
TLA+ Video Course – Lecture 4
Leslie Lamport

DIE HARD

This video should be viewed in conjunction with a Web page.
To find that page, search the Web for TLA+ Video Course .

The TLA+ Video Course
Lecture 4
Die Hard

In this video, you’ll learn how TLC can save your life. . . if you ever find
yourself in the middle of a Hollywood action movie.

This will require you to learn some more about TLA+, TLC, and the Toolbox
— which could turn out to be useful even outside of Hollywood.

[slide 2]

THE DIE HARD PROBLEM

[slide 3]

Die Hard 3

A 1995 action film.

The heroes had to put exactly 4 gallons of
water in a jug.

They had a 3 gallon jug, a 5 gallon jug, and a water faucet.

Search the Web for: Die Hard Jugs Problem YouTube.

Die Hard 3 is a 1995 action film starring Bruce Willis and Samuel L. Jackson
as the heroes.

To disarm a bomb, they had to put exactly 4 gallons of water in a jug.

[slide 4]

Die Hard 3

A 1995 action film.

The heroes had to put exactly 4 gallons of
water in a jug.

They had a 3 gallon jug, a 5 gallon jug, and a water faucet.

Search the Web for: Die Hard Jugs Problem YouTube.

Die Hard 3 is a 1995 action film starring Bruce Willis and Samuel L. Jackson
as the heroes.

To disarm a bomb, they had to put exactly 4 gallons of water in a jug.

[slide 5]

Die Hard 3

A 1995 action film.

The heroes had to put exactly 4 gallons of
water in a jug.

They had a 3 gallon jug, a 5 gallon jug, and a water faucet.

Search the Web for: Die Hard Jugs Problem YouTube.

Die Hard 3 is a 1995 action film starring Bruce Willis and Samuel L. Jackson
as the heroes.

To disarm a bomb, they had to put exactly 4 gallons of water in a jug.

[slide 6]

Die Hard 3

A 1995 action film.

The heroes had to put exactly 4 gallons of
water in a jug.

1 U.S. gallon = 1
64 hogshead

They had a 3 gallon jug, a 5 gallon jug, and a water faucet.

Search the Web for: Die Hard Jugs Problem YouTube.

Die Hard 3 is a 1995 action film starring Bruce Willis and Samuel L. Jackson
as the heroes.

To disarm a bomb, they had to put exactly 4 gallons of water in a jug.

[slide 7]

Die Hard 3

A 1995 action film.

The heroes had to put exactly 4 gallons of
water in a jug.

1 U.S. gallon = 1
64 hogshead = 3.785411784 liters

They had a 3 gallon jug, a 5 gallon jug, and a water faucet.

Search the Web for: Die Hard Jugs Problem YouTube.

Die Hard 3 is a 1995 action film starring Bruce Willis and Samuel L. Jackson
as the heroes.

To disarm a bomb, they had to put exactly 4 gallons of water in a jug.

[slide 8]

Die Hard 3

A 1995 action film.

The heroes had to put exactly 4 gallons of
water in a jug.

They had a 3 gallon jug, a 5 gallon jug, and a water faucet.

Search the Web for: Die Hard Jugs Problem YouTube.

They were given a 3 gallon jug, a 5 gallon jug, and a water faucet.

You can watch the relevant scene by searching the Web for Die Hard Jugs
Problem YouTube.

[slide 9]

Die Hard 3

A 1995 action film.

The heroes had to put exactly 4 gallons of
water in a jug.

They had a 3 gallon jug, a 5 gallon jug, and a water faucet.

Search the Web for: Die Hard Jugs Problem YouTube.

They were given a 3 gallon jug, a 5 gallon jug, and a water faucet.

You can watch the relevant scene by searching the Web for Die Hard Jugs
Problem YouTube.

[slide 10]

There were no markings on the jugs.

They needed exacty 4 gallons.

Not 3.99 or 4.01.

There were no markings on the jugs.

They needed exacty 4 gallons.

Not 3.99 or 4.01 gallons.

[slide 11]

There were no markings on the jugs.

They needed exacty 4 gallons.

Not 3.99 or 4.01.

There were no markings on the jugs.

They needed exacty 4 gallons.

Not 3.99 or 4.01 gallons.

[slide 12]

There were no markings on the jugs.

They needed exacty 4 gallons.

Not 3.99 or 4.01.

There were no markings on the jugs.

They needed exacty 4 gallons.

Not 3.99 or 4.01 gallons.

[slide 13]

GETTING STARTED

[slide 14]

Getting Started on a Spec

The best way:

Write a single correct behavior.

Informally.

When we want to write a spec, what should we do first?

I recommend writing the start of a single correct behavior.

Informally at first.

[slide 15]

Getting Started on a Spec

The best way:

Write a single correct behavior.

Informally.

When we want to write a spec, what should we do first?

I recommend writing the start of a single correct behavior.

Informally at first.

[slide 16]

Getting Started on a Spec

The best way:

Write a single correct behavior.

Informally.

When we want to write a spec, what should we do first?

I recommend writing the start of a single correct behavior.

Informally at first.

[slide 17]

This isn’t a big budget movie.

I’ll use these cartoon jugs:

This isn’t a big budget Hollywood movie, and I can’t affort big jugs.

So instead, I’ll illustrate the spec with these cartoon jugs.

[slide 18]

This isn’t a big budget movie.

I’ll use these cartoon jugs:

This isn’t a big budget Hollywood movie, and I can’t affort big jugs.

So instead, I’ll illustrate the spec with these cartoon jugs.

[slide 19]

They start with both jugs empty.

Our heroes start with both jugs empty.

It’s possible for them to solve their problem by simply pouring 4 gallons of
water into the 5-gallon jug.

But they’d have to be very lucky to get exactly 4 gallons.

So we only allow behaviors in which they always know exactly how much
water is in each jug.

[slide 20]

It’s possible for them to
pour 4 gallons of water
into the 5-gallon jug.

Our heroes start with both jugs empty.

It’s possible for them to solve their problem by simply pouring 4 gallons of
water into the 5-gallon jug.

But they’d have to be very lucky to get exactly 4 gallons.

So we only allow behaviors in which they always know exactly how much
water is in each jug.

[slide 21]

It’s possible for them to
pour 4 gallons of water
into the 5-gallon jug.

Our heroes start with both jugs empty.

It’s possible for them to solve their problem by simply pouring 4 gallons of
water into the 5-gallon jug.

But they’d have to be very lucky to get exactly 4 gallons.

So we only allow behaviors in which they always know exactly how much
water is in each jug.

[slide 22]

It’s possible for them to
pour 4 gallons of water
into the 5-gallon jug.

Our heroes start with both jugs empty.

It’s possible for them to solve their problem by simply pouring 4 gallons of
water into the 5-gallon jug.

But they’d have to be very lucky to get exactly 4 gallons.

So we only allow behaviors in which they always know exactly how much
water is in each jug.

[slide 23]

It’s possible for them to
pour 4 gallons of water
into the 5-gallon jug.

Our heroes start with both jugs empty.

It’s possible for them to solve their problem by simply pouring 4 gallons of
water into the 5-gallon jug.

But they’d have to be very lucky to get exactly 4 gallons.

So we only allow behaviors in which they always know exactly how much
water is in each jug.

[slide 24]

It’s possible for them to
pour 4 gallons of water
into the 5-gallon jug.

Our heroes start with both jugs empty.

It’s possible for them to solve their problem by simply pouring 4 gallons of
water into the 5-gallon jug.

But they’d have to be very lucky to get exactly 4 gallons.

So we only allow behaviors in which they always know exactly how much
water is in each jug.

[slide 25]

It’s possible for them to
pour 4 gallons of water
into the 5-gallon jug.

Our heroes start with both jugs empty.

It’s possible for them to solve their problem by simply pouring 4 gallons of
water into the 5-gallon jug.

But they’d have to be very lucky to get exactly 4 gallons.

So we only allow behaviors in which they always know exactly how much
water is in each jug.

[slide 26]

It’s possible for them to
pour 4 gallons of water
into the 5-gallon jug.

But they’d have to be very lucky
to get exactly 4 gallons.

Our heroes start with both jugs empty.

It’s possible for them to solve their problem by simply pouring 4 gallons of
water into the 5-gallon jug.

But they’d have to be very lucky to get exactly 4 gallons.

So we only allow behaviors in which they always know exactly how much
water is in each jug.

[slide 27]

We only allow behaviors where
they know exactly how much
water is in each jug.

Our heroes start with both jugs empty.

It’s possible for them to solve their problem by simply pouring 4 gallons of
water into the 5-gallon jug.

But they’d have to be very lucky to get exactly 4 gallons.

So we only allow behaviors in which they always know exactly how much
water is in each jug.

[slide 28]

Initially, both jugs empty.

Again, they start with both jugs empty.

The only thing they can do now is fill a jug. Suppose they fill the 3 gallon jug.

Next, they empty the water from the 3 gallon jug into the 5 gallon jug.

Now they fill the 3 gallon jug.

[slide 29]

Fill 3-gal. jug.

Again, they start with both jugs empty.

The only thing they can do now is fill a jug. Suppose they fill the 3 gallon jug.

Next, they empty the water from the 3 gallon jug into the 5 gallon jug.

Now they fill the 3 gallon jug.

[slide 30]

Fill 3-gal. jug.

Again, they start with both jugs empty.

The only thing they can do now is fill a jug. Suppose they fill the 3 gallon jug.

Next, they empty the water from the 3 gallon jug into the 5 gallon jug.

Now they fill the 3 gallon jug.

[slide 31]

Fill 3-gal. jug.

Again, they start with both jugs empty.

The only thing they can do now is fill a jug. Suppose they fill the 3 gallon jug.

Next, they empty the water from the 3 gallon jug into the 5 gallon jug.

Now they fill the 3 gallon jug.

[slide 32]

Fill 3-gal. jug.

Again, they start with both jugs empty.

The only thing they can do now is fill a jug. Suppose they fill the 3 gallon jug.

Next, they empty the water from the 3 gallon jug into the 5 gallon jug.

Now they fill the 3 gallon jug.

[slide 33]

→

Again, they start with both jugs empty.

The only thing they can do now is fill a jug. Suppose they fill the 3 gallon jug.

Next, they empty the water from the 3 gallon jug into the 5 gallon jug.

Now they fill the 3 gallon jug.

[slide 34]

→

Empty 3-gal. jug into 5-gal. jug.

Again, they start with both jugs empty.

The only thing they can do now is fill a jug. Suppose they fill the 3 gallon jug.

Next, they empty the water from the 3 gallon jug into the 5 gallon jug.

Now they fill the 3 gallon jug.

[slide 35]

→

Empty 3-gal. jug into 5-gal. jug.

Again, they start with both jugs empty.

The only thing they can do now is fill a jug. Suppose they fill the 3 gallon jug.

Next, they empty the water from the 3 gallon jug into the 5 gallon jug.

Now they fill the 3 gallon jug.

[slide 36]

→

Empty 3-gal. jug into 5-gal. jug.

Again, they start with both jugs empty.

The only thing they can do now is fill a jug. Suppose they fill the 3 gallon jug.

Next, they empty the water from the 3 gallon jug into the 5 gallon jug.

Now they fill the 3 gallon jug.

[slide 37]

→

Empty 3-gal. jug into 5-gal. jug.

Again, they start with both jugs empty.

The only thing they can do now is fill a jug. Suppose they fill the 3 gallon jug.

Next, they empty the water from the 3 gallon jug into the 5 gallon jug.

