
TLA+ Video Course – Lecture 6
Leslie Lamport

TWO-PHASE COMMIT

This video should be viewed in conjunction with a Web page.
To find that page, search the Web for TLA+ Video Course .

The TLA+ Video Course
Lecture 6
Transaction Commit

This lecture is about the two-phase commit protocol, a very simple, popular
algorithm for implementing transaction commit.

Following in the footsteps of Jim Gray, I introduce the protocol by examining a
wedding and the role of the minister.

But first, I’ll describe the TLA+ notation for an important data type: records.

[slide 2]

RECORDS

We start with the TLA+ notation for records.

[slide 3]

The definition

r
∆
= [prof 7→ “Fred ”,num 7→ 42]

defines r to be a record with two fields
prof and num .

This definition of r defines it to be a record with two fields named prof and
num.

The values of the two fields can be written as r dot prof , which equals the
string “Fred ” and r .num, which equals 42 .

A record corresponds roughly to a Struct in C, except that changing the
orders of the fields makes no difference.

[slide 4]

The definition

r
∆
= [prof 7→ “Fred ”,num 7→ 42]

defines r to be a record with two fields
prof and num .

This definition of r defines it to be a record with two fields named prof and
num.

The values of the two fields can be written as r dot prof , which equals the
string “Fred ” and r .num, which equals 42 .

A record corresponds roughly to a Struct in C, except that changing the
orders of the fields makes no difference.

[slide 5]

The definition

r
∆
= [prof 7→ “Fred ”,num 7→ 42]

defines r to be a record with two fields
prof and num .

This definition of r defines it to be a record with two fields named prof and
num.

The values of the two fields can be written as r dot prof , which equals the
string “Fred ” and r .num, which equals 42 .

A record corresponds roughly to a Struct in C, except that changing the
orders of the fields makes no difference.

[slide 6]

The definition

r
∆
= [prof 7→ “Fred ”,num 7→ 42]

defines r to be a record with two fields
prof and num .

The values of its two fields are

r .prof = “Fred ” and r .num = 42

This definition of r defines it to be a record with two fields named prof and
num.

The values of the two fields can be written as r dot prof , which equals the
string “Fred ” and r .num, which equals 42 .

A record corresponds roughly to a Struct in C, except that changing the
orders of the fields makes no difference.

[slide 7]

The definition

r
∆
= [prof 7→ “Fred ”, num 7→ 42]

defines r to be a record with two fields
prof and num .

The values of its two fields are

r .prof = “Fred ” and r .num = 42

This definition of r defines it to be a record with two fields named prof and
num.

The values of the two fields can be written as r dot prof , which equals the
string “Fred ” and r .num, which equals 42 .

A record corresponds roughly to a Struct in C, except that changing the
orders of the fields makes no difference.

[slide 8]

The definition

r
∆
= [prof 7→ “Fred ”, num 7→ 42]

defines r to be a record with two fields
prof and num .

The values of its two fields are

r .prof = “Fred ” and r .num = 42

This definition of r defines it to be a record with two fields named prof and
num.

The values of the two fields can be written as r dot prof , which equals the
string “Fred ” and r .num, which equals 42 .

A record corresponds roughly to a Struct in C, except that changing the
orders of the fields makes no difference.

[slide 9]

The definition

r
∆
= [prof 7→ “Fred ”, num 7→ 42]

defines r to be a record with two fields
prof and num .

A record corresponds to a struct in C, except

[prof 7→ “Fred ”, num 7→ 42] = [num 7→ 42, prof 7→ “Fred ”]

This definition of r defines it to be a record with two fields named prof and
num.

The values of the two fields can be written as r dot prof , which equals the
string “Fred ” and r .num, which equals 42 .

A record corresponds roughly to a Struct in C, except that changing the
orders of the fields makes no difference.

[slide 10]

The definition

r
∆
= [prof 7→ “Fred ”, num 7→ 42]

defines r to be a record with two fields
prof and num .

A record corresponds to a struct in C, except

[prof 7→ “Fred ”, num 7→ 42] = [num 7→ 42, prof 7→ “Fred ”]

This definition of r defines it to be a record with two fields named prof and
num.

The values of the two fields can be written as r dot prof , which equals the
string “Fred ” and r .num, which equals 42 .

A record corresponds roughly to a Struct in C, except that changing the
orders of the fields makes no difference.

[slide 11]

[prof : {“Fred ”, “Ted ”, “Ned ”}, num : 0 . .99]

is the set of all records

[prof 7→ . . . , num 7→ . . .]

with prof field in {“Fred ”, “Ted ”, “Ned ”}
num field in 0 . .99

So [prof 7→ “Ned ”, num 7→ 24] is in this set.

This is the TLA+ notation for the set of all records of this form with

the value of its prof field an element of this set

and the value of its num field an element of this set

So this record is in this set.

[slide 12]

[prof : {“Fred ”, “Ted ”, “Ned ”}, num : 0 . .99]

is the set of all records

[prof 7→ . . . , num 7→ . . .]

with prof field in {“Fred ”, “Ted ”, “Ned ”}
num field in 0 . .99

So [prof 7→ “Ned ”, num 7→ 24] is in this set.

This is the TLA+ notation for the set of all records of this form with

the value of its prof field an element of this set

and the value of its num field an element of this set

So this record is in this set.

[slide 13]

[prof : {“Fred ”, “Ted ”, “Ned ”}, num : 0 . .99]

is the set of all records

[prof 7→ . . . , num 7→ . . .]

with prof field in {“Fred ”, “Ted ”, “Ned ”}
num field in 0 . .99

So [prof 7→ “Ned ”, num 7→ 24] is in this set.

This is the TLA+ notation for the set of all records of this form with

the value of its prof field an element of this set

and the value of its num field an element of this set

So this record is in this set.

[slide 14]

[prof : {“Fred ”, “Ted ”, “Ned ”}, num : 0 . .99]

is the set of all records

[prof 7→ . . . , num 7→ . . .]

with prof field in {“Fred ”, “Ted ”, “Ned ”}
num field in 0 . .99

So [prof 7→ “Ned ”, num 7→ 24] is in this set.

