
TLA+ Video Course – Lecture 4
Leslie Lamport

DIE HARD

This video should be viewed in conjunction with a Web page.
To find that page, search the Web for TLA+ Video Course .

The TLA+ Video Course
Lecture 4
Die Hard



In this video, you’ll learn how TLC can save your life. . . if you ever find
yourself in the middle of a Hollywood action movie.

This will require you to learn some more about TLA+, TLC, and the Toolbox
— which could turn out to be useful even outside of Hollywood.
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THE DIE HARD PROBLEM
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Die Hard 3

A 1995 action film.

The heroes had to put exactly 4 gallons of
water in a jug.

They had a 3 gallon jug, a 5 gallon jug, and a water faucet.

Search the Web for: Die Hard Jugs Problem YouTube.

Die Hard 3 is a 1995 action film starring Bruce Willis and Samuel L. Jackson
as the heroes.

To disarm a bomb, they had to put exactly 4 gallons of water in a jug.
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Die Hard 3

A 1995 action film.

The heroes had to put exactly 4 gallons of
water in a jug.

1 U.S. gallon = 1
64 hogshead

They had a 3 gallon jug, a 5 gallon jug, and a water faucet.

Search the Web for: Die Hard Jugs Problem YouTube.

Die Hard 3 is a 1995 action film starring Bruce Willis and Samuel L. Jackson
as the heroes.

To disarm a bomb, they had to put exactly 4 gallons of water in a jug.
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Die Hard 3

A 1995 action film.

The heroes had to put exactly 4 gallons of
water in a jug.

1 U.S. gallon = 1
64 hogshead = 3.785411784 liters

They had a 3 gallon jug, a 5 gallon jug, and a water faucet.

Search the Web for: Die Hard Jugs Problem YouTube.

Die Hard 3 is a 1995 action film starring Bruce Willis and Samuel L. Jackson
as the heroes.

To disarm a bomb, they had to put exactly 4 gallons of water in a jug.
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Die Hard 3

A 1995 action film.

The heroes had to put exactly 4 gallons of
water in a jug.

They had a 3 gallon jug, a 5 gallon jug, and a water faucet.

Search the Web for: Die Hard Jugs Problem YouTube.

They were given a 3 gallon jug, a 5 gallon jug, and a water faucet.

You can watch the relevant scene by searching the Web for Die Hard Jugs
Problem YouTube.
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water in a jug.

They had a 3 gallon jug, a 5 gallon jug, and a water faucet.

Search the Web for: Die Hard Jugs Problem YouTube.

They were given a 3 gallon jug, a 5 gallon jug, and a water faucet.

You can watch the relevant scene by searching the Web for Die Hard Jugs
Problem YouTube.

[ slide 10 ]



There were no markings on the jugs.

They needed exacty 4 gallons.

Not 3.99 or 4.01.

There were no markings on the jugs.

They needed exacty 4 gallons.

Not 3.99 or 4.01 gallons.
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GETTING STARTED
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Getting Started on a Spec

The best way:

Write a single correct behavior.

Informally.

When we want to write a spec, what should we do first?

I recommend writing the start of a single correct behavior.

Informally at first.
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The best way:

Write a single correct behavior.

Informally.

When we want to write a spec, what should we do first?

I recommend writing the start of a single correct behavior.

Informally at first.
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This isn’t a big budget movie.

I’ll use these cartoon jugs:

This isn’t a big budget Hollywood movie, and I can’t affort big jugs.

So instead, I’ll illustrate the spec with these cartoon jugs.
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They start with both jugs empty.

Our heroes start with both jugs empty.

It’s possible for them to solve their problem by simply pouring 4 gallons of
water into the 5-gallon jug.

But they’d have to be very lucky to get exactly 4 gallons.

So we only allow behaviors in which they always know exactly how much
water is in each jug.
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We only allow behaviors where
they know exactly how much
water is in each jug.

Our heroes start with both jugs empty.

It’s possible for them to solve their problem by simply pouring 4 gallons of
water into the 5-gallon jug.

But they’d have to be very lucky to get exactly 4 gallons.

So we only allow behaviors in which they always know exactly how much
water is in each jug.
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Initially, both jugs empty.

Again, they start with both jugs empty.

The only thing they can do now is fill a jug. Suppose they fill the 3 gallon jug.

Next, they empty the water from the 3 gallon jug into the 5 gallon jug.

Now they fill the 3 gallon jug.
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→

Again, they start with both jugs empty.

The only thing they can do now is fill a jug. Suppose they fill the 3 gallon jug.

Next, they empty the water from the 3 gallon jug into the 5 gallon jug.

Now they fill the 3 gallon jug.
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→

Empty 3-gal. jug into 5-gal. jug.
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→ → →

Again, they start with both jugs empty.

The only thing they can do now is fill a jug. Suppose they fill the 3 gallon jug.

Next, they empty the water from the 3 gallon jug into the 5 gallon jug.

Now they fill the 3 gallon jug.
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→ → →

Fill 5-gal. jug from 3-gal. jug.

Now they fill the 5 gallon jug from the 3 gallon jug.

They then empty the 5-gallon jug onto the ground.

And so on.
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→ → → →

Empty 5-gal. jug.
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→ → → → →

Now they fill the 5 gallon jug from the 3 gallon jug.

They then empty the 5-gallon jug onto the ground.

And so on.
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→ → → → → → · · ·

And so on.

Now they fill the 5 gallon jug from the 3 gallon jug.

They then empty the 5-gallon jug onto the ground.

And so on.
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This is just one possible behavior.

Let’s write it more formally.

Let values of small and big represent
number of gallons in each jug.

→ → → → → → · · ·

This is just one of many possible ways a behavior can begin.

Let’s write it more formally.

Let the values of the variables small and big represent the number of gallons
of water in each jug.
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[
small : 0
big : 0

]

→ → → → → → · · ·

Initially, both jugs have 0 gallons of water.

