
TLA+ Video Course – Lecture 2
Leslie Lamport

STATE MACHINES IN TLA+

This video should be viewed in conjunction with a Web page.
To find that page, search the Web for TLA+ Video Course .

The TLA+ Video Course
Lecture 2
STATE MACHINES IN MATH

In the first lecture, I introduced state machines as a simple abstraction of
digital systems.

You saw how a tiny C program can be viewed as a state machine.

In this lecture, you will see how that state machine can be described
mathematically, and you will get your first glimpse of TLA+.

[slide 2]

WHAT LANGUAGE

SHOULD WE USE ?

What language should we use to describe state machines?

[slide 3]

State machines are a simple and powerful abstraction.

We need a precise, practical way to describe them.

This is neither precise nor practical:
if current value of pc equals “start”

then next value of i in {0, 1, . . . , 1000}
next value of pc equals “middle”

else if current value of pc equals “middle”
then next value of i equals

current value of i + 1
next value of pc equals “done”

else no next values

State machines are a simple and powerful abstraction.

We need a precise, practical way to describe them.

The way we described the next state for the simple program
is neither precise nor is it practical for real systems .

[slide 4]

State machines are a simple and powerful abstraction.

We need a precise, practical way to describe them.

This is neither precise nor practical:
if current value of pc equals “start”

then next value of i in {0, 1, . . . , 1000}
next value of pc equals “middle”

else if current value of pc equals “middle”
then next value of i equals

current value of i + 1
next value of pc equals “done”

else no next values

State machines are a simple and powerful abstraction.

We need a precise, practical way to describe them.

The way we described the next state for the simple program
is neither precise nor is it practical for real systems .

[slide 5]

State machines are a simple and powerful abstraction.

We need a precise, practical way to describe them.

This is neither precise nor practical:
if current value of pc equals “start”

then next value of i in {0, 1, . . . , 1000}
next value of pc equals “middle”

else if current value of pc equals “middle”
then next value of i equals

current value of i + 1
next value of pc equals “done”

else no next values

State machines are a simple and powerful abstraction.

We need a precise, practical way to describe them.

The way we described the next state for the simple program
is neither precise nor is it practical for real systems .

[slide 6]

We need a language for describing state machines.

Most software engineers want one like their favorite
programming language.

TLA+ uses ordinary, simple math.

Most software engineers find that a
terrible and terrifying idea.

We need a precise language for describing state machines.

Asked what such a language should look like, most programmers and software
engineers want one that’s a lot like their favorite programming language.

TLA+ takes a different approach. It uses ordinary, simple math.

This strikes most programmers and software engineers as a terrible idea–and probably
a terrifying one.

[slide 7]

We need a language for describing state machines.

Most software engineers want one like their favorite
programming language.

TLA+ uses ordinary, simple math.

Most software engineers find that a
terrible and terrifying idea.

We need a precise language for describing state machines.

Asked what such a language should look like, most programmers and software
engineers want one that’s a lot like their favorite programming language.

TLA+ takes a different approach. It uses ordinary, simple math.

This strikes most programmers and software engineers as a terrible idea–and probably
a terrifying one.

[slide 8]

We need a language for describing state machines.

Most software engineers want one like their favorite
programming language.

TLA+ uses ordinary, simple math.

Most software engineers find that a
terrible and terrifying idea.

We need a precise language for describing state machines.

Asked what such a language should look like, most programmers and software
engineers want one that’s a lot like their favorite programming language.

TLA+ takes a different approach. It uses ordinary, simple math.

This strikes most programmers and software engineers as a terrible idea–and probably
a terrifying one.

[slide 9]

We need a language for describing state machines.

Most software engineers want one like their favorite
programming language.

TLA+ uses ordinary, simple math.

Most software engineers find that a
terrible and terrifying idea.

We need a precise language for describing state machines.

Asked what such a language should look like, most programmers and software
engineers want one that’s a lot like their favorite programming language.

TLA+ takes a different approach. It uses ordinary, simple math.

This strikes most programmers and software engineers as a terrible idea–and probably
a terrifying one.

[slide 10]

We need a language for describing state machines.

Most software engineers want one like their favorite
programming language.

TLA+ uses ordinary, simple math.

Most software engineers find that a
terrible and terrifying idea.

We need a precise language for describing state machines.

Asked what such a language should look like, most programmers and software
engineers want one that’s a lot like their favorite programming language.

TLA+ takes a different approach. It uses ordinary, simple math.

This strikes most programmers and software engineers as a terrible idea–and probably
a terrifying one.

[slide 11]

Here’s what the designers of this
real-time operating system said
in this paper:

Here’s what the designers of this real-time operating system

said in this paper:

[slide 12]

Here’s what the designers of this
real-time operating system said
in this paper:

An industrial Case: Pitfalls and Benefits of Applying Formal
Methods to the Development of a Network-Centric RTOS

Eric Verhulst, Gjalt de Jong, and Vitaliy Mezhuyev

Formal Methods 2008, pages 411 – 418

Here’s what the designers of this real-time operating system

said in this paper:

[slide 13]

While we had an initial bias toward using language X,
in the end it was decided to use TLA+. Although the
mathematical notation of the TLA+ language was first
considered a hindrance versus the C-like language X,
in the end it has proven to be a major benefit
as it forced us to reason in a much more abstract way
about the system.

While we had an initial bias toward using language X,

I’m not going to tell you what that language was

in the end it was decided to use TLA+.

Although the mathematical notation of the TLA+ language was first
considered a hindrance versus the C-like language X,

[slide 14]

While we had an initial bias toward using language X,
in the end it was decided to use TLA+. Although the
mathematical notation of the TLA+ language was first
considered a hindrance versus the C-like language X,
in the end it has proven to be a major benefit
as it forced us to reason in a much more abstract way
about the system.

While we had an initial bias toward using language X,

I’m not going to tell you what that language was

in the end it was decided to use TLA+.

Although the mathematical notation of the TLA+ language was first
considered a hindrance versus the C-like language X,

[slide 15]

While we had an initial bias toward using language X,
in the end it was decided to use TLA+. Although the
mathematical notation of the TLA+ language was first
considered a hindrance versus the C-like language X,
in the end it has proven to be a major benefit
as it forced us to reason in a much more abstract way
about the system.

While we had an initial bias toward using language X,

I’m not going to tell you what that language was

in the end it was decided to use TLA+.

Although the mathematical notation of the TLA+ language was first
considered a hindrance versus the C-like language X,

[slide 16]

While we had an initial bias toward using language X,
in the end it was decided to use TLA+. Although the
mathematical notation of the TLA+ language was first
considered a hindrance versus the C-like language X,
in the end it has proven to be a major benefit
as it forced us to reason in a much more abstract way
about the system.

in the end it has proven to be a major benefit

not a hindrance, a major benefit

as it forced us to reason in a much more abstract way about the system.

A more abstract way. And remember. . .

[slide 17]

While we had an initial bias toward using language X,
in the end it was decided to use TLA+. Although the
mathematical notation of the TLA+ language was first
considered a hindrance versus the C-like language X,
in the end it has proven to be a major benefit
as it forced us to reason in a much more abstract way
about the system.

in the end it has proven to be a major benefit

not a hindrance, a major benefit

as it forced us to reason in a much more abstract way about the system.

A more abstract way. And remember. . .

[slide 18]

While we had an initial bias toward using language X,
in the end it was decided to use TLA+. Although the
mathematical notation of the TLA+ language was first
considered a hindrance versus the C-like language X,
in the end it has proven to be a major benefit
as it forced us to reason in a much more abstract way
about the system.

in the end it has proven to be a major benefit

not a hindrance, a major benefit

as it forced us to reason in a much more abstract way about the system.

A more abstract way. And remember. . .

[slide 19]

Remember what Brannon Batson said:

The hard part of learning to write TLA+

specs is learning to think abstractly about
the system.

Being able to think abstractly improves
our design process.

what Brannon Batson said.

The hard part of learning to write TLA+ specs is learning to think abstractly
about the system.

Being able to think abstractly improves our design process.

[slide 20]

Remember what Brannon Batson said:

The hard part of learning to write TLA+

specs is learning to think abstractly about
the system.

Being able to think abstractly improves
our design process.

what Brannon Batson said.

The hard part of learning to write TLA+ specs is learning to think abstractly
about the system.

Being able to think abstractly improves our design process.

[slide 21]

Remember what Brannon Batson said:

The hard part of learning to write TLA+

specs is learning to think abstractly about
the system.

Being able to think abstractly improves
our design process.

what Brannon Batson said.

The hard part of learning to write TLA+ specs is learning to think abstractly
about the system.

Being able to think abstractly improves our design process.

[slide 22]

Remember what Verhulst said:

We witnessed first hand the brain washing
done by years of C programming.

And remember what Eric Verhulst, the leader of that
real-time operating system project, said:

We witnessed first hand the brain washing done by
years of C programming.

[slide 23]

Remember what Verhulst said:

We witnessed first hand the brain washing
done by years of C programming.

And remember what Eric Verhulst, the leader of that
real-time operating system project, said:

We witnessed first hand the brain washing done by
years of C programming.

[slide 24]

DESCRIBING A STATE MACHINE

WITH MATH

Describing a state machine with math.

[slide 25]

Our example C program:

int i ;
void main()

{ i = someNumber() ;
i = i + 1 ;

}

We introduced pc to describe the control state.

Remember our example C program.

Recall that we introduced the variable pc to describe the control state.

pc equals the string start means this is the next statement to be executed.

pc equals middle means control is here.

and pc equals done when execution has terminated.

[slide 26]

Our example C program:

int i ;
void main()

{ i = someNumber() ;
i = i + 1 ;

}

We introduced pc to describe the control state.

Remember our example C program.

Recall that we introduced the variable pc to describe the control state.

pc equals the string start means this is the next statement to be executed.

pc equals middle means control is here.

and pc equals done when execution has terminated.

[slide 27]

Our example C program:

int i ;
void main()

{pc = “start” i = someNumber() ;
i = i + 1 ;

}

We introduced pc to describe the control state.

Remember our example C program.

Recall that we introduced the variable pc to describe the control state.

pc equals the string start means this is the next statement to be executed.

pc equals middle means control is here.

and pc equals done when execution has terminated.

[slide 28]

Our example C program:

int i ;
void main()

{ i = someNumber() ;
pc = “middle” i = i + 1 ;

}

We introduced pc to describe the control state.

Remember our example C program.

Recall that we introduced the variable pc to describe the control state.

pc equals the string start means this is the next statement to be executed.

pc equals middle means control is here.

and pc equals done when execution has terminated.

[slide 29]

Our example C program:

int i ;
void main()

{ i = someNumber() ;
i = i + 1 ;

} pc = “done”

We introduced pc to describe the control state.

Remember our example C program.

Recall that we introduced the variable pc to describe the control state.

pc equals the string start means this is the next statement to be executed.

pc equals middle means control is here.

and pc equals done when execution has terminated.

[slide 30]

int i ;
void main()

{ i = someNumber() ;
i = i + 1 ;

}

We must describe:

1. Possible initial values of variables.

2. The relation between their values in the current state
and their possible values in the next state.

To describe this program, we must describe two things:

The possible initial values of the variables.

And what the relation is between the values of the variables in the current
state and their possible values in the next state.

Let’s start with the initial values.

[slide 31]

int i ;
void main()

{ i = someNumber() ;
i = i + 1 ;

}

We must describe:

1. Possible initial values of variables.

2. The relation between their values in the current state
and their possible values in the next state.

To describe this program, we must describe two things:

The possible initial values of the variables.

And what the relation is between the values of the variables in the current
state and their possible values in the next state.