This is the TLA+ notation for the set of all records of this form with

the value of its prof field an element of this set

and the value of its num field an element of this set

So this record is in this set.

[slide 15]

[prof : {“Fred ”, “Ted ”, “Ned ”}, num : 0 . .99]

is the set of all records

[prof 7→ . . . , num 7→ . . .]

with prof field in {“Fred ”, “Ted ”, “Ned ”}
num field in 0 . .99

So [prof 7→ “Ned ”, num 7→ 24] is in this set.

This is the TLA+ notation for the set of all records of this form with

the value of its prof field an element of this set

and the value of its num field an element of this set

So this record is in this set.

[slide 16]

[prof : {“Fred ”, “Ted ”, “Ned ”}, num : 0 . .99]

is the set of all records

[prof 7→ . . . , num 7→ . . .]

with prof field in {“Fred ”, “Ted ”, “Ned ”}
num field in 0 . .99

So [prof 7→ “Ned ”, num 7→ 24] is in this set.

This is the TLA+ notation for the set of all records of this form with

the value of its prof field an element of this set

and the value of its num field an element of this set

So this record is in this set.

[slide 17]

[prof : {“Fred ”, “Ted ”, “Ned ”}, num : 0 . .99]

is the set of all records

[prof 7→ . . . , num 7→ . . .]

with prof field in {“Fred ”, “Ted ”, “Ned ”}
num field in 0 . .99

So [prof 7→ “Ned ”, num 7→ 24] is in this set.

This is the TLA+ notation for the set of all records of this form with

the value of its prof field an element of this set

and the value of its num field an element of this set

So this record is in this set.

[slide 18]

[prof : {“Fred ”, “Ted ”, “Ned ”}, num : 0 . .99]

is the set of all records

[prof 7→ . . . , num 7→ . . .]

with prof field in {“Fred ”, “Ted ”, “Ned ”}
num field in 0 . .99

So [prof 7→ “Ned ”, num 7→ 24] is in this set.

This is the TLA+ notation for the set of all records of this form with

the value of its prof field an element of this set

and the value of its num field an element of this set

So this record is in this set.

[slide 19]

[prof 7→ “Fred ”, num 7→ 42]

is a function f with domain {“prof ”, “num”}

such that f [“prof ”] = “Fred ”

f [“num”] = 42

This record is actually a function, let’s call it f , whose domain is the set
containing the two strings prof and num. such that f of the string prof

equals the string “Fred ” and f of the string num equals the number 42.

f dot prof is just an abbreviation for f of the string prof .

[slide 20]

[prof 7→ “Fred ”, num 7→ 42]

is a function f with domain {“prof ”, “num”}

such that f [“prof ”] = “Fred ”

f [“num”] = 42

This record is actually a function, let’s call it f , whose domain is the set
containing the two strings prof and num. such that f of the string prof

equals the string “Fred ” and f of the string num equals the number 42.

f dot prof is just an abbreviation for f of the string prof .

[slide 21]

[prof 7→ “Fred ”, num 7→ 42]

is a function f with domain {“prof ”, “num”}

such that f [“prof ”] = “Fred ”

f [“num”] = 42

This record is actually a function, let’s call it f , whose domain is the set
containing the two strings prof and num. such that f of the string prof

equals the string “Fred ” and f of the string num equals the number 42.

f dot prof is just an abbreviation for f of the string prof .

[slide 22]

[prof 7→ “Fred ”, num 7→ 42]

is a function f with domain {“prof ”, “num”}

such that f [“prof ”] = “Fred ”

f [“num”] = 42

This record is actually a function, let’s call it f , whose domain is the set
containing the two strings prof and num. such that f of the string prof

equals the string “Fred ” and f of the string num equals the number 42.

f dot prof is just an abbreviation for f of the string prof .

[slide 23]

[prof 7→ “Fred ”, num 7→ 42]

is a function f with domain {“prof ”, “num”}

such that f [“prof ”] = “Fred ”

f [“num”] = 42

This record is actually a function, let’s call it f , whose domain is the set
containing the two strings prof and num. such that f of the string prof

equals the string “Fred ” and f of the string num equals the number 42.

f dot prof is just an abbreviation for f of the string prof .

[slide 24]

[prof 7→ “Fred ”, num 7→ 42]

is a function f with domain {“prof ”, “num”}

such that f [“prof ”] = “Fred ”

f [“num”] = 42

f .prof is an abbreviation for f [“prof ”]

This record is actually a function, let’s call it f , whose domain is the set
containing the two strings prof and num. such that f of the string prof

equals the string “Fred ” and f of the string num equals the number 42.

f dot prof is just an abbreviation for f of the string prof .

[slide 25]

[prof 7→ “Fred ”, num 7→ 42]

is a function f with domain {“prof ”, “num”}

such that f [“prof ”] = “Fred ”

f [“num”] = 42

[f EXCEPT ![“prof ”] = “Red ”]

can be abbreviated as

[f EXCEPT !.prof = “Red ”]

This EXCEPT expression equals the record that’s the same as f except its
prof field equals the string Red .

We can abbreviate the EXCEPT by writing bang dot prof instead of bang of
the string prof .

[slide 26]

[prof 7→ “Fred ”, num 7→ 42]

is a function f with domain {“prof ”, “num”}

such that f [“prof ”] = “Fred ”

f [“num”] = 42

[f EXCEPT ![“prof ”] = “Red ”]

can be abbreviated as

[f EXCEPT !.prof = “Red ”]

This EXCEPT expression equals the record that’s the same as f except its
prof field equals the string Red .

We can abbreviate the EXCEPT by writing bang dot prof instead of bang of
the string prof .

[slide 27]

[prof 7→ “Fred ”, num 7→ 42]

is a function f with domain {“prof ”, “num”}

such that f [“prof ”] = “Fred ”

f [“num”] = 42

[f EXCEPT ![“prof ”] = “Red ”]

can be abbreviated as

[f EXCEPT !.prof = “Red ”]

This EXCEPT expression equals the record that’s the same as f except its
prof field equals the string Red .