Now they fill the 3 gallon jug.

[slide 38]

→

Empty 3-gal. jug into 5-gal. jug.

Again, they start with both jugs empty.

The only thing they can do now is fill a jug. Suppose they fill the 3 gallon jug.

Next, they empty the water from the 3 gallon jug into the 5 gallon jug.

Now they fill the 3 gallon jug.

[slide 39]

→ →

Again, they start with both jugs empty.

The only thing they can do now is fill a jug. Suppose they fill the 3 gallon jug.

Next, they empty the water from the 3 gallon jug into the 5 gallon jug.

Now they fill the 3 gallon jug.

[slide 40]

→ →

Fill 3-gal. jug.

Again, they start with both jugs empty.

The only thing they can do now is fill a jug. Suppose they fill the 3 gallon jug.

Next, they empty the water from the 3 gallon jug into the 5 gallon jug.

Now they fill the 3 gallon jug.

[slide 41]

→ →

Fill 3-gal. jug.

Again, they start with both jugs empty.

The only thing they can do now is fill a jug. Suppose they fill the 3 gallon jug.

Next, they empty the water from the 3 gallon jug into the 5 gallon jug.

Now they fill the 3 gallon jug.

[slide 42]

→ →

Fill 3-gal. jug.

Again, they start with both jugs empty.

The only thing they can do now is fill a jug. Suppose they fill the 3 gallon jug.

Next, they empty the water from the 3 gallon jug into the 5 gallon jug.

Now they fill the 3 gallon jug.

[slide 43]

→ →

Fill 3-gal. jug.

Again, they start with both jugs empty.

The only thing they can do now is fill a jug. Suppose they fill the 3 gallon jug.

Next, they empty the water from the 3 gallon jug into the 5 gallon jug.

Now they fill the 3 gallon jug.

[slide 44]

→ → →

Again, they start with both jugs empty.

The only thing they can do now is fill a jug. Suppose they fill the 3 gallon jug.

Next, they empty the water from the 3 gallon jug into the 5 gallon jug.

Now they fill the 3 gallon jug.

[slide 45]

→ → →

Fill 5-gal. jug from 3-gal. jug.

Now they fill the 5 gallon jug from the 3 gallon jug.

They then empty the 5-gallon jug onto the ground.

And so on.

[slide 46]

→ → →

Fill 5-gal. jug from 3-gal. jug.

Now they fill the 5 gallon jug from the 3 gallon jug.

They then empty the 5-gallon jug onto the ground.

And so on.

[slide 47]

→ → →

Fill 5-gal. jug from 3-gal. jug.

Now they fill the 5 gallon jug from the 3 gallon jug.

They then empty the 5-gallon jug onto the ground.

And so on.

[slide 48]

→ → →

Fill 5-gal. jug from 3-gal. jug.

Now they fill the 5 gallon jug from the 3 gallon jug.

They then empty the 5-gallon jug onto the ground.

And so on.

[slide 49]

→ → → →

Now they fill the 5 gallon jug from the 3 gallon jug.

They then empty the 5-gallon jug onto the ground.

And so on.

[slide 50]

→ → → →

Empty 5-gal. jug.

Now they fill the 5 gallon jug from the 3 gallon jug.

They then empty the 5-gallon jug onto the ground.

And so on.

[slide 51]

→ → → →

Empty 5-gal. jug.

Now they fill the 5 gallon jug from the 3 gallon jug.

They then empty the 5-gallon jug onto the ground.

And so on.

[slide 52]

→ → → →

Empty 5-gal. jug.

Now they fill the 5 gallon jug from the 3 gallon jug.

They then empty the 5-gallon jug onto the ground.

And so on.

[slide 53]

→ → → →

Empty 5-gal. jug.

Now they fill the 5 gallon jug from the 3 gallon jug.

They then empty the 5-gallon jug onto the ground.

And so on.

[slide 54]

→ → → →

Empty 5-gal. jug.

Now they fill the 5 gallon jug from the 3 gallon jug.

They then empty the 5-gallon jug onto the ground.

And so on.

[slide 55]

→ → → → →

Now they fill the 5 gallon jug from the 3 gallon jug.

They then empty the 5-gallon jug onto the ground.

And so on.

[slide 56]

→ → → → → → · · ·

And so on.

Now they fill the 5 gallon jug from the 3 gallon jug.

They then empty the 5-gallon jug onto the ground.

And so on.

[slide 57]

This is just one possible behavior.

Let’s write it more formally.

Let values of small and big represent
number of gallons in each jug.

→ → → → → → · · ·

This is just one of many possible ways a behavior can begin.

Let’s write it more formally.

Let the values of the variables small and big represent the number of gallons
of water in each jug.

[slide 58]

This is just one possible behavior.

Let’s write it more formally.

Let values of small and big represent
number of gallons in each jug.

→ → → → → → · · ·

This is just one of many possible ways a behavior can begin.

Let’s write it more formally.

Let the values of the variables small and big represent the number of gallons
of water in each jug.

[slide 59]

This is just one possible behavior.

Let’s write it more formally.

Let values of small and big represent
number of gallons in each jug.

→ → → → → → · · ·

This is just one of many possible ways a behavior can begin.

Let’s write it more formally.

Let the values of the variables small and big represent the number of gallons
of water in each jug.

[slide 60]

[
small : 0
big : 0

]

→ → → → → → · · ·

Initially, both jugs have 0 gallons of water.

Filling the small jug puts 3 gallons of water in it.

Those 3 gallons are transferred from the small jug to the big jug.

[slide 61]

Fill small jug.

[
small : 0
big : 0

] [
small : 3
big : 0

]

→ → → → → → · · ·

Initially, both jugs have 0 gallons of water.

Filling the small jug puts 3 gallons of water in it.

Those 3 gallons are transferred from the small jug to the big jug.

[slide 62]

Empty small jug
into big jug.[

small : 0
big : 0

] [
small : 3
big : 0

] [
small : 0
big : 3

]

→ → → → → → · · ·

Initially, both jugs have 0 gallons of water.

Filling the small jug puts 3 gallons of water in it.

Those 3 gallons are transferred from the small jug to the big jug.

[slide 63]

Fill small jug.

[
small : 0
big : 0

] [
small : 3
big : 0

] [
small : 0
big : 3

] [
small : 3
big : 3

]

→ → → → → → · · ·

3 gallons are then added to the small jug.

The big jug is then filled from the small jug, putting 5 gallons in the big jug
and leaving 1 gallon in the small jug.

The big jug is then emptied, leaving 0 gallons in it.

[slide 64]

Fill big jug
from small jug.[

small : 0
big : 0

] [
small : 3
big : 0

] [
small : 0
big : 3

] [
small : 3
big : 3

] [
small : 1
big : 5

]

→ → → → → → · · ·

3 gallons are then added to the small jug.

The big jug is then filled from the small jug, putting 5 gallons in the big jug
and leaving 1 gallon in the small jug.

The big jug is then emptied, leaving 0 gallons in it.

[slide 65]

Empty big jug.

[
small : 0
big : 0

] [
small : 3
big : 0

] [
small : 0
big : 3

] [
small : 3
big : 3

] [
small : 1
big : 5

] [
small : 1
big : 0

]

→ → → → → → · · ·

3 gallons are then added to the small jug.

The big jug is then filled from the small jug, putting 5 gallons in the big jug
and leaving 1 gallon in the small jug.

The big jug is then emptied, leaving 0 gallons in it.

[slide 66]

[
small : 0
big : 0

] [
small : 3
big : 0

] [
small : 0
big : 3

] [
small : 3
big : 3

] [
small : 1
big : 5

] [
small : 1
big : 0

]
→ → → → → → · · ·

3 gallons are then added to the small jug.

The big jug is then filled from the small jug, putting 5 gallons in the big jug
and leaving 1 gallon in the small jug.

The big jug is then emptied, leaving 0 gallons in it.

[slide 67]

What did we learn from this behavior?

1. What the variables are.

2. What constitutes a step.

[
small : 0
big : 0

] [
small : 3
big : 0

] [
small : 1
big : 5

] [
small : 1
big : 0

]
→ → → → → · · ·

[
small : 3
big : 3

]
→

[
small : 0
big : 3

]

What did we learn by writing this behavior?
We learned two things.

First, what the variables are.

And second, what constitutes a step. For example. . .

[slide 68]

What did we learn from this behavior?

1. What the variables are.

2. What constitutes a step.

[
small : 0
big : 0

] [
small : 3
big : 0

] [
small : 1
big : 5

] [
small : 1
big : 0

]
→ → → → → · · ·

[
small : 3
big : 3

]
→

[
small : 0
big : 3

]

What did we learn by writing this behavior?
We learned two things.

First, what the variables are.

And second, what constitutes a step. For example. . .

[slide 69]

What did we learn from this behavior?

1. What the variables are.

2. What constitutes a step.

[
small : 0
big : 0

] [
small : 3
big : 0

] [
small : 1
big : 5

] [
small : 1
big : 0

]
→ → → → → · · ·

[
small : 3
big : 3

]
→

[
small : 0
big : 3

]

What did we learn by writing this behavior?
We learned two things.

First, what the variables are.

And second, what constitutes a step. For example. . .

[slide 70]

1. What the variables are.

2. What constitutes a step.

Filling a jug is a single step.

No intermediate states.[
small : 0
big : 0

] [
small : 3
big : 0

] [
small : 1
big : 5

] [
small : 1
big : 0

]
→ → → → → · · ·

[
small : 3
big : 3

]
→

[
small : 0
big : 3

]

Filling a jug is a single step.

There’s no intermediate partially-filled state or states.

This is the simplest abstraction of the behavior of real jugs and water for
the particular problem faced by our heroes.

[slide 71]

1. What the variables are.

2. What constitutes a step.

Filling a jug is a single step.

No intermediate states.[
small : 0
big : 3

]
→ → →

[
small : 1
big : 3

] [
small : 2
big : 3

] [
small : 3
big : 3

]

Filling a jug is a single step.

There’s no intermediate partially-filled state or states.

This is the simplest abstraction of the behavior of real jugs and water for
the particular problem faced by our heroes.

[slide 72]

1. What the variables are.

2. What constitutes a step.

Filling a jug is a single step.

No intermediate states.[
small : 0
big : 3

]
→ → →

[
small : 1
big : 3

] [
small : 2
big : 3

] [
small : 3
big : 3

]
��

��
��

��
�PPPPPPPPP

Filling a jug is a single step.

There’s no intermediate partially-filled state or states.

This is the simplest abstraction of the behavior of real jugs and water for
the particular problem faced by our heroes.

[slide 73]

What did we learn from this behavior?

1. What the variables are.

2. What constitutes a step.

[
small : 0
big : 0

] [
small : 3
big : 0

] [
small : 1
big : 5

] [
small : 1
big : 0

]
→ → → → → · · ·

[
small : 3
big : 3

]
→

[
small : 0
big : 3

]

Filling a jug is a single step.

There’s no intermediate partially-filled state or states.

This is the simplest abstraction of the behavior of real jugs and water for
the particular problem faced by our heroes.

[slide 74]

[
small : 0
big : 0

] [
small : 3
big : 0

] [
small : 1
big : 5

] [
small : 1
big : 0

]
→ → → → → · · ·

[
small : 3
big : 3

]
→

[
small : 0
big : 3

]
Simplest abstraction of real jugs and water

for this problem.

Filling a jug is a single step.

There’s no intermediate partially-filled state or states.