Let’s start with the initial values.

[slide 32]

int i ;
void main()

{ i = someNumber() ;
i = i + 1 ;

}

We must describe:

1. Possible initial values of variables.

2. The relation between their values in the current state
and their possible values in the next state.

To describe this program, we must describe two things:

The possible initial values of the variables.

And what the relation is between the values of the variables in the current
state and their possible values in the next state.

Let’s start with the initial values.

[slide 33]

int i ;
void main()

{ i = someNumber() ;
i = i + 1 ;

}

We must describe:

1. Possible initial values of variables.

2. The relation between their values in the current state
and their possible values in the next state.

To describe this program, we must describe two things:

The possible initial values of the variables.

And what the relation is between the values of the variables in the current
state and their possible values in the next state.

Let’s start with the initial values.

[slide 34]

int i ;
void main()

{ i = someNumber() ;
i = i + 1 ;

}

We must describe:

1. Possible initial values of variables.

2. The relation between their values in the current state
and their possible values in the next state.

To describe this program, we must describe two things:

The possible initial values of the variables.

And what the relation is between the values of the variables in the current
state and their possible values in the next state.

Let’s start with the initial values.

[slide 35]

Possible initial values of variables.

i = 0 and pc = “start”

Must replace “and” by a mathematical
operator.

Written && in some programming languages.
Written ∧ in mathematics.

Some unnecessary parentheses make it easier to read.

These are the initial values. But we want a mathematical formula, so

we must replace and by a mathematical operator.

[slide 36]

Possible initial values of variables.

i = 0 and pc = “start”

Must replace “and” by a mathematical
operator.

Written && in some programming languages.
Written ∧ in mathematics.

Some unnecessary parentheses make it easier to read.

These are the initial values. But we want a mathematical formula, so

we must replace and by a mathematical operator.

[slide 37]

Possible initial values of variables.

i = 0 and pc = “start”

Must replace “and” by a mathematical
operator.

Written && in some programming languages.
Written ∧ in mathematics.

Some unnecessary parentheses make it easier to read.

These are the initial values. But we want a mathematical formula, so

we must replace and by a mathematical operator.

[slide 38]

Possible initial values of variables.

i = 0 and pc = “start”

Must replace “and” by a mathematical
operator.

Written && in some programming languages.
Written ∧ in mathematics.

Some unnecessary parentheses make it easier to read.

That operator is written ampersand ampersand in some programming
languages.

It’s written with this symbol in mathematics.

Let’s add some unnecessary parentheses to make it easier to read.

[slide 39]

Possible initial values of variables.

i = 0 ∧ pc = “start”

Must replace “and” by a mathematical
operator.

Written && in some programming languages.
Written ∧ in mathematics.

Some unnecessary parentheses make it easier to read.

That operator is written ampersand ampersand in some programming
languages.

It’s written with this symbol in mathematics.

Let’s add some unnecessary parentheses to make it easier to read.

[slide 40]

Possible initial values of variables.

(i = 0) ∧ (pc = “start”)

Must replace “and” by a mathematical
operator.

Written && in some programming languages.
Written ∧ in mathematics.

Some unnecessary parentheses make it easier to read.

That operator is written ampersand ampersand in some programming
languages.

It’s written with this symbol in mathematics.

Let’s add some unnecessary parentheses to make it easier to read.

[slide 41]

2. The relation between their values in the current state
and their possible values in the next state.

int i ;
void main()

{ i = someNumber() ;
i = i + 1 ;

}

Now, let’s describe the relation between the values of the variables in the
current state and their possible values in the next state.

Here’s how I did it in the previous lecture.

[slide 42]

2. The relation between their values in the current state
and their possible values in the next state.

int i ;
void main()

{ i = someNumber() ;
i = i + 1 ;

}

if current value of pc equals “start”
then next value of i in {0, 1, . . . , 1000}

next value of pc equals “middle”
else if current value of pc equals “middle”

then next value of i equals
current value of i + 1

next value of pc equals “done”
else no next values

Now, let’s describe the relation between the values of the variables in the
current state and their possible values in the next state.

Here’s how I did it in the previous lecture.

[slide 43]

if current value of pc equals “start”
then next value of i in {0, 1, . . . , 1000}

next value of pc equals “middle”
else if current value of pc equals “middle”

then next value of i equals current value of i + 1
next value of pc equals “done”

else no next values

OK. Let’s now write this in math.

This requires replacing words with some notation.

First, let’s get rid of “current value of”

We simply let pc mean the current value of pc
and let i mean the current value of i

[slide 44]

if current value of pc equals “start”
then next value of i in {0, 1, . . . , 1000}

next value of pc equals “middle”
else if current value of pc equals “middle”

then next value of i equals current value of i + 1
next value of pc equals “done”

else no next values

Let’s write this in mathematics.
This requires some notation.

OK. Let’s now write this in math.

This requires replacing words with some notation.

First, let’s get rid of “current value of”

We simply let pc mean the current value of pc
and let i mean the current value of i

[slide 45]

if current value of pc equals “start”
then next value of i in {0, 1, . . . , 1000}

next value of pc equals “middle”
else if current value of pc equals “middle”

then next value of i equals current value of i + 1
next value of pc equals “done”

else no next values

Let’s write this in mathematics.
This requires some notation.

OK. Let’s now write this in math.

This requires replacing words with some notation.

First, let’s get rid of “current value of”

We simply let pc mean the current value of pc
and let i mean the current value of i

[slide 46]

if current value of pc equals “start”
then next value of i in {0, 1, . . . , 1000}

next value of pc equals “middle”
else if current value of pc equals “middle”

then next value of i equals current value of i + 1
next value of pc equals “done”

else no next values

OK. Let’s now write this in math.

This requires replacing words with some notation.

First, let’s get rid of “current value of”

We simply let pc mean the current value of pc
and let i mean the current value of i

[slide 47]

if current value of pc equals “start”
then next value of i in {0, 1, . . . , 1000}

next value of pc equals “middle”
else if current value of pc equals “middle”

then next value of i equals current value of i + 1
next value of pc equals “done”

else no next values

pc means current value of pc

OK. Let’s now write this in math.

This requires replacing words with some notation.

First, let’s get rid of “current value of”

We simply let pc mean the current value of pc
and let i mean the current value of i

[slide 48]

if current value of pc equals “start”
then next value of i in {0, 1, . . . , 1000}

next value of pc equals “middle”
else if current value of pc equals “middle”

then next value of i equals current value of i + 1
next value of pc equals “done”

else no next values

pc means current value of pc

i means current value of i

OK. Let’s now write this in math.

This requires replacing words with some notation.

First, let’s get rid of “current value of”

We simply let pc mean the current value of pc
and let i mean the current value of i

[slide 49]

if pc equals “start”
then next value of i in {0, 1, . . . , 1000}

next value of pc equals “middle”
else if pc equals “middle”

then next value of i equals i + 1
next value of pc equals “done”

else no next values

Next, we get rid of “next value of”

by letting pc prime and i prime mean the next values of pc and i

And finally, we replace the word “equals” by an equal sign.

Whew!

[slide 50]

if pc equals “start”
then next value of i in {0, 1, . . . , 1000}

next value of pc equals “middle”
else if pc equals “middle”

then next value of i equals i + 1
next value of pc equals “done”

else no next values

Next, we get rid of “next value of”

by letting pc prime and i prime mean the next values of pc and i

And finally, we replace the word “equals” by an equal sign.

Whew!

[slide 51]

if pc equals “start”
then next value of i in {0, 1, . . . , 1000}

next value of pc equals “middle”
else if pc equals “middle”

then next value of i equals i + 1
next value of pc equals “done”

else no next values

pc′ means next value of pc

i ′ means next value of i

Next, we get rid of “next value of”

by letting pc prime and i prime mean the next values of pc and i

And finally, we replace the word “equals” by an equal sign.

Whew!

[slide 52]

if pc equals “start”
then i ′ in {0, 1, . . . , 1000}

pc′ equals “middle”
else if pc equals “middle”

then i ′ equals i + 1
pc′ equals “done”

else no next values

Next, we get rid of “next value of”

by letting pc prime and i prime mean the next values of pc and i

And finally, we replace the word “equals” by an equal sign.

Whew!

[slide 53]

if pc equals “start”
then i ′ in {0, 1, . . . , 1000}

pc′ equals “middle”
else if pc equals “middle”

then i ′ equals i + 1
pc′ equals “done”

else no next values

equals → =

Next, we get rid of “next value of”

by letting pc prime and i prime mean the next values of pc and i

And finally, we replace the word “equals” by an equal sign.

Whew!

[slide 54]

if pc = “start”
then i ′ in {0, 1, . . . , 1000}

pc′ = “middle”
else if pc = “middle”

then i ′ = i + 1
pc′ = “done”

else no next values

Next, we get rid of “next value of”

by letting pc prime and i prime mean the next values of pc and i

And finally, we replace the word “equals” by an equal sign.

Whew!

[slide 55]

if pc = “start”
then i ′ in {0, 1, . . . , 1000}

pc′ = “middle”
else if pc = “middle”

then i ′ = i + 1
pc′ = “done”

else no next values

It’s now easier to read.
But it’s not yet mathematics.

It’s now a lot easier to read.

But it’s not yet a mathematical formula.

[slide 56]

if pc = “start”
then i ′ in {0, 1, . . . , 1000}

pc′ = “middle”
else if pc = “middle”

then i ′ = i + 1
pc′ = “done”

else no next values

It’s now easier to read.
But it’s not yet mathematics.

It’s now a lot easier to read.

But it’s not yet a mathematical formula.

[slide 57]

if pc = “start”
then i ′ in {0, 1, . . . , 1000}

pc′ = “middle”
else if pc = “middle”

then i ′ = i + 1
pc′ = “done”

else no next values

in here means is an element of the set of integers from 0 to 1000.

In is written in mathematics as this symbol.

Dot-dot-dot is informal math. We want to write this whole formula in a precisely defined
language.

The set of integers from 0 to 1000 is written in TLA+ like this.

Where the operator dot-dot is precisely defined.

[slide 58]

if pc = “start”
then i ′ in {0, 1, . . . , 1000}

pc′ =

�
� is an element of the set

“middle”
else if pc = “middle”

then i ′ = i + 1
pc′ = “done”

else no next values

in here means is an element of the set of integers from 0 to 1000.

In is written in mathematics as this symbol.

Dot-dot-dot is informal math. We want to write this whole formula in a precisely defined
language.

The set of integers from 0 to 1000 is written in TLA+ like this.

Where the operator dot-dot is precisely defined.

[slide 59]

if pc = “start”
then i ′ ∈ {0, 1, . . . , 1000}

pc′ =

�
� is an element of the set

“middle”
else if pc = “middle”

then i ′ = i + 1
pc′ = “done”

else no next values

Written in math as ∈ .

in here means is an element of the set of integers from 0 to 1000.

In is written in mathematics as this symbol.

Dot-dot-dot is informal math. We want to write this whole formula in a precisely defined
language.

The set of integers from 0 to 1000 is written in TLA+ like this.

Where the operator dot-dot is precisely defined.

[slide 60]

if pc = “start”
then i ′ ∈ {0, 1, . . . , 1000}

pc′ = “middle”
else if pc = “middle”

then i ′ = i + 1
pc′ = “done”

else no next values

in here means is an element of the set of integers from 0 to 1000.

In is written in mathematics as this symbol.

Dot-dot-dot is informal math. We want to write this whole formula in a precisely defined
language.

The set of integers from 0 to 1000 is written in TLA+ like this.

Where the operator dot-dot is precisely defined.