We can abbreviate the EXCEPT by writing bang dot prof instead of bang of
the string prof .

[slide 28]

[prof 7→ “Fred ”, num 7→ 42]

is a function f with domain {“prof ”, “num”}

such that f [“prof ”] = “Fred ”

f [“num”] = 42

[f EXCEPT ![“prof ”] = “Red ”]

can be abbreviated as

[f EXCEPT !.prof = “Red ”]

This EXCEPT expression equals the record that’s the same as f except its
prof field equals the string Red .

We can abbreviate the EXCEPT by writing bang dot prof instead of bang of
the string prof .

[slide 29]

WEDDINGS

We now get to the two-phase commit protocol. As in the previous lecture, we
begin with weddings.

[slide 30]

What Transaction Commit Describes

AnneHenry

Transaction commit describes the states of the bride and groom.

A wedding begins with the bride and groom unsure if they should be married.

Except that Transaction Commit calls that state working. In a successful
wedding, both reach the prepared state

[slide 31]

What Transaction Commit Describes

AnneHenry

unsurep p p p p p unsurep p p p p p

Transaction commit describes the states of the bride and groom.

A wedding begins with the bride and groom unsure if they should be married.

Except that Transaction Commit calls that state working. In a successful
wedding, both reach the prepared state

[slide 32]

What Transaction Commit Describes

AnneHenry

workingp p p p p p workingp p p p p p

Transaction commit describes the states of the bride and groom.

A wedding begins with the bride and groom unsure if they should be married.

Except that Transaction Commit calls that state working. In a successful
wedding, both reach the prepared state

[slide 33]

What Transaction Commit Describes

AnneHenry

preparedp p p p p p workingp p p p p p

They then each reach

the committed state.

[slide 34]

What Transaction Commit Describes

AnneHenry

preparedp p p p p p preparedp p p p p p

They then each reach

the committed state.

[slide 35]

What Transaction Commit Describes

AnneHenry

preparedp p p p p p committedp p p p p p

They then each reach

the committed state.

[slide 36]

What Transaction Commit Describes

AnneHenry

committedp p p p p p committedp p p p p p

They then each reach

the committed state.

[slide 37]

TwoPhase Commit Adds the Minister

AnneHenry

Minister

Two-phase commit adds the minister to help implement those state changes.
He does that by communicating with the bride and groom.

[slide 38]

TwoPhase Commit Adds the Minister

AnneHenry

Minister

Hank, are you prepared to commit
to this relationship?

��
�

Two-phase commit adds the minister to help implement those state changes.
He does that by communicating with the bride and groom.

[slide 39]

TwoPhase Commit Adds the Minister

AnneHenry

Minister

I’m prepared.

�
�

Two-phase commit adds the minister to help implement those state changes.
He does that by communicating with the bride and groom.

[slide 40]

TwoPhase Commit Adds the Minister

AnneHenry

Minister

Anne, are you prepared to commit
to this relationship?

��
�

Two-phase commit adds the minister to help implement those state changes.
He does that by communicating with the bride and groom.

[slide 41]

TwoPhase Commit Adds the Minister

AnneHenry

Minister

I’m prepared.

c
cc

Two-phase commit adds the minister to help implement those state changes.
He does that by communicating with the bride and groom.

[slide 42]

TwoPhase Commit Adds the Minister

AnneHenry

Minister

You’re now both in a
committed relationship.

��
�

Two-phase commit adds the minister to help implement those state changes.
He does that by communicating with the bride and groom.

[slide 43]

A Really Modern Wedding

AnneHenry

Minister

workingp p p p p p workingp p p p p p

In addition to the states of the bride and groom, there’s the minister’s state,
which initially is idle.

In a really modern wedding, the parties communicate by texting.

In addition to sending the “are you prepared” text, the minister’s state
changes to an init state in which the set of participants who he knows are
prepared is empty. Suppose Henry reads his text first

[slide 44]

A Really Modern Wedding

AnneHenry

Minister

workingp p p p p p workingp p p p p p

idlep p p p p p

In addition to the states of the bride and groom, there’s the minister’s state,
which initially is idle.

In a really modern wedding, the parties communicate by texting.

In addition to sending the “are you prepared” text, the minister’s state
changes to an init state in which the set of participants who he knows are
prepared is empty. Suppose Henry reads his text first

[slide 45]

A Really Modern Wedding

AnneHenry

workingp p p p p p workingp p p p p p

init
prep: { }p p p p p p

�

RUPrepared?

W

RUPrepared?

In addition to the states of the bride and groom, there’s the minister’s state,
which initially is idle.

In a really modern wedding, the parties communicate by texting.

In addition to sending the “are you prepared” text, the minister’s state
changes to an init state in which the set of participants who he knows are
prepared is empty. Suppose Henry reads his text first

[slide 46]

A Really Modern Wedding

AnneHenry

workingp p p p p p workingp p p p p p

init
prep: { }p p p p p p

�

RUPrepared?

W

RUPrepared?

In addition to the states of the bride and groom, there’s the minister’s state,
which initially is idle.

In a really modern wedding, the parties communicate by texting.

In addition to sending the “are you prepared” text, the minister’s state
changes to an init state in which the set of participants who he knows are
prepared is empty. Suppose Henry reads his text first

[slide 47]

A Really Modern Wedding

AnneHenry

workingp p p p p p workingp p p p p p

init
prep: { }p p p p p p

�

RUPrepared?

W

RUPrepared?

In addition to the states of the bride and groom, there’s the minister’s state,
which initially is idle.

In a really modern wedding, the parties communicate by texting.

In addition to sending the “are you prepared” text, the minister’s state
changes to an init state in which the set of participants who he knows are
prepared is empty. Suppose Henry reads his text first

[slide 48]

A Really Modern Wedding

AnneHenry

workingp p p p p p workingp p p p p p

init
prep: { }p p p p p p

�

RUPrepared?

W

RUPrepared?

In addition to the states of the bride and groom, there’s the minister’s state,
which initially is idle.