This is the simplest abstraction of the behavior of real jugs and water for
the particular problem faced by our heroes.

[slide 75]

[
small : 0
big : 0

] [
small : 3
big : 0

] [
small : 1
big : 5

] [
small : 1
big : 0

]
→ → → → → · · ·

[
small : 3
big : 3

]
→

[
small : 0
big : 3

]
Simplest abstraction of real jugs and water

for this problem.

Filling a jug is a single step.

There’s no intermediate partially-filled state or states.

This is the simplest abstraction of the behavior of real jugs and water for
the particular problem faced by our heroes.

[slide 76]

[
small : 0
big : 0

] [
small : 3
big : 0

] [
small : 1
big : 5

] [
small : 1
big : 0

]
→ → → → → · · ·

[
small : 3
big : 3

]
→

[
small : 0
big : 3

]

Real specifications are written to
eliminate some kinds of errors.

Like getting blown up.

Real specifications are written for a purpose.
Usually to eliminate some particular kinds of errors.

For example, to avoid getting blown up.

[slide 77]

[
small : 0
big : 0

] [
small : 3
big : 0

] [
small : 1
big : 5

] [
small : 1
big : 0

]
→ → → → → · · ·

[
small : 3
big : 3

]
→

[
small : 0
big : 3

]

Real specifications are written to
eliminate some kinds of errors.

Like getting blown up.

Real specifications are written for a purpose.
Usually to eliminate some particular kinds of errors.

For example, to avoid getting blown up.

[slide 78]

THE SPECIFICATION

We can now start writing the actual TLA+ specification.

[slide 79]

Beginning of module.

The spec is in a module called DieHard .

As in our Simple Program example, the EXTENDS statement imports
operators of arithmetic
and the VARIABLES statement declares our two variables.

In TLA+ we don’t write type declarations.

[slide 80]

Imports operators of arithmetic.

The spec is in a module called DieHard .

As in our Simple Program example, the EXTENDS statement imports
operators of arithmetic
and the VARIABLES statement declares our two variables.

In TLA+ we don’t write type declarations.

[slide 81]

Declares the variables.

The spec is in a module called DieHard .

As in our Simple Program example, the EXTENDS statement imports
operators of arithmetic
and the VARIABLES statement declares our two variables.

In TLA+ we don’t write type declarations.

[slide 82]

TLA+ has no type declarations.

Type correctness means variables have
sensible values.

The spec is in a module called DieHard .

As in our Simple Program example, the EXTENDS statement imports
operators of arithmetic
and the VARIABLES statement declares our two variables.

In TLA+ we don’t write type declarations.

[slide 83]

TLA+ has no type declarations.

Type correctness means variables have
sensible values.

Type correctness means that all the variables have sensible values.

It’s a good idea to define a formula that asserts type correctness.

It helps a reader to understand the spec.

And TLC can type-check the spec by checking that this formula is always
true.

[slide 84]

We define a formula that asserts type
correctness.

Helps to understand spec.

TLC can check that it’s always true.

Type correctness means that all the variables have sensible values.

It’s a good idea to define a formula that asserts type correctness.

It helps a reader to understand the spec.

And TLC can type-check the spec by checking that this formula is always
true.

[slide 85]

We define a formula that asserts type
correctness.

Helps to understand spec.

TLC can check that it’s always true.

Type correctness means that all the variables have sensible values.

It’s a good idea to define a formula that asserts type correctness.

It helps a reader to understand the spec.

And TLC can type-check the spec by checking that this formula is always
true.

[slide 86]

We define a formula that asserts type
correctness.

Helps to understand spec.

TLC can check that it’s always true.

Type correctness means that all the variables have sensible values.

It’s a good idea to define a formula that asserts type correctness.

It helps a reader to understand the spec.

And TLC can type-check the spec by checking that this formula is always
true.

[slide 87]

We define a formula that asserts type
correctness.

Helps to understand spec.

TLC can check that it’s always true.

I like to call this formula TypeOK .

It asserts that the value of small is an integer from 0 through 3.
and the value of big is an integer from 0 through 5.

This definition is not part of the spec.

Removing it doesn’t change anything.

[slide 88]

I like to call this formula TypeOK .

It asserts that the value of small is an integer from 0 through 3.
and the value of big is an integer from 0 through 5.

This definition is not part of the spec.

Removing it doesn’t change anything.

[slide 89]

I like to call this formula TypeOK .

It asserts that the value of small is an integer from 0 through 3.
and the value of big is an integer from 0 through 5.

This definition is not part of the spec.

Removing it doesn’t change anything.

[slide 90]

This definition is not part of the spec.

Removing it doesn’t change anything.

I like to call this formula TypeOK .

It asserts that the value of small is an integer from 0 through 3.
and the value of big is an integer from 0 through 5.

This definition is not part of the spec.

Removing it doesn’t change anything.

[slide 91]

This definition is not part of the spec.

Removing it doesn’t change anything.

I like to call this formula TypeOK .

It asserts that the value of small is an integer from 0 through 3.
and the value of big is an integer from 0 through 5.

This definition is not part of the spec.

Removing it doesn’t change anything.

[slide 92]

The Initial-State Formula

The initial-state formula.

As usual, let’s name it Init .

It asserts that both jugs are empty.

[slide 93]

The Initial-State Formula

The initial-state formula.

As usual, let’s name it Init .

It asserts that both jugs are empty.

[slide 94]

The Initial-State Formula

The initial-state formula.

As usual, let’s name it Init .

It asserts that both jugs are empty.

[slide 95]

THE NEXT - STATE FORMULA

The next-state formula.

[slide 96]

The Next-State Formula

The next-state formula describes all permitted steps.

It’s usually written as F1 ∨ F2 ∨ . . . ∨ Fn ,
where each Fi allows a different kind of step.

The behavior we wrote has 3 kinds of steps:

– Fill a jug.

– Empty a jug.

– Pour from one jug into the other.

The next-state formula describes all permitted steps.

It’s usually written as F1 or F2 or (and so on) ,

where each formula F allows a different kind of step.

[slide 97]

The Next-State Formula

The next-state formula describes all permitted steps.

It’s usually written as F1 ∨ F2 ∨ . . . ∨ Fn ,
where each Fi allows a different kind of step.

The behavior we wrote has 3 kinds of steps:

– Fill a jug.

– Empty a jug.

– Pour from one jug into the other.

The next-state formula describes all permitted steps.

It’s usually written as F1 or F2 or (and so on) ,

where each formula F allows a different kind of step.

[slide 98]

The Next-State Formula

The next-state formula describes all permitted steps.

It’s usually written as F1 ∨ F2 ∨ . . . ∨ Fn ,
where each Fi allows a different kind of step.

The behavior we wrote has 3 kinds of steps:

– Fill a jug.

– Empty a jug.

– Pour from one jug into the other.

The next-state formula describes all permitted steps.

It’s usually written as F1 or F2 or (and so on) ,

where each formula F allows a different kind of step.

[slide 99]

The Next-State Formula

The next-state formula describes all permitted steps.

It’s usually written as F1 ∨ F2 ∨ . . . ∨ Fn ,
where each Fi allows a different kind of step.

The behavior we wrote has 3 kinds of steps:

– Fill a jug.

– Empty a jug.

– Pour from one jug into the other.

The behavior we just wrote has 3 different kinds of steps:

Steps that fill a jug.

Steps that empty a jug.

And steps that pour from one jug into the other.

[slide 100]

The Next-State Formula

The next-state formula describes all permitted steps.

It’s usually written as F1 ∨ F2 ∨ . . . ∨ Fn ,
where each Fi allows a different kind of step.

The behavior we wrote has 3 kinds of steps:

– Fill a jug.

– Empty a jug.

– Pour from one jug into the other.

The behavior we just wrote has 3 different kinds of steps:

Steps that fill a jug.

Steps that empty a jug.

And steps that pour from one jug into the other.

[slide 101]

The Next-State Formula

The next-state formula describes all permitted steps.

It’s usually written as F1 ∨ F2 ∨ . . . ∨ Fn ,
where each Fi allows a different kind of step.

The behavior we wrote has 3 kinds of steps:

– Fill a jug.

– Empty a jug.

– Pour from one jug into the other.

The behavior we just wrote has 3 different kinds of steps:

Steps that fill a jug.

Steps that empty a jug.

And steps that pour from one jug into the other.

[slide 102]

The Next-State Formula

The next-state formula describes all permitted steps.

It’s usually written as F1 ∨ F2 ∨ . . . ∨ Fn ,
where each Fi allows a different kind of step.

The behavior we wrote has 3 kinds of steps:

– Fill a jug.

– Empty a jug.

– Pour from one jug into the other.

The behavior we just wrote has 3 different kinds of steps:

Steps that fill a jug.

Steps that empty a jug.

And steps that pour from one jug into the other.

[slide 103]

As usual, we call the next-state formula Next .

First we allow steps that fill a jug.
There are two jugs, so we have two possible kinds of steps.

Steps that fill the small jug. And steps that fill the big jug.

[slide 104]

– Fill a jug.

As usual, we call the next-state formula Next .

First we allow steps that fill a jug.
There are two jugs, so we have two possible kinds of steps.

Steps that fill the small jug. And steps that fill the big jug.

[slide 105]

Fill small jug.

As usual, we call the next-state formula Next .

First we allow steps that fill a jug.
There are two jugs, so we have two possible kinds of steps.

Steps that fill the small jug. And steps that fill the big jug.

[slide 106]

Fill big jug.

As usual, we call the next-state formula Next .

First we allow steps that fill a jug.
There are two jugs, so we have two possible kinds of steps.

Steps that fill the small jug. And steps that fill the big jug.

[slide 107]

– Empty a jug.

Similarly for steps that empty a jug.

And there are two kinds of steps that pour from one jug to the other.

Steps that pour from the small jug to the big jug.

And steps that pour from the big jug to the small jug.

[slide 108]

– Empty a jug.

Similarly for steps that empty a jug.

And there are two kinds of steps that pour from one jug to the other.

Steps that pour from the small jug to the big jug.

And steps that pour from the big jug to the small jug.

[slide 109]

– Pour from one jug
into the other.

Similarly for steps that empty a jug.

And there are two kinds of steps that pour from one jug to the other.

Steps that pour from the small jug to the big jug.

And steps that pour from the big jug to the small jug.

[slide 110]

From small jug to big jug.

Similarly for steps that empty a jug.

And there are two kinds of steps that pour from one jug to the other.

Steps that pour from the small jug to the big jug.

And steps that pour from the big jug to the small jug.

[slide 111]

From big jug to small jug.

Similarly for steps that empty a jug.

And there are two kinds of steps that pour from one jug to the other.

Steps that pour from the small jug to the big jug.

And steps that pour from the big jug to the small jug.

[slide 112]

Names must be defined before they are used.

The definitions of these names must precede
this definition of Next .

In TLA+, names must be defined before they’re used.

The definitions of FillSmall , FillBig , etc. must precede
this definition of Next .

[slide 113]

Names must be defined before they are used.

The definitions of these names must precede
this definition of Next .

In TLA+, names must be defined before they’re used.

The definitions of FillSmall , FillBig , etc. must precede
this definition of Next .

[slide 114]

Names must be defined before they are used.

The definitions of these names must precede
this definition of Next .

In TLA+, names must be defined before they’re used.

The definitions of FillSmall , FillBig , etc. must precede
this definition of Next .

[slide 115]

Most people would write this definition.

Stop the video now and figure out
why it’s wrong.

We now define FillSmall .

