able to use a refinement mapping
instead.

But sometimes we have to add imaginary variables in order to define a
refinement mapping.

[slide 202]

The AB and AB2 protocols are essentially
the same (ignoring liveness).

So Spec of AB should implement Spec of AB2
under a refinement mapping.

Showing this requires adding to module AB

AB2 ∆
= INSTANCE AB2 WITH AtoB2← . . . , BtoA2← . . .

THEOREM Spec ⇒ AB2!Spec

Impossible without adding imaginary variables to Spec of AB
that remember where messages were lost from AtoB and BtoA.

The AB and AB2 protocols are essentially the same, if we ignore liveness.

So specification Spec of module AB should implement specification Spec of
module AB2 under a refinement mapping.

[slide 203]

The AB and AB2 protocols are essentially
the same (ignoring liveness).

So Spec of AB should implement Spec of AB2
under a refinement mapping.

Showing this requires adding to module AB

AB2 ∆
= INSTANCE AB2 WITH AtoB2← . . . , BtoA2← . . .

THEOREM Spec ⇒ AB2!Spec

Impossible without adding imaginary variables to Spec of AB
that remember where messages were lost from AtoB and BtoA.

The AB and AB2 protocols are essentially the same, if we ignore liveness.

So specification Spec of module AB should implement specification Spec of
module AB2 under a refinement mapping.

[slide 204]

The AB and AB2 protocols are essentially
the same (ignoring liveness).

So Spec of AB should implement Spec of AB2
under a refinement mapping.

Showing this requires adding to module AB

AB2 ∆
= INSTANCE AB2 WITH AtoB2← . . . , BtoA2← . . .

THEOREM Spec ⇒ AB2!Spec

Impossible without adding imaginary variables to Spec of AB
that remember where messages were lost from AtoB and BtoA.

Showing this requires adding to module AB :

An INSTANCE statement giving the refinement mapping and checking this
theorem.

[slide 205]

The AB and AB2 protocols are essentially
the same (ignoring liveness).

So Spec of AB should implement Spec of AB2
under a refinement mapping.

Showing this requires adding to module AB

AB2 ∆
= INSTANCE AB2 WITH AtoB2← . . . , BtoA2← . . .

THEOREM Spec ⇒ AB2!Spec

Impossible without adding imaginary variables to Spec of AB
that remember where messages were lost from AtoB and BtoA.

Showing this requires adding to module AB :

An INSTANCE statement giving the refinement mapping and checking this
theorem.

[slide 206]

The AB and AB2 protocols are essentially
the same (ignoring liveness).

So Spec of AB should implement Spec of AB2
under a refinement mapping.

Showing this requires adding to module AB

AB2 ∆
= INSTANCE AB2 WITH AtoB2← . . . , BtoA2← . . .

THEOREM Spec ⇒ AB2!Spec

Impossible without adding imaginary variables to Spec of AB
that remember where messages were lost from AtoB and BtoA.

Showing this requires adding to module AB :

An INSTANCE statement giving the refinement mapping and checking this
theorem.

[slide 207]

The AB and AB2 protocols are essentially
the same (ignoring liveness).

So Spec of AB should implement Spec of AB2
under a refinement mapping.

Showing this requires adding to module AB

AB2 ∆
= INSTANCE AB2 WITH AtoB2← . . . , BtoA2← . . .

THEOREM Spec ⇒ AB2!Spec expressions of module AB

Impossible without adding imaginary variables to Spec of AB
that remember where messages were lost from AtoB and BtoA.

These expressions of the refinement mapping must be written in terms of the
variables of module AB .

This is impossible without adding imaginary variables to specification Spec of
module AB that remember where messages that were lost from the message
sequences AtoB and BtoA used to be.

[slide 208]

The AB and AB2 protocols are essentially
the same (ignoring liveness).

So Spec of AB should implement Spec of AB2
under a refinement mapping.

Showing this requires adding to module AB

AB2 ∆
= INSTANCE AB2 WITH AtoB2← . . . , BtoA2← . . .

THEOREM Spec ⇒ AB2!Spec expressions of module AB

Impossible without adding imaginary variables to Spec of AB
that remember where messages were lost from AtoB and BtoA.

These expressions of the refinement mapping must be written in terms of the
variables of module AB .

This is impossible without adding imaginary variables to specification Spec of
module AB that remember where messages that were lost from the message
sequences AtoB and BtoA used to be.

[slide 209]

Imaginary Variables

– Need not describe actual state of the system.

Imaginary Variables
Need not describe any actual state of the system.

In fact, if their values can be described in terms of the original variables that
describe the actual state, then the imaginary variables are unnecessary.

[slide 210]

Imaginary Variables

– Need not describe actual state of the system.

Imaginary Variables
Need not describe any actual state of the system.

In fact, if their values can be described in terms of the original variables that
describe the actual state, then the imaginary variables are unnecessary.

[slide 211]

Imaginary Variables

– Need not describe actual state of the system.

