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In the first lecture, I introduced state machines as a simple abstraction of
digital systems.

You saw how a tiny C program can be viewed as a state machine.

In this lecture, you will see how that state machine can be described
mathematically, and you will get your first glimpse of TLA+.
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WHAT LANGUAGE

SHOULD WE USE ?

What language should we use to describe state machines?
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State machines are a simple and powerful abstraction.

We need a precise, practical way to describe them.

This is neither precise nor practical:
if current value of pc equals “start”

then next value of i in {0, 1, . . . , 1000}
next value of pc equals “middle”

else if current value of pc equals “middle”
then next value of i equals

current value of i + 1
next value of pc equals “done”

else no next values

State machines are a simple and powerful abstraction.

We need a precise, practical way to describe them.

The way we described the next state for the simple program
is neither precise nor is it practical for real systems .

[ slide 4 ]



State machines are a simple and powerful abstraction.

We need a precise, practical way to describe them.

This is neither precise nor practical:
if current value of pc equals “start”

then next value of i in {0, 1, . . . , 1000}
next value of pc equals “middle”

else if current value of pc equals “middle”
then next value of i equals

current value of i + 1
next value of pc equals “done”

else no next values

State machines are a simple and powerful abstraction.

We need a precise, practical way to describe them.

The way we described the next state for the simple program
is neither precise nor is it practical for real systems .

[ slide 5 ]



State machines are a simple and powerful abstraction.

We need a precise, practical way to describe them.

This is neither precise nor practical:
if current value of pc equals “start”

then next value of i in {0, 1, . . . , 1000}
next value of pc equals “middle”

else if current value of pc equals “middle”
then next value of i equals

current value of i + 1
next value of pc equals “done”

else no next values

State machines are a simple and powerful abstraction.

We need a precise, practical way to describe them.

The way we described the next state for the simple program
is neither precise nor is it practical for real systems .

[ slide 6 ]



We need a language for describing state machines.

Most software engineers want one like their favorite
programming language.

TLA+ uses ordinary, simple math.

Most software engineers find that a
terrible and terrifying idea.

We need a precise language for describing state machines.

Asked what such a language should look like, most programmers and software
engineers want one that’s a lot like their favorite programming language.

TLA+ takes a different approach. It uses ordinary, simple math.

This strikes most programmers and software engineers as a terrible idea–and probably
a terrifying one.
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Here’s what the designers of this
real-time operating system said
in this paper:

Here’s what the designers of this real-time operating system

said in this paper:
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Here’s what the designers of this
real-time operating system said
in this paper:

An industrial Case: Pitfalls and Benefits of Applying Formal
Methods to the Development of a Network-Centric RTOS

Eric Verhulst, Gjalt de Jong, and Vitaliy Mezhuyev

Formal Methods 2008, pages 411 – 418

Here’s what the designers of this real-time operating system

said in this paper:
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While we had an initial bias toward using language X,
in the end it was decided to use TLA+. Although the
mathematical notation of the TLA+ language was first
considered a hindrance versus the C-like language X,
in the end it has proven to be a major benefit
as it forced us to reason in a much more abstract way
about the system.

While we had an initial bias toward using language X,

I’m not going to tell you what that language was

in the end it was decided to use TLA+.

Although the mathematical notation of the TLA+ language was first
considered a hindrance versus the C-like language X,
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Remember what Brannon Batson said:

The hard part of learning to write TLA+

specs is learning to think abstractly about
the system.

Being able to think abstractly improves
our design process.
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The hard part of learning to write TLA+ specs is learning to think abstractly
about the system.

Being able to think abstractly improves our design process.
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Remember what Verhulst said:

We witnessed first hand the brain washing
done by years of C programming.

And remember what Eric Verhulst, the leader of that
real-time operating system project, said:

We witnessed first hand the brain washing done by
years of C programming.
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DESCRIBING A STATE MACHINE

WITH MATH

Describing a state machine with math.
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Our example C program:

int i ;
void main()

{ i = someNumber() ;
i = i + 1 ;

}

We introduced pc to describe the control state.

Remember our example C program.

Recall that we introduced the variable pc to describe the control state.

pc equals the string start means this is the next statement to be executed.

pc equals middle means control is here.

and pc equals done when execution has terminated.
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Our example C program:

int i ;
void main()

{pc = “start” i = someNumber() ;
i = i + 1 ;

}

We introduced pc to describe the control state.

Remember our example C program.

Recall that we introduced the variable pc to describe the control state.

pc equals the string start means this is the next statement to be executed.

pc equals middle means control is here.

and pc equals done when execution has terminated.
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Our example C program:

int i ;
void main()

{ i = someNumber() ;
pc = “middle” i = i + 1 ;

}

We introduced pc to describe the control state.

Remember our example C program.

Recall that we introduced the variable pc to describe the control state.

pc equals the string start means this is the next statement to be executed.

pc equals middle means control is here.

and pc equals done when execution has terminated.
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Our example C program:

int i ;
void main()

{ i = someNumber() ;
i = i + 1 ;

} pc = “done”

We introduced pc to describe the control state.

Remember our example C program.

Recall that we introduced the variable pc to describe the control state.

pc equals the string start means this is the next statement to be executed.

pc equals middle means control is here.

and pc equals done when execution has terminated.
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int i ;
void main()

{ i = someNumber() ;
i = i + 1 ;

}

We must describe:

1. Possible initial values of variables.

2. The relation between their values in the current state
and their possible values in the next state.

To describe this program, we must describe two things:

The possible initial values of the variables.

And what the relation is between the values of the variables in the current
state and their possible values in the next state.

Let’s start with the initial values.
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Possible initial values of variables.

i = 0 and pc = “start”

Must replace “and” by a mathematical
operator.

Written && in some programming languages.
Written ∧ in mathematics.

Some unnecessary parentheses make it easier to read.

These are the initial values. But we want a mathematical formula, so

we must replace and by a mathematical operator.
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Possible initial values of variables.

i = 0 and pc = “start”

Must replace “and” by a mathematical
operator.

Written && in some programming languages.
Written ∧ in mathematics.

Some unnecessary parentheses make it easier to read.
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Possible initial values of variables.

i = 0 ∧ pc = “start”

Must replace “and” by a mathematical
operator.

Written && in some programming languages.
Written ∧ in mathematics.

Some unnecessary parentheses make it easier to read.

That operator is written ampersand ampersand in some programming
languages.

It’s written with this symbol in mathematics.

Let’s add some unnecessary parentheses to make it easier to read.
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Possible initial values of variables.

(i = 0) ∧ (pc = “start”)

Must replace “and” by a mathematical
operator.

Written && in some programming languages.
Written ∧ in mathematics.

Some unnecessary parentheses make it easier to read.

That operator is written ampersand ampersand in some programming
languages.

It’s written with this symbol in mathematics.

Let’s add some unnecessary parentheses to make it easier to read.
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2. The relation between their values in the current state
and their possible values in the next state.

int i ;
void main()

{ i = someNumber() ;
i = i + 1 ;

}

Now, let’s describe the relation between the values of the variables in the
current state and their possible values in the next state.

Here’s how I did it in the previous lecture.
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and their possible values in the next state.

int i ;
void main()

{ i = someNumber() ;
i = i + 1 ;

}

if current value of pc equals “start”
then next value of i in {0, 1, . . . , 1000}

next value of pc equals “middle”
else if current value of pc equals “middle”

then next value of i equals
current value of i + 1

next value of pc equals “done”
else no next values

Now, let’s describe the relation between the values of the variables in the
current state and their possible values in the next state.

Here’s how I did it in the previous lecture.
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if current value of pc equals “start”
then next value of i in {0, 1, . . . , 1000}

next value of pc equals “middle”
else if current value of pc equals “middle”

then next value of i equals current value of i + 1
next value of pc equals “done”

else no next values

OK. Let’s now write this in math.

This requires replacing words with some notation.

First, let’s get rid of “current value of”

We simply let pc mean the current value of pc
and let i mean the current value of i
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if pc equals “start”
then next value of i in {0, 1, . . . , 1000}

next value of pc equals “middle”
else if pc equals “middle”

then next value of i equals i + 1
next value of pc equals “done”

else no next values

Next, we get rid of “next value of”

by letting pc prime and i prime mean the next values of pc and i

And finally, we replace the word “equals” by an equal sign.

Whew!
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if pc equals “start”
then next value of i in {0, 1, . . . , 1000}

next value of pc equals “middle”
else if pc equals “middle”

then next value of i equals i + 1
next value of pc equals “done”

else no next values

pc′ means next value of pc

i ′ means next value of i

Next, we get rid of “next value of”

by letting pc prime and i prime mean the next values of pc and i

And finally, we replace the word “equals” by an equal sign.

Whew!
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if pc equals “start”
then i ′ in {0, 1, . . . , 1000}

pc′ equals “middle”
else if pc equals “middle”

then i ′ equals i + 1
pc′ equals “done”

else no next values

Next, we get rid of “next value of”

by letting pc prime and i prime mean the next values of pc and i

And finally, we replace the word “equals” by an equal sign.

Whew!
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if pc equals “start”
then i ′ in {0, 1, . . . , 1000}

pc′ equals “middle”
else if pc equals “middle”

then i ′ equals i + 1
pc′ equals “done”

else no next values

equals → =

Next, we get rid of “next value of”

by letting pc prime and i prime mean the next values of pc and i

And finally, we replace the word “equals” by an equal sign.

Whew!
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if pc = “start”
then i ′ in {0, 1, . . . , 1000}

pc′ = “middle”
else if pc = “middle”

then i ′ = i + 1
pc′ = “done”

else no next values

Next, we get rid of “next value of”

by letting pc prime and i prime mean the next values of pc and i

And finally, we replace the word “equals” by an equal sign.