Most people first learning TLA+ would write this definition.

Stop the video now and figure out why it’s wrong.

If you didn’t figure it out, it means that you’re thinking of this as an
assignment statement that sets small to 3. It’s not.

[slide 116]

Most people would write this definition.

Stop the video now and figure out
why it’s wrong.

We now define FillSmall .

Most people first learning TLA+ would write this definition.

Stop the video now and figure out why it’s wrong.

If you didn’t figure it out, it means that you’re thinking of this as an
assignment statement that sets small to 3. It’s not.

[slide 117]

Most people would write this definition.

Stop the video now and figure out
why it’s wrong.

We now define FillSmall .

Most people first learning TLA+ would write this definition.

Stop the video now and figure out why it’s wrong.

If you didn’t figure it out, it means that you’re thinking of this as an
assignment statement that sets small to 3. It’s not.

[slide 118]

If you didn’t figure it out, you’re thinking of this as
setting small to 3.

It’s a formula that’s true for some steps
and false for others.

It’s true for any step in which
small = 3 in the second state.

We now define FillSmall .

Most people first learning TLA+ would write this definition.

Stop the video now and figure out why it’s wrong.

If you didn’t figure it out, it means that you’re thinking of this as an
assignment statement that sets small to 3. It’s not.

[slide 119]

If you didn’t figure it out, you’re thinking of this as
setting small to 3.

It’s a formula that’s true for some steps
and false for others.

It’s true for any step in which
small = 3 in the second state.

It’s a formula that’s true for some steps and false for others.

It’s true for any step in which the value of small in the second state is 3.

It’s true for this step that appeared in the behavior we constructed.

[slide 120]

If you didn’t figure it out, you’re thinking of this as
setting small to 3.

It’s a formula that’s true for some steps
and false for others.

It’s true for any step in which
small = 3 in the second state.

It’s a formula that’s true for some steps and false for others.

It’s true for any step in which the value of small in the second state is 3.

It’s true for this step that appeared in the behavior we constructed.

[slide 121]

[
small : 0
big : 3

]
→

[
small : 3
big : 3

]
[
small : 0
big : 3

]
→

[
small : 3
big :

√
7

]
[
small : 0
big : 3

]
→

[
small : 3
big : “abc”

]

It’s a formula that’s true for some steps and false for others.

It’s true for any step in which the value of small in the second state is 3.

It’s true for this step that appeared in the behavior we constructed.

[slide 122]

[
small : 0
big : 3

]
→

[
small : 3
big : 3

]
[
small : 0
big : 3

]
→

[
small : 3
big :

√
7

]
[
small : 0
big : 3

]
→

[
small : 3
big : “abc”

]

It’s a formula that’s true for some steps and false for others.

It’s true for any step in which the value of small in the second state is 3.

It’s true for this step that appeared in the behavior we constructed.

[slide 123]

[
small : 0
big : 3

]
→

[
small : 3
big : 3

]
[
small : 0
big : 3

]
→

[
small : 3
big :

√
7

]
[
small : 0
big : 3

]
→

[
small : 3
big : “abc”

]

It’s also true for this step in which big equals the square root of 7 in the
second state.

And it’s also true for this step in which big equals the string abc in the second
state.

[slide 124]

[
small : 0
big : 3

]
→

[
small : 3
big : 3

]
[
small : 0
big : 3

]
→

[
small : 3
big :

√
7

]
[
small : 0
big : 3

]
→

[
small : 3
big : “abc”

]

It’s also true for this step in which big equals the square root of 7 in the
second state.

And it’s also true for this step in which big equals the string abc in the second
state.

[slide 125]

[
small : 0
big : 3

]
→

[
small : 3
big : 3

]
[
small : 0
big : 3

]
→

[
small : 3
big :

√
7

]
[
small : 0
big : 3

]
→

[
small : 3
big : “abc”

] Should be false
for these.

Of course, these two steps shouldn’t be allowed, so FillSmall should equal
false for them.

And the correct definition should require the value of big to be unchanged.

[slide 126]

This is the correct definition.

Of course, these two steps shouldn’t be allowed, so FillSmall should equal
false for them.

And the correct definition should require the value of big to be unchanged.

[slide 127]

Most people think this shouldn’t be needed.

That’s a bad idea! It’s not math.

When they first see TLA+, most computer engineers and computer scientists
think that this part of the formula shouldn’t be needed.

And that you shouldn’t have to say what’s left unchanged.

My years of experience writing specifications and a couple of thousand years
of mathematics say that’s a bad idea.

[slide 128]

Most people think this shouldn’t be needed.

That’s a bad idea! It’s not math.

When they first see TLA+, most computer engineers and computer scientists
think that this part of the formula shouldn’t be needed.

And that you shouldn’t have to say what’s left unchanged.

My years of experience writing specifications and a couple of thousand years
of mathematics say that’s a bad idea.

[slide 129]

Most people think this shouldn’t be needed.

That’s a bad idea! It’s not math.

It would leave the simple, elegant realm of mathematics — and enter the
more complicated world of programming languages.

[slide 130]

The definition of FillBig is similar.

The definition of FillBig is similar.

[slide 131]

POURING BETWEEN JUGS

Pouring from one jug into another.

[slide 132]

We now define SmallToBig .

In the behavior we constructed, we saw that there are two cases:

In case 1, there is room in the big jug for all the water in the small jug.
Here was that case.

In case 2, there isn’t room in the big jug for all the water in the small jug.
Here was that case.

[slide 133]

There are two cases:

We now define SmallToBig .

In the behavior we constructed, we saw that there are two cases:

In case 1, there is room in the big jug for all the water in the small jug.
Here was that case.

In case 2, there isn’t room in the big jug for all the water in the small jug.
Here was that case.

[slide 134]

There are two cases:

1. There is room in big

for the water in small .

2. There isn’t room in big

for the water in small .

We now define SmallToBig .

In the behavior we constructed, we saw that there are two cases:

In case 1, there is room in the big jug for all the water in the small jug.
Here was that case.

In case 2, there isn’t room in the big jug for all the water in the small jug.
Here was that case.

[slide 135]

There are two cases:

1. There is room in big

for the water in small .

2. There isn’t room in big

for the water in small .

We now define SmallToBig .

In the behavior we constructed, we saw that there are two cases:

In case 1, there is room in the big jug for all the water in the small jug.
Here was that case.

In case 2, there isn’t room in the big jug for all the water in the small jug.
Here was that case.

[slide 136]

There are two cases:

1. There is room in big

for the water in small .

2. There isn’t room in big

for the water in small .

We now define SmallToBig .

In the behavior we constructed, we saw that there are two cases:

In case 1, there is room in the big jug for all the water in the small jug.
Here was that case.

In case 2, there isn’t room in the big jug for all the water in the small jug.
Here was that case.

[slide 137]

There are two cases:

1. There is room in big

for the water in small .

2. There isn’t room in big

for the water in small .

We now define SmallToBig .

In the behavior we constructed, we saw that there are two cases:

In case 1, there is room in the big jug for all the water in the small jug.
Here was that case.

In case 2, there isn’t room in the big jug for all the water in the small jug.
Here was that case.

[slide 138]

There are two cases:

1. There is room in big

for the water in small .

2. There isn’t room in big

for the water in small .

We now define SmallToBig .

In the behavior we constructed, we saw that there are two cases:

In case 1, there is room in the big jug for all the water in the small jug.
Here was that case.

In case 2, there isn’t room in the big jug for all the water in the small jug.
Here was that case.

[slide 139]

There are two cases:

1. There is room in big

for the water in small .

2. There isn’t room in big

for the water in small .

We now define SmallToBig .

In the behavior we constructed, we saw that there are two cases:

In case 1, there is room in the big jug for all the water in the small jug.
Here was that case.

In case 2, there isn’t room in the big jug for all the water in the small jug.
Here was that case.

[slide 140]

There are two cases:

1. There is room in big

for the water in small .

2. There isn’t room in big

for the water in small .

We now define SmallToBig .

In the behavior we constructed, we saw that there are two cases:

In case 1, there is room in the big jug for all the water in the small jug.
Here was that case.

In case 2, there isn’t room in the big jug for all the water in the small jug.
Here was that case.

[slide 141]

There are two cases:

1. There is room in big

for the water in small .

2. There isn’t room in big

for the water in small .

→

We now define SmallToBig .

In the behavior we constructed, we saw that there are two cases:

In case 1, there is room in the big jug for all the water in the small jug.
Here was that case.

In case 2, there isn’t room in the big jug for all the water in the small jug.
Here was that case.

[slide 142]

There are two cases:

1. There is room in big

for the water in small .

2. There isn’t room in big

for the water in small .

We now define SmallToBig .

In the behavior we constructed, we saw that there are two cases:

In case 1, there is room in the big jug for all the water in the small jug.
Here was that case.

In case 2, there isn’t room in the big jug for all the water in the small jug.
Here was that case.

[slide 143]

There are two cases:

1. There is room in big

for the water in small .

2. There isn’t room in big

for the water in small .

We now define SmallToBig .

In the behavior we constructed, we saw that there are two cases:

In case 1, there is room in the big jug for all the water in the small jug.
Here was that case.

In case 2, there isn’t room in the big jug for all the water in the small jug.
Here was that case.

[slide 144]

There are two cases:

1. There is room in big

for the water in small .

2. There isn’t room in big

for the water in small .

We now define SmallToBig .

In the behavior we constructed, we saw that there are two cases:

In case 1, there is room in the big jug for all the water in the small jug.
Here was that case.

In case 2, there isn’t room in the big jug for all the water in the small jug.
Here was that case.

[slide 145]

There are two cases:

1. There is room in big

for the water in small .

2. There isn’t room in big

for the water in small .

We now define SmallToBig .

In the behavior we constructed, we saw that there are two cases:

In case 1, there is room in the big jug for all the water in the small jug.
Here was that case.

In case 2, there isn’t room in the big jug for all the water in the small jug.
Here was that case.

[slide 146]

There are two cases:

1. There is room in big

for the water in small .

2. There isn’t room in big

for the water in small .

We now define SmallToBig .

In the behavior we constructed, we saw that there are two cases:

In case 1, there is room in the big jug for all the water in the small jug.
Here was that case.

In case 2, there isn’t room in the big jug for all the water in the small jug.
Here was that case.

[slide 147]

There are two cases:

1. There is room in big

for the water in small .

2. There isn’t room in big

for the water in small .

We now define SmallToBig .

In the behavior we constructed, we saw that there are two cases:

In case 1, there is room in the big jug for all the water in the small jug.
Here was that case.

In case 2, there isn’t room in the big jug for all the water in the small jug.
Here was that case.

[slide 148]

There are two cases:

1. There is room in big

for the water in small .

2. There isn’t room in big

for the water in small .

→

We now define SmallToBig .

In the behavior we constructed, we saw that there are two cases:

In case 1, there is room in the big jug for all the water in the small jug.
Here was that case.

In case 2, there isn’t room in the big jug for all the water in the small jug.
Here was that case.

[slide 149]

There are two cases:

1. There is room in big

for the water in small .

2. There isn’t room in big

for the water in small .

Which case it is depends on the total amount of water in the two jugs.

In case 1, we put all the water from the small jug into the big jug, which
empties the small jug.

Case 2 is left as a problem. As is writing the definition of BigToSmall .

[slide 150]

1. There is room: empty small .

2. There isn’t room: fill big .

There are two cases:

1. There is room in big

for the water in small .

2. There isn’t room in big

for the water in small .