If their values can be described in terms of the original
variables, then they are unnecessary.

We didn’t need to add imaginary variables AtoB and BtoA

to the AB2 protocol to show it implements the AB protocol
because we could specify their values with a refinement mapping.

Imaginary Variables
Need not describe any actual state of the system.

In fact, if their values can be described in terms of the original variables that
describe the actual state, then the imaginary variables are unnecessary.

[slide 212]

Imaginary Variables

– Need not describe actual state of the system.

If their values can be described in terms of the original
variables, then they are unnecessary.

We didn’t need to add imaginary variables AtoB and BtoA

to the AB2 protocol to show it implements the AB protocol
because we could specify their values with a refinement mapping.

For example, we didn’t need to add imaginary variables AtoB and BtoA to
the AB2 protocol spec in order to show that it implements the AB protocol
spec because we could specify the values of those variables of the AB spec
with a refinement mapping.

Imaginary variables are not meant to be implemented.

[slide 213]

Imaginary Variables

– Need not describe actual state of the system.

If their values can be described in terms of the original
variables, then they are unnecessary.

We didn’t need to add imaginary variables AtoB and BtoA

to the AB2 protocol to show it implements the AB protocol
because we could specify their values with a refinement mapping.

For example, we didn’t need to add imaginary variables AtoB and BtoA to
the AB2 protocol spec in order to show that it implements the AB protocol
spec because we could specify the values of those variables of the AB spec
with a refinement mapping.

Imaginary variables are not meant to be implemented.

[slide 214]

Imaginary Variables

– Need not describe actual state of the system.

– Are not meant to be implemented.

– May be needed to construct a refinement mapping.

You can learn more about them by stopping the video
and downloading the paper

Auxiliary Variables in TLA+

For example, we didn’t need to add imaginary variables AtoB and BtoA to
the AB2 protocol spec in order to show that it implements the AB protocol
spec because we could specify the values of those variables of the AB spec
with a refinement mapping.

Imaginary variables are not meant to be implemented.

[slide 215]

Imaginary Variables

– Need not describe actual state of the system.

– Are not meant to be implemented.

– May be needed to construct a refinement mapping.

You can learn more about them by stopping the video
and downloading the paper

Auxiliary Variables in TLA+

And imaginary variables may be needed to construct a refinement mapping.

Imaginary variables are usually called auxiliary variables.

You can learn more about them by stopping the video and downloading this
paper

[slide 216]

Imaginary Variables

– Need not describe actual state of the system.

– Are not meant to be implemented.

– May be needed to construct a refinement mapping.

You can learn more about them by stopping the video
and downloading the paper

Auxiliary Variables in TLA+

And imaginary variables may be needed to construct a refinement mapping.

Imaginary variables are usually called auxiliary variables.

You can learn more about them by stopping the video and downloading this
paper

[slide 217]

Imaginary
Auxiliary

Variables

– Need not describe actual state of the system.

– Are not meant to be implemented.

– May be needed to construct a refinement mapping.

You can learn more about them by stopping the video
and downloading the paper

Auxiliary Variables in TLA+

And imaginary variables may be needed to construct a refinement mapping.

Imaginary variables are usually called auxiliary variables.

You can learn more about them by stopping the video and downloading this
paper

[slide 218]

Imaginary
Auxiliary

Variables

– Need not describe actual state of the system.

– Are not meant to be implemented.

– May be needed to construct a refinement mapping.

You can learn more about them by stopping the video
and downloading the paper

Auxiliary Variables in TLA+

And imaginary variables may be needed to construct a refinement mapping.

Imaginary variables are usually called auxiliary variables.

You can learn more about them by stopping the video and downloading this
paper

[slide 219]

WHAT’S NEXT ?

[slide 220]

This is the last lecture of the TLA+ Video Course.

You’re now ready to write your own specs, including liveness
conditions, and to show that one spec implements another.

It may not be easy at first.

Writing good specs takes practice.
Reading other people’s specs can help.

I hope the TLA+ web pages will eventually
contain many examples of realistic specs.

This is the last lecture of the TLA+ Video Course.

You’re now ready to write your own specs, including liveness conditions, and
to show that one spec implements another.

It may not be easy at first.

[slide 221]

This is the last lecture of the TLA+ Video Course.

You’re now ready to write your own specs, including liveness
conditions, and to show that one spec implements another.

It may not be easy at first.

Writing good specs takes practice.
Reading other people’s specs can help.

I hope the TLA+ web pages will eventually
contain many examples of realistic specs.

This is the last lecture of the TLA+ Video Course.

You’re now ready to write your own specs, including liveness conditions, and
to show that one spec implements another.

It may not be easy at first.

[slide 222]

This is the last lecture of the TLA+ Video Course.

You’re now ready to write your own specs, including liveness
conditions, and to show that one spec implements another.

It may not be easy at first.

Writing good specs takes practice.
Reading other people’s specs can help.

I hope the TLA+ web pages will eventually
contain many examples of realistic specs.