In a really modern wedding, the parties communicate by texting.

In addition to sending the “are you prepared” text, the minister’s state
changes to an init state in which the set of participants who he knows are
prepared is empty. Suppose Henry reads his text first

[slide 49]

A Really Modern Wedding

AnneHenry

workingp p p p p p workingp p p p p p

init
prep: { }p p p p p p

W

RUPrepared?

and replies with a text saying he’s prepared, changing his state to prepared .

And suppose Anne then does the same.

The minister might then receive Anne’s text

updating his state because he knows Anne is prepared. He similarly
receives Henry’s text

[slide 50]

A Really Modern Wedding

AnneHenry

preparedp p p p p p workingp p p p p p

init
prep: { }p p p p p p

:

Am Prepared. H

W

RUPrepared?

and replies with a text saying he’s prepared, changing his state to prepared .

And suppose Anne then does the same.

The minister might then receive Anne’s text

updating his state because he knows Anne is prepared. He similarly
receives Henry’s text

[slide 51]

A Really Modern Wedding

AnneHenry

preparedp p p p p p workingp p p p p p

init
prep: { }p p p p p p

:

Am Prepared. H

W

RUPrepared?

and replies with a text saying he’s prepared, changing his state to prepared .

And suppose Anne then does the same.

The minister might then receive Anne’s text

updating his state because he knows Anne is prepared. He similarly
receives Henry’s text

[slide 52]

A Really Modern Wedding

AnneHenry

preparedp p p p p p preparedp p p p p p

init
prep: { }p p p p p p

:

Am Prepared. H

y

Am Prepared. A

and replies with a text saying he’s prepared, changing his state to prepared .

And suppose Anne then does the same.

The minister might then receive Anne’s text

updating his state because he knows Anne is prepared. He similarly
receives Henry’s text

[slide 53]

A Really Modern Wedding

AnneHenry

preparedp p p p p p preparedp p p p p p

init
prep: {A}p p p p p p

:

Am Prepared. H

and replies with a text saying he’s prepared, changing his state to prepared .

And suppose Anne then does the same.

The minister might then receive Anne’s text

updating his state because he knows Anne is prepared. He similarly
receives Henry’s text

[slide 54]

A Really Modern Wedding

AnneHenry

preparedp p p p p p preparedp p p p p p

init
prep: {A}p p p p p p

:

Am Prepared. H

and replies with a text saying he’s prepared, changing his state to prepared .

And suppose Anne then does the same.

The minister might then receive Anne’s text

updating his state because he knows Anne is prepared. He similarly
receives Henry’s text

[slide 55]

A Really Modern Wedding

AnneHenry

preparedp p p p p p preparedp p p p p p

init
prep: {A}p p p p p p

:

Am Prepared. H

and replies with a text saying he’s prepared, changing his state to prepared .

And suppose Anne then does the same.

The minister might then receive Anne’s text

updating his state because he knows Anne is prepared. He similarly
receives Henry’s text

[slide 56]

A Really Modern Wedding

AnneHenry

preparedp p p p p p preparedp p p p p p

init
prep: {A, H}p p p p p p

and updates his state.
He can then send a text telling them to commit.

Anne might receive his text first, causing her to become committed.

Henry might then receive his text, also becoming committed.

[slide 57]

A Really Modern Wedding

AnneHenry

preparedp p p p p p preparedp p p p p p

init
prep: {A, H}p p p p p p

�

Commit

W

Commit

and updates his state.
He can then send a text telling them to commit.

Anne might receive his text first, causing her to become committed.

Henry might then receive his text, also becoming committed.

[slide 58]

A Really Modern Wedding

AnneHenry

preparedp p p p p p committedp p p p p p

init
prep: {A, H}p p p p p p

�

Commit

and updates his state.
He can then send a text telling them to commit.

Anne might receive his text first, causing her to become committed.

Henry might then receive his text, also becoming committed.

[slide 59]

A Really Modern Wedding

AnneHenry

committedp p p p p p committedp p p p p p

init
prep: {A, H}p p p p p p

and updates his state.
He can then send a text telling them to commit.

Anne might receive his text first, causing her to become committed.

Henry might then receive his text, also becoming committed.

[slide 60]

A Simplification

AnneHenry

workingp p p p p p workingp p p p p p

idlep p p p p p

Let’s simplify the algorithm a bit.

We eliminate the Minister’s first text.

Instead we start in this state.

Henry and Anne can send their “I’m prepared” text without hearing from the
minister.

[slide 61]

A Simplification

AnneHenry

workingp p p p p p workingp p p p p p

init
prep: { }p p p p p p

�

RUPrepared?

W

RUPrepared?
PPPPPP��
��

�� ������ PP
PP

PP

Let’s simplify the algorithm a bit.

We eliminate the Minister’s first text.

Instead we start in this state.

Henry and Anne can send their “I’m prepared” text without hearing from the
minister.

[slide 62]

A Simplification

AnneHenry

workingp p p p p p workingp p p p p p

init
prep: { }p p p p p p

Let’s simplify the algorithm a bit.

We eliminate the Minister’s first text.

Instead we start in this state.

Henry and Anne can send their “I’m prepared” text without hearing from the
minister.

[slide 63]

A Simplification

AnneHenry

preparedp p p p p p workingp p p p p p

init
prep: { }p p p p p p

:

Am Prepared. H

For example, Henry might send his “I’m prepared” text first, changing his
state to prepared .

[slide 64]

RUPrepared? message not required by TCommit .

Simplicity, simplicity, simplicity!

The RUPrepared? message is not needed to implement the TCommit spec.

We want the simplest spec that can catch the errors we’re looking
for—namely, ones that would cause two-phase commit not to satisfy the
TCommit spec.

[slide 65]

RUPrepared? message not required by TCommit .

Simplicity, simplicity, simplicity!

The RUPrepared? message is not needed to implement the TCommit spec.

We want the simplest spec that can catch the errors we’re looking
for—namely, ones that would cause two-phase commit not to satisfy the
TCommit spec.

[slide 66]

THE TLA+ SPEC

OK, let’s stop looking at pictures and start reading the TLA+ specification.