Filling the small jug puts 3 gallons of water in it.

Those 3 gallons are transferred from the small jug to the big jug.
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Fill small jug.

[
small : 0
big : 0

] [
small : 3
big : 0

]

→ → → → → → · · ·

Initially, both jugs have 0 gallons of water.

Filling the small jug puts 3 gallons of water in it.

Those 3 gallons are transferred from the small jug to the big jug.
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Empty small jug
into big jug.[

small : 0
big : 0

] [
small : 3
big : 0

] [
small : 0
big : 3

]

→ → → → → → · · ·

Initially, both jugs have 0 gallons of water.

Filling the small jug puts 3 gallons of water in it.

Those 3 gallons are transferred from the small jug to the big jug.
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Fill small jug.

[
small : 0
big : 0

] [
small : 3
big : 0

] [
small : 0
big : 3

] [
small : 3
big : 3

]

→ → → → → → · · ·

3 gallons are then added to the small jug.

The big jug is then filled from the small jug, putting 5 gallons in the big jug
and leaving 1 gallon in the small jug.

The big jug is then emptied, leaving 0 gallons in it.
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Fill big jug
from small jug.[

small : 0
big : 0

] [
small : 3
big : 0

] [
small : 0
big : 3

] [
small : 3
big : 3

] [
small : 1
big : 5

]

→ → → → → → · · ·

3 gallons are then added to the small jug.

The big jug is then filled from the small jug, putting 5 gallons in the big jug
and leaving 1 gallon in the small jug.

The big jug is then emptied, leaving 0 gallons in it.
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Empty big jug.

[
small : 0
big : 0

] [
small : 3
big : 0

] [
small : 0
big : 3

] [
small : 3
big : 3

] [
small : 1
big : 5

] [
small : 1
big : 0

]

→ → → → → → · · ·

3 gallons are then added to the small jug.

The big jug is then filled from the small jug, putting 5 gallons in the big jug
and leaving 1 gallon in the small jug.

The big jug is then emptied, leaving 0 gallons in it.
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[
small : 0
big : 0

] [
small : 3
big : 0

] [
small : 0
big : 3

] [
small : 3
big : 3

] [
small : 1
big : 5

] [
small : 1
big : 0

]
→ → → → → → · · ·

3 gallons are then added to the small jug.

The big jug is then filled from the small jug, putting 5 gallons in the big jug
and leaving 1 gallon in the small jug.

The big jug is then emptied, leaving 0 gallons in it.
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What did we learn from this behavior?

1. What the variables are.

2. What constitutes a step.

[
small : 0
big : 0

] [
small : 3
big : 0

] [
small : 1
big : 5

] [
small : 1
big : 0

]
→ → → → → · · ·

[
small : 3
big : 3

]
→

[
small : 0
big : 3

]

What did we learn by writing this behavior?
We learned two things.

First, what the variables are.

And second, what constitutes a step. For example. . .
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What did we learn from this behavior?

1. What the variables are.

2. What constitutes a step.

[
small : 0
big : 0

] [
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big : 5

] [
small : 1
big : 0

]
→ → → → → · · ·

[
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[
small : 0
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What did we learn by writing this behavior?
We learned two things.

First, what the variables are.

And second, what constitutes a step. For example. . .
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1. What the variables are.

2. What constitutes a step.

Filling a jug is a single step.

No intermediate states.[
small : 0
big : 0

] [
small : 3
big : 0

] [
small : 1
big : 5

] [
small : 1
big : 0

]
→ → → → → · · ·

[
small : 3
big : 3

]
→

[
small : 0
big : 3

]

Filling a jug is a single step.

There’s no intermediate partially-filled state or states.

This is the simplest abstraction of the behavior of real jugs and water for
the particular problem faced by our heroes.
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Filling a jug is a single step.

There’s no intermediate partially-filled state or states.

This is the simplest abstraction of the behavior of real jugs and water for
the particular problem faced by our heroes.
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[
small : 0
big : 0

] [
small : 3
big : 0

] [
small : 1
big : 5

] [
small : 1
big : 0

]
→ → → → → · · ·

[
small : 3
big : 3

]
→

[
small : 0
big : 3

]
Simplest abstraction of real jugs and water

for this problem.

Filling a jug is a single step.

There’s no intermediate partially-filled state or states.

This is the simplest abstraction of the behavior of real jugs and water for
the particular problem faced by our heroes.
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for this problem.

Filling a jug is a single step.
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[
small : 0
big : 0

] [
small : 3
big : 0

] [
small : 1
big : 5

] [
small : 1
big : 0

]
→ → → → → · · ·

[
small : 3
big : 3

]
→

[
small : 0
big : 3

]

Real specifications are written to
eliminate some kinds of errors.

Like getting blown up.

Real specifications are written for a purpose.
Usually to eliminate some particular kinds of errors.

For example, to avoid getting blown up.
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For example, to avoid getting blown up.
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THE SPECIFICATION

We can now start writing the actual TLA+ specification.
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Beginning of module.

The spec is in a module called DieHard .

As in our Simple Program example, the EXTENDS statement imports
operators of arithmetic
and the VARIABLES statement declares our two variables.

In TLA+ we don’t write type declarations.
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Imports operators of arithmetic.

The spec is in a module called DieHard .

As in our Simple Program example, the EXTENDS statement imports
operators of arithmetic
and the VARIABLES statement declares our two variables.

In TLA+ we don’t write type declarations.
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Declares the variables.

The spec is in a module called DieHard .

As in our Simple Program example, the EXTENDS statement imports
operators of arithmetic
and the VARIABLES statement declares our two variables.

In TLA+ we don’t write type declarations.
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TLA+ has no type declarations.

Type correctness means variables have
sensible values.

The spec is in a module called DieHard .