This is the last lecture of the TLA+ Video Course.

You’re now ready to write your own specs, including liveness conditions, and
to show that one spec implements another.

It may not be easy at first.

[slide 223]

This is the last lecture of the TLA+ Video Course.

You’re now ready to write your own specs, including liveness
conditions, and to show that one spec implements another.

It may not be easy at first.

Writing good specs takes practice.
Reading other people’s specs can help.

I hope the TLA+ web pages will eventually
contain many examples of realistic specs.

Writing good specs takes practice.
Reading other people’s specs can help.

[slide 224]

This is the last lecture of the TLA+ Video Course.

You’re now ready to write your own specs, including liveness
conditions, and to show that one spec implements another.

It may not be easy at first.

Writing good specs takes practice.
Reading other people’s specs can help.

I hope the TLA+ web pages will eventually
contain many examples of realistic specs.

Writing good specs takes practice.
Reading other people’s specs can help.

[slide 225]

This is the last lecture of the TLA+ Video Course.

You’re now ready to write your own specs, including liveness
conditions, and to show that one spec implements another.

It may not be easy at first.

Writing good specs takes practice.
Reading other people’s specs can help.

I hope the TLA+ web pages will eventually
contain many examples of realistic specs.

Writing good specs takes practice.
Reading other people’s specs can help.

I hope the TLA+ web pages will eventually contain many examples of realistic
specs.

[slide 226]

There is still plenty to learn about TLA+ and its tools:

– A few TLA+ features.

– Many Toolbox features.

– PlusCal

There is still plenty for you to learn about TLA+ and its tools:

There are a few TLA+ features that you haven’t seen.

You can find out about them by browsing the Specifying Systems book.

There are many Toolbox features that I haven’t shown you.

You can find them by browsing the Toolbox’s help pages.

[slide 227]

There is still plenty to learn about TLA+ and its tools:

– A few TLA+ features.

– Many Toolbox features.

– PlusCal

There is still plenty for you to learn about TLA+ and its tools:

There are a few TLA+ features that you haven’t seen.

You can find out about them by browsing the Specifying Systems book.

There are many Toolbox features that I haven’t shown you.

You can find them by browsing the Toolbox’s help pages.

[slide 228]

There is still plenty to learn about TLA+ and its tools:

– A few TLA+ features.

You can find out about them by browsing:

– Many Toolbox features.

– PlusCal

There is still plenty for you to learn about TLA+ and its tools:

There are a few TLA+ features that you haven’t seen.

You can find out about them by browsing the Specifying Systems book.

There are many Toolbox features that I haven’t shown you.

You can find them by browsing the Toolbox’s help pages.

[slide 229]

There is still plenty to learn about TLA+ and its tools:

– A few TLA+ features.

– Many Toolbox features.

– PlusCal

There is still plenty for you to learn about TLA+ and its tools:

There are a few TLA+ features that you haven’t seen.

You can find out about them by browsing the Specifying Systems book.

There are many Toolbox features that I haven’t shown you.

You can find them by browsing the Toolbox’s help pages.

[slide 230]

There is still plenty to learn about TLA+ and its tools:

– A few TLA+ features.

– Many Toolbox features.

You can find out about them by browsing
the Toolbox’s help pages.

– PlusCal

There is still plenty for you to learn about TLA+ and its tools:

There are a few TLA+ features that you haven’t seen.

You can find out about them by browsing the Specifying Systems book.

There are many Toolbox features that I haven’t shown you.

You can find them by browsing the Toolbox’s help pages.

[slide 231]

There is still plenty to learn about TLA+ and its tools:

– A few TLA+ features.

– Many Toolbox features.

– PlusCal

And there’s the PlusCal algorithm language,

A language for writing TLA+ specs that look more familiar to programmers.

See the TLA+ Web site for documentation.

[slide 232]

There is still plenty to learn about TLA+ and its tools:

– A few TLA+ features.

– Many Toolbox features.

– PlusCal A language for writing TLA+ specs that
look more familiar to programmers.

See the TLA+ Web site for documentation.

And there’s the PlusCal algorithm language,

A language for writing TLA+ specs that look more familiar to programmers.

See the TLA+ Web site for documentation.

[slide 233]

There is still plenty to learn about TLA+ and its tools:

– A few TLA+ features.

– Many Toolbox features.

– PlusCal A language for writing TLA+ specs that
look more familiar to programmers.

See the TLA+ Web site for documentation.

And there’s the PlusCal algorithm language,

A language for writing TLA+ specs that look more familiar to programmers.

See the TLA+ Web site for documentation.

[slide 234]

This is the end of the course. You’ve come a long way – perhaps further than
you realize. As you go forward, remember to take the time to stop and think. I
hope what you’ve learned here will help you do that.

[slide 235]

TLA+ Video Course

End of Lecture 10, Part 2

IMPLEMENTATION
WITH REFINEMENT
REFINEMENT MAPPINGS

[slide 236]