Whew!
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if pc = “start”
then i ′ in {0, 1, . . . , 1000}

pc′ = “middle”
else if pc = “middle”

then i ′ = i + 1
pc′ = “done”

else no next values

It’s now easier to read.
But it’s not yet mathematics.

It’s now a lot easier to read.

But it’s not yet a mathematical formula.
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if pc = “start”
then i ′ in {0, 1, . . . , 1000}

pc′ = “middle”
else if pc = “middle”

then i ′ = i + 1
pc′ = “done”

else no next values

It’s now easier to read.
But it’s not yet mathematics.

It’s now a lot easier to read.

But it’s not yet a mathematical formula.
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if pc = “start”
then i ′ in {0, 1, . . . , 1000}

pc′ = “middle”
else if pc = “middle”

then i ′ = i + 1
pc′ = “done”

else no next values

in here means is an element of the set of integers from 0 to 1000.

In is written in mathematics as this symbol.

Dot-dot-dot is informal math. We want to write this whole formula in a precisely defined
language.

The set of integers from 0 to 1000 is written in TLA+ like this.

Where the operator dot-dot is precisely defined.
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if pc = “start”
then i ′ in {0, 1, . . . , 1000}

pc′ =

�
� is an element of the set

“middle”
else if pc = “middle”

then i ′ = i + 1
pc′ = “done”

else no next values

in here means is an element of the set of integers from 0 to 1000.

In is written in mathematics as this symbol.

Dot-dot-dot is informal math. We want to write this whole formula in a precisely defined
language.

The set of integers from 0 to 1000 is written in TLA+ like this.

Where the operator dot-dot is precisely defined.
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if pc = “start”
then i ′ ∈ {0, 1, . . . , 1000}

pc′ =

�
� is an element of the set

“middle”
else if pc = “middle”

then i ′ = i + 1
pc′ = “done”

else no next values

Written in math as ∈ .

in here means is an element of the set of integers from 0 to 1000.

In is written in mathematics as this symbol.

Dot-dot-dot is informal math. We want to write this whole formula in a precisely defined
language.

The set of integers from 0 to 1000 is written in TLA+ like this.

Where the operator dot-dot is precisely defined.
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if pc = “start”
then i ′ ∈ {0, 1, . . . , 1000}

pc′ = “middle”
else if pc = “middle”

then i ′ = i + 1
pc′ = “done”

else no next values

in here means is an element of the set of integers from 0 to 1000.

In is written in mathematics as this symbol.

Dot-dot-dot is informal math. We want to write this whole formula in a precisely defined
language.

The set of integers from 0 to 1000 is written in TLA+ like this.

Where the operator dot-dot is precisely defined.
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if pc = “start”
then i ′ ∈ {0, 1, . . . , 1000}

pc′ = “middle”
else if pc = “middle”

then i ′ = i + 1
pc′ = “done”

else no next values

“. . .” is informal math.

in here means is an element of the set of integers from 0 to 1000.

In is written in mathematics as this symbol.

Dot-dot-dot is informal math. We want to write this whole formula in a precisely defined
language.

The set of integers from 0 to 1000 is written in TLA+ like this.

Where the operator dot-dot is precisely defined.
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if pc = “start”
then i ′ ∈ {0, 1, . . . , 1000}

pc′ = “middle”
else if pc = “middle”

then i ′ = i + 1
pc′ = “done”

else no next values

This set is written in TLA+ as 0 . .1000 .

The operator . . is precisely defined.

in here means is an element of the set of integers from 0 to 1000.

In is written in mathematics as this symbol.

Dot-dot-dot is informal math. We want to write this whole formula in a precisely defined
language.

The set of integers from 0 to 1000 is written in TLA+ like this.

Where the operator dot-dot is precisely defined.
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if pc = “start”
then i ′ ∈ 0 . .1000

pc′ = “middle”
else if pc = “middle”

then i ′ = i + 1
pc′ = “done”

else no next values

This set is written in TLA+ as 0 . .1000 .

The operator . . is precisely defined.

in here means is an element of the set of integers from 0 to 1000.

In is written in mathematics as this symbol.

Dot-dot-dot is informal math. We want to write this whole formula in a precisely defined
language.

The set of integers from 0 to 1000 is written in TLA+ like this.

Where the operator dot-dot is precisely defined.
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if pc = “start”
then i ′ ∈ 0 . .1000

pc′ = “middle”
else if pc = “middle”

then i ′ = i + 1
pc′ = “done”

else no next values

This set is written in TLA+ as 0 . .1000 .

The operator . . is precisely defined.

in here means is an element of the set of integers from 0 to 1000.

In is written in mathematics as this symbol.

Dot-dot-dot is informal math. We want to write this whole formula in a precisely defined
language.

The set of integers from 0 to 1000 is written in TLA+ like this.

Where the operator dot-dot is precisely defined.
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if pc = “start”
then i ′ ∈ 0 . .1000

pc′ = “middle”
else if pc = “middle”

then i ′ = i + 1
pc′ = “done”

else no next values

Let’s make it easier to read.

This then clause consists of two separate formulas.

It should be a single formula asserting that both formulas are true.

There’s an implicit “and” here, and we know how to write and in math: we
replace it with this conjunction symbol.

Let’s add some parentheses to make it easier to read.
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if pc = “start”
then i ′ ∈ 0 . .1000

pc′ = “middle”
else if pc = “middle”

then i ′ = i + 1
pc′ = “done”

else no next values

This then clause is two formulas.

Let’s make it easier to read.

This then clause consists of two separate formulas.

It should be a single formula asserting that both formulas are true.

There’s an implicit “and” here, and we know how to write and in math: we
replace it with this conjunction symbol.

Let’s add some parentheses to make it easier to read.
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if pc = “start”
then i ′ ∈ 0 . .1000

pc′ = “middle”
else if pc = “middle”

then i ′ = i + 1
pc′ = “done”

else no next values

It should be a single formula asserting
that both formulas are true.

Let’s make it easier to read.

This then clause consists of two separate formulas.

It should be a single formula asserting that both formulas are true.

There’s an implicit “and” here, and we know how to write and in math: we
replace it with this conjunction symbol.

Let’s add some parentheses to make it easier to read.
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if pc = “start”
then i ′ ∈ 0 . .1000

pc′ = “middle”
else if pc = “middle”

then i ′ = i + 1
pc′ = “done”

else no next values

It should be a single formula asserting
that both formulas are true.

Let’s make it easier to read.

This then clause consists of two separate formulas.

It should be a single formula asserting that both formulas are true.

There’s an implicit “and” here, and we know how to write and in math: we
replace it with this conjunction symbol.

Let’s add some parentheses to make it easier to read.
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if pc = “start”
then i ′ ∈ 0 . .1000 and

pc′ = “middle”
else if pc = “middle”

then i ′ = i + 1
pc′ = “done”

else no next values

There’s an implicit “and” here that
we can replace with ∧ .

Let’s make it easier to read.

This then clause consists of two separate formulas.

It should be a single formula asserting that both formulas are true.

There’s an implicit “and” here, and we know how to write and in math: we
replace it with this conjunction symbol.

Let’s add some parentheses to make it easier to read.
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if pc = “start”
then i ′ ∈ 0 . .1000 ∧

pc′ = “middle”
else if pc = “middle”

then i ′ = i + 1
pc′ = “done”

else no next values

There’s an implicit “and” here that
we can replace with ∧ .

Let’s make it easier to read.

This then clause consists of two separate formulas.

It should be a single formula asserting that both formulas are true.

There’s an implicit “and” here, and we know how to write and in math: we
replace it with this conjunction symbol.

Let’s add some parentheses to make it easier to read.
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if pc = “start”
then (i ′ ∈ 0 . .1000) ∧

(pc′ = “middle”)
else if pc = “middle”

then i ′ = i + 1
pc′ = “done”

else no next values

Let’s make it easier to read.

This then clause consists of two separate formulas.

It should be a single formula asserting that both formulas are true.

There’s an implicit “and” here, and we know how to write and in math: we
replace it with this conjunction symbol.

Let’s add some parentheses to make it easier to read.
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if pc = “start”
then (i ′ ∈ 0 . .1000) ∧

(pc′ = “middle”)
else if pc = “middle”

then i ′ = i + 1
pc′ = “done”

else no next values

We do the same thing here.

We do the same thing with the second then clause.
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if pc = “start”
then (i ′ ∈ 0 . .1000) ∧

(pc′ = “middle”)
else if pc = “middle”

then i ′ = i + 1
pc′ = “done”

else no next values

We do the same thing here.

We do the same thing with the second then clause.
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if pc = “start”
then (i ′ ∈ 0 . .1000) ∧

(pc′ = “middle”)
else if pc = “middle”

then (i ′ = i + 1) ∧
(pc′ = “done”)

else no next values

We do the same thing here.

We do the same thing with the second then clause.
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if pc = “start”
then (i ′ ∈ 0 . .1000) ∧

(pc′ = “middle”)
else if pc = “middle”

then (i ′ = i + 1) ∧
(pc′ = “done”)

else no next values

What about “no next values”, which certainly isn’t a mathematical formula.

There’s something important you need to understand.

We’re not writing instructions for computing something.

We are writing a formula relating the values of i , pc, i ′, and pc′
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if pc = “start”
then (i ′ ∈ 0 . .1000) ∧

(pc′ = “middle”)
else if pc = “middle”

then (i ′ = i + 1) ∧
(pc′ = “done”)

else no next values

What about this?

What about “no next values”, which certainly isn’t a mathematical formula.

There’s something important you need to understand.

We’re not writing instructions for computing something.

We are writing a formula relating the values of i , pc, i ′, and pc′
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if pc = “start”
then (i ′ ∈ 0 . .1000) ∧

(pc′ = “middle”)
else if pc = “middle”

then (i ′ = i + 1) ∧
(pc′ = “done”)

else no next values

We’re not writing instructions for computing something.