As in our Simple Program example, the EXTENDS statement imports
operators of arithmetic
and the VARIABLES statement declares our two variables.

In TLA+ we don’t write type declarations.
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TLA+ has no type declarations.

Type correctness means variables have
sensible values.

Type correctness means that all the variables have sensible values.

It’s a good idea to define a formula that asserts type correctness.

It helps a reader to understand the spec.

And TLC can type-check the spec by checking that this formula is always
true.
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We define a formula that asserts type
correctness.

Helps to understand spec.

TLC can check that it’s always true.

I like to call this formula TypeOK .

It asserts that the value of small is an integer from 0 through 3.
and the value of big is an integer from 0 through 5.

This definition is not part of the spec.

Removing it doesn’t change anything.
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The Initial-State Formula

The initial-state formula.

As usual, let’s name it Init .

It asserts that both jugs are empty.
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As usual, let’s name it Init .

It asserts that both jugs are empty.
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THE NEXT - STATE FORMULA

The next-state formula.
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The Next-State Formula

The next-state formula describes all permitted steps.

It’s usually written as F1 ∨ F2 ∨ . . . ∨ Fn ,
where each Fi allows a different kind of step.

The behavior we wrote has 3 kinds of steps:

– Fill a jug.

– Empty a jug.

– Pour from one jug into the other.

The next-state formula describes all permitted steps.

It’s usually written as F1 or F2 or (and so on) ,

where each formula F allows a different kind of step.
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The Next-State Formula

The next-state formula describes all permitted steps.

It’s usually written as F1 ∨ F2 ∨ . . . ∨ Fn ,
where each Fi allows a different kind of step.

The behavior we wrote has 3 kinds of steps:

– Fill a jug.

– Empty a jug.

– Pour from one jug into the other.

The behavior we just wrote has 3 different kinds of steps:

Steps that fill a jug.

Steps that empty a jug.

And steps that pour from one jug into the other.
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As usual, we call the next-state formula Next .

First we allow steps that fill a jug.
There are two jugs, so we have two possible kinds of steps.

Steps that fill the small jug. And steps that fill the big jug.
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– Fill a jug.

As usual, we call the next-state formula Next .

First we allow steps that fill a jug.
There are two jugs, so we have two possible kinds of steps.

Steps that fill the small jug. And steps that fill the big jug.
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Fill small jug.

As usual, we call the next-state formula Next .

First we allow steps that fill a jug.
There are two jugs, so we have two possible kinds of steps.

Steps that fill the small jug. And steps that fill the big jug.
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Fill big jug.

As usual, we call the next-state formula Next .

First we allow steps that fill a jug.
There are two jugs, so we have two possible kinds of steps.

Steps that fill the small jug. And steps that fill the big jug.
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– Empty a jug.

Similarly for steps that empty a jug.

And there are two kinds of steps that pour from one jug to the other.

Steps that pour from the small jug to the big jug.

And steps that pour from the big jug to the small jug.
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– Empty a jug.

Similarly for steps that empty a jug.

And there are two kinds of steps that pour from one jug to the other.

Steps that pour from the small jug to the big jug.

And steps that pour from the big jug to the small jug.
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– Pour from one jug
into the other.

Similarly for steps that empty a jug.

And there are two kinds of steps that pour from one jug to the other.

Steps that pour from the small jug to the big jug.

And steps that pour from the big jug to the small jug.
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From small jug to big jug.

Similarly for steps that empty a jug.

And there are two kinds of steps that pour from one jug to the other.

Steps that pour from the small jug to the big jug.

And steps that pour from the big jug to the small jug.
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From big jug to small jug.

Similarly for steps that empty a jug.

And there are two kinds of steps that pour from one jug to the other.

Steps that pour from the small jug to the big jug.

And steps that pour from the big jug to the small jug.
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Names must be defined before they are used.

The definitions of these names must precede
this definition of Next .

In TLA+, names must be defined before they’re used.

The definitions of FillSmall , FillBig , etc. must precede
this definition of Next .
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Most people would write this definition.

Stop the video now and figure out
why it’s wrong.

We now define FillSmall .

Most people first learning TLA+ would write this definition.

Stop the video now and figure out why it’s wrong.

If you didn’t figure it out, it means that you’re thinking of this as an
assignment statement that sets small to 3. It’s not.
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setting small to 3.

It’s a formula that’s true for some steps
and false for others.

It’s true for any step in which
small = 3 in the second state.
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If you didn’t figure it out, you’re thinking of this as
setting small to 3.

It’s a formula that’s true for some steps
and false for others.

It’s true for any step in which
small = 3 in the second state.

It’s a formula that’s true for some steps and false for others.

It’s true for any step in which the value of small in the second state is 3.

It’s true for this step that appeared in the behavior we constructed.
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[
small : 0
big : 3

]
→

[
small : 3
big : 3

]
[
small : 0
big : 3

]
→

[
small : 3
big :

√
7

]
[
small : 0
big : 3

]
→

[
small : 3
big : “abc”

]

It’s a formula that’s true for some steps and false for others.

It’s true for any step in which the value of small in the second state is 3.

It’s true for this step that appeared in the behavior we constructed.
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[
small : 0
big : 3

]
→

[
small : 3
big : 3

]
[
small : 0
big : 3

]
→

[
small : 3
big :

√
7

]
[
small : 0
big : 3

]
→

[
small : 3
big : “abc”

]

It’s also true for this step in which big equals the square root of 7 in the
second state.

And it’s also true for this step in which big equals the string abc in the second
state.
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[
small : 0
big : 3

]
→

[
small : 3
big : 3

]
[
small : 0
big : 3

]
→

[
small : 3
big :

√
7

]
[
small : 0
big : 3

]
→

[
small : 3
big : “abc”

] Should be false
for these.

Of course, these two steps shouldn’t be allowed, so FillSmall should equal
false for them.