[slide 61]

if pc = “start”
then i ′ ∈ {0, 1, . . . , 1000}

pc′ = “middle”
else if pc = “middle”

then i ′ = i + 1
pc′ = “done”

else no next values

“. . .” is informal math.

in here means is an element of the set of integers from 0 to 1000.

In is written in mathematics as this symbol.

Dot-dot-dot is informal math. We want to write this whole formula in a precisely defined
language.

The set of integers from 0 to 1000 is written in TLA+ like this.

Where the operator dot-dot is precisely defined.

[slide 62]

if pc = “start”
then i ′ ∈ {0, 1, . . . , 1000}

pc′ = “middle”
else if pc = “middle”

then i ′ = i + 1
pc′ = “done”

else no next values

This set is written in TLA+ as 0 . .1000 .

The operator . . is precisely defined.

in here means is an element of the set of integers from 0 to 1000.

In is written in mathematics as this symbol.

Dot-dot-dot is informal math. We want to write this whole formula in a precisely defined
language.

The set of integers from 0 to 1000 is written in TLA+ like this.

Where the operator dot-dot is precisely defined.

[slide 63]

if pc = “start”
then i ′ ∈ 0 . .1000

pc′ = “middle”
else if pc = “middle”

then i ′ = i + 1
pc′ = “done”

else no next values

This set is written in TLA+ as 0 . .1000 .

The operator . . is precisely defined.

in here means is an element of the set of integers from 0 to 1000.

In is written in mathematics as this symbol.

Dot-dot-dot is informal math. We want to write this whole formula in a precisely defined
language.

The set of integers from 0 to 1000 is written in TLA+ like this.

Where the operator dot-dot is precisely defined.

[slide 64]

if pc = “start”
then i ′ ∈ 0 . .1000

pc′ = “middle”
else if pc = “middle”

then i ′ = i + 1
pc′ = “done”

else no next values

This set is written in TLA+ as 0 . .1000 .

The operator . . is precisely defined.

in here means is an element of the set of integers from 0 to 1000.

In is written in mathematics as this symbol.

Dot-dot-dot is informal math. We want to write this whole formula in a precisely defined
language.

The set of integers from 0 to 1000 is written in TLA+ like this.

Where the operator dot-dot is precisely defined.

[slide 65]

if pc = “start”
then i ′ ∈ 0 . .1000

pc′ = “middle”
else if pc = “middle”

then i ′ = i + 1
pc′ = “done”

else no next values

Let’s make it easier to read.

This then clause consists of two separate formulas.

It should be a single formula asserting that both formulas are true.

There’s an implicit “and” here, and we know how to write and in math: we
replace it with this conjunction symbol.

Let’s add some parentheses to make it easier to read.

[slide 66]

if pc = “start”
then i ′ ∈ 0 . .1000

pc′ = “middle”
else if pc = “middle”

then i ′ = i + 1
pc′ = “done”

else no next values

This then clause is two formulas.

Let’s make it easier to read.

This then clause consists of two separate formulas.

It should be a single formula asserting that both formulas are true.

There’s an implicit “and” here, and we know how to write and in math: we
replace it with this conjunction symbol.

Let’s add some parentheses to make it easier to read.

[slide 67]

if pc = “start”
then i ′ ∈ 0 . .1000

pc′ = “middle”
else if pc = “middle”

then i ′ = i + 1
pc′ = “done”

else no next values

It should be a single formula asserting
that both formulas are true.

Let’s make it easier to read.

This then clause consists of two separate formulas.

It should be a single formula asserting that both formulas are true.

There’s an implicit “and” here, and we know how to write and in math: we
replace it with this conjunction symbol.

Let’s add some parentheses to make it easier to read.

[slide 68]

if pc = “start”
then i ′ ∈ 0 . .1000

pc′ = “middle”
else if pc = “middle”

then i ′ = i + 1
pc′ = “done”

else no next values

It should be a single formula asserting
that both formulas are true.

Let’s make it easier to read.

This then clause consists of two separate formulas.

It should be a single formula asserting that both formulas are true.

There’s an implicit “and” here, and we know how to write and in math: we
replace it with this conjunction symbol.

Let’s add some parentheses to make it easier to read.

[slide 69]

if pc = “start”
then i ′ ∈ 0 . .1000 and

pc′ = “middle”
else if pc = “middle”

then i ′ = i + 1
pc′ = “done”

else no next values

There’s an implicit “and” here that
we can replace with ∧ .

Let’s make it easier to read.

This then clause consists of two separate formulas.

It should be a single formula asserting that both formulas are true.

There’s an implicit “and” here, and we know how to write and in math: we
replace it with this conjunction symbol.

Let’s add some parentheses to make it easier to read.

[slide 70]

if pc = “start”
then i ′ ∈ 0 . .1000 ∧

pc′ = “middle”
else if pc = “middle”

then i ′ = i + 1
pc′ = “done”

else no next values

There’s an implicit “and” here that
we can replace with ∧ .

Let’s make it easier to read.

This then clause consists of two separate formulas.

It should be a single formula asserting that both formulas are true.

There’s an implicit “and” here, and we know how to write and in math: we
replace it with this conjunction symbol.

Let’s add some parentheses to make it easier to read.

[slide 71]

if pc = “start”
then (i ′ ∈ 0 . .1000) ∧

(pc′ = “middle”)
else if pc = “middle”

then i ′ = i + 1
pc′ = “done”

else no next values

Let’s make it easier to read.

This then clause consists of two separate formulas.

It should be a single formula asserting that both formulas are true.

There’s an implicit “and” here, and we know how to write and in math: we
replace it with this conjunction symbol.

Let’s add some parentheses to make it easier to read.

[slide 72]

if pc = “start”
then (i ′ ∈ 0 . .1000) ∧

(pc′ = “middle”)
else if pc = “middle”

then i ′ = i + 1
pc′ = “done”

else no next values

We do the same thing here.

We do the same thing with the second then clause.

[slide 73]

if pc = “start”
then (i ′ ∈ 0 . .1000) ∧

(pc′ = “middle”)
else if pc = “middle”

then i ′ = i + 1
pc′ = “done”

else no next values

We do the same thing here.

We do the same thing with the second then clause.

[slide 74]

if pc = “start”
then (i ′ ∈ 0 . .1000) ∧

(pc′ = “middle”)
else if pc = “middle”

then (i ′ = i + 1) ∧
(pc′ = “done”)

else no next values

We do the same thing here.

We do the same thing with the second then clause.

[slide 75]

if pc = “start”
then (i ′ ∈ 0 . .1000) ∧

(pc′ = “middle”)
else if pc = “middle”

then (i ′ = i + 1) ∧
(pc′ = “done”)

else no next values

What about “no next values”, which certainly isn’t a mathematical formula.

There’s something important you need to understand.

We’re not writing instructions for computing something.

We are writing a formula relating the values of i , pc, i ′, and pc′

[slide 76]

if pc = “start”
then (i ′ ∈ 0 . .1000) ∧

(pc′ = “middle”)
else if pc = “middle”

then (i ′ = i + 1) ∧
(pc′ = “done”)

else no next values

What about this?

What about “no next values”, which certainly isn’t a mathematical formula.

There’s something important you need to understand.

We’re not writing instructions for computing something.

We are writing a formula relating the values of i , pc, i ′, and pc′

[slide 77]

if pc = “start”
then (i ′ ∈ 0 . .1000) ∧

(pc′ = “middle”)
else if pc = “middle”

then (i ′ = i + 1) ∧
(pc′ = “done”)

else no next values

We’re not writing instructions for computing something.

We’re writing a formula relating i , pc, i ′, and pc′ .

What about “no next values”, which certainly isn’t a mathematical formula.

There’s something important you need to understand.

We’re not writing instructions for computing something.

We are writing a formula relating the values of i , pc, i ′, and pc′

[slide 78]

if pc = “start”
then (i ′ ∈ 0 . .1000) ∧

(pc′ = “middle”)
else if pc = “middle”

then (i ′ = i + 1) ∧
(pc′ = “done”)

else no next values

We’re not writing instructions for computing something.

We’re writing a formula relating i , pc, i ′, and pc′ .

What about “no next values”, which certainly isn’t a mathematical formula.

There’s something important you need to understand.

We’re not writing instructions for computing something.

We are writing a formula relating the values of i , pc, i ′, and pc′

[slide 79]

if pc = “start”
then (i ′ ∈ 0 . .1000) ∧

(pc′ = “middle”)
else if pc = “middle”

then (i ′ = i + 1) ∧
(pc′ = “done”)

else no next values

It does not mean: if pc = “start”

This formula does not mean that if pc equals start

then do the then part otherwise do the else part.
The formula does mean that if pc equals start

then the value of the formula equals the value of the then formula
otherwise its value equals the value of the else formula.

[slide 80]

if pc = “start”
then (i ′ ∈ 0 . .1000) ∧

(pc′ = “middle”)
else if pc = “middle”

then (i ′ = i + 1) ∧
(pc′ = “done”)

else no next values

It does not mean: if pc = “start” do the then part

This formula does not mean that if pc equals start

then do the then part otherwise do the else part.
The formula does mean that if pc equals start

then the value of the formula equals the value of the then formula
otherwise its value equals the value of the else formula.

[slide 81]

if pc = “start”
then (i ′ ∈ 0 . .1000) ∧

(pc′ = “middle”)
else if pc = “middle”

then (i ′ = i + 1) ∧
(pc′ = “done”)

else no next values

It does not mean: if pc = “start” do the then part,
otherwise do the else part.

This formula does not mean that if pc equals start

then do the then part otherwise do the else part.
The formula does mean that if pc equals start

then the value of the formula equals the value of the then formula
otherwise its value equals the value of the else formula.

[slide 82]

if pc = “start”
then (i ′ ∈ 0 . .1000) ∧

(pc′ = “middle”)
else if pc = “middle”

then (i ′ = i + 1) ∧
(pc′ = “done”)

else no next values

It means: if pc = “start”

This formula does not mean that if pc equals start

then do the then part otherwise do the else part.
The formula does mean that if pc equals start

then the value of the formula equals the value of the then formula
otherwise its value equals the value of the else formula.

[slide 83]

if pc = “start”
then (i ′ ∈ 0 . .1000) ∧

(pc′ = “middle”)
else if pc = “middle”

then (i ′ = i + 1) ∧
(pc′ = “done”)

else no next values

It means: if pc = “start” the formula equals the
then formula

This formula does not mean that if pc equals start

then do the then part otherwise do the else part.
The formula does mean that if pc equals start

then the value of the formula equals the value of the then formula
otherwise its value equals the value of the else formula.

[slide 84]

if pc = “start”
then (i ′ ∈ 0 . .1000) ∧

(pc′ = “middle”)
else if pc = “middle”

then (i ′ = i + 1) ∧
(pc′ = “done”)

else no next values

It means: if pc = “start” the formula equals the
then formula, otherwise it equals the else formula.

This formula does not mean that if pc equals start

then do the then part otherwise do the else part.
The formula does mean that if pc equals start

then the value of the formula equals the value of the then formula
otherwise its value equals the value of the else formula.

[slide 85]

if pc = “start”
then (i ′ ∈ 0 . .1000) ∧

(pc′ = “middle”)
else if pc = “middle”

then (i ′ = i + 1) ∧
(pc′ = “done”)

else no next values

The formula equals true for these values:
i = 17 pc = “start” i ′ = 534 pc′ = “middle”

The value of the formula equals true for these values of i , pc, i ′, and pc′

because:

The if test equals true because pc equals start

So the value of the formula equals the value of the then clause

This clause equals true if and only these two formulas equals true.