We’re writing a formula relating i , pc, i ′, and pc′ .

What about “no next values”, which certainly isn’t a mathematical formula.

There’s something important you need to understand.

We’re not writing instructions for computing something.

We are writing a formula relating the values of i , pc, i ′, and pc′
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if pc = “start”
then (i ′ ∈ 0 . .1000) ∧

(pc′ = “middle”)
else if pc = “middle”

then (i ′ = i + 1) ∧
(pc′ = “done”)

else no next values

We’re not writing instructions for computing something.

We’re writing a formula relating i , pc, i ′, and pc′ .

What about “no next values”, which certainly isn’t a mathematical formula.

There’s something important you need to understand.

We’re not writing instructions for computing something.

We are writing a formula relating the values of i , pc, i ′, and pc′
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if pc = “start”
then (i ′ ∈ 0 . .1000) ∧

(pc′ = “middle”)
else if pc = “middle”

then (i ′ = i + 1) ∧
(pc′ = “done”)

else no next values

It does not mean: if pc = “start”

This formula does not mean that if pc equals start

then do the then part otherwise do the else part.
The formula does mean that if pc equals start

then the value of the formula equals the value of the then formula
otherwise its value equals the value of the else formula.
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if pc = “start”
then (i ′ ∈ 0 . .1000) ∧

(pc′ = “middle”)
else if pc = “middle”

then (i ′ = i + 1) ∧
(pc′ = “done”)

else no next values

It does not mean: if pc = “start” do the then part

This formula does not mean that if pc equals start

then do the then part otherwise do the else part.
The formula does mean that if pc equals start

then the value of the formula equals the value of the then formula
otherwise its value equals the value of the else formula.

[ slide 81 ]



if pc = “start”
then (i ′ ∈ 0 . .1000) ∧

(pc′ = “middle”)
else if pc = “middle”

then (i ′ = i + 1) ∧
(pc′ = “done”)

else no next values

It does not mean: if pc = “start” do the then part,
otherwise do the else part.

This formula does not mean that if pc equals start

then do the then part otherwise do the else part.
The formula does mean that if pc equals start

then the value of the formula equals the value of the then formula
otherwise its value equals the value of the else formula.
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if pc = “start”
then (i ′ ∈ 0 . .1000) ∧

(pc′ = “middle”)
else if pc = “middle”

then (i ′ = i + 1) ∧
(pc′ = “done”)

else no next values

It means: if pc = “start”

This formula does not mean that if pc equals start

then do the then part otherwise do the else part.
The formula does mean that if pc equals start

then the value of the formula equals the value of the then formula
otherwise its value equals the value of the else formula.
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if pc = “start”
then (i ′ ∈ 0 . .1000) ∧

(pc′ = “middle”)
else if pc = “middle”

then (i ′ = i + 1) ∧
(pc′ = “done”)

else no next values

It means: if pc = “start” the formula equals the
then formula

This formula does not mean that if pc equals start

then do the then part otherwise do the else part.
The formula does mean that if pc equals start

then the value of the formula equals the value of the then formula
otherwise its value equals the value of the else formula.
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if pc = “start”
then (i ′ ∈ 0 . .1000) ∧

(pc′ = “middle”)
else if pc = “middle”

then (i ′ = i + 1) ∧
(pc′ = “done”)

else no next values

It means: if pc = “start” the formula equals the
then formula, otherwise it equals the else formula.

This formula does not mean that if pc equals start

then do the then part otherwise do the else part.
The formula does mean that if pc equals start

then the value of the formula equals the value of the then formula
otherwise its value equals the value of the else formula.
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if pc = “start”
then (i ′ ∈ 0 . .1000) ∧

(pc′ = “middle”)
else if pc = “middle”

then (i ′ = i + 1) ∧
(pc′ = “done”)

else no next values

The formula equals true for these values:
i = 17 pc = “start” i ′ = 534 pc′ = “middle”

The value of the formula equals true for these values of i , pc, i ′, and pc′

because:

The if test equals true because pc equals start

So the value of the formula equals the value of the then clause

This clause equals true if and only these two formulas equals true.
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if pc = “start”
then (i ′ ∈ 0 . .1000) ∧

(pc′ = “middle”)
else if pc = “middle”

then (i ′ = i + 1) ∧
(pc′ = “done”)

else no next values

The formula equals true for these values:
i = 17 pc = “start” i ′ = 534 pc′ = “middle”

The value of the formula equals true for these values of i , pc, i ′, and pc′

because:

The if test equals true because pc equals start

So the value of the formula equals the value of the then clause

This clause equals true if and only these two formulas equals true.
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if pc = “start”
then (i ′ ∈ 0 . .1000) ∧

(pc′ = “middle”)
else if pc = “middle”

then (i ′ = i + 1) ∧
(pc′ = “done”)

else no next values

The formula equals true for these values:
i = 17 pc = “start” i ′ = 534 pc′ = “middle”

The value of the formula equals true for these values of i , pc, i ′, and pc′

because:

The if test equals true because pc equals start

So the value of the formula equals the value of the then clause

This clause equals true if and only these two formulas equals true.
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if pc = “start”
then (i ′ ∈ 0 . .1000) ∧

(pc′ = “middle”)
else if pc = “middle”

then (i ′ = i + 1) ∧
(pc′ = “done”)

else no next values

The formula equals true for these values:
i = 17 pc = “start” i ′ = 534 pc′ = “middle”

The value of the formula equals true for these values of i , pc, i ′, and pc′

because:

The if test equals true because pc equals start

So the value of the formula equals the value of the then clause

This clause equals true if and only these two formulas equals true.
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if pc = “start”
then (i ′ ∈ 0 . .1000) ∧

(pc′ = “middle”)
else if pc = “middle”

then (i ′ = i + 1) ∧
(pc′ = “done”)

else no next values

The formula equals true for these values:
i = 17 pc = “start” i ′ = 534 pc′ = “middle”

The value of the formula equals true for these values of i , pc, i ′, and pc′

because:

The if test equals true because pc equals start

So the value of the formula equals the value of the then clause

This clause equals true if and only these two formulas equals true.
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if pc = “start”
then (i ′ ∈ 0 . .1000) ∧

(pc′ = “middle”)
else if pc = “middle”

then (i ′ = i + 1) ∧
(pc′ = “done”)

else no next values

The formula equals true for these values:
i = 17 pc = “start” i ′ = 534 pc′ = “middle”

The value of the formula equals true for these values of i , pc, i ′, and pc′

because:

The if test equals true because pc equals start

So the value of the formula equals the value of the then clause

This clause equals true if and only these two formulas equals true.
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if pc = “start”
then (i ′ ∈ 0 . .1000) ∧

(pc′ = “middle”)
else if pc = “middle”

then (i ′ = i + 1) ∧
(pc′ = “done”)

else no next values

The formula equals true for these values:
i = 17 pc = “start” i ′ = 534 pc′ = “middle”

The first formula equals true because
i ′ equals 534, which is an element of the set of integers from 0 to 1000.

The second formula equals true because pc′ equals middle.

So the whole formula equals true for these values.
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if pc = “start”
then (i ′ ∈ 0 . .1000) ∧

(pc′ = “middle”)
else if pc = “middle”

then (i ′ = i + 1) ∧
(pc′ = “done”)

else no next values

The formula equals true for these values:
i = 17 pc = “start” i ′ = 534 pc′ = “middle”

The first formula equals true because
i ′ equals 534, which is an element of the set of integers from 0 to 1000.

The second formula equals true because pc′ equals middle.

So the whole formula equals true for these values.
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if pc = “start”
then (i ′ ∈ 0 . .1000) ∧

(pc′ = “middle”)
else if pc = “middle”

then (i ′ = i + 1) ∧
(pc′ = “done”)

else no next values

The formula equals true for these values:
i = 17 pc = “start” i ′ = 534 pc′ = “middle”

The first formula equals true because
i ′ equals 534, which is an element of the set of integers from 0 to 1000.

The second formula equals true because pc′ equals middle.

So the whole formula equals true for these values.
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if pc = “start”
then (i ′ ∈ 0 . .1000) ∧

(pc′ = “middle”)
else if pc = “middle”

then (i ′ = i + 1) ∧
(pc′ = “done”)

else no next values

The formula equals true for these values:
i = 17 pc = “start” i ′ = 534 pc′ = “middle”

The first formula equals true because
i ′ equals 534, which is an element of the set of integers from 0 to 1000.

The second formula equals true because pc′ equals middle.

So the whole formula equals true for these values.
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if pc = “start”
then (i ′ ∈ 0 . .1000) ∧

(pc′ = “middle”)
else if pc = “middle”

then (i ′ = i + 1) ∧
(pc′ = “done”)

else no next values

The formula equals false for these values:
i = 534 pc = “middle” i ′ = 77 pc′ = “done”

The formula equals false for these values because

The if test equals false
so the value of the formula equals the value of the else clause.

That clause is an if formula whose whose test equals true,
so it equals its then clause.

The value of that clause equals true if and only if
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if pc = “start”
then (i ′ ∈ 0 . .1000) ∧

(pc′ = “middle”)
else if pc = “middle”

then (i ′ = i + 1) ∧
(pc′ = “done”)

else no next values

The formula equals false for these values:
i = 534 pc = “middle” i ′ = 77 pc′ = “done”

The formula equals false for these values because

The if test equals false
so the value of the formula equals the value of the else clause.

That clause is an if formula whose whose test equals true,
so it equals its then clause.

The value of that clause equals true if and only if
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if pc = “start”
then (i ′ ∈ 0 . .1000) ∧

(pc′ = “middle”)
else if pc = “middle”

then (i ′ = i + 1) ∧
(pc′ = “done”)

else no next values

The formula equals false for these values:
i = 534 pc = “middle” i ′ = 77 pc′ = “done”

The formula equals false for these values because

The if test equals false
so the value of the formula equals the value of the else clause.