And the correct definition should require the value of big to be unchanged.
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This is the correct definition.

Of course, these two steps shouldn’t be allowed, so FillSmall should equal
false for them.

And the correct definition should require the value of big to be unchanged.
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Most people think this shouldn’t be needed.

That’s a bad idea! It’s not math.

When they first see TLA+, most computer engineers and computer scientists
think that this part of the formula shouldn’t be needed.

And that you shouldn’t have to say what’s left unchanged.

My years of experience writing specifications and a couple of thousand years
of mathematics say that’s a bad idea.
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Most people think this shouldn’t be needed.

That’s a bad idea! It’s not math.

It would leave the simple, elegant realm of mathematics — and enter the
more complicated world of programming languages.
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The definition of FillBig is similar.

The definition of FillBig is similar.
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POURING BETWEEN JUGS

Pouring from one jug into another.
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We now define SmallToBig .

In the behavior we constructed, we saw that there are two cases:

In case 1, there is room in the big jug for all the water in the small jug.
Here was that case.

In case 2, there isn’t room in the big jug for all the water in the small jug.
Here was that case.
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There are two cases:

1. There is room in big

for the water in small .

2. There isn’t room in big

for the water in small .

Which case it is depends on the total amount of water in the two jugs.

In case 1, we put all the water from the small jug into the big jug, which
empties the small jug.

Case 2 is left as a problem. As is writing the definition of BigToSmall .
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Case 2 is left as a problem. As is writing the definition of BigToSmall .
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Which case it is depends on the total amount of water in the two jugs.

In case 1, we put all the water from the small jug into the big jug, which
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Case 2 is left as a problem. As is writing the definition of BigToSmall .

[ slide 154 ]



?
?

Problem: Complete the definition of SmallToBig

and write the definition of BigToSmall .

Stop the video and solve it now.

You’ll check your solution later.

Which case it is depends on the total amount of water in the two jugs.

In case 1, we put all the water from the small jug into the big jug, which
empties the small jug.

Case 2 is left as a problem. As is writing the definition of BigToSmall .
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Problem: Complete the definition of SmallToBig

and write the definition of BigToSmall .

Stop the video and solve it now.
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Stop the video and solve it now, writing down your solution.

You’ll check your solution later.
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SAVING OUR HEROES

We’ll now use TLC to save our heroes.
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Open the Toolbox.

Open a new spec named DieHard .

Open the Toolbox.

And then open a new spec named DieHard .
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Open the Toolbox.

Open a new spec named DieHard .

Open the Toolbox.

And then open a new spec named DieHard .

[ slide 161 ]



Remember you click on File. Then on Open Spec. Then on
Add New Spec, which opens This window. Then click on Browse which
raises
a file browser window—probably on the folder in which you put the
SimpleProgram spec. Select any folder and enter the file name DieHard .
Then click on Open and then on Finish which opens
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Remember you click on File. Then on Open Spec. Then on
Add New Spec, which opens This window. Then click on Browse which
raises
a file browser window—probably on the folder in which you put the
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Then click on Open and then on Finish which opens
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Remember you click on File. Then on Open Spec. Then on
Add New Spec, which opens This window. Then click on Browse which
raises
a file browser window—probably on the folder in which you put the
SimpleProgram spec. Select any folder and enter the file name DieHard .
Then click on Open and then on Finish which opens
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Remember you click on File. Then on Open Spec. Then on
Add New Spec, which opens This window. Then click on Browse which
raises
a file browser window—probably on the folder in which you put the
SimpleProgram spec. Select any folder and enter the file name DieHard .
Then click on Open and then on Finish which opens
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Remember you click on File. Then on Open Spec. Then on
Add New Spec, which opens This window. Then click on Browse which
raises
a file browser window—probably on the folder in which you put the
SimpleProgram spec. Select any folder and enter the file name DieHard .
Then click on Open and then on Finish which opens
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Stop the video and copy the body of the spec.

Paste it here.

An empty spec named diehard.

Stop the video now and copy the body of the specification that we just wrote.

and then paste the text in the module here.
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Stop the video and copy the body of the spec.

Paste it here.

An empty spec named diehard.

Stop the video now and copy the body of the specification that we just wrote.

and then paste the text in the module here.
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Stop the video and copy the body of the spec.

Paste it here.

An empty spec named diehard.

Stop the video now and copy the body of the specification that we just wrote.

and then paste the text in the module here.
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The module contains the
complete definitions of
SmallToBig and BigToSmall .

But don’t look
at them yet.

And here’s what you should see.

The module contains the complete definitions of SmallToBig and
BigToSmall But don’t look at them until after we’ve saved our heroes.

And first, you have to save the module – which you can do by typing Control
S.
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The module contains the
complete definitions of
SmallToBig and BigToSmall .

But don’t look
at them yet.

And here’s what you should see.

The module contains the complete definitions of SmallToBig and
BigToSmall But don’t look at them until after we’ve saved our heroes.

And first, you have to save the module – which you can do by typing Control
S.
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Save the module.
(Type Ctl+S .)

And here’s what you should see.

The module contains the complete definitions of SmallToBig and
BigToSmall But don’t look at them until after we’ve saved our heroes.

And first, you have to save the module – which you can do by typing Control
S.
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Save the module.
(Type Ctl+S .)

And here’s what you should see.

The module contains the complete definitions of SmallToBig and
BigToSmall But don’t look at them until after we’ve saved our heroes.

And first, you have to save the module – which you can do by typing Control
S.
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To run TLC, we create a model.

To run TLC, we create a model by

Clicking on the TLC Model Checker menu

Selecting NewModel

Entering a model name and

Clicking OK.
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To run TLC, we create a model by

Clicking on the TLC Model Checker menu
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To run TLC, we create a model.