[slide 86]

if pc = “start”
then (i ′ ∈ 0 . .1000) ∧

(pc′ = “middle”)
else if pc = “middle”

then (i ′ = i + 1) ∧
(pc′ = “done”)

else no next values

The formula equals true for these values:
i = 17 pc = “start” i ′ = 534 pc′ = “middle”

The value of the formula equals true for these values of i , pc, i ′, and pc′

because:

The if test equals true because pc equals start

So the value of the formula equals the value of the then clause

This clause equals true if and only these two formulas equals true.

[slide 87]

if pc = “start”
then (i ′ ∈ 0 . .1000) ∧

(pc′ = “middle”)
else if pc = “middle”

then (i ′ = i + 1) ∧
(pc′ = “done”)

else no next values

The formula equals true for these values:
i = 17 pc = “start” i ′ = 534 pc′ = “middle”

The value of the formula equals true for these values of i , pc, i ′, and pc′

because:

The if test equals true because pc equals start

So the value of the formula equals the value of the then clause

This clause equals true if and only these two formulas equals true.

[slide 88]

if pc = “start”
then (i ′ ∈ 0 . .1000) ∧

(pc′ = “middle”)
else if pc = “middle”

then (i ′ = i + 1) ∧
(pc′ = “done”)

else no next values

The formula equals true for these values:
i = 17 pc = “start” i ′ = 534 pc′ = “middle”

The value of the formula equals true for these values of i , pc, i ′, and pc′

because:

The if test equals true because pc equals start

So the value of the formula equals the value of the then clause

This clause equals true if and only these two formulas equals true.

[slide 89]

if pc = “start”
then (i ′ ∈ 0 . .1000) ∧

(pc′ = “middle”)
else if pc = “middle”

then (i ′ = i + 1) ∧
(pc′ = “done”)

else no next values

The formula equals true for these values:
i = 17 pc = “start” i ′ = 534 pc′ = “middle”

The value of the formula equals true for these values of i , pc, i ′, and pc′

because:

The if test equals true because pc equals start

So the value of the formula equals the value of the then clause

This clause equals true if and only these two formulas equals true.

[slide 90]

if pc = “start”
then (i ′ ∈ 0 . .1000) ∧

(pc′ = “middle”)
else if pc = “middle”

then (i ′ = i + 1) ∧
(pc′ = “done”)

else no next values

The formula equals true for these values:
i = 17 pc = “start” i ′ = 534 pc′ = “middle”

The value of the formula equals true for these values of i , pc, i ′, and pc′

because:

The if test equals true because pc equals start

So the value of the formula equals the value of the then clause

This clause equals true if and only these two formulas equals true.

[slide 91]

if pc = “start”
then (i ′ ∈ 0 . .1000) ∧

(pc′ = “middle”)
else if pc = “middle”

then (i ′ = i + 1) ∧
(pc′ = “done”)

else no next values

The formula equals true for these values:
i = 17 pc = “start” i ′ = 534 pc′ = “middle”

The first formula equals true because
i ′ equals 534, which is an element of the set of integers from 0 to 1000.

The second formula equals true because pc′ equals middle.

So the whole formula equals true for these values.

[slide 92]

if pc = “start”
then (i ′ ∈ 0 . .1000) ∧

(pc′ = “middle”)
else if pc = “middle”

then (i ′ = i + 1) ∧
(pc′ = “done”)

else no next values

The formula equals true for these values:
i = 17 pc = “start” i ′ = 534 pc′ = “middle”

The first formula equals true because
i ′ equals 534, which is an element of the set of integers from 0 to 1000.

The second formula equals true because pc′ equals middle.

So the whole formula equals true for these values.

[slide 93]

if pc = “start”
then (i ′ ∈ 0 . .1000) ∧

(pc′ = “middle”)
else if pc = “middle”

then (i ′ = i + 1) ∧
(pc′ = “done”)

else no next values

The formula equals true for these values:
i = 17 pc = “start” i ′ = 534 pc′ = “middle”

The first formula equals true because
i ′ equals 534, which is an element of the set of integers from 0 to 1000.

The second formula equals true because pc′ equals middle.

So the whole formula equals true for these values.

[slide 94]

if pc = “start”
then (i ′ ∈ 0 . .1000) ∧

(pc′ = “middle”)
else if pc = “middle”

then (i ′ = i + 1) ∧
(pc′ = “done”)

else no next values

The formula equals true for these values:
i = 17 pc = “start” i ′ = 534 pc′ = “middle”

The first formula equals true because
i ′ equals 534, which is an element of the set of integers from 0 to 1000.

The second formula equals true because pc′ equals middle.

So the whole formula equals true for these values.

[slide 95]

if pc = “start”
then (i ′ ∈ 0 . .1000) ∧

(pc′ = “middle”)
else if pc = “middle”

then (i ′ = i + 1) ∧
(pc′ = “done”)

else no next values

The formula equals false for these values:
i = 534 pc = “middle” i ′ = 77 pc′ = “done”

The formula equals false for these values because

The if test equals false
so the value of the formula equals the value of the else clause.

That clause is an if formula whose whose test equals true,
so it equals its then clause.

The value of that clause equals true if and only if

[slide 96]

if pc = “start”
then (i ′ ∈ 0 . .1000) ∧

(pc′ = “middle”)
else if pc = “middle”

then (i ′ = i + 1) ∧
(pc′ = “done”)

else no next values

The formula equals false for these values:
i = 534 pc = “middle” i ′ = 77 pc′ = “done”

The formula equals false for these values because

The if test equals false
so the value of the formula equals the value of the else clause.

That clause is an if formula whose whose test equals true,
so it equals its then clause.

The value of that clause equals true if and only if

[slide 97]

if pc = “start”
then (i ′ ∈ 0 . .1000) ∧

(pc′ = “middle”)
else if pc = “middle”

then (i ′ = i + 1) ∧
(pc′ = “done”)

else no next values

The formula equals false for these values:
i = 534 pc = “middle” i ′ = 77 pc′ = “done”

The formula equals false for these values because

The if test equals false
so the value of the formula equals the value of the else clause.

That clause is an if formula whose whose test equals true,
so it equals its then clause.

The value of that clause equals true if and only if

[slide 98]

if pc = “start”
then (i ′ ∈ 0 . .1000) ∧

(pc′ = “middle”)
else if pc = “middle”

then (i ′ = i + 1) ∧
(pc′ = “done”)

else no next values

The formula equals false for these values:
i = 534 pc = “middle” i ′ = 77 pc′ = “done”

The formula equals false for these values because

The if test equals false
so the value of the formula equals the value of the else clause.

That clause is an if formula whose whose test equals true,
so it equals its then clause.

The value of that clause equals true if and only if

[slide 99]

if pc = “start”
then (i ′ ∈ 0 . .1000) ∧

(pc′ = “middle”)
else if pc = “middle”

then (i ′ = i + 1) ∧
(pc′ = “done”)

else no next values

The formula equals false for these values:
i = 534 pc = “middle” i ′ = 77 pc′ = “done”

The formula equals false for these values because

The if test equals false
so the value of the formula equals the value of the else clause.

That clause is an if formula whose whose test equals true,
so it equals its then clause.

The value of that clause equals true if and only if

[slide 100]

if pc = “start”
then (i ′ ∈ 0 . .1000) ∧

(pc′ = “middle”)
else if pc = “middle”

then (i ′ = i + 1) ∧
(pc′ = “done”)

else no next values

The formula equals false for these values:
i = 534 pc = “middle” i ′ = 77 pc′ = “done”

The formula equals false for these values because

The if test equals false
so the value of the formula equals the value of the else clause.

That clause is an if formula whose whose test equals true,
so it equals its then clause.

The value of that clause equals true if and only if

[slide 101]

if pc = “start”
then (i ′ ∈ 0 . .1000) ∧

(pc′ = “middle”)
else if pc = “middle”

then (i ′ = i + 1) ∧
(pc′ = “done”)

else no next values

The formula equals false for these values:
i = 534 pc = “middle” i ′ = 77 pc′ = “done”

these two formulas both equal true.

But this formula equals false because i ′ does not equal i plus 1.

So the entire formula equals false.

[slide 102]

if pc = “start”
then (i ′ ∈ 0 . .1000) ∧

(pc′ = “middle”)
else if pc = “middle”

then (i ′ = i + 1) ∧
(pc′ = “done”)

else no next values

The formula equals false for these values:
i = 534 pc = “middle” i ′ = 77 pc′ = “done”

these two formulas both equal true.

But this formula equals false because i ′ does not equal i plus 1.

So the entire formula equals false.

[slide 103]

if pc = “start”
then (i ′ ∈ 0 . .1000) ∧

(pc′ = “middle”)
else if pc = “middle”

then (i ′ = i + 1) ∧
(pc′ = “done”)

else no next values

The formula equals false for these values:
i = 534 pc = “middle” i ′ = 77 pc′ = “done”

these two formulas both equal true.

But this formula equals false because i ′ does not equal i plus 1.

So the entire formula equals false.

[slide 104]

if pc = “start”
then (i ′ ∈ 0 . .1000) ∧

(pc′ = “middle”)
else if pc = “middle”

then (i ′ = i + 1) ∧
(pc′ = “done”)

else no next values

The formula equals false for these values:
i = 534 pc = “middle” i ′ = 77 pc′ = “done”

these two formulas both equal true.

But this formula equals false because i ′ does not equal i plus 1.

So the entire formula equals false.

[slide 105]

if pc = “start”
then (i ′ ∈ 0 . .1000) ∧

(pc′ = “middle”)
else if pc = “middle”

then (i ′ = i + 1) ∧
(pc′ = “done”)

else no next values

The formula equals false for these values:
i = 534 pc = “middle” i ′ = 77 pc′ = “done”

these two formulas both equal true.

But this formula equals false because i ′ does not equal i plus 1.

So the entire formula equals false.

[slide 106]

if pc = “start”
then (i ′ ∈ 0 . .1000) ∧

(pc′ = “middle”)
else if pc = “middle”

then (i ′ = i + 1) ∧
(pc′ = “done”)

else no next values

Now let’s return to the no next values clause.

This clause should be a formula that does not equal true for any values of i ,
pc, i ′, and pc′.

Let’s use the simplest such formula, which is one that always equals
false—namely, the formula false.

[slide 107]

if pc = “start”
then (i ′ ∈ 0 . .1000) ∧

(pc′ = “middle”)
else if pc = “middle”

then (i ′ = i + 1) ∧
(pc′ = “done”)

else no next values

Let’s return to this clause.

Now let’s return to the no next values clause.

This clause should be a formula that does not equal true for any values of i ,
pc, i ′, and pc′.

Let’s use the simplest such formula, which is one that always equals
false—namely, the formula false.

[slide 108]

if pc = “start”
then (i ′ ∈ 0 . .1000) ∧

(pc′ = “middle”)
else if pc = “middle”

then (i ′ = i + 1) ∧
(pc′ = “done”)

else no next values

It should be a formula that does not equal true
for any values of i , pc, i ′, and pc′.

Now let’s return to the no next values clause.

This clause should be a formula that does not equal true for any values of i ,
pc, i ′, and pc′.

Let’s use the simplest such formula, which is one that always equals
false—namely, the formula false.

[slide 109]

if pc = “start”
then (i ′ ∈ 0 . .1000) ∧

(pc′ = “middle”)
else if pc = “middle”

then (i ′ = i + 1) ∧
(pc′ = “done”)

else no next values

It should be a
The simplest

formula that does not equal true
for any values of i , pc, i ′, and pc′.

Now let’s return to the no next values clause.

This clause should be a formula that does not equal true for any values of i ,
pc, i ′, and pc′.

Let’s use the simplest such formula, which is one that always equals
false—namely, the formula false.