That clause is an if formula whose whose test equals true,
so it equals its then clause.

The value of that clause equals true if and only if
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if pc = “start”
then (i ′ ∈ 0 . .1000) ∧

(pc′ = “middle”)
else if pc = “middle”

then (i ′ = i + 1) ∧
(pc′ = “done”)

else no next values

The formula equals false for these values:
i = 534 pc = “middle” i ′ = 77 pc′ = “done”

The formula equals false for these values because

The if test equals false
so the value of the formula equals the value of the else clause.

That clause is an if formula whose whose test equals true,
so it equals its then clause.

The value of that clause equals true if and only if
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if pc = “start”
then (i ′ ∈ 0 . .1000) ∧

(pc′ = “middle”)
else if pc = “middle”

then (i ′ = i + 1) ∧
(pc′ = “done”)

else no next values

The formula equals false for these values:
i = 534 pc = “middle” i ′ = 77 pc′ = “done”

The formula equals false for these values because

The if test equals false
so the value of the formula equals the value of the else clause.

That clause is an if formula whose whose test equals true,
so it equals its then clause.

The value of that clause equals true if and only if
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if pc = “start”
then (i ′ ∈ 0 . .1000) ∧

(pc′ = “middle”)
else if pc = “middle”

then (i ′ = i + 1) ∧
(pc′ = “done”)

else no next values

The formula equals false for these values:
i = 534 pc = “middle” i ′ = 77 pc′ = “done”

The formula equals false for these values because

The if test equals false
so the value of the formula equals the value of the else clause.

That clause is an if formula whose whose test equals true,
so it equals its then clause.

The value of that clause equals true if and only if
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if pc = “start”
then (i ′ ∈ 0 . .1000) ∧

(pc′ = “middle”)
else if pc = “middle”

then (i ′ = i + 1) ∧
(pc′ = “done”)

else no next values

The formula equals false for these values:
i = 534 pc = “middle” i ′ = 77 pc′ = “done”

these two formulas both equal true.

But this formula equals false because i ′ does not equal i plus 1.

So the entire formula equals false.
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if pc = “start”
then (i ′ ∈ 0 . .1000) ∧

(pc′ = “middle”)
else if pc = “middle”

then (i ′ = i + 1) ∧
(pc′ = “done”)

else no next values

The formula equals false for these values:
i = 534 pc = “middle” i ′ = 77 pc′ = “done”

these two formulas both equal true.

But this formula equals false because i ′ does not equal i plus 1.

So the entire formula equals false.
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if pc = “start”
then (i ′ ∈ 0 . .1000) ∧

(pc′ = “middle”)
else if pc = “middle”

then (i ′ = i + 1) ∧
(pc′ = “done”)

else no next values

The formula equals false for these values:
i = 534 pc = “middle” i ′ = 77 pc′ = “done”

these two formulas both equal true.

But this formula equals false because i ′ does not equal i plus 1.

So the entire formula equals false.

[ slide 104 ]



if pc = “start”
then (i ′ ∈ 0 . .1000) ∧

(pc′ = “middle”)
else if pc = “middle”

then (i ′ = i + 1) ∧
(pc′ = “done”)

else no next values

The formula equals false for these values:
i = 534 pc = “middle” i ′ = 77 pc′ = “done”

these two formulas both equal true.

But this formula equals false because i ′ does not equal i plus 1.

So the entire formula equals false.
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if pc = “start”
then (i ′ ∈ 0 . .1000) ∧

(pc′ = “middle”)
else if pc = “middle”

then (i ′ = i + 1) ∧
(pc′ = “done”)

else no next values

The formula equals false for these values:
i = 534 pc = “middle” i ′ = 77 pc′ = “done”

these two formulas both equal true.

But this formula equals false because i ′ does not equal i plus 1.

So the entire formula equals false.
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if pc = “start”
then (i ′ ∈ 0 . .1000) ∧

(pc′ = “middle”)
else if pc = “middle”

then (i ′ = i + 1) ∧
(pc′ = “done”)

else no next values

Now let’s return to the no next values clause.

This clause should be a formula that does not equal true for any values of i ,
pc, i ′, and pc′.

Let’s use the simplest such formula, which is one that always equals
false—namely, the formula false.
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if pc = “start”
then (i ′ ∈ 0 . .1000) ∧

(pc′ = “middle”)
else if pc = “middle”

then (i ′ = i + 1) ∧
(pc′ = “done”)

else no next values

Let’s return to this clause.

Now let’s return to the no next values clause.

This clause should be a formula that does not equal true for any values of i ,
pc, i ′, and pc′.

Let’s use the simplest such formula, which is one that always equals
false—namely, the formula false.
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if pc = “start”
then (i ′ ∈ 0 . .1000) ∧

(pc′ = “middle”)
else if pc = “middle”

then (i ′ = i + 1) ∧
(pc′ = “done”)

else no next values

It should be a formula that does not equal true
for any values of i , pc, i ′, and pc′.

Now let’s return to the no next values clause.

This clause should be a formula that does not equal true for any values of i ,
pc, i ′, and pc′.

Let’s use the simplest such formula, which is one that always equals
false—namely, the formula false.
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if pc = “start”
then (i ′ ∈ 0 . .1000) ∧

(pc′ = “middle”)
else if pc = “middle”

then (i ′ = i + 1) ∧
(pc′ = “done”)

else no next values

It should be a
The simplest

formula that does not equal true
for any values of i , pc, i ′, and pc′.

Now let’s return to the no next values clause.

This clause should be a formula that does not equal true for any values of i ,
pc, i ′, and pc′.

Let’s use the simplest such formula, which is one that always equals
false—namely, the formula false.
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if pc = “start”
then (i ′ ∈ 0 . .1000) ∧

(pc′ = “middle”)
else if pc = “middle”

then (i ′ = i + 1) ∧
(pc′ = “done”)

else FALSE

It should be a
The simplest

formula that does not equal true
for any values of i , pc, i ′, and pc′.

Now let’s return to the no next values clause.

This clause should be a formula that does not equal true for any values of i ,
pc, i ′, and pc′.

Let’s use the simplest such formula, which is one that always equals
false—namely, the formula false.
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if pc = “start”
then (i ′ ∈ 0 . .1000) ∧

(pc′ = “middle”)
else if pc = “middle”

then (i ′ = i + 1) ∧
(pc′ = “done”)

else FALSE

In TLA+ most keywords are in uppercase letters.

This is now a TLA+ formula. That is, a pretty-printed TLA+ formula.

The TLA+ source is in ASCII,
with and typed as forward-slash backslash
and the element-of symbol typed like this.
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if pc = “start”
then (i ′ ∈ 0 . .1000) ∧

(pc′ = “middle”)
else if pc = “middle”

then (i ′ = i + 1) ∧
(pc′ = “done”)

else FALSE

In TLA+ most keywords are in uppercase.

In TLA+ most keywords are in uppercase letters.

This is now a TLA+ formula. That is, a pretty-printed TLA+ formula.

The TLA+ source is in ASCII,
with and typed as forward-slash backslash
and the element-of symbol typed like this.
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IF pc = “start”
THEN (i ′ ∈ 0 . .1000) ∧

(pc′ = “middle”)
ELSE IF pc = “middle”

THEN (i ′ = i + 1) ∧
(pc′ = “done”)

ELSE FALSE

In TLA+ most keywords are in uppercase.

In TLA+ most keywords are in uppercase letters.

This is now a TLA+ formula. That is, a pretty-printed TLA+ formula.

The TLA+ source is in ASCII,
with and typed as forward-slash backslash
and the element-of symbol typed like this.
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IF pc = “start”
THEN (i ′ ∈ 0 . .1000) ∧

(pc′ = “middle”)
ELSE IF pc = “middle”

THEN (i ′ = i + 1) ∧
(pc′ = “done”)

ELSE FALSE

This is a TLA+ formula.

In TLA+ most keywords are in uppercase letters.

This is now a TLA+ formula. That is, a pretty-printed TLA+ formula.

The TLA+ source is in ASCII,
with and typed as forward-slash backslash
and the element-of symbol typed like this.
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IF pc = “start”
THEN (i ′ ∈ 0 . .1000) ∧

(pc′ = “middle”)
ELSE IF pc = “middle”

THEN (i ′ = i + 1) ∧
(pc′ = “done”)

ELSE FALSE

This is a
pretty-printed

∧TLA+ formula.

In TLA+ most keywords are in uppercase letters.

This is now a TLA+ formula. That is, a pretty-printed TLA+ formula.

The TLA+ source is in ASCII,
with and typed as forward-slash backslash
and the element-of symbol typed like this.
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IF pc = “start”
THEN (i ′ ∈ 0 . .1000) ∧

(pc′ = “middle”)
ELSE IF pc = “middle”

THEN (i ′ = i + 1) ∧
(pc′ = “done”)

ELSE FALSE

The TLA+ source is in ASCII

In TLA+ most keywords are in uppercase letters.

This is now a TLA+ formula. That is, a pretty-printed TLA+ formula.

The TLA+ source is in ASCII,
with and typed as forward-slash backslash
and the element-of symbol typed like this.
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IF pc = “start”
THEN (i ′ ∈ 0 . .1000) ∧

(pc′ = “middle”)
ELSE IF pc = “middle”

THEN (i ′ = i + 1) ∧
(pc′ = “done”)

ELSE FALSE

The TLA+ source is in ASCII, with ∧ typed as /\

In TLA+ most keywords are in uppercase letters.

This is now a TLA+ formula. That is, a pretty-printed TLA+ formula.