Which case it is depends on the total amount of water in the two jugs.

In case 1, we put all the water from the small jug into the big jug, which
empties the small jug.

Case 2 is left as a problem. As is writing the definition of BigToSmall .

[slide 151]

2. There isn’t room: fill big .

Put water from small into big , emptying small .

Which case it is depends on the total amount of water in the two jugs.

In case 1, we put all the water from the small jug into the big jug, which
empties the small jug.

Case 2 is left as a problem. As is writing the definition of BigToSmall .

[slide 152]

2. There isn’t room: fill big .

Put water from small into big , emptying small .

Which case it is depends on the total amount of water in the two jugs.

In case 1, we put all the water from the small jug into the big jug, which
empties the small jug.

Case 2 is left as a problem. As is writing the definition of BigToSmall .

[slide 153]

Which case it is depends on the total amount of water in the two jugs.

In case 1, we put all the water from the small jug into the big jug, which
empties the small jug.

Case 2 is left as a problem. As is writing the definition of BigToSmall .

[slide 154]

?
?

Problem: Complete the definition of SmallToBig

and write the definition of BigToSmall .

Stop the video and solve it now.

You’ll check your solution later.

Which case it is depends on the total amount of water in the two jugs.

In case 1, we put all the water from the small jug into the big jug, which
empties the small jug.

Case 2 is left as a problem. As is writing the definition of BigToSmall .

[slide 155]

?
?

Problem: Complete the definition of SmallToBig

and write the definition of BigToSmall .

Stop the video and solve it now.

You’ll check your solution later.

Which case it is depends on the total amount of water in the two jugs.

In case 1, we put all the water from the small jug into the big jug, which
empties the small jug.

Case 2 is left as a problem. As is writing the definition of BigToSmall .

[slide 156]

?
?

Problem: Complete the definition of SmallToBig

and write the definition of BigToSmall .

Stop the video and solve it now.

You’ll check your solution later.

Stop the video and solve it now, writing down your solution.

You’ll check your solution later.

[slide 157]

?
?

Problem: Complete the definition of SmallToBig

and write the definition of BigToSmall .

Stop the video and solve it now.

You’ll check your solution later.

Stop the video and solve it now, writing down your solution.

You’ll check your solution later.

[slide 158]

SAVING OUR HEROES

We’ll now use TLC to save our heroes.

[slide 159]

Open the Toolbox.

Open a new spec named DieHard .

Open the Toolbox.

And then open a new spec named DieHard .

[slide 160]

Open the Toolbox.

Open a new spec named DieHard .

Open the Toolbox.

And then open a new spec named DieHard .

[slide 161]

Remember you click on File. Then on Open Spec. Then on
Add New Spec, which opens This window. Then click on Browse which
raises
a file browser window—probably on the folder in which you put the
SimpleProgram spec. Select any folder and enter the file name DieHard .
Then click on Open and then on Finish which opens

[slide 162]

Remember you click on File. Then on Open Spec. Then on
Add New Spec, which opens This window. Then click on Browse which
raises
a file browser window—probably on the folder in which you put the
SimpleProgram spec. Select any folder and enter the file name DieHard .
Then click on Open and then on Finish which opens

[slide 163]

Remember you click on File. Then on Open Spec. Then on
Add New Spec, which opens This window. Then click on Browse which
raises
a file browser window—probably on the folder in which you put the
SimpleProgram spec. Select any folder and enter the file name DieHard .
Then click on Open and then on Finish which opens

[slide 164]

Remember you click on File. Then on Open Spec. Then on
Add New Spec, which opens This window. Then click on Browse which
raises
a file browser window—probably on the folder in which you put the
SimpleProgram spec. Select any folder and enter the file name DieHard .
Then click on Open and then on Finish which opens

[slide 165]

Remember you click on File. Then on Open Spec. Then on
Add New Spec, which opens This window. Then click on Browse which
raises
a file browser window—probably on the folder in which you put the
SimpleProgram spec. Select any folder and enter the file name DieHard .
Then click on Open and then on Finish which opens

[slide 166]

Remember you click on File. Then on Open Spec. Then on
Add New Spec, which opens This window. Then click on Browse which
raises
a file browser window—probably on the folder in which you put the
SimpleProgram spec. Select any folder and enter the file name DieHard .
Then click on Open and then on Finish which opens

[slide 167]

Remember you click on File. Then on Open Spec. Then on
Add New Spec, which opens This window. Then click on Browse which
raises
a file browser window—probably on the folder in which you put the
SimpleProgram spec. Select any folder and enter the file name DieHard .
Then click on Open and then on Finish which opens

[slide 168]

Remember you click on File. Then on Open Spec. Then on
Add New Spec, which opens This window. Then click on Browse which
raises
a file browser window—probably on the folder in which you put the
SimpleProgram spec. Select any folder and enter the file name DieHard .
Then click on Open and then on Finish which opens

[slide 169]

Remember you click on File. Then on Open Spec. Then on
Add New Spec, which opens This window. Then click on Browse which
raises
a file browser window—probably on the folder in which you put the
SimpleProgram spec. Select any folder and enter the file name DieHard .
Then click on Open and then on Finish which opens

[slide 170]

Remember you click on File. Then on Open Spec. Then on
Add New Spec, which opens This window. Then click on Browse which
raises
a file browser window—probably on the folder in which you put the
SimpleProgram spec. Select any folder and enter the file name DieHard .
Then click on Open and then on Finish which opens

[slide 171]

Remember you click on File. Then on Open Spec. Then on
Add New Spec, which opens This window. Then click on Browse which
raises
a file browser window—probably on the folder in which you put the
SimpleProgram spec. Select any folder and enter the file name DieHard .
Then click on Open and then on Finish which opens

[slide 172]

Stop the video and copy the body of the spec.

Paste it here.

An empty spec named diehard.

Stop the video now and copy the body of the specification that we just wrote.

and then paste the text in the module here.

[slide 173]

Stop the video and copy the body of the spec.

Paste it here.

An empty spec named diehard.

Stop the video now and copy the body of the specification that we just wrote.

and then paste the text in the module here.

[slide 174]

Stop the video and copy the body of the spec.

Paste it here.

An empty spec named diehard.

Stop the video now and copy the body of the specification that we just wrote.

and then paste the text in the module here.

[slide 175]

The module contains the
complete definitions of
SmallToBig and BigToSmall .

But don’t look
at them yet.

And here’s what you should see.

The module contains the complete definitions of SmallToBig and
BigToSmall But don’t look at them until after we’ve saved our heroes.

And first, you have to save the module – which you can do by typing Control
S.

[slide 176]

The module contains the
complete definitions of
SmallToBig and BigToSmall .

But don’t look
at them yet.

And here’s what you should see.

The module contains the complete definitions of SmallToBig and
BigToSmall But don’t look at them until after we’ve saved our heroes.

And first, you have to save the module – which you can do by typing Control
S.

[slide 177]

The module contains the
complete definitions of
SmallToBig and BigToSmall .

But don’t look
at them yet.

And here’s what you should see.

The module contains the complete definitions of SmallToBig and
BigToSmall But don’t look at them until after we’ve saved our heroes.

And first, you have to save the module – which you can do by typing Control
S.

[slide 178]

Save the module.
(Type Ctl+S .)

And here’s what you should see.

The module contains the complete definitions of SmallToBig and
BigToSmall But don’t look at them until after we’ve saved our heroes.

And first, you have to save the module – which you can do by typing Control
S.

[slide 179]

Save the module.
(Type Ctl+S .)

And here’s what you should see.

The module contains the complete definitions of SmallToBig and
BigToSmall But don’t look at them until after we’ve saved our heroes.

And first, you have to save the module – which you can do by typing Control
S.

[slide 180]

To run TLC, we create a model.

To run TLC, we create a model by

Clicking on the TLC Model Checker menu

Selecting NewModel

Entering a model name and

Clicking OK.

[slide 181]

To run TLC, we create a model.

To run TLC, we create a model by

Clicking on the TLC Model Checker menu

Selecting NewModel

Entering a model name and

Clicking OK.

[slide 182]

To run TLC, we create a model.

To run TLC, we create a model by

Clicking on the TLC Model Checker menu

Selecting NewModel

Entering a model name and

Clicking OK.

[slide 183]

To run TLC, we create a model.

To run TLC, we create a model by

Clicking on the TLC Model Checker menu

Selecting NewModel

Entering a model name and

Clicking OK.

[slide 184]

To run TLC, we create a model.

To run TLC, we create a model by

Clicking on the TLC Model Checker menu

Selecting NewModel

Entering a model name and

Clicking OK.

[slide 185]

This raises the Model Overview page

Where the Toolbox has filled in the initial formula and the
next-state formula.

Let’s now run TLC by clicking on this button.

[slide 186]

Initial and next-state formulas

This raises the Model Overview page

Where the Toolbox has filled in the initial formula and the
next-state formula.

Let’s now run TLC by clicking on this button.

[slide 187]

Run TLC.

This raises the Model Overview page

Where the Toolbox has filled in the initial formula and the
next-state formula.

Let’s now run TLC by clicking on this button.

[slide 188]

TLC quickly finishes, displaying the Model Checking Results page which
reports that it found no errors. We didn’t ask TLC to check anything, so this
just means that the spec is one that it could execute.

TLC also reports that it found 16 reachable states which are states that
occur in some behavior allowed by the spec.

[slide 189]

TLC quickly finishes, displaying the Model Checking Results page which
reports that it found no errors. We didn’t ask TLC to check anything, so this
just means that the spec is one that it could execute.

TLC also reports that it found 16 reachable states which are states that
occur in some behavior allowed by the spec.

[slide 190]

TLC reports no errors.

TLC quickly finishes, displaying the Model Checking Results page which
reports that it found no errors. We didn’t ask TLC to check anything, so this
just means that the spec is one that it could execute.

TLC also reports that it found 16 reachable states which are states that
occur in some behavior allowed by the spec.

[slide 191]

TLC reports no errors.

This means it could
run the spec.

TLC quickly finishes, displaying the Model Checking Results page which
reports that it found no errors. We didn’t ask TLC to check anything, so this
just means that the spec is one that it could execute.

TLC also reports that it found 16 reachable states which are states that
occur in some behavior allowed by the spec.

[slide 192]

TLC found 16
reachable states.

TLC quickly finishes, displaying the Model Checking Results page which
reports that it found no errors. We didn’t ask TLC to check anything, so this
just means that the spec is one that it could execute.

TLC also reports that it found 16 reachable states which are states that
occur in some behavior allowed by the spec.

[slide 193]

TLC found 16
reachable states.

(States occurring in some
behavior allowed by spec.)

TLC quickly finishes, displaying the Model Checking Results page which
reports that it found no errors. We didn’t ask TLC to check anything, so this
just means that the spec is one that it could execute.

TLC also reports that it found 16 reachable states which are states that
occur in some behavior allowed by the spec.

[slide 194]

Let’s check type correctness
(every reachable state
satisfies TypeOK).

Let’s now check type correctness – which means that every reachable state
satisfies formula TypeOK .

Remember that this formula asserts that each variable has a reasonable
value.

To do this, we must go back to the Model Overview page.

[slide 195]

Let’s check type correctness
(every reachable state
satisfies TypeOK).

Let’s now check type correctness – which means that every reachable state
satisfies formula TypeOK .

Remember that this formula asserts that each variable has a reasonable
value.

To do this, we must go back to the Model Overview page.

[slide 196]

Let’s check type correctness
(every reachable state
satisfies TypeOK).