To run TLC, we create a model by

Clicking on the TLC Model Checker menu

Selecting NewModel

Entering a model name and

Clicking OK.
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This raises the Model Overview page

Where the Toolbox has filled in the initial formula and the
next-state formula.

Let’s now run TLC by clicking on this button.
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Initial and next-state formulas

This raises the Model Overview page

Where the Toolbox has filled in the initial formula and the
next-state formula.

Let’s now run TLC by clicking on this button.
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Run TLC.

This raises the Model Overview page

Where the Toolbox has filled in the initial formula and the
next-state formula.

Let’s now run TLC by clicking on this button.
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TLC quickly finishes, displaying the Model Checking Results page which
reports that it found no errors. We didn’t ask TLC to check anything, so this
just means that the spec is one that it could execute.

TLC also reports that it found 16 reachable states which are states that
occur in some behavior allowed by the spec.
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TLC quickly finishes, displaying the Model Checking Results page which
reports that it found no errors. We didn’t ask TLC to check anything, so this
just means that the spec is one that it could execute.

TLC also reports that it found 16 reachable states which are states that
occur in some behavior allowed by the spec.
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TLC reports no errors.

TLC quickly finishes, displaying the Model Checking Results page which
reports that it found no errors. We didn’t ask TLC to check anything, so this
just means that the spec is one that it could execute.

TLC also reports that it found 16 reachable states which are states that
occur in some behavior allowed by the spec.
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TLC reports no errors.

This means it could
run the spec.

TLC quickly finishes, displaying the Model Checking Results page which
reports that it found no errors. We didn’t ask TLC to check anything, so this
just means that the spec is one that it could execute.

TLC also reports that it found 16 reachable states which are states that
occur in some behavior allowed by the spec.
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TLC found 16
reachable states.

TLC quickly finishes, displaying the Model Checking Results page which
reports that it found no errors. We didn’t ask TLC to check anything, so this
just means that the spec is one that it could execute.

TLC also reports that it found 16 reachable states which are states that
occur in some behavior allowed by the spec.
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TLC found 16
reachable states.

(States occurring in some
behavior allowed by spec.)

TLC quickly finishes, displaying the Model Checking Results page which
reports that it found no errors. We didn’t ask TLC to check anything, so this
just means that the spec is one that it could execute.

TLC also reports that it found 16 reachable states which are states that
occur in some behavior allowed by the spec.
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Let’s check type correctness
(every reachable state
satisfies TypeOK ).

Let’s now check type correctness – which means that every reachable state
satisfies formula TypeOK .

Remember that this formula asserts that each variable has a reasonable
value.

To do this, we must go back to the Model Overview page.
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value.

To do this, we must go back to the Model Overview page.
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Let’s now check type correctness – which means that every reachable state
satisfies formula TypeOK .

Remember that this formula asserts that each variable has a reasonable
value.

To do this, we must go back to the Model Overview page.
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A formula that is true in every reachable state is called an invariant. To have
TLC check an invariant Open the Invariants section of the model overview
page.
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A formula true in every
reachable state is called
an invariant.

A formula that is true in every reachable state is called an invariant. To have
TLC check an invariant Open the Invariants section of the model overview
page.
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A formula that is true in every reachable state is called an invariant. To have
TLC check an invariant Open the Invariants section of the model overview
page.
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Click on Add.

Enter TypeOK. And click on Finish.

And run TLC on the model again.
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Click on Add.

Enter TypeOK. And click on Finish.

And run TLC on the model again.
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Run TLC.

Click on Add.

Enter TypeOK. And click on Finish.

And run TLC on the model again.
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The Model Checking Results page

again shows that TLC found no errors.
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TLC reports no errors.

The Model Checking Results page

again shows that TLC found no errors.
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Saving Our Heroes

The four gallons must be in the big jug.

We let TLC check if big 6= 4 is an invariant.

We add this invariant to the model.

Now we’re ready to save our heroes.

The four gallons of water our heroes need must be in the big jug.

We let TLC check if big not equal to 4 is an invariant.
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The four gallons must be in the big jug.

We let TLC check if big 6= 4 is an invariant.
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We let TLC check if big not equal to 4 is an invariant.
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Saving Our Heroes

The four gallons must be in the big jug.

We let TLC check if big 6= 4 is an invariant.

We add this invariant to the model.

Now we’re ready to save our heroes.

The four gallons of water our heroes need must be in the big jug.

We let TLC check if big not equal to 4 is an invariant.
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Saving Our Heroes

The four gallons must be in the big jug.

We let TLC check if big 6= 4 is an invariant.

If it isn’t, TLC will show us a behavior
ending in a state with big 6= 4 false.

We add this invariant to the model.

If it isn’t, TLC will show us a behavior ending in a state with big 6= 4 false – a
behavior that tells our heroes what they have to do to put 4 gallons in the big
jug.

In TLA+, not equal is written in ASCII as either forward slash equal-sign or
sharp (also called pound sign).

We now add this invariant to the model.

[ slide 215 ]



Saving Our Heroes

The four gallons must be in the big jug.

We let TLC check if big 6= 4 is an invariant.
6= is written in ASCII as /= or #

We add this invariant to the model.

If it isn’t, TLC will show us a behavior ending in a state with big 6= 4 false – a
behavior that tells our heroes what they have to do to put 4 gallons in the big
jug.

In TLA+, not equal is written in ASCII as either forward slash equal-sign or
sharp (also called pound sign).

We now add this invariant to the model.
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Saving Our Heroes

The four gallons must be in the big jug.

We let TLC check if big 6= 4 is an invariant.

We add this invariant to the model.

If it isn’t, TLC will show us a behavior ending in a state with big 6= 4 false – a
behavior that tells our heroes what they have to do to put 4 gallons in the big
jug.

In TLA+, not equal is written in ASCII as either forward slash equal-sign or
sharp (also called pound sign).