The TLA+ source is in ASCII,
with and typed as forward-slash backslash
and the element-of symbol typed like this.
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IF pc = “start”
THEN (i ′ ∈ 0 . .1000) ∧

(pc′ = “middle”)
ELSE IF pc = “middle”

THEN (i ′ = i + 1) ∧
(pc′ = “done”)

ELSE FALSE

The TLA+ source is in ASCII, with ∧ typed as /\

and ∈ typed as \in .

In TLA+ most keywords are in uppercase letters.

This is now a TLA+ formula. That is, a pretty-printed TLA+ formula.

The TLA+ source is in ASCII,
with and typed as forward-slash backslash
and the element-of symbol typed like this.
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IF pc = "start"
THEN (i’ \in 0..1000) /\

(pc’ = "middle")
ELSE IF pc = "middle"

THEN (i’ = i+1) /\
(pc’ = "done")

ELSE FALSE

This is what it looks like in ASCII.
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IF pc = “start”
THEN (i ′ ∈ 0 . .1000) ∧

(pc′ = “middle”)

ELSE IF pc = “middle”
THEN (i ′ = i + 1) ∧

(pc′ = “done”)
ELSE FALSE

This version is easier for most people to read.

I’ll use it for now.

This version is easier for most people to read.

I’ll use it for now.
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IF pc = “start”
THEN (i ′ ∈ 0 . .1000) ∧

(pc′ = “middle”)

ELSE IF pc = “middle”
THEN (i ′ = i + 1) ∧

(pc′ = “done”)
ELSE FALSE

This version is easier for most people to read.

I’ll use it for now.

This version is easier for most people to read.

I’ll use it for now.
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The Complete Mathematical Description

Initial-state formula: (i = 0) ∧ (pc = “start”)

Next-state formula: IF pc = “start”
THEN (i ′ ∈ 0 . .1000) ∧

(pc′ = “middle”)
ELSE IF pc = “middle”

THEN (i ′ = i + 1) ∧
(pc′ = “done”)

ELSE FALSE

We have now written a complete mathematical description of the program as
two formulas.

The initial-state formula. and the next-state formula.

But there’s a nicer way to write the next-state formula.
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The Complete Mathematical Description

Initial-state formula: (i = 0) ∧ (pc = “start”)

Next-state formula: IF pc = “start”
THEN (i ′ ∈ 0 . .1000) ∧

(pc′ = “middle”)
ELSE IF pc = “middle”

THEN (i ′ = i + 1) ∧
(pc′ = “done”)

ELSE FALSE

We have now written a complete mathematical description of the program as
two formulas.

The initial-state formula. and the next-state formula.

But there’s a nicer way to write the next-state formula.
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The Complete Mathematical Description

Initial-state formula: (i = 0) ∧ (pc = “start”)

Next-state formula: IF pc = “start”
THEN (i ′ ∈ 0 . .1000) ∧

(pc′ = “middle”)
ELSE IF pc = “middle”

THEN (i ′ = i + 1) ∧
(pc′ = “done”)

ELSE FALSE

We have now written a complete mathematical description of the program as
two formulas.

The initial-state formula. and the next-state formula.

But there’s a nicer way to write the next-state formula.
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The Complete Mathematical Description

Initial-state formula: (i = 0) ∧ (pc = “start”)

There’s a nicer
way to write this.

Next-state formula: IF pc = “start”
THEN (i ′ ∈ 0 . .1000) ∧

(pc′ = “middle”)
ELSE IF pc = “middle”

THEN (i ′ = i + 1) ∧
(pc′ = “done”)

ELSE FALSE

We have now written a complete mathematical description of the program as
two formulas.

The initial-state formula. and the next-state formula.

But there’s a nicer way to write the next-state formula.
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A NICER WAY TO WRITE

THE NEXT-STATE FORMULA

Let’s now see how.



IF pc = “start”
THEN (i ′ ∈ 0 . .1000) ∧

(pc′ = “middle”)
ELSE IF pc = “middle”

THEN (i ′ = i + 1) ∧
(pc′ = “done”)

ELSE FALSE

I’ll start by hiding some of the details.

Let’s call these two formulas A and B .
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IF pc = “start”
THEN (i ′ ∈ 0 . .1000) ∧

(pc′ = “middle”)
ELSE IF pc = “middle”

THEN (i ′ = i + 1) ∧
(pc′ = “done”)

ELSE FALSE

Let’s call these two formulas

I’ll start by hiding some of the details.

Let’s call these two formulas A and B .
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IF pc = “start”
THEN (i ′ ∈ 0 . .1000) ∧

A
(pc′ = “middle”)

ELSE IF pc = “middle”
THEN (i ′ = i + 1) ∧

(pc′ = “done”)
ELSE FALSE

Let’s call these two formulas A

I’ll start by hiding some of the details.

Let’s call these two formulas A and B .
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IF pc = “start”
THEN (i ′ ∈ 0 . .1000) ∧

A
(pc′ = “middle”)

ELSE IF pc = “middle”
THEN (i ′ = i + 1) ∧

(pc′ = “done”)B

ELSE FALSE

Let’s call these two formulas A and B .

I’ll start by hiding some of the details.

Let’s call these two formulas A and B .
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IF pc = “start”
THEN A

ELSE IF pc = “middle”
THEN B

ELSE FALSE

There are two cases when the formula is true:

1. pc = “start” and A are true.

2. pc = “middle” and B are true.

There are two cases when the formula is true:

Case 1: pc equals start and A are both true.

In other words, the single formula pc equals start and A is true.

Case 2: pc equals middle and B are both true.

In other words, the single formula pc equals middle and B is true.
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IF pc = “start”
THEN A

ELSE IF pc = “middle”
THEN B

ELSE FALSE

There are two cases when the formula is true:

1. pc = “start” and A are true.

2. pc = “middle” and B are true.

There are two cases when the formula is true:

Case 1: pc equals start and A are both true.

In other words, the single formula pc equals start and A is true.

Case 2: pc equals middle and B are both true.

In other words, the single formula pc equals middle and B is true.
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IF pc = “start”
THEN A

ELSE IF pc = “middle”
THEN B

ELSE FALSE

There are two cases when the formula is true:

1. pc = “start” and A are true.

2. pc = “middle” and B are true.

There are two cases when the formula is true:

Case 1: pc equals start and A are both true.

In other words, the single formula pc equals start and A is true.

Case 2: pc equals middle and B are both true.

In other words, the single formula pc equals middle and B is true.
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IF pc = “start”
THEN A

ELSE IF pc = “middle”
THEN B

ELSE FALSE

There are two cases when the formula is true:

1. pc = “start” and A are true.

2. pc = “middle” and B are true.

There are two cases when the formula is true:

Case 1: pc equals start and A are both true.

In other words, the single formula pc equals start and A is true.

Case 2: pc equals middle and B are both true.

In other words, the single formula pc equals middle and B is true.
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IF pc = “start”
THEN A

ELSE IF pc = “middle”
THEN B

ELSE FALSE

There are two cases when the formula is true:

1. (pc = “start”) ∧ A is true.

2. pc = “middle” and B are true.

There are two cases when the formula is true:

Case 1: pc equals start and A are both true.

In other words, the single formula pc equals start and A is true.

Case 2: pc equals middle and B are both true.

In other words, the single formula pc equals middle and B is true.
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IF pc = “start”
THEN A

ELSE IF pc = “middle”
THEN B

ELSE FALSE

There are two cases when the formula is true:

1. (pc = “start”) ∧ A is true.

2. pc = “middle” and B are true.

There are two cases when the formula is true:

Case 1: pc equals start and A are both true.

In other words, the single formula pc equals start and A is true.

Case 2: pc equals middle and B are both true.

In other words, the single formula pc equals middle and B is true.
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IF pc = “start”
THEN A

ELSE IF pc = “middle”
THEN B

ELSE FALSE

There are two cases when the formula is true:

1. (pc = “start”) ∧ A is true.

2. (pc = “middle”) ∧ B is true.

There are two cases when the formula is true:

Case 1: pc equals start and A are both true.

In other words, the single formula pc equals start and A is true.

Case 2: pc equals middle and B are both true.

In other words, the single formula pc equals middle and B is true.
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IF pc = “start”
THEN A

ELSE IF pc = “middle”
THEN B

ELSE FALSE

((pc = “start”) ∧ A)

or ((pc = “middle”) ∧ B )

There are two cases when the formula is true:

1. (pc = “start”) ∧ A is true.

2. (pc = “middle”) ∧ B is true.

So we can rewrite the formula like this.
To turn it into a mathematical formula,
we must replace the word or by a mathematical operator.

That operator is written bar bar in some programming languages.

It’s written as this symbol in mathematics.
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IF pc = “start”
THEN A

ELSE IF pc = “middle”
THEN B

ELSE FALSE

((pc = “start”) ∧ A)

or ((pc = “middle”) ∧ B )

Must replace “or” by a mathematical operator.

Written | | in some programming languages.

Written ∨ in mathematics.

So we can rewrite the formula like this.
To turn it into a mathematical formula,
we must replace the word or by a mathematical operator.

That operator is written bar bar in some programming languages.

It’s written as this symbol in mathematics.
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IF pc = “start”
THEN A

ELSE IF pc = “middle”
THEN B

ELSE FALSE

((pc = “start”) ∧ A)

or ((pc = “middle”) ∧ B )

Must replace “or” by a mathematical operator.

Written | | in some programming languages.

Written ∨ in mathematics.

So we can rewrite the formula like this.
To turn it into a mathematical formula,
we must replace the word or by a mathematical operator.

That operator is written bar bar in some programming languages.

It’s written as this symbol in mathematics.
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IF pc = “start”
THEN A

ELSE IF pc = “middle”
THEN B

ELSE FALSE

((pc = “start”) ∧ A)

∨ ((pc = “middle”) ∧ B )

Must replace “or” by a mathematical operator.

Written | | in some programming languages.