Let’s now check type correctness – which means that every reachable state
satisfies formula TypeOK .

Remember that this formula asserts that each variable has a reasonable
value.

To do this, we must go back to the Model Overview page.

[slide 197]

Let’s now check type correctness – which means that every reachable state
satisfies formula TypeOK .

Remember that this formula asserts that each variable has a reasonable
value.

To do this, we must go back to the Model Overview page.

[slide 198]

A formula that is true in every reachable state is called an invariant. To have
TLC check an invariant Open the Invariants section of the model overview
page.

[slide 199]

A formula true in every
reachable state is called
an invariant.

A formula that is true in every reachable state is called an invariant. To have
TLC check an invariant Open the Invariants section of the model overview
page.

[slide 200]

A formula that is true in every reachable state is called an invariant. To have
TLC check an invariant Open the Invariants section of the model overview
page.

[slide 201]

Click on Add.

Enter TypeOK. And click on Finish.

And run TLC on the model again.

[slide 202]

Click on Add.

Enter TypeOK. And click on Finish.

And run TLC on the model again.

[slide 203]

Click on Add.

Enter TypeOK. And click on Finish.

And run TLC on the model again.

[slide 204]

Click on Add.

Enter TypeOK. And click on Finish.

And run TLC on the model again.

[slide 205]

Click on Add.

Enter TypeOK. And click on Finish.

And run TLC on the model again.

[slide 206]

Click on Add.

Enter TypeOK. And click on Finish.

And run TLC on the model again.

[slide 207]

Click on Add.

Enter TypeOK. And click on Finish.

And run TLC on the model again.

[slide 208]

Run TLC.

Click on Add.

Enter TypeOK. And click on Finish.

And run TLC on the model again.

[slide 209]

The Model Checking Results page

again shows that TLC found no errors.

[slide 210]

TLC reports no errors.

The Model Checking Results page

again shows that TLC found no errors.

[slide 211]

Saving Our Heroes

The four gallons must be in the big jug.

We let TLC check if big 6= 4 is an invariant.

We add this invariant to the model.

Now we’re ready to save our heroes.

The four gallons of water our heroes need must be in the big jug.

We let TLC check if big not equal to 4 is an invariant.

[slide 212]

Saving Our Heroes

The four gallons must be in the big jug.

We let TLC check if big 6= 4 is an invariant.

We add this invariant to the model.

Now we’re ready to save our heroes.

The four gallons of water our heroes need must be in the big jug.

We let TLC check if big not equal to 4 is an invariant.

[slide 213]

Saving Our Heroes

The four gallons must be in the big jug.

We let TLC check if big 6= 4 is an invariant.

We add this invariant to the model.

Now we’re ready to save our heroes.

The four gallons of water our heroes need must be in the big jug.

We let TLC check if big not equal to 4 is an invariant.

[slide 214]

Saving Our Heroes

The four gallons must be in the big jug.

We let TLC check if big 6= 4 is an invariant.

If it isn’t, TLC will show us a behavior
ending in a state with big 6= 4 false.

We add this invariant to the model.

If it isn’t, TLC will show us a behavior ending in a state with big 6= 4 false – a
behavior that tells our heroes what they have to do to put 4 gallons in the big
jug.

In TLA+, not equal is written in ASCII as either forward slash equal-sign or
sharp (also called pound sign).

We now add this invariant to the model.

[slide 215]

Saving Our Heroes

The four gallons must be in the big jug.

We let TLC check if big 6= 4 is an invariant.
6= is written in ASCII as /= or #

We add this invariant to the model.

If it isn’t, TLC will show us a behavior ending in a state with big 6= 4 false – a
behavior that tells our heroes what they have to do to put 4 gallons in the big
jug.

In TLA+, not equal is written in ASCII as either forward slash equal-sign or
sharp (also called pound sign).

We now add this invariant to the model.

[slide 216]

Saving Our Heroes

The four gallons must be in the big jug.

We let TLC check if big 6= 4 is an invariant.

We add this invariant to the model.

If it isn’t, TLC will show us a behavior ending in a state with big 6= 4 false – a
behavior that tells our heroes what they have to do to put 4 gallons in the big
jug.

In TLA+, not equal is written in ASCII as either forward slash equal-sign or
sharp (also called pound sign).

We now add this invariant to the model.

[slide 217]

In the Invariants section of the model overview page

We add another invariant big not equal to 4

And we run TLC.

[slide 218]

In the Invariants section of the model overview page

We add another invariant big not equal to 4

And we run TLC.

[slide 219]

In the Invariants section of the model overview page

We add another invariant big not equal to 4

And we run TLC.

[slide 220]

In the Invariants section of the model overview page

We add another invariant big not equal to 4

And we run TLC.

[slide 221]

In the Invariants section of the model overview page

We add another invariant big not equal to 4

And we run TLC.

[slide 222]

In the Invariants section of the model overview page

We add another invariant big not equal to 4

And we run TLC.

[slide 223]

Run TLC.

In the Invariants section of the model overview page

We add another invariant big not equal to 4

And we run TLC.

[slide 224]

This time TLC reports an error.

And the Toolbox opens this error window.

Which tells us that the invariant was violated And displays this error trace.

The error trace is a behavior satisfying the spec ending in this state

[slide 225]

This time TLC reports an error.

And the Toolbox opens this error window.

Which tells us that the invariant was violated And displays this error trace.

The error trace is a behavior satisfying the spec ending in this state

[slide 226]

This time TLC reports an error.

And the Toolbox opens this error window.

Which tells us that the invariant was violated And displays this error trace.

The error trace is a behavior satisfying the spec ending in this state

[slide 227]

This time TLC reports an error.

And the Toolbox opens this error window.

Which tells us that the invariant was violated And displays this error trace.

The error trace is a behavior satisfying the spec ending in this state

[slide 228]

A behavior ending in state[
big : 4
small : 3

]

This time TLC reports an error.

And the Toolbox opens this error window.

Which tells us that the invariant was violated And displays this error trace.

The error trace is a behavior satisfying the spec ending in this state

[slide 229]

A behavior ending in state

with the invariant false.

[
big : 4
small : 3

]

a state in which the invariant equals false.

It shows this complete behavior From this behavior, our heroes should be able to see how to get 4
gallons of water in the big jug. But they might not be the brightest bulbs on the block, and they may need help
figuring out how to get from one state to the next. The Toolbox provides that help.

To see why this step is allowed by the spec Double-click here to find the part of the next-state formula that allows
this step And even Hollywood actors should be able to figure out that they have to pour the big jug into the small
jug.

[slide 230]

The complete behavior:

a state in which the invariant equals false.

It shows this complete behavior From this behavior, our heroes should be able to see how to get 4
gallons of water in the big jug. But they might not be the brightest bulbs on the block, and they may need help
figuring out how to get from one state to the next. The Toolbox provides that help.

To see why this step is allowed by the spec Double-click here to find the part of the next-state formula that allows
this step And even Hollywood actors should be able to figure out that they have to pour the big jug into the small
jug.

[slide 231]

The complete behavior:[
big : 0
small : 0

]

a state in which the invariant equals false.

It shows this complete behavior From this behavior, our heroes should be able to see how to get 4
gallons of water in the big jug. But they might not be the brightest bulbs on the block, and they may need help
figuring out how to get from one state to the next. The Toolbox provides that help.

To see why this step is allowed by the spec Double-click here to find the part of the next-state formula that allows
this step And even Hollywood actors should be able to figure out that they have to pour the big jug into the small
jug.

[slide 232]

The complete behavior:[
big : 0
small : 0

]
→

[
big : 5
small : 0

]

a state in which the invariant equals false.

It shows this complete behavior From this behavior, our heroes should be able to see how to get 4
gallons of water in the big jug. But they might not be the brightest bulbs on the block, and they may need help
figuring out how to get from one state to the next. The Toolbox provides that help.

To see why this step is allowed by the spec Double-click here to find the part of the next-state formula that allows
this step And even Hollywood actors should be able to figure out that they have to pour the big jug into the small
jug.

[slide 233]

The complete behavior:[
big : 0
small : 0

]
→

[
big : 5
small : 0

]
→

[
big : 2
small : 3

]

a state in which the invariant equals false.

It shows this complete behavior From this behavior, our heroes should be able to see how to get 4
gallons of water in the big jug. But they might not be the brightest bulbs on the block, and they may need help
figuring out how to get from one state to the next. The Toolbox provides that help.

To see why this step is allowed by the spec Double-click here to find the part of the next-state formula that allows
this step And even Hollywood actors should be able to figure out that they have to pour the big jug into the small
jug.

[slide 234]

The complete behavior:[
big : 0
small : 0

]
→

[
big : 5
small : 0

]
→

[
big : 2
small : 3

]
→

[
big : 2
small : 0

]

a state in which the invariant equals false.

It shows this complete behavior From this behavior, our heroes should be able to see how to get 4
gallons of water in the big jug. But they might not be the brightest bulbs on the block, and they may need help
figuring out how to get from one state to the next. The Toolbox provides that help.

To see why this step is allowed by the spec Double-click here to find the part of the next-state formula that allows
this step And even Hollywood actors should be able to figure out that they have to pour the big jug into the small
jug.

[slide 235]

The complete behavior:[
big : 0
small : 0

]
→

[
big : 5
small : 0

]
→

[
big : 2
small : 3

]
→

[
big : 2
small : 0

]
→

[
big : 0
small : 2

]

a state in which the invariant equals false.

It shows this complete behavior From this behavior, our heroes should be able to see how to get 4
gallons of water in the big jug. But they might not be the brightest bulbs on the block, and they may need help
figuring out how to get from one state to the next. The Toolbox provides that help.

To see why this step is allowed by the spec Double-click here to find the part of the next-state formula that allows
this step And even Hollywood actors should be able to figure out that they have to pour the big jug into the small
jug.

[slide 236]

The complete behavior:[
big : 0
small : 0

]
→

[
big : 5
small : 0

]
→

[
big : 2
small : 3

]
→

[
big : 2
small : 0

]
→

[
big : 0
small : 2

]
→

[
big : 5
small : 2

]

a state in which the invariant equals false.

It shows this complete behavior From this behavior, our heroes should be able to see how to get 4
gallons of water in the big jug. But they might not be the brightest bulbs on the block, and they may need help
figuring out how to get from one state to the next. The Toolbox provides that help.

To see why this step is allowed by the spec Double-click here to find the part of the next-state formula that allows
this step And even Hollywood actors should be able to figure out that they have to pour the big jug into the small
jug.

[slide 237]

The complete behavior:[
big : 0
small : 0

]
→

[
big : 5
small : 0

]
→

[
big : 2
small : 3

]
→

[
big : 2
small : 0

]
→

[
big : 0
small : 2

]
→

[
big : 5
small : 2

]
→

[
big : 4
small : 3

]

a state in which the invariant equals false.

It shows this complete behavior From this behavior, our heroes should be able to see how to get 4
gallons of water in the big jug. But they might not be the brightest bulbs on the block, and they may need help
figuring out how to get from one state to the next. The Toolbox provides that help.

To see why this step is allowed by the spec Double-click here to find the part of the next-state formula that allows
this step And even Hollywood actors should be able to figure out that they have to pour the big jug into the small
jug.

[slide 238]

[
big : 0
small : 0

]
→

[
big : 5
small : 0

]
→

[
big : 2
small : 3

]
→

[
big : 2
small : 0

]
→

[
big : 0
small : 2

]
→

[
big : 5
small : 2

]
→

[
big : 4
small : 3

]

a state in which the invariant equals false.