We now add this invariant to the model.
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In the Invariants section of the model overview page

We add another invariant big not equal to 4

And we run TLC.
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We add another invariant big not equal to 4

And we run TLC.
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In the Invariants section of the model overview page

We add another invariant big not equal to 4

And we run TLC.
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In the Invariants section of the model overview page

We add another invariant big not equal to 4

And we run TLC.
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Run TLC.

In the Invariants section of the model overview page

We add another invariant big not equal to 4

And we run TLC.
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This time TLC reports an error.

And the Toolbox opens this error window.

Which tells us that the invariant was violated And displays this error trace.

The error trace is a behavior satisfying the spec ending in this state
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This time TLC reports an error.

And the Toolbox opens this error window.

Which tells us that the invariant was violated And displays this error trace.

The error trace is a behavior satisfying the spec ending in this state
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A behavior ending in state[
big : 4
small : 3

]

This time TLC reports an error.

And the Toolbox opens this error window.

Which tells us that the invariant was violated And displays this error trace.

The error trace is a behavior satisfying the spec ending in this state
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A behavior ending in state

with the invariant false.

[
big : 4
small : 3

]

a state in which the invariant equals false.

It shows this complete behavior From this behavior, our heroes should be able to see how to get 4
gallons of water in the big jug. But they might not be the brightest bulbs on the block, and they may need help
figuring out how to get from one state to the next. The Toolbox provides that help.

To see why this step is allowed by the spec Double-click here to find the part of the next-state formula that allows
this step And even Hollywood actors should be able to figure out that they have to pour the big jug into the small
jug.
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The complete behavior:

a state in which the invariant equals false.

It shows this complete behavior From this behavior, our heroes should be able to see how to get 4
gallons of water in the big jug. But they might not be the brightest bulbs on the block, and they may need help
figuring out how to get from one state to the next. The Toolbox provides that help.

To see why this step is allowed by the spec Double-click here to find the part of the next-state formula that allows
this step And even Hollywood actors should be able to figure out that they have to pour the big jug into the small
jug.
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The complete behavior:[
big : 0
small : 0

]

a state in which the invariant equals false.

It shows this complete behavior From this behavior, our heroes should be able to see how to get 4
gallons of water in the big jug. But they might not be the brightest bulbs on the block, and they may need help
figuring out how to get from one state to the next. The Toolbox provides that help.

To see why this step is allowed by the spec Double-click here to find the part of the next-state formula that allows
this step And even Hollywood actors should be able to figure out that they have to pour the big jug into the small
jug.
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The complete behavior:[
big : 0
small : 0

]
→

[
big : 5
small : 0

]

a state in which the invariant equals false.

It shows this complete behavior From this behavior, our heroes should be able to see how to get 4
gallons of water in the big jug. But they might not be the brightest bulbs on the block, and they may need help
figuring out how to get from one state to the next. The Toolbox provides that help.

To see why this step is allowed by the spec Double-click here to find the part of the next-state formula that allows
this step And even Hollywood actors should be able to figure out that they have to pour the big jug into the small
jug.
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The complete behavior:[
big : 0
small : 0

]
→

[
big : 5
small : 0

]
→

[
big : 2
small : 3

]

a state in which the invariant equals false.

It shows this complete behavior From this behavior, our heroes should be able to see how to get 4
gallons of water in the big jug. But they might not be the brightest bulbs on the block, and they may need help
figuring out how to get from one state to the next. The Toolbox provides that help.

To see why this step is allowed by the spec Double-click here to find the part of the next-state formula that allows
this step And even Hollywood actors should be able to figure out that they have to pour the big jug into the small
jug.
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The complete behavior:[
big : 0
small : 0

]
→

[
big : 5
small : 0

]
→

[
big : 2
small : 3

]
→

[
big : 2
small : 0

]

a state in which the invariant equals false.

It shows this complete behavior From this behavior, our heroes should be able to see how to get 4
gallons of water in the big jug. But they might not be the brightest bulbs on the block, and they may need help
figuring out how to get from one state to the next. The Toolbox provides that help.

To see why this step is allowed by the spec Double-click here to find the part of the next-state formula that allows
this step And even Hollywood actors should be able to figure out that they have to pour the big jug into the small
jug.
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The complete behavior:[
big : 0
small : 0

]
→

[
big : 5
small : 0

]
→

[
big : 2
small : 3

]
→

[
big : 2
small : 0

]
→

[
big : 0
small : 2

]

a state in which the invariant equals false.

It shows this complete behavior From this behavior, our heroes should be able to see how to get 4
gallons of water in the big jug. But they might not be the brightest bulbs on the block, and they may need help
figuring out how to get from one state to the next. The Toolbox provides that help.

To see why this step is allowed by the spec Double-click here to find the part of the next-state formula that allows
this step And even Hollywood actors should be able to figure out that they have to pour the big jug into the small
jug.
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The complete behavior:[
big : 0
small : 0

]
→

[
big : 5
small : 0

]
→

[
big : 2
small : 3

]
→

[
big : 2
small : 0

]
→

[
big : 0
small : 2

]
→

[
big : 5
small : 2

]

a state in which the invariant equals false.

It shows this complete behavior From this behavior, our heroes should be able to see how to get 4
gallons of water in the big jug. But they might not be the brightest bulbs on the block, and they may need help
figuring out how to get from one state to the next. The Toolbox provides that help.

To see why this step is allowed by the spec Double-click here to find the part of the next-state formula that allows
this step And even Hollywood actors should be able to figure out that they have to pour the big jug into the small
jug.
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The complete behavior:[
big : 0
small : 0

]
→

[
big : 5
small : 0

]
→

[
big : 2
small : 3

]
→

[
big : 2
small : 0

]
→

[
big : 0
small : 2

]
→

[
big : 5
small : 2

]
→

[
big : 4
small : 3

]

a state in which the invariant equals false.