Written ∨ in mathematics.

So we can rewrite the formula like this.
To turn it into a mathematical formula,
we must replace the word or by a mathematical operator.

That operator is written bar bar in some programming languages.

It’s written as this symbol in mathematics.
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((pc = “start”) ∧ A)

∨ ((pc = “middle”) ∧ B )

Now let’s replace A and B by their original formulas.

First let’s give us some more room.

We replace A.

And we replace B .

And now let’s format it a little better.
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((pc = “start”) ∧ A)

∨ ((pc = “middle”) ∧ B )

Let’s replace A and B by their original formulas.

Now let’s replace A and B by their original formulas.

First let’s give us some more room.

We replace A.

And we replace B .

And now let’s format it a little better.
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((pc = “start”) ∧
A)

∨ ((pc = “middle”) ∧
B )

Now let’s replace A and B by their original formulas.

First let’s give us some more room.

We replace A.

And we replace B .

And now let’s format it a little better.
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((pc = “start”) ∧
(i ′ ∈ 0 . .1000) ∧
(pc′ = “middle”))

∨ ((pc = “middle”) ∧
B )

Now let’s replace A and B by their original formulas.

First let’s give us some more room.

We replace A.

And we replace B .

And now let’s format it a little better.
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((pc = “start”) ∧
(i ′ ∈ 0 . .1000) ∧
(pc′ = “middle”))

∨ ((pc = “middle”) ∧
(i ′ = i + 1) ∧
(pc′ = “done”))

Now let’s replace A and B by their original formulas.

First let’s give us some more room.

We replace A.

And we replace B .

And now let’s format it a little better.
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((pc = “start”) ∧
(i ′ ∈ 0 . .1000) ∧
(pc′ = “middle”))

∨ ((pc = “middle”) ∧
(i ′ = i + 1) ∧
(pc′ = “done”))

Let’s format it better.

Now let’s replace A and B by their original formulas.

First let’s give us some more room.

We replace A.

And we replace B .

And now let’s format it a little better.
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( (pc = “start”)
∧ (i ′ ∈ 0 . .1000)
∧ (pc′ = “middle”) )

∨ ( (pc = “middle”)
∧ (i ′ = i + 1)
∧ (pc′ = “done”) )

These parenthese aren’t necessary and with this formatting they don’t help.
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( (pc = “start”)
∧ (i ′ ∈ 0 . .1000)
∧ (pc′ = “middle”) )

∨ ( (pc = “middle”)
∧ (i ′ = i + 1)
∧ (pc′ = “done”) )

These parentheses aren’t needed and don’t help

These parenthese aren’t necessary and with this formatting they don’t help.
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( pc = “start”
∧ i ′ ∈ 0 . .1000
∧ pc′ = “middle” )

∨ ( pc = “middle”
∧ i ′ = i + 1
∧ pc′ = “done” )

So let’s remove them.
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( pc = “start”
∧ i ′ ∈ 0 . .1000
∧ pc′ = “middle” )

∨ ( pc = “middle”
∧ i ′ = i + 1
∧ pc′ = “done” )

Widely separated matching parentheses make formulas hard to read.

(They’re not very far apart here, but they could be in a larger formula.)

TLA+ lets us eliminate them by adding this extra and symbol.

This turns the subformula into a bulleted and list that is ended by
any following token to the left of the and symbols.
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( ∧ pc = “start”
∧ i ′ ∈ 0 . .1000
∧ pc′ = “middle”

∨ ( pc = “middle”
∧ i ′ = i + 1
∧ pc′ = “done” )

Widely separated matching parentheses make formulas hard to read.

(They’re not very far apart here, but they could be in a larger formula.)

TLA+ lets us eliminate them by adding this extra and symbol.

This turns the subformula into a bulleted and list that is ended by
any following token to the left of the and symbols.
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( ∧ pc = “start”
∧ i ′ ∈ 0 . .1000
∧ pc′ = “middle”

∨ ( pc = “middle”
∧ i ′ = i + 1
∧ pc′ = “done” )

Widely separated matching parentheses make formulas hard to read.

(They’re not very far apart here, but they could be in a larger formula.)

TLA+ lets us eliminate them by adding this extra and symbol.

This turns the subformula into a bulleted and list that is ended by
any following token to the left of the and symbols.
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( ∧ pc = “start”
∧ i ′ ∈ 0 . .1000
∧ pc′ = “middle”

∨ ( pc = “middle”
∧ i ′ = i + 1

�

∧ pc′ = “done” )

Widely separated matching parentheses make formulas hard to read.

(They’re not very far apart here, but they could be in a larger formula.)

TLA+ lets us eliminate them by adding this extra and symbol.

This turns the subformula into a bulleted and list that is ended by
any following token to the left of the and symbols.
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( ∧ pc = “start”
∧ i ′ ∈ 0 . .1000
∧ pc′ = “middle” )

∨ ( pc = “middle”
∧ i ′ = i + 1
∧ pc′ = “done” )

As if these parentheses were there.

Let’s do the same thing with this subformula.
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( ∧ pc = “start”
∧ i ′ ∈ 0 . .1000
∧ pc′ = “middle”

∨ ( pc = “middle”
∧ i ′ = i + 1
∧ pc′ = “done” )

As if these parentheses were there.

Let’s do the same thing with this subformula.
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( ∧ pc = “start”
∧ i ′ ∈ 0 . .1000
∧ pc′ = “middle”

∨ ( ∧ pc = “middle”
∧ i ′ = i + 1
∧ pc′ = “done” )

As if these parentheses were there.

Let’s do the same thing with this subformula.
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∧ pc = “start”
∧ i ′ ∈ 0 . .1000
∧ pc′ = “middle”

∨ ∧ pc = “middle”
∧ i ′ = i + 1
∧ pc′ = “done”

Let’s compare the TLA+ formula
with the corresponding C code.

Let’s do the same thing for the or.

TLA+ also allows bulleted or lists.

There are implicit parentheses around the formula.

Now let’s compare the TLA+ formula with the corresponding C code, which. . .
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∧ pc = “start”
∧ i ′ ∈ 0 . .1000
∧ pc′ = “middle”

∨ ∧ pc = “middle”
∧ i ′ = i + 1
∧ pc′ = “done”

Let’s compare the TLA+ formula
with the corresponding C code.

Let’s do the same thing for the or.

TLA+ also allows bulleted or lists.

There are implicit parentheses around the formula.

Now let’s compare the TLA+ formula with the corresponding C code, which. . .
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∨ ∧ pc = “start”
∧ i ′ ∈ 0 . .1000
∧ pc′ = “middle”

∨ ∧ pc = “middle”
∧ i ′ = i + 1
∧ pc′ = “done”

Let’s compare the TLA+ formula
with the corresponding C code.

Let’s do the same thing for the or.

TLA+ also allows bulleted or lists.

There are implicit parentheses around the formula.

Now let’s compare the TLA+ formula with the corresponding C code, which. . .
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( ∨ ∧ pc = “start”
∧ i ′ ∈ 0 . .1000
∧ pc′ = “middle”

∨ ∧ pc = “middle”
∧ i ′ = i + 1
∧ pc′ = “done” )

Let’s compare the TLA+ formula
with the corresponding C code.

Let’s do the same thing for the or.

TLA+ also allows bulleted or lists.

There are implicit parentheses around the formula.

Now let’s compare the TLA+ formula with the corresponding C code, which. . .
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∨ ∧ pc = “start”
∧ i ′ ∈ 0 . .1000
∧ pc′ = “middle”

∨ ∧ pc = “middle”
∧ i ′ = i + 1
∧ pc′ = “done”

Let’s compare the TLA+ formula
with the corresponding C code.

Let’s do the same thing for the or.

TLA+ also allows bulleted or lists.

There are implicit parentheses around the formula.

Now let’s compare the TLA+ formula with the corresponding C code, which. . .
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∨ ∧ pc = “start”
∧ i ′ ∈ 0 . .1000
∧ pc′ = “middle”

∨ ∧ pc = “middle”
∧ i ′ = i + 1
∧ pc′ = “done”

Let’s compare the TLA+ formula
with the corresponding C code.

Let’s do the same thing for the or.

TLA+ also allows bulleted or lists.

There are implicit parentheses around the formula.

Now let’s compare the TLA+ formula with the corresponding C code, which. . .

[ slide 164 ]



int i ;
void main()

{ i = someNumber() ;
i = i + 1 ;

}

∨ ∧ pc = “start”
∧ i ′ ∈ 0 . .1000
∧ pc′ = “middle”

∨ ∧ pc = “middle”
∧ i ′ = i + 1
∧ pc′ = “done”

is the C code without the declaration of i .

The C code probably seems simpler than the TLA+ formula because it’s more
familiar to you.

But the C code isn’t really simpler.

For one thing, the equal sign in TLA+ means equality, just as in grammar
school, when you wrote two plus two equals 4.
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int i ;
void main()

{ i = someNumber() ;
i = i + 1 ;

}

∨ ∧ pc = “start”
∧ i ′ ∈ 0 . .1000
∧ pc′ = “middle”

∨ ∧ pc = “middle”
∧ i ′ = i + 1
∧ pc′ = “done”

The C code probably seems simpler because it’s more familiar.

But it isn’t really simpler.

is the C code without the declaration of i .

The C code probably seems simpler than the TLA+ formula because it’s more
familiar to you.

But the C code isn’t really simpler.

For one thing, the equal sign in TLA+ means equality, just as in grammar
school, when you wrote two plus two equals 4.
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int i ;
void main()

{ i = someNumber() ;
i = i + 1 ;

}

∨ ∧ pc = “start”
∧ i ′ ∈ 0 . .1000
∧ pc′ = “middle”

∨ ∧ pc = “middle”
∧ i ′ = i + 1
∧ pc′ = “done”

The C code probably seems simpler because it’s more familiar.