[slide 110]

if pc = “start”
then (i ′ ∈ 0 . .1000) ∧

(pc′ = “middle”)
else if pc = “middle”

then (i ′ = i + 1) ∧
(pc′ = “done”)

else FALSE

It should be a
The simplest

formula that does not equal true
for any values of i , pc, i ′, and pc′.

Now let’s return to the no next values clause.

This clause should be a formula that does not equal true for any values of i ,
pc, i ′, and pc′.

Let’s use the simplest such formula, which is one that always equals
false—namely, the formula false.

[slide 111]

if pc = “start”
then (i ′ ∈ 0 . .1000) ∧

(pc′ = “middle”)
else if pc = “middle”

then (i ′ = i + 1) ∧
(pc′ = “done”)

else FALSE

In TLA+ most keywords are in uppercase letters.

This is now a TLA+ formula. That is, a pretty-printed TLA+ formula.

The TLA+ source is in ASCII,
with and typed as forward-slash backslash
and the element-of symbol typed like this.

[slide 112]

if pc = “start”
then (i ′ ∈ 0 . .1000) ∧

(pc′ = “middle”)
else if pc = “middle”

then (i ′ = i + 1) ∧
(pc′ = “done”)

else FALSE

In TLA+ most keywords are in uppercase.

In TLA+ most keywords are in uppercase letters.

This is now a TLA+ formula. That is, a pretty-printed TLA+ formula.

The TLA+ source is in ASCII,
with and typed as forward-slash backslash
and the element-of symbol typed like this.

[slide 113]

IF pc = “start”
THEN (i ′ ∈ 0 . .1000) ∧

(pc′ = “middle”)
ELSE IF pc = “middle”

THEN (i ′ = i + 1) ∧
(pc′ = “done”)

ELSE FALSE

In TLA+ most keywords are in uppercase.

In TLA+ most keywords are in uppercase letters.

This is now a TLA+ formula. That is, a pretty-printed TLA+ formula.

The TLA+ source is in ASCII,
with and typed as forward-slash backslash
and the element-of symbol typed like this.

[slide 114]

IF pc = “start”
THEN (i ′ ∈ 0 . .1000) ∧

(pc′ = “middle”)
ELSE IF pc = “middle”

THEN (i ′ = i + 1) ∧
(pc′ = “done”)

ELSE FALSE

This is a TLA+ formula.

In TLA+ most keywords are in uppercase letters.

This is now a TLA+ formula. That is, a pretty-printed TLA+ formula.

The TLA+ source is in ASCII,
with and typed as forward-slash backslash
and the element-of symbol typed like this.

[slide 115]

IF pc = “start”
THEN (i ′ ∈ 0 . .1000) ∧

(pc′ = “middle”)
ELSE IF pc = “middle”

THEN (i ′ = i + 1) ∧
(pc′ = “done”)

ELSE FALSE

This is a
pretty-printed

∧TLA+ formula.

In TLA+ most keywords are in uppercase letters.

This is now a TLA+ formula. That is, a pretty-printed TLA+ formula.

The TLA+ source is in ASCII,
with and typed as forward-slash backslash
and the element-of symbol typed like this.

[slide 116]

IF pc = “start”
THEN (i ′ ∈ 0 . .1000) ∧

(pc′ = “middle”)
ELSE IF pc = “middle”

THEN (i ′ = i + 1) ∧
(pc′ = “done”)

ELSE FALSE

The TLA+ source is in ASCII

In TLA+ most keywords are in uppercase letters.

This is now a TLA+ formula. That is, a pretty-printed TLA+ formula.

The TLA+ source is in ASCII,
with and typed as forward-slash backslash
and the element-of symbol typed like this.

[slide 117]

IF pc = “start”
THEN (i ′ ∈ 0 . .1000) ∧

(pc′ = “middle”)
ELSE IF pc = “middle”

THEN (i ′ = i + 1) ∧
(pc′ = “done”)

ELSE FALSE

The TLA+ source is in ASCII, with ∧ typed as /\

In TLA+ most keywords are in uppercase letters.

This is now a TLA+ formula. That is, a pretty-printed TLA+ formula.

The TLA+ source is in ASCII,
with and typed as forward-slash backslash
and the element-of symbol typed like this.

[slide 118]

IF pc = “start”
THEN (i ′ ∈ 0 . .1000) ∧

(pc′ = “middle”)
ELSE IF pc = “middle”

THEN (i ′ = i + 1) ∧
(pc′ = “done”)

ELSE FALSE

The TLA+ source is in ASCII, with ∧ typed as /\

and ∈ typed as \in .

In TLA+ most keywords are in uppercase letters.

This is now a TLA+ formula. That is, a pretty-printed TLA+ formula.

The TLA+ source is in ASCII,
with and typed as forward-slash backslash
and the element-of symbol typed like this.

[slide 119]

IF pc = "start"
THEN (i’ \in 0..1000) /\

(pc’ = "middle")
ELSE IF pc = "middle"

THEN (i’ = i+1) /\
(pc’ = "done")

ELSE FALSE

This is what it looks like in ASCII.

[slide 120]

IF pc = “start”
THEN (i ′ ∈ 0 . .1000) ∧

(pc′ = “middle”)

ELSE IF pc = “middle”
THEN (i ′ = i + 1) ∧

(pc′ = “done”)
ELSE FALSE

This version is easier for most people to read.

I’ll use it for now.

This version is easier for most people to read.

I’ll use it for now.

[slide 121]

IF pc = “start”
THEN (i ′ ∈ 0 . .1000) ∧

(pc′ = “middle”)

ELSE IF pc = “middle”
THEN (i ′ = i + 1) ∧

(pc′ = “done”)
ELSE FALSE

This version is easier for most people to read.

I’ll use it for now.

This version is easier for most people to read.

I’ll use it for now.

[slide 122]

The Complete Mathematical Description

Initial-state formula: (i = 0) ∧ (pc = “start”)

Next-state formula: IF pc = “start”
THEN (i ′ ∈ 0 . .1000) ∧

(pc′ = “middle”)
ELSE IF pc = “middle”

THEN (i ′ = i + 1) ∧
(pc′ = “done”)

ELSE FALSE

We have now written a complete mathematical description of the program as
two formulas.

The initial-state formula. and the next-state formula.

But there’s a nicer way to write the next-state formula.

[slide 123]

The Complete Mathematical Description

Initial-state formula: (i = 0) ∧ (pc = “start”)

Next-state formula: IF pc = “start”
THEN (i ′ ∈ 0 . .1000) ∧

(pc′ = “middle”)
ELSE IF pc = “middle”

THEN (i ′ = i + 1) ∧
(pc′ = “done”)

ELSE FALSE

We have now written a complete mathematical description of the program as
two formulas.

The initial-state formula. and the next-state formula.

But there’s a nicer way to write the next-state formula.

[slide 124]

The Complete Mathematical Description

Initial-state formula: (i = 0) ∧ (pc = “start”)

Next-state formula: IF pc = “start”
THEN (i ′ ∈ 0 . .1000) ∧

(pc′ = “middle”)
ELSE IF pc = “middle”

THEN (i ′ = i + 1) ∧
(pc′ = “done”)

ELSE FALSE

We have now written a complete mathematical description of the program as
two formulas.

The initial-state formula. and the next-state formula.

But there’s a nicer way to write the next-state formula.

[slide 125]

The Complete Mathematical Description

Initial-state formula: (i = 0) ∧ (pc = “start”)

There’s a nicer
way to write this.

Next-state formula: IF pc = “start”
THEN (i ′ ∈ 0 . .1000) ∧

(pc′ = “middle”)
ELSE IF pc = “middle”

THEN (i ′ = i + 1) ∧
(pc′ = “done”)

ELSE FALSE

We have now written a complete mathematical description of the program as
two formulas.

The initial-state formula. and the next-state formula.

But there’s a nicer way to write the next-state formula.

[slide 126]

A NICER WAY TO WRITE

THE NEXT-STATE FORMULA

Let’s now see how.

IF pc = “start”
THEN (i ′ ∈ 0 . .1000) ∧

(pc′ = “middle”)
ELSE IF pc = “middle”

THEN (i ′ = i + 1) ∧
(pc′ = “done”)

ELSE FALSE

I’ll start by hiding some of the details.

Let’s call these two formulas A and B .

[slide 128]

IF pc = “start”
THEN (i ′ ∈ 0 . .1000) ∧

(pc′ = “middle”)
ELSE IF pc = “middle”

THEN (i ′ = i + 1) ∧
(pc′ = “done”)

ELSE FALSE

Let’s call these two formulas

I’ll start by hiding some of the details.

Let’s call these two formulas A and B .

[slide 129]

IF pc = “start”
THEN (i ′ ∈ 0 . .1000) ∧

A
(pc′ = “middle”)

ELSE IF pc = “middle”
THEN (i ′ = i + 1) ∧

(pc′ = “done”)
ELSE FALSE

Let’s call these two formulas A

I’ll start by hiding some of the details.

Let’s call these two formulas A and B .

[slide 130]

IF pc = “start”
THEN (i ′ ∈ 0 . .1000) ∧

A
(pc′ = “middle”)

ELSE IF pc = “middle”
THEN (i ′ = i + 1) ∧

(pc′ = “done”)B

ELSE FALSE

Let’s call these two formulas A and B .

I’ll start by hiding some of the details.

Let’s call these two formulas A and B .

[slide 131]

IF pc = “start”
THEN A

ELSE IF pc = “middle”
THEN B

ELSE FALSE

There are two cases when the formula is true:

1. pc = “start” and A are true.

2. pc = “middle” and B are true.

There are two cases when the formula is true:

Case 1: pc equals start and A are both true.

In other words, the single formula pc equals start and A is true.

Case 2: pc equals middle and B are both true.

In other words, the single formula pc equals middle and B is true.

[slide 132]

IF pc = “start”
THEN A

ELSE IF pc = “middle”
THEN B

ELSE FALSE

There are two cases when the formula is true:

1. pc = “start” and A are true.

2. pc = “middle” and B are true.

There are two cases when the formula is true:

Case 1: pc equals start and A are both true.

In other words, the single formula pc equals start and A is true.

Case 2: pc equals middle and B are both true.

In other words, the single formula pc equals middle and B is true.

[slide 133]

IF pc = “start”
THEN A

ELSE IF pc = “middle”
THEN B

ELSE FALSE

There are two cases when the formula is true:

1. pc = “start” and A are true.

2. pc = “middle” and B are true.

There are two cases when the formula is true:

Case 1: pc equals start and A are both true.

In other words, the single formula pc equals start and A is true.

Case 2: pc equals middle and B are both true.

In other words, the single formula pc equals middle and B is true.

[slide 134]

IF pc = “start”
THEN A

ELSE IF pc = “middle”
THEN B

ELSE FALSE

There are two cases when the formula is true:

1. pc = “start” and A are true.

2. pc = “middle” and B are true.

There are two cases when the formula is true:

Case 1: pc equals start and A are both true.

In other words, the single formula pc equals start and A is true.

Case 2: pc equals middle and B are both true.

In other words, the single formula pc equals middle and B is true.

[slide 135]

IF pc = “start”
THEN A

ELSE IF pc = “middle”
THEN B

ELSE FALSE

There are two cases when the formula is true:

1. (pc = “start”) ∧ A is true.

2. pc = “middle” and B are true.

There are two cases when the formula is true:

Case 1: pc equals start and A are both true.

In other words, the single formula pc equals start and A is true.

Case 2: pc equals middle and B are both true.

In other words, the single formula pc equals middle and B is true.

[slide 136]

IF pc = “start”
THEN A

ELSE IF pc = “middle”
THEN B

ELSE FALSE

There are two cases when the formula is true:

1. (pc = “start”) ∧ A is true.