[slide 67]

Stop the video:

– In the Toolbox, create a new module named TwoPhase

in the same folder as TCommit .

– Copy the body of the spec from the web
page and paste it into the module.

First, stop the video and, in the Toolbox, create a new module named
TwoPhase in the same folder as module TCommit .

Copy the body of the spec from the web page and paste it into the module.

Do it now.

[slide 68]

The spec begins by declaring the set RM of resource managers, just like in
TCommit .

Variable rmState decribes the state of the resource managers, again like in
TCommit .

Variables tmState and tmPrepared describe the state of the minister, who we
now call the Transaction Manager.

[slide 69]

The spec begins by declaring the set RM of resource managers, just like in
TCommit .

Variable rmState decribes the state of the resource managers, again like in
TCommit .

Variables tmState and tmPrepared describe the state of the minister, who we
now call the Transaction Manager.

[slide 70]

init
prep: {A}p p p p p p

The spec begins by declaring the set RM of resource managers, just like in
TCommit .

Variable rmState decribes the state of the resource managers, again like in
TCommit .

Variables tmState and tmPrepared describe the state of the minister, who we
now call the Transaction Manager.

[slide 71]

init
prep: {A}p p p p p p

tmState is this part of the transaction manager’s state.

And tmPrepared is this part, the set of resource managers he knows are
prepared.

And m-s-g-s describes the messages that are in transit.

Next comes a definition that we’ll skip over for now.

[slide 72]

init
prep: {A}p p p p p p

tmState is this part of the transaction manager’s state.

And tmPrepared is this part, the set of resource managers he knows are
prepared.

And m-s-g-s describes the messages that are in transit.

Next comes a definition that we’ll skip over for now.

[slide 73]

tmState is this part of the transaction manager’s state.

And tmPrepared is this part, the set of resource managers he knows are
prepared.

And m-s-g-s describes the messages that are in transit.

Next comes a definition that we’ll skip over for now.

[slide 74]

. . .

tmState is this part of the transaction manager’s state.

And tmPrepared is this part, the set of resource managers he knows are
prepared.

And m-s-g-s describes the messages that are in transit.

Next comes a definition that we’ll skip over for now.

[slide 75]

We then have the type invariant. In this spec, conventional names like
TypeOK are prefaced with TP .

As in TCommit , the value of variable rmState should be a function from
resource managers to this set of four strings.

The value of tmState is either init or done.

[slide 76]

We then have the type invariant. In this spec, conventional names like
TypeOK are prefaced with TP .

As in TCommit , the value of variable rmState should be a function from
resource managers to this set of four strings.

The value of tmState is either init or done.

[slide 77]

p p p p p p
init

prep: {A}

We then have the type invariant. In this spec, conventional names like
TypeOK are prefaced with TP .

As in TCommit , the value of variable rmState should be a function from
resource managers to this set of four strings.

The value of tmState is either init or done.

[slide 78]

p p p p p p
init

prep: {A}

This asserts that tmPrepared is a subset of the set RM of resource
managers

This symbol, typed backslash subset-e-q, is read “is a subset of”. The third
conjunct means that every element of the set tmPrepared is an element of
the set RM .

[slide 79]

\subseteq

This asserts that tmPrepared is a subset of the set RM of resource
managers

This symbol, typed backslash subset-e-q, is read “is a subset of”. The third
conjunct means that every element of the set tmPrepared is an element of
the set RM .

[slide 80]

Similarly TPTypeOK also asserts that the value of m-s-g-s is a subset of the
set Messages.

[slide 81]

Sending Messages

The spec must describe sending messages.

It should specify only what’s required of
message passing.

A simple method:
Let msgs be the set of messages currently in transit.

A spec of two-phase commit has to describe the sending of messages.

The spec need not describe the actual mechanism by which messages are
sent.

[slide 82]

Sending Messages

The spec must describe sending messages.

It should specify only what’s required of
message passing.

A simple method:
Let msgs be the set of messages currently in transit.

It should describe only what the algorithm requires of message passing.

Since two-phase commit requires no assumptions about the order in which
different messages are received, the simplest natural representation

is to let m-s-g-s be a single set containing all messages in transit. Receiving
a message removes it from the set m-s-g-s.

[slide 83]

Sending Messages

The spec must describe sending messages.

It should specify only what’s required of
message passing.

A simple method:
Let msgs be the set of messages currently in transit.

It should describe only what the algorithm requires of message passing.

Since two-phase commit requires no assumptions about the order in which
different messages are received, the simplest natural representation

is to let m-s-g-s be a single set containing all messages in transit. Receiving
a message removes it from the set m-s-g-s.

[slide 84]

A Simpler Method

Let msgs be the set of all messages ever sent.

A single message can be received by
multiple processes.

A process can receive the same message multiple times.

Two-phase commit still works.

There’s a simpler method that’s not obvious to most people.

It’s to let m-s-g-s be the set of all messages that have ever been sent. So the
action of receiving a message doesn’t remove the message from the set.
One advantage is that

A single message in m-s-g-s can be received by several processes. It also
means that

[slide 85]

A Simpler Method

Let msgs be the set of all messages ever sent.

A single message can be received by
multiple processes.

A process can receive the same message multiple times.

Two-phase commit still works.

There’s a simpler method that’s not obvious to most people.

It’s to let m-s-g-s be the set of all messages that have ever been sent. So the
action of receiving a message doesn’t remove the message from the set.
One advantage is that

A single message in m-s-g-s can be received by several processes. It also
means that

[slide 86]

A Simpler Method

Let msgs be the set of all messages ever sent.

A single message can be received by
multiple processes.

A process can receive the same message multiple times.

Two-phase commit still works.

There’s a simpler method that’s not obvious to most people.

It’s to let m-s-g-s be the set of all messages that have ever been sent. So the
action of receiving a message doesn’t remove the message from the set.
One advantage is that

A single message in m-s-g-s can be received by several processes. It also
means that

[slide 87]

A Simpler Method

Let msgs be the set of all messages ever sent.