But it isn’t really simpler.

is the C code without the declaration of i .

The C code probably seems simpler than the TLA+ formula because it’s more
familiar to you.

But the C code isn’t really simpler.

For one thing, the equal sign in TLA+ means equality, just as in grammar
school, when you wrote two plus two equals 4.
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int i ;
void main()

{ i = someNumber() ;
i = i + 1 ;

}

∨ ∧ pc = “start”
∧ i ′ ∈ 0 . .1000
∧ pc′ = “middle”

∨ ∧ pc = “middle”
∧ i ′ = i + 1
∧ pc′ = “done”

= in TLA+ means equality, as in 2 + 2 = 4 .

= in C means assignment, which isn’t so simple.

is the C code without the declaration of i .

The C code probably seems simpler than the TLA+ formula because it’s more
familiar to you.

But the C code isn’t really simpler.

For one thing, the equal sign in TLA+ means equality, just as in grammar
school, when you wrote two plus two equals 4.
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int i ;
void main()

{ i = someNumber() ;
i = i + 1 ;

}

∨ ∧ pc = “start”
∧ i ′ ∈ 0 . .1000
∧ pc′ = “middle”

∨ ∧ pc = “middle”
∧ i ′ = i + 1
∧ pc′ = “done”

= in TLA+ means equality, as in 2 + 2 = 4 .

= in C means assignment, which isn’t so simple.

The equals sign in C means assignment, which isn’t so simple.

But the big difference between math and C is that math is much, much more
expressive.

What about someNumber?

Its execution is nondeterministic.
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int i ;
void main()

{ i = someNumber() ;
i = i + 1 ;

}

∨ ∧ pc = “start”
∧ i ′ ∈ 0 . .1000
∧ pc′ = “middle”

∨ ∧ pc = “middle”
∧ i ′ = i + 1
∧ pc′ = “done”

The big difference between math and C:

Math is much more expressive.

The equals sign in C means assignment, which isn’t so simple.

But the big difference between math and C is that math is much, much more
expressive.

What about someNumber?

Its execution is nondeterministic.
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int i ;
void main()

{ i = someNumber() ;
i = i + 1 ;

}

∨ ∧ pc = “start”
∧ i ′ ∈ 0 . .1000
∧ pc′ = “middle”

∨ ∧ pc = “middle”
∧ i ′ = i + 1
∧ pc′ = “done”

What about someNumber?

The equals sign in C means assignment, which isn’t so simple.

But the big difference between math and C is that math is much, much more
expressive.

What about someNumber?

Its execution is nondeterministic.
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int i ;
void main()

{ i = someNumber() ;
i = i + 1 ;

}

∨ ∧ pc = “start”
∧ i ′ ∈ 0 . .1000
∧ pc′ = “middle”

∨ ∧ pc = “middle”
∧ i ′ = i + 1
∧ pc′ = “done”

Its execution is nondeterministic.

The equals sign in C means assignment, which isn’t so simple.

But the big difference between math and C is that math is much, much more
expressive.

What about someNumber?

Its execution is nondeterministic.
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int i ;
void main()

{ i = someNumber() ;
i = i + 1 ;

}

∨ ∧ pc = “start”
∧ i ′ ∈ 0 . .1000
∧ pc′ = “middle”

∨ ∧ pc = “middle”
∧ i ′ = i + 1
∧ pc′ = “done”

We need nondeterminism to describe systems,
because we can’t predict in what order things happen.

We need nondeterminism like this to describe systems,
because we can’t predict in what order things happen.

Look how easily nondeterminism is described in math.
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∨ ∧ pc = “middle”
∧ i ′ = i + 1
∧ pc′ = “done”

We need nondeterminism to describe systems,
because we can’t predict in what order things happen.

We need nondeterminism like this to describe systems,
because we can’t predict in what order things happen.

Look how easily nondeterminism is described in math.
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int i ;
void main()

{ i = someNumber() ;
i = i + 1 ;

}

∨ ∧ pc = “start”
∧ i ′ ∈ 0 . .1000
∧ pc′ = “middle”

∨ ∧ pc = “middle”
∧ i ′ = i + 1
∧ pc′ = “done”

Look how easily it’s described in math.

Programming languages weren’t designed to express
nondeterminism.

We need nondeterminism like this to describe systems,
because we can’t predict in what order things happen.

Look how easily nondeterminism is described in math.
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int i ;
void main()

{ i = someNumber() ;
i = i + 1 ;

}

∨ ∧ pc = “start”
∧ i ′ ∈ 0 . .1000
∧ pc′ = “middle”

∨ ∧ pc = “middle”
∧ i ′ = i + 1
∧ pc′ = “done”

Look how easily it’s described in math.

Programming languages weren’t designed to express
nondeterminism.

Commonly used programming languages were not designed to express
nondeterminism.

Programming languages lack much more than constructs for
nondeterminism.

They don’t let you abstract above the code level.
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int i ;
void main()

{ i = someNumber() ;
i = i + 1 ;

}
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∧ i ′ ∈ 0 . .1000
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Commonly used programming languages were not designed to express
nondeterminism.

Programming languages lack much more than constructs for
nondeterminism.

They don’t let you abstract above the code level.

[ slide 177 ]



int i ;
void main()

{ i = someNumber() ;
i = i + 1 ;

}

∨ ∧ pc = “start”
∧ i ′ ∈ 0 . .1000
∧ pc′ = “middle”

∨ ∧ pc = “middle”
∧ i ′ = i + 1
∧ pc′ = “done”

They lack more than constructs for nondeterminism.

Programming languages don’t abstract above the code level.

Commonly used programming languages were not designed to express
nondeterminism.

Programming languages lack much more than constructs for
nondeterminism.

They don’t let you abstract above the code level.
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∨ ∧ pc = “start”
∧ i ′ ∈ 0 . .1000
∧ pc′ = “middle”

∨ ∧ pc = “middle”
∧ i ′ = i + 1
∧ pc′ = “done”

It’s important to remember that this is a formula,
not a sequence of commands.

It’s important to remember that this is a formula,
not a sequence of commands.

or is commutative so interchanging these sub-formulas
yields an equivalent formula.

and is also commutative so interchanging these sub-formulas
also yields an equivalent formula.
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∨ ∧ pc = “start”
∧ i ′ ∈ 0 . .1000
∧ pc′ = “middle”

∨ ∧ pc = “middle”
∧ i ′ = i + 1
∧ pc′ = “done”

∨ is commutative, so interchanging these
sub-formulas yields an equivalent formula.

It’s important to remember that this is a formula,
not a sequence of commands.

or is commutative so interchanging these sub-formulas
yields an equivalent formula.

and is also commutative so interchanging these sub-formulas
also yields an equivalent formula.
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∨ ∧ pc = “start”
∧ i ′ ∈ 0 . .1000
∧ pc′ = “middle”

∨ ∧ pc = “middle”
∧ i ′ = i + 1
∧ pc′ = “done”

	

I

∨ is commutative, so interchanging these
sub-formulas yields an equivalent formula.

It’s important to remember that this is a formula,
not a sequence of commands.

or is commutative so interchanging these sub-formulas
yields an equivalent formula.

and is also commutative so interchanging these sub-formulas
also yields an equivalent formula.
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∨ ∧ pc = “start”
∧ i ′ ∈ 0 . .1000
∧ pc′ = “middle”

∨ ∧ pc = “middle”
∧ i ′ = i + 1
∧ pc′ = “done”
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∨ ∧ pc = “middle”
∧ i ′ = i + 1
∧ pc′ = “done”

∨ ∧ pc = “start”
∧ i ′ ∈ 0 . .1000
∧ pc′ = “middle”

∨ is commutative, so interchanging these
sub-formulas yields an equivalent formula.

It’s important to remember that this is a formula,
not a sequence of commands.

or is commutative so interchanging these sub-formulas
yields an equivalent formula.

and is also commutative so interchanging these sub-formulas
also yields an equivalent formula.
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∨ ∧ pc = “start”
∧ i ′ ∈ 0 . .1000
∧ pc′ = “middle”

∨ ∧ pc = “middle”
∧ i ′ = i + 1
∧ pc′ = “done”

∨ ∧ pc = “middle”
∧ i ′ = i + 1
∧ pc′ = “done”

∨ ∧ pc = “start”
∧ i ′ ∈ 0 . .1000
∧ pc′ = “middle”

∨ is commutative, so interchanging these
sub-formulas yields an equivalent formula.

It’s important to remember that this is a formula,
not a sequence of commands.

or is commutative so interchanging these sub-formulas
yields an equivalent formula.

and is also commutative so interchanging these sub-formulas
also yields an equivalent formula.
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∨ ∧ pc = “start”
∧ i ′ ∈ 0 . .1000
∧ pc′ = “middle”

∨ ∧ pc = “middle”
∧ i ′ = i + 1
∧ pc′ = “done”

∧ is also commutative, so interchanging these
sub-formulas also yields an equivalent formula.

It’s important to remember that this is a formula,
not a sequence of commands.

or is commutative so interchanging these sub-formulas
yields an equivalent formula.

and is also commutative so interchanging these sub-formulas
also yields an equivalent formula.
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∨ ∧ pc = “start”
∧ i ′ ∈ 0 . .1000 I

	∧ pc′ = “middle”

∨ ∧ pc = “middle”
∧ i ′ = i + 1
∧ pc′ = “done”

∧ is also commutative, so interchanging these
sub-formulas also yields an equivalent formula.