2. pc = “middle” and B are true.

There are two cases when the formula is true:

Case 1: pc equals start and A are both true.

In other words, the single formula pc equals start and A is true.

Case 2: pc equals middle and B are both true.

In other words, the single formula pc equals middle and B is true.

[slide 137]

IF pc = “start”
THEN A

ELSE IF pc = “middle”
THEN B

ELSE FALSE

There are two cases when the formula is true:

1. (pc = “start”) ∧ A is true.

2. (pc = “middle”) ∧ B is true.

There are two cases when the formula is true:

Case 1: pc equals start and A are both true.

In other words, the single formula pc equals start and A is true.

Case 2: pc equals middle and B are both true.

In other words, the single formula pc equals middle and B is true.

[slide 138]

IF pc = “start”
THEN A

ELSE IF pc = “middle”
THEN B

ELSE FALSE

((pc = “start”) ∧ A)

or ((pc = “middle”) ∧ B)

There are two cases when the formula is true:

1. (pc = “start”) ∧ A is true.

2. (pc = “middle”) ∧ B is true.

So we can rewrite the formula like this.
To turn it into a mathematical formula,
we must replace the word or by a mathematical operator.

That operator is written bar bar in some programming languages.

It’s written as this symbol in mathematics.

[slide 139]

IF pc = “start”
THEN A

ELSE IF pc = “middle”
THEN B

ELSE FALSE

((pc = “start”) ∧ A)

or ((pc = “middle”) ∧ B)

Must replace “or” by a mathematical operator.

Written | | in some programming languages.

Written ∨ in mathematics.

So we can rewrite the formula like this.
To turn it into a mathematical formula,
we must replace the word or by a mathematical operator.

That operator is written bar bar in some programming languages.

It’s written as this symbol in mathematics.

[slide 140]

IF pc = “start”
THEN A

ELSE IF pc = “middle”
THEN B

ELSE FALSE

((pc = “start”) ∧ A)

or ((pc = “middle”) ∧ B)

Must replace “or” by a mathematical operator.

Written | | in some programming languages.

Written ∨ in mathematics.

So we can rewrite the formula like this.
To turn it into a mathematical formula,
we must replace the word or by a mathematical operator.

That operator is written bar bar in some programming languages.

It’s written as this symbol in mathematics.

[slide 141]

IF pc = “start”
THEN A

ELSE IF pc = “middle”
THEN B

ELSE FALSE

((pc = “start”) ∧ A)

∨ ((pc = “middle”) ∧ B)

Must replace “or” by a mathematical operator.

Written | | in some programming languages.

Written ∨ in mathematics.

So we can rewrite the formula like this.
To turn it into a mathematical formula,
we must replace the word or by a mathematical operator.

That operator is written bar bar in some programming languages.

It’s written as this symbol in mathematics.

[slide 142]

((pc = “start”) ∧ A)

∨ ((pc = “middle”) ∧ B)

Now let’s replace A and B by their original formulas.

First let’s give us some more room.

We replace A.

And we replace B .

And now let’s format it a little better.

[slide 143]

((pc = “start”) ∧ A)

∨ ((pc = “middle”) ∧ B)

Let’s replace A and B by their original formulas.

Now let’s replace A and B by their original formulas.

First let’s give us some more room.

We replace A.

And we replace B .

And now let’s format it a little better.

[slide 144]

((pc = “start”) ∧
A)

∨ ((pc = “middle”) ∧
B)

Now let’s replace A and B by their original formulas.

First let’s give us some more room.

We replace A.

And we replace B .

And now let’s format it a little better.

[slide 145]

((pc = “start”) ∧
(i ′ ∈ 0 . .1000) ∧
(pc′ = “middle”))

∨ ((pc = “middle”) ∧
B)

Now let’s replace A and B by their original formulas.

First let’s give us some more room.

We replace A.

And we replace B .

And now let’s format it a little better.

[slide 146]

((pc = “start”) ∧
(i ′ ∈ 0 . .1000) ∧
(pc′ = “middle”))

∨ ((pc = “middle”) ∧
(i ′ = i + 1) ∧
(pc′ = “done”))

Now let’s replace A and B by their original formulas.

First let’s give us some more room.

We replace A.

And we replace B .

And now let’s format it a little better.

[slide 147]

((pc = “start”) ∧
(i ′ ∈ 0 . .1000) ∧
(pc′ = “middle”))

∨ ((pc = “middle”) ∧
(i ′ = i + 1) ∧
(pc′ = “done”))

Let’s format it better.

Now let’s replace A and B by their original formulas.

First let’s give us some more room.

We replace A.

And we replace B .

And now let’s format it a little better.

[slide 148]

((pc = “start”)
∧ (i ′ ∈ 0 . .1000)
∧ (pc′ = “middle”))

∨ ((pc = “middle”)
∧ (i ′ = i + 1)
∧ (pc′ = “done”))

These parenthese aren’t necessary and with this formatting they don’t help.

[slide 149]

((pc = “start”)
∧ (i ′ ∈ 0 . .1000)
∧ (pc′ = “middle”))

∨ ((pc = “middle”)
∧ (i ′ = i + 1)
∧ (pc′ = “done”))

These parentheses aren’t needed and don’t help

These parenthese aren’t necessary and with this formatting they don’t help.

[slide 150]

(pc = “start”
∧ i ′ ∈ 0 . .1000
∧ pc′ = “middle”)

∨ (pc = “middle”
∧ i ′ = i + 1
∧ pc′ = “done”)

So let’s remove them.

[slide 151]

(pc = “start”
∧ i ′ ∈ 0 . .1000
∧ pc′ = “middle”)

∨ (pc = “middle”
∧ i ′ = i + 1
∧ pc′ = “done”)

Widely separated matching parentheses make formulas hard to read.

(They’re not very far apart here, but they could be in a larger formula.)

TLA+ lets us eliminate them by adding this extra and symbol.

This turns the subformula into a bulleted and list that is ended by
any following token to the left of the and symbols.

[slide 152]

(∧ pc = “start”
∧ i ′ ∈ 0 . .1000
∧ pc′ = “middle”

∨ (pc = “middle”
∧ i ′ = i + 1
∧ pc′ = “done”)

Widely separated matching parentheses make formulas hard to read.

(They’re not very far apart here, but they could be in a larger formula.)

TLA+ lets us eliminate them by adding this extra and symbol.

This turns the subformula into a bulleted and list that is ended by
any following token to the left of the and symbols.

[slide 153]

(∧ pc = “start”
∧ i ′ ∈ 0 . .1000
∧ pc′ = “middle”

∨ (pc = “middle”
∧ i ′ = i + 1
∧ pc′ = “done”)

Widely separated matching parentheses make formulas hard to read.

(They’re not very far apart here, but they could be in a larger formula.)

TLA+ lets us eliminate them by adding this extra and symbol.

This turns the subformula into a bulleted and list that is ended by
any following token to the left of the and symbols.

[slide 154]

(∧ pc = “start”
∧ i ′ ∈ 0 . .1000
∧ pc′ = “middle”

∨ (pc = “middle”
∧ i ′ = i + 1

�

∧ pc′ = “done”)

Widely separated matching parentheses make formulas hard to read.

(They’re not very far apart here, but they could be in a larger formula.)

TLA+ lets us eliminate them by adding this extra and symbol.

This turns the subformula into a bulleted and list that is ended by
any following token to the left of the and symbols.

[slide 155]

(∧ pc = “start”
∧ i ′ ∈ 0 . .1000
∧ pc′ = “middle”)

∨ (pc = “middle”
∧ i ′ = i + 1
∧ pc′ = “done”)

As if these parentheses were there.

Let’s do the same thing with this subformula.

[slide 156]

(∧ pc = “start”
∧ i ′ ∈ 0 . .1000
∧ pc′ = “middle”

∨ (pc = “middle”
∧ i ′ = i + 1
∧ pc′ = “done”)

As if these parentheses were there.

Let’s do the same thing with this subformula.

[slide 157]

(∧ pc = “start”
∧ i ′ ∈ 0 . .1000
∧ pc′ = “middle”

∨ (∧ pc = “middle”
∧ i ′ = i + 1
∧ pc′ = “done”)

As if these parentheses were there.

Let’s do the same thing with this subformula.

[slide 158]

∧ pc = “start”
∧ i ′ ∈ 0 . .1000
∧ pc′ = “middle”

∨ ∧ pc = “middle”
∧ i ′ = i + 1
∧ pc′ = “done”

Let’s compare the TLA+ formula
with the corresponding C code.

Let’s do the same thing for the or.

TLA+ also allows bulleted or lists.

There are implicit parentheses around the formula.

Now let’s compare the TLA+ formula with the corresponding C code, which. . .

[slide 159]

∧ pc = “start”
∧ i ′ ∈ 0 . .1000
∧ pc′ = “middle”

∨ ∧ pc = “middle”
∧ i ′ = i + 1
∧ pc′ = “done”

Let’s compare the TLA+ formula
with the corresponding C code.

Let’s do the same thing for the or.

TLA+ also allows bulleted or lists.

There are implicit parentheses around the formula.

Now let’s compare the TLA+ formula with the corresponding C code, which. . .

[slide 160]

∨ ∧ pc = “start”
∧ i ′ ∈ 0 . .1000
∧ pc′ = “middle”

∨ ∧ pc = “middle”
∧ i ′ = i + 1
∧ pc′ = “done”

Let’s compare the TLA+ formula
with the corresponding C code.

Let’s do the same thing for the or.

TLA+ also allows bulleted or lists.

There are implicit parentheses around the formula.

Now let’s compare the TLA+ formula with the corresponding C code, which. . .

[slide 161]

(∨ ∧ pc = “start”
∧ i ′ ∈ 0 . .1000
∧ pc′ = “middle”

∨ ∧ pc = “middle”
∧ i ′ = i + 1
∧ pc′ = “done”)

Let’s compare the TLA+ formula
with the corresponding C code.

Let’s do the same thing for the or.

TLA+ also allows bulleted or lists.

There are implicit parentheses around the formula.

Now let’s compare the TLA+ formula with the corresponding C code, which. . .

[slide 162]

∨ ∧ pc = “start”
∧ i ′ ∈ 0 . .1000
∧ pc′ = “middle”

∨ ∧ pc = “middle”
∧ i ′ = i + 1
∧ pc′ = “done”

Let’s compare the TLA+ formula
with the corresponding C code.

Let’s do the same thing for the or.

TLA+ also allows bulleted or lists.

There are implicit parentheses around the formula.

Now let’s compare the TLA+ formula with the corresponding C code, which. . .

[slide 163]

∨ ∧ pc = “start”
∧ i ′ ∈ 0 . .1000
∧ pc′ = “middle”

∨ ∧ pc = “middle”
∧ i ′ = i + 1
∧ pc′ = “done”

Let’s compare the TLA+ formula
with the corresponding C code.

Let’s do the same thing for the or.

TLA+ also allows bulleted or lists.

There are implicit parentheses around the formula.

Now let’s compare the TLA+ formula with the corresponding C code, which. . .

[slide 164]

int i ;
void main()

{ i = someNumber() ;
i = i + 1 ;

}

∨ ∧ pc = “start”
∧ i ′ ∈ 0 . .1000
∧ pc′ = “middle”

∨ ∧ pc = “middle”
∧ i ′ = i + 1
∧ pc′ = “done”

is the C code without the declaration of i .

The C code probably seems simpler than the TLA+ formula because it’s more
familiar to you.

But the C code isn’t really simpler.

For one thing, the equal sign in TLA+ means equality, just as in grammar
school, when you wrote two plus two equals 4.