It shows this complete behavior From this behavior, our heroes should be able to see how to get 4
gallons of water in the big jug. But they might not be the brightest bulbs on the block, and they may need help
figuring out how to get from one state to the next. The Toolbox provides that help.

To see why this step is allowed by the spec Double-click here to find the part of the next-state formula that allows
this step And even Hollywood actors should be able to figure out that they have to pour the big jug into the small
jug.

[slide 239]

[
big : 0
small : 0

]
→

[
big : 5
small : 0

]
→

[
big : 2
small : 3

]
→

[
big : 2
small : 0

]
→

[
big : 0
small : 2

]
→

[
big : 5
small : 2

]
→

[
big : 4
small : 3

]

a state in which the invariant equals false.

It shows this complete behavior From this behavior, our heroes should be able to see how to get 4
gallons of water in the big jug. But they might not be the brightest bulbs on the block, and they may need help
figuring out how to get from one state to the next. The Toolbox provides that help.

To see why this step is allowed by the spec Double-click here to find the part of the next-state formula that allows
this step And even Hollywood actors should be able to figure out that they have to pour the big jug into the small
jug.

[slide 240]

[
big : 5
small : 0

]
→

[
big : 2
small : 3

]

a state in which the invariant equals false.

It shows this complete behavior From this behavior, our heroes should be able to see how to get 4
gallons of water in the big jug. But they might not be the brightest bulbs on the block, and they may need help
figuring out how to get from one state to the next. The Toolbox provides that help.

To see why this step is allowed by the spec Double-click here to find the part of the next-state formula that allows
this step And even Hollywood actors should be able to figure out that they have to pour the big jug into the small
jug.

[slide 241]

Double-click here.

[
big : 5
small : 0

]
→

[
big : 2
small : 3

]

a state in which the invariant equals false.

It shows this complete behavior From this behavior, our heroes should be able to see how to get 4
gallons of water in the big jug. But they might not be the brightest bulbs on the block, and they may need help
figuring out how to get from one state to the next. The Toolbox provides that help.

To see why this step is allowed by the spec Double-click here to find the part of the next-state formula that allows
this step And even Hollywood actors should be able to figure out that they have to pour the big jug into the small
jug.

[slide 242]

a state in which the invariant equals false.

It shows this complete behavior From this behavior, our heroes should be able to see how to get 4
gallons of water in the big jug. But they might not be the brightest bulbs on the block, and they may need help
figuring out how to get from one state to the next. The Toolbox provides that help.

To see why this step is allowed by the spec Double-click here to find the part of the next-state formula that allows
this step And even Hollywood actors should be able to figure out that they have to pour the big jug into the small
jug.

[slide 243]

a state in which the invariant equals false.

It shows this complete behavior From this behavior, our heroes should be able to see how to get 4
gallons of water in the big jug. But they might not be the brightest bulbs on the block, and they may need help
figuring out how to get from one state to the next. The Toolbox provides that help.

To see why this step is allowed by the spec Double-click here to find the part of the next-state formula that allows
this step And even Hollywood actors should be able to figure out that they have to pour the big jug into the small
jug.

[slide 244]

SmallToBig AND BigToSmall

Formulas SmallToBig and BigToSmall .

[slide 245]

Now that we’ve saved our heroes, let’s take a look at the definitions of
SmallToBig and BigToSmall .

Let’s start with SmallToBig .

[slide 246]

Now that we’ve saved our heroes, let’s take a look at the definitions of
SmallToBig and BigToSmall .

Let’s start with SmallToBig .

[slide 247]

≤ is typed as =<

Notice that less than or equal is represented in ASCII as equal-sign
less-than.

Remember that this is the case in which the big jug is filled from
the small one.

The amount poured into the big jug is removed from the small jug.

[slide 248]

Notice that less than or equal is represented in ASCII as equal-sign
less-than.

Remember that this is the case in which the big jug is filled from
the small one.

The amount poured into the big jug is removed from the small jug.

[slide 249]

big is filled.

Notice that less than or equal is represented in ASCII as equal-sign
less-than.

Remember that this is the case in which the big jug is filled from
the small one.

The amount poured into the big jug is removed from the small jug.

[slide 250]

amount poured

Notice that less than or equal is represented in ASCII as equal-sign
less-than.

Remember that this is the case in which the big jug is filled from
the small one.

The amount poured into the big jug is removed from the small jug.

[slide 251]

Someone who hasn’t seen TLA+ before would think this is wrong because
this value of big Is set to 5 here.

That’s because she thinks of this as two assignment statements.
But you know that it’s actually a formula that specifies allowed steps.
And that and is commutative, so
Changing the order of the two sub-formulas makes no difference.

[slide 252]

Someone who hasn’t seen TLA+ before would think this is wrong because
this value of big Is set to 5 here.

That’s because she thinks of this as two assignment statements.
But you know that it’s actually a formula that specifies allowed steps.
And that and is commutative, so
Changing the order of the two sub-formulas makes no difference.

[slide 253]

Someone who hasn’t seen TLA+ before would think this is wrong because
this value of big Is set to 5 here.

That’s because she thinks of this as two assignment statements.
But you know that it’s actually a formula that specifies allowed steps.
And that and is commutative, so
Changing the order of the two sub-formulas makes no difference.

[slide 254]

A ∧ B = B ∧ A

Someone who hasn’t seen TLA+ before would think this is wrong because
this value of big Is set to 5 here.

That’s because she thinks of this as two assignment statements.
But you know that it’s actually a formula that specifies allowed steps.
And that and is commutative, so
Changing the order of the two sub-formulas makes no difference.

[slide 255]

A ∧ B = B ∧ A

Someone who hasn’t seen TLA+ before would think this is wrong because
this value of big Is set to 5 here.

That’s because she thinks of this as two assignment statements.
But you know that it’s actually a formula that specifies allowed steps.
And that and is commutative, so
Changing the order of the two sub-formulas makes no difference.

[slide 256]

Someone who hasn’t seen TLA+ before would think this is wrong because
this value of big Is set to 5 here.

That’s because she thinks of this as two assignment statements.
But you know that it’s actually a formula that specifies allowed steps.
And that and is commutative, so
Changing the order of the two sub-formulas makes no difference.

[slide 257]

You can look at the definition of BigToSmall in the module by yourself later.

[slide 258]

Here’s a warning about writing specs.

The equality operator is also commutative. so small prime equals 0 is
completely equivalent to 0 equals small prime.

These two specs are equivalent. .

[slide 259]

WARNING !

Here’s a warning about writing specs.

The equality operator is also commutative. so small prime equals 0 is
completely equivalent to 0 equals small prime.

These two specs are equivalent. .

[slide 260]

= is also commutative

so

Here’s a warning about writing specs.

The equality operator is also commutative. so small prime equals 0 is
completely equivalent to 0 equals small prime.

These two specs are equivalent. .

[slide 261]

= is also commutative

so

Here’s a warning about writing specs.

The equality operator is also commutative. so small prime equals 0 is
completely equivalent to 0 equals small prime.

These two specs are equivalent. .

[slide 262]

= is also commutative

so is equivalent to .

Here’s a warning about writing specs.

The equality operator is also commutative. so small prime equals 0 is
completely equivalent to 0 equals small prime.

These two specs are equivalent. .

[slide 263]

These two specs are equivalent.

Here’s a warning about writing specs.

The equality operator is also commutative. so small prime equals 0 is
completely equivalent to 0 equals small prime.

These two specs are equivalent. .

[slide 264]

These two specs are equivalent.

Here’s a warning about writing specs.

The equality operator is also commutative. so small prime equals 0 is
completely equivalent to 0 equals small prime.

These two specs are equivalent. .

[slide 265]

These two specs are equivalent.

Here’s a warning about writing specs.

The equality operator is also commutative. so small prime equals 0 is
completely equivalent to 0 equals small prime.

These two specs are equivalent. .

[slide 266]

These two specs are equivalent.

The TLAPS proof system treats them the same.

And the TLAPS proof system treats them exactly the same.

But TLC handles only this one.

It reports an error if you run it on this one.

[slide 267]

These two specs are equivalent.

But TLC handles only this one.

And the TLAPS proof system treats them exactly the same.

But TLC handles only this one.

It reports an error if you run it on this one.