A single message can be received by
multiple processes.

A process can receive the same message multiple times.

Two-phase commit still works.

A process can received the same message multiple times.

This can happen with real message passing, and it’s useful to know that

The two-phase commit protocol still works even if it does happen.

Let’s return now to the spec.

[slide 88]

A Simpler Method

Let msgs be the set of all messages ever sent.

A single message can be received by
multiple processes.

A process can receive the same message multiple times.

Two-phase commit still works.

A process can received the same message multiple times.

This can happen with real message passing, and it’s useful to know that

The two-phase commit protocol still works even if it does happen.

Let’s return now to the spec.

[slide 89]

Remember the type assertion for m-s-g-s: that it’s a subset of the set
Messages.

[slide 90]

Here is the definition of the set Messages.

This is the set union operator, where S union T is the set of all elements in S

or T or both.

Union is typed either backslash union or backslash cup.

[slide 91]

Here is the definition of the set Messages.

This is the set union operator, where S union T is the set of all elements in S

or T or both.

Union is typed either backslash union or backslash cup.

[slide 92]

S ∪ T

Here is the definition of the set Messages.

This is the set union operator, where S union T is the set of all elements in S

or T or both.

Union is typed either backslash union or backslash cup.

[slide 93]

\union
\cup

Here is the definition of the set Messages.

This is the set union operator, where S union T is the set of all elements in S

or T or both.

Union is typed either backslash union or backslash cup.

[slide 94]

So Messages is the union of two sets, the first is the set of records whose
type field is an element of the set containing the single element Prepared ,
and whose rm field is an element of the set RM of resource managers.

A record with type field equal to the string Prepared and rm field equal to the
resource manager r represents a Prepared message sent by resource
manager r to the Transaction Manager.

[slide 95]

So Messages is the union of two sets, the first is the set of records whose
type field is an element of the set containing the single element Prepared ,
and whose rm field is an element of the set RM of resource managers.

A record with type field equal to the string Prepared and rm field equal to the
resource manager r represents a Prepared message sent by resource
manager r to the Transaction Manager.

[slide 96]

[type 7→ “Prepared ”, rm 7→ r]

So Messages is the union of two sets, the first is the set of records whose
type field is an element of the set containing the single element Prepared ,
and whose rm field is an element of the set RM of resource managers.

A record with type field equal to the string Prepared and rm field equal to the
resource manager r represents a Prepared message sent by resource
manager r to the Transaction Manager.

[slide 97]

[type 7→ “Prepared ”, rm 7→ r]

Represents a Prepared message sent by r to the TM.

So Messages is the union of two sets, the first is the set of records whose
type field is an element of the set containing the single element Prepared ,
and whose rm field is an element of the set RM of resource managers.

A record with type field equal to the string Prepared and rm field equal to the
resource manager r represents a Prepared message sent by resource
manager r to the Transaction Manager.

[slide 98]

Each record in that set represents either a Commit or an Abort message
sent by the transaction manager to all the resource managers.

This set equals the set containing two elements, each a record with only a
type field.

These records represent a commit and an abort message sent by the
transaction manager to all the resource managers.

[slide 99]

{ [type 7→ “Commit”], [type 7→ “Abort”] }

Each record in that set represents either a Commit or an Abort message
sent by the transaction manager to all the resource managers.

This set equals the set containing two elements, each a record with only a
type field.

These records represent a commit and an abort message sent by the
transaction manager to all the resource managers.

[slide 100]

{ [type 7→ “Commit”], [type 7→ “Abort”] }

Each record represents a message
sent by the TM to all RMs.

Each record in that set represents either a Commit or an Abort message
sent by the transaction manager to all the resource managers.

This set equals the set containing two elements, each a record with only a
type field.

These records represent a commit and an abort message sent by the
transaction manager to all the resource managers.

[slide 101]

Here’s the initial state formula.

rmState has the same initial value as in TCommit – a function that assigns
the string working to every resource manager.

Here are the initial values of the variables describing the transaction
manager’s state.

And initially, no messages have been sent.

[slide 102]

Here’s the initial state formula.

rmState has the same initial value as in TCommit – a function that assigns
the string working to every resource manager.

Here are the initial values of the variables describing the transaction
manager’s state.

And initially, no messages have been sent.

[slide 103]

p p p p p p
init

prep: { }

Here’s the initial state formula.

rmState has the same initial value as in TCommit – a function that assigns
the string working to every resource manager.

Here are the initial values of the variables describing the transaction
manager’s state.

And initially, no messages have been sent.

[slide 104]

Here’s the initial state formula.

rmState has the same initial value as in TCommit – a function that assigns
the string working to every resource manager.

Here are the initial values of the variables describing the transaction
manager’s state.

And initially, no messages have been sent.

[slide 105]

Next come the definitions of subformulas of the next-state formula, starting
with those subformulas that describe actions taken by the transaction
manager.

[slide 106]

Describes the receipt of a Prepared message
from RM r by TM.

This subformula describes the receipt of a Prepared message from resource
manager r by the transaction manager.

The message can be received only when the transaction manager is in its
init state

and there is a Prepared message from resource manager r in the set m-s-g-s
of sent messages.

[slide 107]

This subformula describes the receipt of a Prepared message from resource
manager r by the transaction manager.

The message can be received only when the transaction manager is in its
init state

and there is a Prepared message from resource manager r in the set m-s-g-s
of sent messages.

[slide 108]

This subformula describes the receipt of a Prepared message from resource
manager r by the transaction manager.

The message can be received only when the transaction manager is in its
init state

and there is a Prepared message from resource manager r in the set m-s-g-s
of sent messages.

[slide 109]

It sets the new value of tmPrepared to the union of its current value and the
set containing the element r .

In other words, it adds r to the set tmPrepared .

And finally, there’s an UNCHANGED formula.

[slide 110]

It sets the new value of tmPrepared to the union of its current value and the
set containing the element r .

In other words, it adds r to the set tmPrepared .

And finally, there’s an UNCHANGED formula.

[slide 111]

It sets the new value of tmPrepared to the union of its current value and the
set containing the element r .