[slide 165]

int i ;
void main()

{ i = someNumber() ;
i = i + 1 ;

}

∨ ∧ pc = “start”
∧ i ′ ∈ 0 . .1000
∧ pc′ = “middle”

∨ ∧ pc = “middle”
∧ i ′ = i + 1
∧ pc′ = “done”

The C code probably seems simpler because it’s more familiar.

But it isn’t really simpler.

is the C code without the declaration of i .

The C code probably seems simpler than the TLA+ formula because it’s more
familiar to you.

But the C code isn’t really simpler.

For one thing, the equal sign in TLA+ means equality, just as in grammar
school, when you wrote two plus two equals 4.

[slide 166]

int i ;
void main()

{ i = someNumber() ;
i = i + 1 ;

}

∨ ∧ pc = “start”
∧ i ′ ∈ 0 . .1000
∧ pc′ = “middle”

∨ ∧ pc = “middle”
∧ i ′ = i + 1
∧ pc′ = “done”

The C code probably seems simpler because it’s more familiar.

But it isn’t really simpler.

is the C code without the declaration of i .

The C code probably seems simpler than the TLA+ formula because it’s more
familiar to you.

But the C code isn’t really simpler.

For one thing, the equal sign in TLA+ means equality, just as in grammar
school, when you wrote two plus two equals 4.

[slide 167]

int i ;
void main()

{ i = someNumber() ;
i = i + 1 ;

}

∨ ∧ pc = “start”
∧ i ′ ∈ 0 . .1000
∧ pc′ = “middle”

∨ ∧ pc = “middle”
∧ i ′ = i + 1
∧ pc′ = “done”

= in TLA+ means equality, as in 2 + 2 = 4 .

= in C means assignment, which isn’t so simple.

is the C code without the declaration of i .

The C code probably seems simpler than the TLA+ formula because it’s more
familiar to you.

But the C code isn’t really simpler.

For one thing, the equal sign in TLA+ means equality, just as in grammar
school, when you wrote two plus two equals 4.

[slide 168]

int i ;
void main()

{ i = someNumber() ;
i = i + 1 ;

}

∨ ∧ pc = “start”
∧ i ′ ∈ 0 . .1000
∧ pc′ = “middle”

∨ ∧ pc = “middle”
∧ i ′ = i + 1
∧ pc′ = “done”

= in TLA+ means equality, as in 2 + 2 = 4 .

= in C means assignment, which isn’t so simple.

The equals sign in C means assignment, which isn’t so simple.

But the big difference between math and C is that math is much, much more
expressive.

What about someNumber?

Its execution is nondeterministic.

[slide 169]

int i ;
void main()

{ i = someNumber() ;
i = i + 1 ;

}

∨ ∧ pc = “start”
∧ i ′ ∈ 0 . .1000
∧ pc′ = “middle”

∨ ∧ pc = “middle”
∧ i ′ = i + 1
∧ pc′ = “done”

The big difference between math and C:

Math is much more expressive.

The equals sign in C means assignment, which isn’t so simple.

But the big difference between math and C is that math is much, much more
expressive.

What about someNumber?

Its execution is nondeterministic.

[slide 170]

int i ;
void main()

{ i = someNumber() ;
i = i + 1 ;

}

∨ ∧ pc = “start”
∧ i ′ ∈ 0 . .1000
∧ pc′ = “middle”

∨ ∧ pc = “middle”
∧ i ′ = i + 1
∧ pc′ = “done”

What about someNumber?

The equals sign in C means assignment, which isn’t so simple.

But the big difference between math and C is that math is much, much more
expressive.

What about someNumber?

Its execution is nondeterministic.

[slide 171]

int i ;
void main()

{ i = someNumber() ;
i = i + 1 ;

}

∨ ∧ pc = “start”
∧ i ′ ∈ 0 . .1000
∧ pc′ = “middle”

∨ ∧ pc = “middle”
∧ i ′ = i + 1
∧ pc′ = “done”

Its execution is nondeterministic.

The equals sign in C means assignment, which isn’t so simple.

But the big difference between math and C is that math is much, much more
expressive.

What about someNumber?

Its execution is nondeterministic.

[slide 172]

int i ;
void main()

{ i = someNumber() ;
i = i + 1 ;

}

∨ ∧ pc = “start”
∧ i ′ ∈ 0 . .1000
∧ pc′ = “middle”

∨ ∧ pc = “middle”
∧ i ′ = i + 1
∧ pc′ = “done”

We need nondeterminism to describe systems,
because we can’t predict in what order things happen.

We need nondeterminism like this to describe systems,
because we can’t predict in what order things happen.

Look how easily nondeterminism is described in math.

[slide 173]

int i ;
void main()

{ i = someNumber() ;
i = i + 1 ;

}

∨ ∧ pc = “start”
∧ i ′ ∈ 0 . .1000
∧ pc′ = “middle”

∨ ∧ pc = “middle”
∧ i ′ = i + 1
∧ pc′ = “done”

We need nondeterminism to describe systems,
because we can’t predict in what order things happen.

We need nondeterminism like this to describe systems,
because we can’t predict in what order things happen.

Look how easily nondeterminism is described in math.

[slide 174]

int i ;
void main()

{ i = someNumber() ;
i = i + 1 ;

}

∨ ∧ pc = “start”
∧ i ′ ∈ 0 . .1000
∧ pc′ = “middle”

∨ ∧ pc = “middle”
∧ i ′ = i + 1
∧ pc′ = “done”

Look how easily it’s described in math.

Programming languages weren’t designed to express
nondeterminism.

We need nondeterminism like this to describe systems,
because we can’t predict in what order things happen.

Look how easily nondeterminism is described in math.

[slide 175]

int i ;
void main()

{ i = someNumber() ;
i = i + 1 ;

}

∨ ∧ pc = “start”
∧ i ′ ∈ 0 . .1000
∧ pc′ = “middle”

∨ ∧ pc = “middle”
∧ i ′ = i + 1
∧ pc′ = “done”

Look how easily it’s described in math.

Programming languages weren’t designed to express
nondeterminism.

Commonly used programming languages were not designed to express
nondeterminism.

Programming languages lack much more than constructs for
nondeterminism.

They don’t let you abstract above the code level.

[slide 176]

int i ;
void main()

{ i = someNumber() ;
i = i + 1 ;

}

∨ ∧ pc = “start”
∧ i ′ ∈ 0 . .1000
∧ pc′ = “middle”

∨ ∧ pc = “middle”
∧ i ′ = i + 1
∧ pc′ = “done”

They lack more than constructs for nondeterminism.

Programming languages don’t abstract above the code level.

Commonly used programming languages were not designed to express
nondeterminism.

Programming languages lack much more than constructs for
nondeterminism.

They don’t let you abstract above the code level.

[slide 177]

int i ;
void main()

{ i = someNumber() ;
i = i + 1 ;

}

∨ ∧ pc = “start”
∧ i ′ ∈ 0 . .1000
∧ pc′ = “middle”

∨ ∧ pc = “middle”
∧ i ′ = i + 1
∧ pc′ = “done”

They lack more than constructs for nondeterminism.

Programming languages don’t abstract above the code level.

Commonly used programming languages were not designed to express
nondeterminism.

Programming languages lack much more than constructs for
nondeterminism.

They don’t let you abstract above the code level.

[slide 178]

∨ ∧ pc = “start”
∧ i ′ ∈ 0 . .1000
∧ pc′ = “middle”

∨ ∧ pc = “middle”
∧ i ′ = i + 1
∧ pc′ = “done”

It’s important to remember that this is a formula,
not a sequence of commands.

It’s important to remember that this is a formula,
not a sequence of commands.

or is commutative so interchanging these sub-formulas
yields an equivalent formula.

and is also commutative so interchanging these sub-formulas
also yields an equivalent formula.

[slide 179]

∨ ∧ pc = “start”
∧ i ′ ∈ 0 . .1000
∧ pc′ = “middle”

∨ ∧ pc = “middle”
∧ i ′ = i + 1
∧ pc′ = “done”

It’s important to remember that this is a formula,
not a sequence of commands.

It’s important to remember that this is a formula,
not a sequence of commands.

or is commutative so interchanging these sub-formulas
yields an equivalent formula.

and is also commutative so interchanging these sub-formulas
also yields an equivalent formula.

[slide 180]

∨ ∧ pc = “start”
∧ i ′ ∈ 0 . .1000
∧ pc′ = “middle”

∨ ∧ pc = “middle”
∧ i ′ = i + 1
∧ pc′ = “done”

∨ is commutative, so interchanging these
sub-formulas yields an equivalent formula.

It’s important to remember that this is a formula,
not a sequence of commands.

or is commutative so interchanging these sub-formulas
yields an equivalent formula.

and is also commutative so interchanging these sub-formulas
also yields an equivalent formula.

[slide 181]

∨ ∧ pc = “start”
∧ i ′ ∈ 0 . .1000
∧ pc′ = “middle”

∨ ∧ pc = “middle”
∧ i ′ = i + 1
∧ pc′ = “done”

	

I

∨ is commutative, so interchanging these
sub-formulas yields an equivalent formula.

It’s important to remember that this is a formula,
not a sequence of commands.

or is commutative so interchanging these sub-formulas
yields an equivalent formula.

and is also commutative so interchanging these sub-formulas
also yields an equivalent formula.

[slide 182]

∨ ∧ pc = “start”
∧ i ′ ∈ 0 . .1000
∧ pc′ = “middle”

∨ ∧ pc = “middle”
∧ i ′ = i + 1
∧ pc′ = “done”

�
�
�
�
�
�>Z

Z
Z
Z
Z
Z~

∨ ∧ pc = “middle”
∧ i ′ = i + 1
∧ pc′ = “done”

∨ ∧ pc = “start”
∧ i ′ ∈ 0 . .1000
∧ pc′ = “middle”

∨ is commutative, so interchanging these
sub-formulas yields an equivalent formula.

It’s important to remember that this is a formula,
not a sequence of commands.

or is commutative so interchanging these sub-formulas
yields an equivalent formula.

and is also commutative so interchanging these sub-formulas
also yields an equivalent formula.

[slide 183]

∨ ∧ pc = “start”
∧ i ′ ∈ 0 . .1000
∧ pc′ = “middle”

∨ ∧ pc = “middle”
∧ i ′ = i + 1
∧ pc′ = “done”

∨ ∧ pc = “middle”
∧ i ′ = i + 1
∧ pc′ = “done”

∨ ∧ pc = “start”
∧ i ′ ∈ 0 . .1000
∧ pc′ = “middle”

∨ is commutative, so interchanging these
sub-formulas yields an equivalent formula.

It’s important to remember that this is a formula,
not a sequence of commands.

or is commutative so interchanging these sub-formulas
yields an equivalent formula.

and is also commutative so interchanging these sub-formulas
also yields an equivalent formula.

[slide 184]

∨ ∧ pc = “start”
∧ i ′ ∈ 0 . .1000
∧ pc′ = “middle”

∨ ∧ pc = “middle”
∧ i ′ = i + 1
∧ pc′ = “done”

∧ is also commutative, so interchanging these
sub-formulas also yields an equivalent formula.

It’s important to remember that this is a formula,
not a sequence of commands.

or is commutative so interchanging these sub-formulas
yields an equivalent formula.

and is also commutative so interchanging these sub-formulas
also yields an equivalent formula.

[slide 185]

∨ ∧ pc = “start”
∧ i ′ ∈ 0 . .1000 I

	∧ pc′ = “middle”

∨ ∧ pc = “middle”
∧ i ′ = i + 1
∧ pc′ = “done”

∧ is also commutative, so interchanging these
sub-formulas also yields an equivalent formula.