It shows this complete behavior From this behavior, our heroes should be able to see how to get 4
gallons of water in the big jug. But they might not be the brightest bulbs on the block, and they may need help
figuring out how to get from one state to the next. The Toolbox provides that help.

To see why this step is allowed by the spec Double-click here to find the part of the next-state formula that allows
this step And even Hollywood actors should be able to figure out that they have to pour the big jug into the small
jug.
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[
big : 0
small : 0

]
→

[
big : 5
small : 0

]
→

[
big : 2
small : 3

]
→

[
big : 2
small : 0

]
→

[
big : 0
small : 2

]
→

[
big : 5
small : 2

]
→

[
big : 4
small : 3

]

a state in which the invariant equals false.

It shows this complete behavior From this behavior, our heroes should be able to see how to get 4
gallons of water in the big jug. But they might not be the brightest bulbs on the block, and they may need help
figuring out how to get from one state to the next. The Toolbox provides that help.

To see why this step is allowed by the spec Double-click here to find the part of the next-state formula that allows
this step And even Hollywood actors should be able to figure out that they have to pour the big jug into the small
jug.
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[
big : 0
small : 0

]
→

[
big : 5
small : 0

]
→

[
big : 2
small : 3

]
→

[
big : 2
small : 0

]
→

[
big : 0
small : 2

]
→

[
big : 5
small : 2

]
→

[
big : 4
small : 3

]

a state in which the invariant equals false.

It shows this complete behavior From this behavior, our heroes should be able to see how to get 4
gallons of water in the big jug. But they might not be the brightest bulbs on the block, and they may need help
figuring out how to get from one state to the next. The Toolbox provides that help.

To see why this step is allowed by the spec Double-click here to find the part of the next-state formula that allows
this step And even Hollywood actors should be able to figure out that they have to pour the big jug into the small
jug.
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[
big : 5
small : 0

]
→

[
big : 2
small : 3

]

a state in which the invariant equals false.

It shows this complete behavior From this behavior, our heroes should be able to see how to get 4
gallons of water in the big jug. But they might not be the brightest bulbs on the block, and they may need help
figuring out how to get from one state to the next. The Toolbox provides that help.

To see why this step is allowed by the spec Double-click here to find the part of the next-state formula that allows
this step And even Hollywood actors should be able to figure out that they have to pour the big jug into the small
jug.
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Double-click here.

[
big : 5
small : 0

]
→

[
big : 2
small : 3

]

a state in which the invariant equals false.

It shows this complete behavior From this behavior, our heroes should be able to see how to get 4
gallons of water in the big jug. But they might not be the brightest bulbs on the block, and they may need help
figuring out how to get from one state to the next. The Toolbox provides that help.

To see why this step is allowed by the spec Double-click here to find the part of the next-state formula that allows
this step And even Hollywood actors should be able to figure out that they have to pour the big jug into the small
jug.
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a state in which the invariant equals false.

It shows this complete behavior From this behavior, our heroes should be able to see how to get 4
gallons of water in the big jug. But they might not be the brightest bulbs on the block, and they may need help
figuring out how to get from one state to the next. The Toolbox provides that help.

To see why this step is allowed by the spec Double-click here to find the part of the next-state formula that allows
this step And even Hollywood actors should be able to figure out that they have to pour the big jug into the small
jug.
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a state in which the invariant equals false.

It shows this complete behavior From this behavior, our heroes should be able to see how to get 4
gallons of water in the big jug. But they might not be the brightest bulbs on the block, and they may need help
figuring out how to get from one state to the next. The Toolbox provides that help.

To see why this step is allowed by the spec Double-click here to find the part of the next-state formula that allows
this step And even Hollywood actors should be able to figure out that they have to pour the big jug into the small
jug.
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SmallToBig AND BigToSmall

Formulas SmallToBig and BigToSmall .
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Now that we’ve saved our heroes, let’s take a look at the definitions of
SmallToBig and BigToSmall .

Let’s start with SmallToBig .
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Now that we’ve saved our heroes, let’s take a look at the definitions of
SmallToBig and BigToSmall .

Let’s start with SmallToBig .
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≤ is typed as =<

Notice that less than or equal is represented in ASCII as equal-sign
less-than.

Remember that this is the case in which the big jug is filled from
the small one.

The amount poured into the big jug is removed from the small jug.
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Notice that less than or equal is represented in ASCII as equal-sign
less-than.

Remember that this is the case in which the big jug is filled from
the small one.

The amount poured into the big jug is removed from the small jug.
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big is filled.

Notice that less than or equal is represented in ASCII as equal-sign
less-than.

Remember that this is the case in which the big jug is filled from
the small one.

The amount poured into the big jug is removed from the small jug.
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amount poured

Notice that less than or equal is represented in ASCII as equal-sign
less-than.

Remember that this is the case in which the big jug is filled from
the small one.

The amount poured into the big jug is removed from the small jug.
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Someone who hasn’t seen TLA+ before would think this is wrong because
this value of big Is set to 5 here.

That’s because she thinks of this as two assignment statements.
But you know that it’s actually a formula that specifies allowed steps.
And that and is commutative, so
Changing the order of the two sub-formulas makes no difference.
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You can look at the definition of BigToSmall in the module by yourself later.
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Here’s a warning about writing specs.

The equality operator is also commutative. so small prime equals 0 is
completely equivalent to 0 equals small prime.

These two specs are equivalent. .
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These two specs are equivalent.

The TLAPS proof system treats them the same.

And the TLAPS proof system treats them exactly the same.

But TLC handles only this one.

It reports an error if you run it on this one.
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And the TLAPS proof system treats them exactly the same.

But TLC handles only this one.

It reports an error if you run it on this one.
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These two specs are equivalent.

It reports an error on this one.

And the TLAPS proof system treats them exactly the same.

But TLC handles only this one.