It’s important to remember that this is a formula,
not a sequence of commands.

or is commutative so interchanging these sub-formulas
yields an equivalent formula.

and is also commutative so interchanging these sub-formulas
also yields an equivalent formula.
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∨ ∧ pc = “start”
∧ i ′ ∈ 0 . .1000

��
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∧ pc′ = “middle”

∨ ∧ pc = “middle”
∧ i ′ = i + 1
∧ pc′ = “done”

∨ ∧ pc′ = “middle”
∧ pc = “start”
∧ i ′ ∈ 0 . .1000

∨ ∧ pc = “middle”
∧ i ′ = i + 1
∧ pc′ = “done”

∧ is also commutative, so interchanging these
sub-formulas also yields an equivalent formula.

It’s important to remember that this is a formula,
not a sequence of commands.

or is commutative so interchanging these sub-formulas
yields an equivalent formula.

and is also commutative so interchanging these sub-formulas
also yields an equivalent formula.
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∨ ∧ pc = “start”
∧ i ′ ∈ 0 . .1000
∧ pc′ = “middle”

∨ ∧ pc = “middle”
∧ i ′ = i + 1
∧ pc′ = “done”

∨ ∧ pc′ = “middle”
∧ pc = “start”
∧ i ′ ∈ 0 . .1000

∨ ∧ pc = “middle”
∧ i ′ = i + 1
∧ pc′ = “done”

∧ is also commutative, so interchanging these
sub-formulas also yields an equivalent formula.

It’s important to remember that this is a formula,
not a sequence of commands.

or is commutative so interchanging these sub-formulas
yields an equivalent formula.

and is also commutative so interchanging these sub-formulas
also yields an equivalent formula.
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∨ ∧ pc = “start”
∧ i ′ ∈ 0 . .1000
∧ pc′ = “middle”

∨ ∧ pc = “middle”
∧ i ′ = i + 1
∧ pc′ = “done”

It’s important to remember that this is a formula,
not a sequence of commands.

or is commutative so interchanging these sub-formulas
yields an equivalent formula.

and is also commutative so interchanging these sub-formulas
also yields an equivalent formula.
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THE COMPLETE TLA+ SPEC

The complete TLA+ Specification.



The Complete Spec in Math

Initial-state formula: (i = 0) ∧ (pc = “start”)

Next-state formula: ∨ ∧ pc = “start”
∧ i ′ ∈ 0 . .1000
∧ pc′ = “middle”

∨ ∧ pc = “middle”
∧ i ′ = i + 1
∧ pc′ = “done”

This is the complete specification in mathematics.

The initial-state formula can also be written like this.

But this takes less space.
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The Complete Spec in Math

Initial-state formula: (i = 0) ∧ (pc = “start”)

This is the complete specification in mathematics.

The initial-state formula can also be written like this.

But this takes less space.
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The Complete Spec in Math

Initial-state formula: ∧ i = 0
∧ pc = “start”

This is the complete specification in mathematics.

The initial-state formula can also be written like this.

But this takes less space.
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The Complete Spec in Math

Initial-state formula: (i = 0) ∧ (pc = “start”)

This is the complete specification in mathematics.

The initial-state formula can also be written like this.

But this takes less space.
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The Complete Spec in Math

Initial-state formula: (i = 0) ∧ (pc = “start”)

Next-state formula: ∨ ∧ pc = “start”
∧ i ′ ∈ 0 . .1000
∧ pc′ = “middle”

∨ ∧ pc = “middle”
∧ i ′ = i + 1
∧ pc′ = “done”

A TLA+ specification has some additional stuff.
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A TLA+ spec appears in a module.

This module is named SimpleProgram.

This EXTENDS statement imports arithmetic operators like
plus and dot-dot.
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A TLA+ spec appears in a module.

A TLA+ spec appears in a module.

This module is named SimpleProgram.

This EXTENDS statement imports arithmetic operators like
plus and dot-dot.
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This module is named SimpleProgram.

A TLA+ spec appears in a module.

This module is named SimpleProgram.

This EXTENDS statement imports arithmetic operators like
plus and dot-dot.
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A TLA+ spec appears in a module.

This module is named SimpleProgram.

This EXTENDS statement imports arithmetic operators like
plus and dot-dot.
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Imports arithmetic operators like + and . .

A TLA+ spec appears in a module.

This module is named SimpleProgram.

This EXTENDS statement imports arithmetic operators like
plus and dot-dot.
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Identifiers must be defined or declared before they’re used.

This statement declares the variables.

This is a definition.
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Declares the variables.

Identifiers must be defined or declared before they’re used.

This statement declares the variables.

This is a definition.
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Identifiers must be defined or declared before they’re used.

This statement declares the variables.

This is a definition.
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Defines Init to be equal to the initial formula.

It defines Init to be equal to the initial formula.

Similarly, this statement defines Next to equal the next-state formula.

You can use any names instead of Init and Next ,
But they are the ones normally used by convention.

This is the pretty-printed version of the spec.
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Defines Init to be equal to the initial formula.

It defines Init to be equal to the initial formula.

Similarly, this statement defines Next to equal the next-state formula.

You can use any names instead of Init and Next ,
But they are the ones normally used by convention.

This is the pretty-printed version of the spec.
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It defines Init to be equal to the initial formula.

Similarly, this statement defines Next to equal the next-state formula.

You can use any names instead of Init and Next ,
But they are the ones normally used by convention.

This is the pretty-printed version of the spec.
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Defines Next to equal
the next-state formula.

It defines Init to be equal to the initial formula.

Similarly, this statement defines Next to equal the next-state formula.

You can use any names instead of Init and Next ,
But they are the ones normally used by convention.

This is the pretty-printed version of the spec.
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Defines Next to equal
the next-state formula.

It defines Init to be equal to the initial formula.

Similarly, this statement defines Next to equal the next-state formula.

You can use any names instead of Init and Next ,
But they are the ones normally used by convention.

This is the pretty-printed version of the spec.
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It defines Init to be equal to the initial formula.

Similarly, this statement defines Next to equal the next-state formula.

You can use any names instead of Init and Next ,
But they are the ones normally used by convention.

This is the pretty-printed version of the spec.
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You can use any names.

It defines Init to be equal to the initial formula.

Similarly, this statement defines Next to equal the next-state formula.

You can use any names instead of Init and Next ,
But they are the ones normally used by convention.

This is the pretty-printed version of the spec.
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You can use any names.

These are conventional.

It defines Init to be equal to the initial formula.

Similarly, this statement defines Next to equal the next-state formula.

You can use any names instead of Init and Next ,
But they are the ones normally used by convention.

This is the pretty-printed version of the spec.
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It defines Init to be equal to the initial formula.

Similarly, this statement defines Next to equal the next-state formula.

You can use any names instead of Init and Next ,
But they are the ones normally used by convention.

This is the pretty-printed version of the spec.
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--------------- MODULE SimpleProgram ---------------
EXTENDS Integers
VARIABLES i, pc

Init == (pc = "start") /\ (i = 0)

Next == \/ /\ pc = "start"
/\ i’ \in 0..1000
/\ pc’ = "middle"

\/ /\ pc = "middle"
/\ i’ = i + 1
/\ pc’ = "done"

====================================================

Here is how you type the spec into the TLA+ Toolbox.

On command, the Toolbox will display
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this pretty-printed version.
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DECOMPOSING LARGE SPECS

Decomposing large specs.
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The next-state formula can be 100s of lines.

We can understand a big formula by splitting
it into smaller parts.

Math has a simple and powerful way to
do that:

Using definitions.

For real specs, the next-state formula can be hundreds or even thousands of
lines.

We can understand a big formula by splitting it into smaller parts.

Math has a simple and very powerful way to do that: Using definitions.
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The next-state formula can be 100s of lines.

We can understand a big formula by splitting
it into smaller parts.

Math has a simple and powerful way to
do that:

Using definitions.

For real specs, the next-state formula can be hundreds or even thousands of
lines.

We can understand a big formula by splitting it into smaller parts.

Math has a simple and very powerful way to do that: Using definitions.
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This spec is too simple to need splitting into parts, but let’s do it anyway.

An obvious way to decompose this spec is

by giving names to these two subformulas.

We could call them anything, say Fred and Mary.
But more descriptive names are better, such as Pick and Add1
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This spec is too simple to need splitting into parts, but let’s do it anyway.

An obvious way to decompose this spec is

by giving names to these two subformulas.

We could call them anything, say Fred and Mary.
But more descriptive names are better, such as Pick and Add1
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Fred

Mary

This spec is too simple to need splitting into parts, but let’s do it anyway.

An obvious way to decompose this spec is

by giving names to these two subformulas.

We could call them anything, say Fred and Mary.
But more descriptive names are better, such as Pick and Add1
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Pick

Add1

This spec is too simple to need splitting into parts, but let’s do it anyway.

An obvious way to decompose this spec is

by giving names to these two subformulas.

We could call them anything, say Fred and Mary.
But more descriptive names are better, such as Pick and Add1

[ slide 223 ]



So let’s replace this definition of Next
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with these three definitions.

We define Pick and Add1 and then define Next to equal Pick or Add1 This
definition of Next
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with these three definitions.

We define Pick and Add1 and then define Next to equal Pick or Add1 This
definition of Next
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with these three definitions.

We define Pick and Add1 and then define Next to equal Pick or Add1 This
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with these three definitions.

We define Pick and Add1 and then define Next to equal Pick or Add1 This
definition of Next
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These are equivalent definitions of Next .

Is completely equivalent to our original definition.

It doesn’t matter which one we use.
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These are equivalent definitions of Next .

Is completely equivalent to our original definition.

It doesn’t matter which one we use.
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This C code example is tiny. Most of the examples I will present are simple.

I believe you’ll learn more by carefully studying simple examples than by
skimming complex ones.

For now, you’ll have to trust me — and the engineers at Amazon Web
Services and elsewhere who use it — when we say that TLA+ is good for
specifying real systems, not just toy examples.
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TLA+ Video Course

End of Lecture 2

STATE MACHINES IN TLA+

This is the end of Lecture 2 of the TLA+ Video Course
—

State Machines in Math
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