[slide 268]


 ```̀

These two specs are equivalent.

It reports an error on this one.

And the TLAPS proof system treats them exactly the same.

But TLC handles only this one.

It reports an error if you run it on this one.

[ slide 269 ]



There are many ways to write a correct
specification.

TLC can almost always handle the ones
most engineers naturally write.

Later, you’ll learn what specs TLC can handle.

There are many ways to write a correct specification.

TLC can almost always handle the ones most engineers naturally write.

Later, you’ll learn what specs TLC can handle.

[ slide 270 ]



There are many ways to write a correct
specification.

TLC can almost always handle the ones
most engineers naturally write.

Later, you’ll learn what specs TLC can handle.

There are many ways to write a correct specification.

TLC can almost always handle the ones most engineers naturally write.

Later, you’ll learn what specs TLC can handle.

[ slide 271 ]



There are many ways to write a correct
specification.

TLC can almost always handle the ones
most engineers naturally write.

Later, you’ll learn what specs TLC can handle.

There are many ways to write a correct specification.

TLC can almost always handle the ones most engineers naturally write.

Later, you’ll learn what specs TLC can handle.

[ slide 272 ]



For now, follow this simple rule:

Use a primed variable v ′ only
in one of these two kinds of
formulas:

v ′ = . . . and v ′ ∈ . . .
bb ""no primed variables

We’ll relax this rule later.

For now, just follow this simple rule:

Use a primed variable v -prime only in one of these two kinds of formulas
where dot-dot-dot is an expression not containing primes.

We’ll relax this rule later.

[ slide 273 ]



For now, follow this simple rule:

Use a primed variable v ′ only
in one of these two kinds of
formulas:

v ′ = . . . and v ′ ∈ . . .
bb ""no primed variables

We’ll relax this rule later.

For now, just follow this simple rule:

Use a primed variable v -prime only in one of these two kinds of formulas
where dot-dot-dot is an expression not containing primes.

We’ll relax this rule later.

[ slide 274 ]



For now, follow this simple rule:

Use a primed variable v ′ only
in one of these two kinds of
formulas:

v ′ = . . . and v ′ ∈ . . .
bb ""no primed variables

We’ll relax this rule later.

For now, just follow this simple rule:

Use a primed variable v -prime only in one of these two kinds of formulas
where dot-dot-dot is an expression not containing primes.

We’ll relax this rule later.

[ slide 275 ]



For now, follow this simple rule:

Use a primed variable v ′ only
in one of these two kinds of
formulas:

v ′ = . . . and v ′ ∈ . . .
bb ""no primed variables

We’ll relax this rule later.

For now, just follow this simple rule:

Use a primed variable v -prime only in one of these two kinds of formulas
where dot-dot-dot is an expression not containing primes.

We’ll relax this rule later.

[ slide 276 ]



CHECKING YOUR DEFINITIONS

Let’s now check your definitions of SmallToBig and BigToSmall .

[ slide 277 ]



Your definitions of SmallToBig and BigToSmall

are probably not exactly like mine.

But they may still be correct.

Math provides many ways of writing the same formula.

Let’s check your definitions.

But first, let’s see how we find errors.

Your definitions are probably not exactly the same as mine.

But they may still be correct.

Math provides many ways of writing the same formula.

[ slide 278 ]



Your definitions of SmallToBig and BigToSmall

are probably not exactly like mine.

But they may still be correct.

Math provides many ways of writing the same formula.

Let’s check your definitions.

But first, let’s see how we find errors.

Your definitions are probably not exactly the same as mine.

But they may still be correct.

Math provides many ways of writing the same formula.

[ slide 279 ]



Your definitions of SmallToBig and BigToSmall

are probably not exactly like mine.

But they may still be correct.

Math provides many ways of writing the same formula.

Let’s check your definitions.

But first, let’s see how we find errors.

Your definitions are probably not exactly the same as mine.

But they may still be correct.

Math provides many ways of writing the same formula.

[ slide 280 ]



Your definitions of SmallToBig and BigToSmall

are probably not exactly like mine.

But they may still be correct.

Math provides many ways of writing the same formula.

Let’s check your definitions.

But first, let’s see how we find errors.

Let’s check your definitions.

But first, let’s see how we find errors.

[ slide 281 ]



Your definitions of SmallToBig and BigToSmall

are probably not exactly like mine.

But they may still be correct.

Math provides many ways of writing the same formula.

Let’s check your definitions.

But first, let’s see how we find errors.

Let’s check your definitions.

But first, let’s see how we find errors.

[ slide 282 ]



Parsing Errors

When writing a spec, our first mistakes are found by the parser.

For example, in the Toolbox, modify the definition of SmallToBig by deleting
this plus sign.

Now save the spec.

The Toolbox runs the parser, which raises this error window.

[ slide 283 ]



Parsing Errors

Modify the spec.

When writing a spec, our first mistakes are found by the parser.

For example, in the Toolbox, modify the definition of SmallToBig by deleting
this plus sign.

Now save the spec.

The Toolbox runs the parser, which raises this error window.

[ slide 284 ]



Parsing Errors

Modify the spec.

When writing a spec, our first mistakes are found by the parser.

For example, in the Toolbox, modify the definition of SmallToBig by deleting
this plus sign.

Now save the spec.

The Toolbox runs the parser, which raises this error window.

[ slide 285 ]



Parsing Errors

When writing a spec, our first mistakes are found by the parser.

For example, in the Toolbox, modify the definition of SmallToBig by deleting
this plus sign.

Now save the spec.

The Toolbox runs the parser, which raises this error window.

[ slide 286 ]



Parsing Errors

Save the spec.

When writing a spec, our first mistakes are found by the parser.

For example, in the Toolbox, modify the definition of SmallToBig by deleting
this plus sign.

Now save the spec.

The Toolbox runs the parser, which raises this error window.

[ slide 287 ]



Parsing Errors

When writing a spec, our first mistakes are found by the parser.

For example, in the Toolbox, modify the definition of SmallToBig by deleting
this plus sign.

Now save the spec.

The Toolbox runs the parser, which raises this error window.

[ slide 288 ]



Parsing Errors

And it puts this error mark in the module editor.

Clicking here in the error window Highlights this part of the module and
jumps to it.

[ slide 289 ]



Parsing Errors

Click
here.

And it puts this error mark in the module editor.

Clicking here in the error window Highlights this part of the module and
jumps to it.

[ slide 290 ]



Parsing Errors

And it puts this error mark in the module editor.

Clicking here in the error window Highlights this part of the module and
jumps to it.

[ slide 291 ]



Another common error found by parsing:

Here’s another common error found by the parser.

[ slide 292 ]



Another common error found by parsing:

An identifier not defined or declared.

Here’s another common error found by the parser.

An identifier not yet defined or declared. This is usually a typo.

[ slide 293 ]



TLC “Execution Errors”

Errors TLC finds trying to “execute” the spec.

After there are no more parsing errors, TLC can often find errors while trying
to quote execute the spec. (We’ll see in a later video how TLC does that.)

For example, change this five to quote five. And save the spec.

Running TLC now produces

[ slide 294 ]



TLC “Execution Errors”

Errors TLC finds trying to “execute” the spec.

After there are no more parsing errors, TLC can often find errors while trying
to quote execute the spec. (We’ll see in a later video how TLC does that.)

For example, change this five to quote five. And save the spec.

Running TLC now produces

[ slide 295 ]



TLC “Execution Errors”

Errors TLC finds trying to “execute” the spec.

After there are no more parsing errors, TLC can often find errors while trying
to quote execute the spec. (We’ll see in a later video how TLC does that.)

For example, change this five to quote five. And save the spec.

Running TLC now produces

[ slide 296 ]



TLC “Execution Errors”

Errors TLC finds trying to “execute” the spec.

After there are no more parsing errors, TLC can often find errors while trying
to quote execute the spec. (We’ll see in a later video how TLC does that.)

For example, change this five to quote five. And save the spec.

Running TLC now produces

[ slide 297 ]



TLC “Execution Errors”

Errors TLC finds trying to “execute” the spec.

this error. You can read the complete error report later if you’re curious.

For now, just click here, which selects and goes to this part of the module.

[ slide 298 ]



TLC “Execution Errors”

Errors TLC finds trying to “execute” the spec.

this error. You can read the complete error report later if you’re curious.

For now, just click here, which selects and goes to this part of the module.

[ slide 299 ]



TLC “Execution Errors”

Errors TLC finds trying to “execute” the spec.

6

this error. You can read the complete error report later if you’re curious.

For now, just click here, which selects and goes to this part of the module.

[ slide 300 ]



Checking Your Definitions

Comment out my definitions and add your own.

Now, check your definitions of SmallToBig and BigToSmall .

First comment out my definitions by adding these comment delimiters.

And add your own definitions.

[ slide 301 ]



Checking Your Definitions

Comment out my definitions and add your own.

Now, check your definitions of SmallToBig and BigToSmall .

First comment out my definitions by adding these comment delimiters.

And add your own definitions.

[ slide 302 ]



Checking Your Definitions

Comment out my definitions and add your own.

Now, check your definitions of SmallToBig and BigToSmall .

First comment out my definitions by adding these comment delimiters.

And add your own definitions.

[ slide 303 ]



Checking Your Definitions

Comment out my definitions and add your own.

Now, check your definitions of SmallToBig and BigToSmall .

First comment out my definitions by adding these comment delimiters.

And add your own definitions.

[ slide 304 ]



Checking Your Definitions

Comment out my definitions and add your own.

Now, check your definitions of SmallToBig and BigToSmall .

First comment out my definitions by adding these comment delimiters.

And add your own definitions.

[ slide 305 ]



Save your definitions and correct any
errors the parser finds.

Run TLC.

Your definitions are probably correct if TLC:

– Finds no “execution” errors.

– Finds no violation of the invariant TypeOK .

– Finds a violation of the alleged invariant
big 6= 4 .

Save your definitions and correct any errors the parser finds.

Run TLC.

Your definitions are probably correct if TLC:
– Finds no “execution” errors.
– Finds no violation of the invariant TypeOK .
– And finds a violation of the alleged invariant big 6= 4 .

[ slide 306 ]



Save your definitions and correct any
errors the parser finds.

Run TLC.

Your definitions are probably correct if TLC:

– Finds no “execution” errors.

– Finds no violation of the invariant TypeOK .

– Finds a violation of the alleged invariant
big 6= 4 .

Save your definitions and correct any errors the parser finds.

Run TLC.

Your definitions are probably correct if TLC:
– Finds no “execution” errors.
– Finds no violation of the invariant TypeOK .
– And finds a violation of the alleged invariant big 6= 4 .

[ slide 307 ]



Save your definitions and correct any
errors the parser finds.

Run TLC.

Your definitions are probably correct if TLC:

– Finds no “execution” errors.

– Finds no violation of the invariant TypeOK .

– Finds a violation of the alleged invariant
big 6= 4 .

Save your definitions and correct any errors the parser finds.

Run TLC.

Your definitions are probably correct if TLC:
– Finds no “execution” errors.
– Finds no violation of the invariant TypeOK .
– And finds a violation of the alleged invariant big 6= 4 .

[ slide 308 ]



Save your definitions and correct any
errors the parser finds.

Run TLC.

Your definitions are probably correct if TLC:

– Finds no “execution” errors.

– Finds no violation of the invariant TypeOK .

– Finds a violation of the alleged invariant
big 6= 4 .

Save your definitions and correct any errors the parser finds.

Run TLC.

Your definitions are probably correct if TLC:
– Finds no “execution” errors.
– Finds no violation of the invariant TypeOK .
– And finds a violation of the alleged invariant big 6= 4 .

[ slide 309 ]



Save your definitions and correct any
errors the parser finds.

Run TLC.

Your definitions are probably correct if TLC:

– Finds no “execution” errors.

– Finds no violation of the invariant TypeOK .

– Finds a violation of the alleged invariant
big 6= 4 .

Save your definitions and correct any errors the parser finds.

Run TLC.

Your definitions are probably correct if TLC:
– Finds no “execution” errors.
– Finds no violation of the invariant TypeOK .
– And finds a violation of the alleged invariant big 6= 4 .

[ slide 310 ]



Save your definitions and correct any
errors the parser finds.

Run TLC.

Your definitions are probably correct if TLC:

– Finds no “execution” errors.

– Finds no violation of the invariant TypeOK .

– Finds a violation of the alleged invariant
big 6= 4 .

Save your definitions and correct any errors the parser finds.

Run TLC.

Your definitions are probably correct if TLC:
– Finds no “execution” errors.
– Finds no violation of the invariant TypeOK .
– And finds a violation of the alleged invariant big 6= 4 .

[ slide 311 ]



To be sure, go here

Uncheck this box so only TypeOK will be tested.

Run TLC again.

To be sure, go to the Invariants section of the Model Overview page and

Uncheck this box.

So only the TypeOK invariant will be tested by TLC.

And run TLC again.

[ slide 312 ]



To be sure, go here

Uncheck this box so only TypeOK will be tested.

Run TLC again.

To be sure, go to the Invariants section of the Model Overview page and

Uncheck this box.

So only the TypeOK invariant will be tested by TLC.

And run TLC again.

[ slide 313 ]



To be sure, go here

Uncheck this box so only TypeOK will be tested.

Run TLC again.

To be sure, go to the Invariants section of the Model Overview page and

Uncheck this box.

So only the TypeOK invariant will be tested by TLC.

And run TLC again.

[ slide 314 ]



To be sure, go here

Uncheck this box so only TypeOK will be tested.

Run TLC again.

To be sure, go to the Invariants section of the Model Overview page and

Uncheck this box.

So only the TypeOK invariant will be tested by TLC.

And run TLC again.

[ slide 315 ]



If TLC finds no error, try to find a
different way to write the definitions.

The best way to learn is by making
mistakes.

If TLC finds no error try to find a different way to write the definitions.

The best way to learn is by making mistakes.

[ slide 316 ]



If TLC finds no error, try to find a
different way to write the definitions.

The best way to learn is by making
mistakes.

If TLC finds no error try to find a different way to write the definitions.

The best way to learn is by making mistakes.

[ slide 317 ]



If TLC finds no error, try to find a
different way to write the definitions.

The best way to learn is by making
mistakes.

If TLC finds no error try to find a different way to write the definitions.

The best way to learn is by making mistakes.

[ slide 318 ]



Now that we’ve used TLC to save our heroes from certain death, it’s time to
leave the glamour of Hollywood for the more romantic subject of marriage
and commitment. In the next lecture, we’ll examine an algorithm that has
been used for many years in weddings and database systems.

[ slide 319 ]



TLA+ Video Course

End of Lecture 4

DIE HARD

[ slide 320 ]