It reports an error if you run it on this one.
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There are many ways to write a correct
specification.

TLC can almost always handle the ones
most engineers naturally write.

Later, you’ll learn what specs TLC can handle.

There are many ways to write a correct specification.

TLC can almost always handle the ones most engineers naturally write.

Later, you’ll learn what specs TLC can handle.
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For now, follow this simple rule:

Use a primed variable v ′ only
in one of these two kinds of
formulas:

v ′ = . . . and v ′ ∈ . . .
bb ""no primed variables

We’ll relax this rule later.

For now, just follow this simple rule:

Use a primed variable v -prime only in one of these two kinds of formulas
where dot-dot-dot is an expression not containing primes.

We’ll relax this rule later.
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CHECKING YOUR DEFINITIONS

Let’s now check your definitions of SmallToBig and BigToSmall .
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Your definitions of SmallToBig and BigToSmall

are probably not exactly like mine.

But they may still be correct.

Math provides many ways of writing the same formula.

Let’s check your definitions.

But first, let’s see how we find errors.

Your definitions are probably not exactly the same as mine.

But they may still be correct.

Math provides many ways of writing the same formula.
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Your definitions of SmallToBig and BigToSmall

are probably not exactly like mine.

But they may still be correct.

Math provides many ways of writing the same formula.

Let’s check your definitions.

But first, let’s see how we find errors.

Let’s check your definitions.

But first, let’s see how we find errors.
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Parsing Errors

When writing a spec, our first mistakes are found by the parser.

For example, in the Toolbox, modify the definition of SmallToBig by deleting
this plus sign.

Now save the spec.

The Toolbox runs the parser, which raises this error window.
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Parsing Errors

Save the spec.

When writing a spec, our first mistakes are found by the parser.

For example, in the Toolbox, modify the definition of SmallToBig by deleting
this plus sign.

Now save the spec.

The Toolbox runs the parser, which raises this error window.
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Parsing Errors

When writing a spec, our first mistakes are found by the parser.

For example, in the Toolbox, modify the definition of SmallToBig by deleting
this plus sign.

Now save the spec.

The Toolbox runs the parser, which raises this error window.
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Parsing Errors

And it puts this error mark in the module editor.

Clicking here in the error window Highlights this part of the module and
jumps to it.
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Parsing Errors

Click
here.

And it puts this error mark in the module editor.

Clicking here in the error window Highlights this part of the module and
jumps to it.
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Parsing Errors

And it puts this error mark in the module editor.

Clicking here in the error window Highlights this part of the module and
jumps to it.
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Another common error found by parsing:

Here’s another common error found by the parser.
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Another common error found by parsing:

An identifier not defined or declared.

Here’s another common error found by the parser.

An identifier not yet defined or declared. This is usually a typo.
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TLC “Execution Errors”

Errors TLC finds trying to “execute” the spec.

After there are no more parsing errors, TLC can often find errors while trying
to quote execute the spec. (We’ll see in a later video how TLC does that.)

For example, change this five to quote five. And save the spec.

Running TLC now produces
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Errors TLC finds trying to “execute” the spec.

After there are no more parsing errors, TLC can often find errors while trying
to quote execute the spec. (We’ll see in a later video how TLC does that.)

For example, change this five to quote five. And save the spec.

Running TLC now produces

[ slide 296 ]



TLC “Execution Errors”

Errors TLC finds trying to “execute” the spec.

After there are no more parsing errors, TLC can often find errors while trying
to quote execute the spec. (We’ll see in a later video how TLC does that.)

For example, change this five to quote five. And save the spec.

Running TLC now produces

[ slide 297 ]



TLC “Execution Errors”

Errors TLC finds trying to “execute” the spec.

this error. You can read the complete error report later if you’re curious.

For now, just click here, which selects and goes to this part of the module.
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Errors TLC finds trying to “execute” the spec.
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TLC “Execution Errors”

Errors TLC finds trying to “execute” the spec.

6

this error. You can read the complete error report later if you’re curious.

For now, just click here, which selects and goes to this part of the module.
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Checking Your Definitions

Comment out my definitions and add your own.

Now, check your definitions of SmallToBig and BigToSmall .

First comment out my definitions by adding these comment delimiters.

And add your own definitions.
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Checking Your Definitions

Comment out my definitions and add your own.

Now, check your definitions of SmallToBig and BigToSmall .

First comment out my definitions by adding these comment delimiters.

And add your own definitions.
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Save your definitions and correct any
errors the parser finds.

Run TLC.

Your definitions are probably correct if TLC:

– Finds no “execution” errors.

– Finds no violation of the invariant TypeOK .

– Finds a violation of the alleged invariant
big 6= 4 .

Save your definitions and correct any errors the parser finds.

Run TLC.

Your definitions are probably correct if TLC:
– Finds no “execution” errors.
– Finds no violation of the invariant TypeOK .
– And finds a violation of the alleged invariant big 6= 4 .
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Save your definitions and correct any
errors the parser finds.

Run TLC.
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To be sure, go here

Uncheck this box so only TypeOK will be tested.

Run TLC again.

To be sure, go to the Invariants section of the Model Overview page and

Uncheck this box.

So only the TypeOK invariant will be tested by TLC.

And run TLC again.
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To be sure, go here

Uncheck this box so only TypeOK will be tested.

Run TLC again.

To be sure, go to the Invariants section of the Model Overview page and
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If TLC finds no error, try to find a
different way to write the definitions.

The best way to learn is by making
mistakes.

If TLC finds no error try to find a different way to write the definitions.

The best way to learn is by making mistakes.
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Now that we’ve used TLC to save our heroes from certain death, it’s time to
leave the glamour of Hollywood for the more romantic subject of marriage
and commitment. In the next lecture, we’ll examine an algorithm that has
been used for many years in weddings and database systems.
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TLA+ Video Course

End of Lecture 4

DIE HARD
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