In other words, it adds r to the set tmPrepared .

And finally, there’s an UNCHANGED formula.

[slide 112]

Adds r to tmPrepared .

It sets the new value of tmPrepared to the union of its current value and the
set containing the element r .

In other words, it adds r to the set tmPrepared .

And finally, there’s an UNCHANGED formula.

[slide 113]

It sets the new value of tmPrepared to the union of its current value and the
set containing the element r .

In other words, it adds r to the set tmPrepared .

And finally, there’s an UNCHANGED formula.

[slide 114]

a triple

This expression is an ordered triple.

The angle brackets are typed less-than-less-than and
greater-that-greater-than.

The entire UNCHANGED formula is equivalent to this formula which asserts
that the values of the variables rmState, tmState, and m-s-g-s are all left
unchanged.

[slide 115]

<< >>

This expression is an ordered triple.

The angle brackets are typed less-than-less-than and
greater-that-greater-than.

The entire UNCHANGED formula is equivalent to this formula which asserts
that the values of the variables rmState, tmState, and m-s-g-s are all left
unchanged.

[slide 116]

Equivalent to ∧ rmState ′ = rmState

∧ tmState ′ = tmState

∧ msgs ′ = msgs

This expression is an ordered triple.

The angle brackets are typed less-than-less-than and
greater-that-greater-than.

The entire UNCHANGED formula is equivalent to this formula which asserts
that the values of the variables rmState, tmState, and m-s-g-s are all left
unchanged.

[slide 117]

Equivalent to ∧ rmState ′ = rmState

∧ tmState ′ = tmState

∧ msgs ′ = msgs

This expression is an ordered triple.

The angle brackets are typed less-than-less-than and
greater-that-greater-than.

The entire UNCHANGED formula is equivalent to this formula which asserts
that the values of the variables rmState, tmState, and m-s-g-s are all left
unchanged.

[slide 118]

Equivalent to ∧ rmState ′ = rmState

∧ tmState ′ = tmState

∧ msgs ′ = msgs

Which asserts rmState, tmState, and msgs

are left unchanged.

This expression is an ordered triple.

The angle brackets are typed less-than-less-than and
greater-that-greater-than.

The entire UNCHANGED formula is equivalent to this formula which asserts
that the values of the variables rmState, tmState, and m-s-g-s are all left
unchanged.

[slide 119]

These two conjunctions have no primes.

They’re conditions on the first state of a step.

[slide 120]

These two conjunctions have no primes.

They’re conditions on the first state of a step.

[slide 121]

Conditions on the first state of a step.

These two conjunctions have no primes.

They’re conditions on the first state of a step.

[slide 122]

Conditions on the first state of a step.

Enabling conditions.

They’re called enabling conditions of the formula.

Enabling conditions should almost always go at the beginning of an action
formula – a formula that contains primed variables. That makes the formula
easier to understand, and TLC often can’t handle the action formula if you
don’t.

[slide 123]

The step doesn’t remove the message from m-s-g-s or change tmState

so the formula is still enabled after the step.

But the step adds the element r to tmPrepared , so any subsequent step
allowed by TMRcvPrepared(r) occurs with r in tmPrepared , which implies
that tmPrepared is unchanged.

[slide 124]

The step doesn’t remove the message from m-s-g-s or change tmState

so the formula is still enabled after the step.

But the step adds the element r to tmPrepared , so any subsequent step
allowed by TMRcvPrepared(r) occurs with r in tmPrepared , which implies
that tmPrepared is unchanged.

[slide 125]

r in tmPrepared

The step doesn’t remove the message from m-s-g-s or change tmState

so the formula is still enabled after the step.

But the step adds the element r to tmPrepared , so any subsequent step
allowed by TMRcvPrepared(r) occurs with r in tmPrepared , which implies
that tmPrepared is unchanged.

[slide 126]

r in tmPrepared implies tmPrepared ′ = tmPrepared

The step doesn’t remove the message from m-s-g-s or change tmState

so the formula is still enabled after the step.

But the step adds the element r to tmPrepared , so any subsequent step
allowed by TMRcvPrepared(r) occurs with r in tmPrepared , which implies
that tmPrepared is unchanged.

[slide 127]

r in tmPrepared implies tmPrepared ′ = tmPrepared

A set can’t contain two copies of r .

Because a set either contains an element or it doesn’t; it can’t contain
multiple copies of the same element.

So if r is in tmPrepared , then the step leaves tmPrepared unchanged.

The step also leaves all the other variables unchanged.

So all subsequent TMRcvPrepared(r) steps leave all the variables
unchanged.

[slide 128]

r in tmPrepared implies tmPrepared ′ = tmPrepared

Because a set either contains an element or it doesn’t; it can’t contain
multiple copies of the same element.

So if r is in tmPrepared , then the step leaves tmPrepared unchanged.

The step also leaves all the other variables unchanged.

So all subsequent TMRcvPrepared(r) steps leave all the variables
unchanged.

[slide 129]

r in tmPrepared implies tmPrepared ′ = tmPrepared

Because a set either contains an element or it doesn’t; it can’t contain
multiple copies of the same element.

So if r is in tmPrepared , then the step leaves tmPrepared unchanged.

The step also leaves all the other variables unchanged.

So all subsequent TMRcvPrepared(r) steps leave all the variables
unchanged.

[slide 130]

r in tmPrepared implies all variables are unchanged.

Because a set either contains an element or it doesn’t; it can’t contain
multiple copies of the same element.

So if r is in tmPrepared , then the step leaves tmPrepared unchanged.

The step also leaves all the other variables unchanged.

So all subsequent TMRcvPrepared(r) steps leave all the variables
unchanged.

[slide 131]

r in tmPrepared implies all variables are unchanged.

Steps leaving all variables unchanged
make no difference.

We will see later why steps that leave all variables unchanged make no
difference and are always allowed.

[slide 132]

THE REST OF THE SPEC

You should now be able to understand the rest of the spec.

In fact, you should be able to write most of it yourself.

[slide 133]

I will describe the remaining subformulas of TPNext .