It’s important to remember that this is a formula,
not a sequence of commands.

or is commutative so interchanging these sub-formulas
yields an equivalent formula.

and is also commutative so interchanging these sub-formulas
also yields an equivalent formula.

[slide 186]

∨ ∧ pc = “start”
∧ i ′ ∈ 0 . .1000

��
��

��*PPPPPPq
∧ pc′ = “middle”

∨ ∧ pc = “middle”
∧ i ′ = i + 1
∧ pc′ = “done”

∨ ∧ pc′ = “middle”
∧ pc = “start”
∧ i ′ ∈ 0 . .1000

∨ ∧ pc = “middle”
∧ i ′ = i + 1
∧ pc′ = “done”

∧ is also commutative, so interchanging these
sub-formulas also yields an equivalent formula.

It’s important to remember that this is a formula,
not a sequence of commands.

or is commutative so interchanging these sub-formulas
yields an equivalent formula.

and is also commutative so interchanging these sub-formulas
also yields an equivalent formula.

[slide 187]

∨ ∧ pc = “start”
∧ i ′ ∈ 0 . .1000
∧ pc′ = “middle”

∨ ∧ pc = “middle”
∧ i ′ = i + 1
∧ pc′ = “done”

∨ ∧ pc′ = “middle”
∧ pc = “start”
∧ i ′ ∈ 0 . .1000

∨ ∧ pc = “middle”
∧ i ′ = i + 1
∧ pc′ = “done”

∧ is also commutative, so interchanging these
sub-formulas also yields an equivalent formula.

It’s important to remember that this is a formula,
not a sequence of commands.

or is commutative so interchanging these sub-formulas
yields an equivalent formula.

and is also commutative so interchanging these sub-formulas
also yields an equivalent formula.

[slide 188]

∨ ∧ pc = “start”
∧ i ′ ∈ 0 . .1000
∧ pc′ = “middle”

∨ ∧ pc = “middle”
∧ i ′ = i + 1
∧ pc′ = “done”

It’s important to remember that this is a formula,
not a sequence of commands.

or is commutative so interchanging these sub-formulas
yields an equivalent formula.

and is also commutative so interchanging these sub-formulas
also yields an equivalent formula.

[slide 189]

THE COMPLETE TLA+ SPEC

The complete TLA+ Specification.

The Complete Spec in Math

Initial-state formula: (i = 0) ∧ (pc = “start”)

Next-state formula: ∨ ∧ pc = “start”
∧ i ′ ∈ 0 . .1000
∧ pc′ = “middle”

∨ ∧ pc = “middle”
∧ i ′ = i + 1
∧ pc′ = “done”

This is the complete specification in mathematics.

The initial-state formula can also be written like this.

But this takes less space.

[slide 191]

The Complete Spec in Math

Initial-state formula: (i = 0) ∧ (pc = “start”)

This is the complete specification in mathematics.

The initial-state formula can also be written like this.

But this takes less space.

[slide 192]

The Complete Spec in Math

Initial-state formula: ∧ i = 0
∧ pc = “start”

This is the complete specification in mathematics.

The initial-state formula can also be written like this.

But this takes less space.

[slide 193]

The Complete Spec in Math

Initial-state formula: (i = 0) ∧ (pc = “start”)

This is the complete specification in mathematics.

The initial-state formula can also be written like this.

But this takes less space.

[slide 194]

The Complete Spec in Math

Initial-state formula: (i = 0) ∧ (pc = “start”)

Next-state formula: ∨ ∧ pc = “start”
∧ i ′ ∈ 0 . .1000
∧ pc′ = “middle”

∨ ∧ pc = “middle”
∧ i ′ = i + 1
∧ pc′ = “done”

A TLA+ specification has some additional stuff.

[slide 195]

A TLA+ spec appears in a module.

This module is named SimpleProgram.

This EXTENDS statement imports arithmetic operators like
plus and dot-dot.

[slide 196]

A TLA+ spec appears in a module.

A TLA+ spec appears in a module.

This module is named SimpleProgram.

This EXTENDS statement imports arithmetic operators like
plus and dot-dot.

[slide 197]

This module is named SimpleProgram.

A TLA+ spec appears in a module.

This module is named SimpleProgram.

This EXTENDS statement imports arithmetic operators like
plus and dot-dot.

[slide 198]

A TLA+ spec appears in a module.

This module is named SimpleProgram.

This EXTENDS statement imports arithmetic operators like
plus and dot-dot.

[slide 199]

Imports arithmetic operators like + and . .

A TLA+ spec appears in a module.

This module is named SimpleProgram.

This EXTENDS statement imports arithmetic operators like
plus and dot-dot.

[slide 200]

Identifiers must be defined or declared before they’re used.

This statement declares the variables.

This is a definition.

[slide 201]

Declares the variables.

Identifiers must be defined or declared before they’re used.

This statement declares the variables.

This is a definition.

[slide 202]

Identifiers must be defined or declared before they’re used.

This statement declares the variables.

This is a definition.

[slide 203]

Defines Init to be equal to the initial formula.

It defines Init to be equal to the initial formula.

Similarly, this statement defines Next to equal the next-state formula.

You can use any names instead of Init and Next ,
But they are the ones normally used by convention.

This is the pretty-printed version of the spec.

[slide 204]

Defines Init to be equal to the initial formula.

It defines Init to be equal to the initial formula.

Similarly, this statement defines Next to equal the next-state formula.

You can use any names instead of Init and Next ,
But they are the ones normally used by convention.

This is the pretty-printed version of the spec.

[slide 205]

It defines Init to be equal to the initial formula.

Similarly, this statement defines Next to equal the next-state formula.

You can use any names instead of Init and Next ,
But they are the ones normally used by convention.

This is the pretty-printed version of the spec.

[slide 206]

Defines Next to equal
the next-state formula.

It defines Init to be equal to the initial formula.

Similarly, this statement defines Next to equal the next-state formula.

You can use any names instead of Init and Next ,
But they are the ones normally used by convention.

This is the pretty-printed version of the spec.

[slide 207]

Defines Next to equal
the next-state formula.

It defines Init to be equal to the initial formula.

Similarly, this statement defines Next to equal the next-state formula.

You can use any names instead of Init and Next ,
But they are the ones normally used by convention.

This is the pretty-printed version of the spec.

[slide 208]

It defines Init to be equal to the initial formula.

Similarly, this statement defines Next to equal the next-state formula.

You can use any names instead of Init and Next ,
But they are the ones normally used by convention.

This is the pretty-printed version of the spec.

[slide 209]

You can use any names.

It defines Init to be equal to the initial formula.

Similarly, this statement defines Next to equal the next-state formula.

You can use any names instead of Init and Next ,
But they are the ones normally used by convention.

This is the pretty-printed version of the spec.

[slide 210]

You can use any names.

These are conventional.

It defines Init to be equal to the initial formula.

Similarly, this statement defines Next to equal the next-state formula.

You can use any names instead of Init and Next ,
But they are the ones normally used by convention.

This is the pretty-printed version of the spec.

[slide 211]

It defines Init to be equal to the initial formula.

Similarly, this statement defines Next to equal the next-state formula.

You can use any names instead of Init and Next ,
But they are the ones normally used by convention.

This is the pretty-printed version of the spec.

[slide 212]

--------------- MODULE SimpleProgram ---------------
EXTENDS Integers
VARIABLES i, pc

Init == (pc = "start") /\ (i = 0)

Next == \/ /\ pc = "start"
/\ i’ \in 0..1000
/\ pc’ = "middle"

\/ /\ pc = "middle"
/\ i’ = i + 1
/\ pc’ = "done"

==

Here is how you type the spec into the TLA+ Toolbox.

On command, the Toolbox will display

[slide 213]

this pretty-printed version.

[slide 214]

DECOMPOSING LARGE SPECS

Decomposing large specs.

[slide 215]

The next-state formula can be 100s of lines.

We can understand a big formula by splitting
it into smaller parts.

Math has a simple and powerful way to
do that:

Using definitions.

For real specs, the next-state formula can be hundreds or even thousands of
lines.

We can understand a big formula by splitting it into smaller parts.

Math has a simple and very powerful way to do that: Using definitions.

[slide 216]

The next-state formula can be 100s of lines.

We can understand a big formula by splitting
it into smaller parts.

Math has a simple and powerful way to
do that:

Using definitions.

For real specs, the next-state formula can be hundreds or even thousands of
lines.

We can understand a big formula by splitting it into smaller parts.

Math has a simple and very powerful way to do that: Using definitions.

[slide 217]

The next-state formula can be 100s of lines.

We can understand a big formula by splitting
it into smaller parts.

Math has a simple and powerful way to
do that:

Using definitions.

For real specs, the next-state formula can be hundreds or even thousands of
lines.

We can understand a big formula by splitting it into smaller parts.

Math has a simple and very powerful way to do that: Using definitions.

[slide 218]

The next-state formula can be 100s of lines.

We can understand a big formula by splitting
it into smaller parts.

Math has a simple and powerful way to
do that:

Using definitions.

For real specs, the next-state formula can be hundreds or even thousands of
lines.

We can understand a big formula by splitting it into smaller parts.

Math has a simple and very powerful way to do that: Using definitions.

[slide 219]

This spec is too simple to need splitting into parts, but let’s do it anyway.

An obvious way to decompose this spec is

by giving names to these two subformulas.

We could call them anything, say Fred and Mary.
But more descriptive names are better, such as Pick and Add1

[slide 220]

This spec is too simple to need splitting into parts, but let’s do it anyway.

An obvious way to decompose this spec is

by giving names to these two subformulas.

We could call them anything, say Fred and Mary.
But more descriptive names are better, such as Pick and Add1

[slide 221]

Fred

Mary

This spec is too simple to need splitting into parts, but let’s do it anyway.

An obvious way to decompose this spec is

by giving names to these two subformulas.

We could call them anything, say Fred and Mary.
But more descriptive names are better, such as Pick and Add1

[slide 222]

Pick

Add1

This spec is too simple to need splitting into parts, but let’s do it anyway.

An obvious way to decompose this spec is

by giving names to these two subformulas.

We could call them anything, say Fred and Mary.
But more descriptive names are better, such as Pick and Add1

[slide 223]

So let’s replace this definition of Next

[slide 224]

with these three definitions.

We define Pick and Add1 and then define Next to equal Pick or Add1 This
definition of Next

[slide 225]

with these three definitions.

We define Pick and Add1 and then define Next to equal Pick or Add1 This
definition of Next

[slide 226]

with these three definitions.

We define Pick and Add1 and then define Next to equal Pick or Add1 This
definition of Next

[slide 227]

with these three definitions.

We define Pick and Add1 and then define Next to equal Pick or Add1 This
definition of Next

[slide 228]

with these three definitions.

We define Pick and Add1 and then define Next to equal Pick or Add1 This
definition of Next

[slide 229]

These are equivalent definitions of Next .

Is completely equivalent to our original definition.

It doesn’t matter which one we use.

[slide 230]

These are equivalent definitions of Next .

Is completely equivalent to our original definition.

It doesn’t matter which one we use.

[slide 231]

This C code example is tiny. Most of the examples I will present are simple.

I believe you’ll learn more by carefully studying simple examples than by
skimming complex ones.

For now, you’ll have to trust me — and the engineers at Amazon Web
Services and elsewhere who use it — when we say that TLA+ is good for
specifying real systems, not just toy examples.

[slide 232]

TLA+ Video Course

End of Lecture 2

STATE MACHINES IN TLA+

This is the end of Lecture 2 of the TLA+ Video Course
—

State Machines in Math

[slide 233]