After each description
– Stop the video.
– Write the definition.
– Compare it with the one in the module.

Save your definitions that differ.

I will now describe the steps allowed by each of the remaining subformulas of
the next-state formula TPNext .

After each description, stop the video, write down the definition, and
compare it with the definition in the module.

[slide 134]

I will describe the remaining subformulas of TPNext .

After each description
– Stop the video.
– Write the definition.
– Compare it with the one in the module.

Save your definitions that differ.

I will now describe the steps allowed by each of the remaining subformulas of
the next-state formula TPNext .

After each description, stop the video, write down the definition, and
compare it with the definition in the module.

[slide 135]

I will describe the remaining subformulas of TPNext .

After each description
– Stop the video.
– Write the definition.
– Compare it with the one in the module.

Save your definitions that differ.

I will now describe the steps allowed by each of the remaining subformulas of
the next-state formula TPNext .

After each description, stop the video, write down the definition, and
compare it with the definition in the module.

[slide 136]

I will describe the remaining subformulas of TPNext .

After each description
– Stop the video.
– Write the definition.
– Compare it with the one in the module.

Save your definitions that differ.

I will now describe the steps allowed by each of the remaining subformulas of
the next-state formula TPNext .

After each description, stop the video, write down the definition, and
compare it with the definition in the module.

[slide 137]

I will describe the remaining subformulas of TPNext .

After each description
– Stop the video.
– Write the definition.
– Compare it with the one in the module.

Save your definitions that differ.

I will now describe the steps allowed by each of the remaining subformulas of
the next-state formula TPNext .

After each description, stop the video, write down the definition, and
compare it with the definition in the module.

[slide 138]

I will describe the remaining subformulas of TPNext .

After each description
– Stop the video.
– Write the definition.
– Compare it with the one in the module.

Save your definitions that differ.

If your definition is significantly different from the one in the module, save it.

Later you can let TLC check if it’s correct.

We’ll start with the other two subformulas that represent steps performed by
the transaction manager.

[slide 139]

TMCommit
∆
=

It allows steps where the TM sends Commit messages
to the RMs and sets tmState to “done” .

It is enabled if tmState equals “init” and tmPrepared

equals RM .

Write the definition now.

Formula TMCommit

allows steps where the transaction manager sends Commit messages to the
resource managers and sets tmState to the string “done”.

The sending of those messages is described by adding the record with type

field equal to the string Commit to the set msgs.

[slide 140]

TMCommit
∆
=

It allows steps where the TM sends Commit messages
to the RMs and sets tmState to “done” .

It is enabled if tmState equals “init” and tmPrepared

equals RM .

Write the definition now.

Formula TMCommit

allows steps where the transaction manager sends Commit messages to the
resource managers and sets tmState to the string “done”.

The sending of those messages is described by adding the record with type

field equal to the string Commit to the set msgs.

[slide 141]

TMCommit
∆
=

It allows steps where the TM sends Commit messages
to the RMs and sets tmState to “done” .

The messages are sent by adding [type 7→ “Commit”] to msgs .

It is enabled if tmState equals “init” and tmPrepared

equals RM .

Write the definition now.

Formula TMCommit

allows steps where the transaction manager sends Commit messages to the
resource managers and sets tmState to the string “done”.

The sending of those messages is described by adding the record with type

field equal to the string Commit to the set msgs.

[slide 142]

TMCommit
∆
=

It allows steps where the TM sends Commit messages
to the RMs and sets tmState to “done” .

It is enabled if tmState equals “init” and tmPrepared

equals RM .

Write the definition now.

The formula is enabled if and only if tmState equals “init” and tmPrepared

equals the set of resource managers.

Stop the video and write your definition now.

[slide 143]

TMCommit
∆
=

It allows steps where the TM sends Commit messages
to the RMs and sets tmState to “done” .

It is enabled if tmState equals “init” and tmPrepared

equals RM .

Write the definition now.

The formula is enabled if and only if tmState equals “init” and tmPrepared

equals the set of resource managers.

Stop the video and write your definition now.

[slide 144]

TMAbort
∆
=

The TM sends Abort messages to the RMs and sets
tmState to “done” .

It is enabled if tmState equals “init”.

Formula TMAbort

allows steps where the transaction manager sends Abort messages to the
resource managers and sets tmState to the string “done”.

The formula is enabled if and only if tmState equals “init”.

Next come the formulas describing steps performed by the resource
managers.

[slide 145]

TMAbort
∆
=

The TM sends Abort messages to the RMs and sets
tmState to “done” .

It is enabled if tmState equals “init”.

Formula TMAbort

allows steps where the transaction manager sends Abort messages to the
resource managers and sets tmState to the string “done”.

The formula is enabled if and only if tmState equals “init”.

Next come the formulas describing steps performed by the resource
managers.

[slide 146]

TMAbort
∆
=

The TM sends Abort messages to the RMs and sets
tmState to “done” .

It is enabled if tmState equals “init”.

Formula TMAbort

allows steps where the transaction manager sends Abort messages to the
resource managers and sets tmState to the string “done”.

The formula is enabled if and only if tmState equals “init”.

Next come the formulas describing steps performed by the resource
managers.

[slide 147]

RMPrepare(r)
∆
=

RM r sets its state to “prepared ” and sends a Prepared
message to the TM.

It’s enabled if rmState[r] equals “working”.

Formula RMPrepare of r .

Resource manager r sets its state to prepared and sends a Prepared
message to the transaction manager.

It’s enabled if and only if rmState of r equals “working”.

[slide 148]

RMPrepare(r)
∆
=

RM r sets its state to “prepared ” and sends a Prepared
message to the TM.

It’s enabled if rmState[r] equals “working”.

Formula RMPrepare of r .

Resource manager r sets its state to prepared and sends a Prepared
message to the transaction manager.

It’s enabled if and only if rmState of r equals “working”.

[slide 149]

RMPrepare(r)
∆
=

RM r sets its state to “prepared ” and sends a Prepared
message to the TM.

It’s enabled if rmState[r] equals “working”.

Formula RMPrepare of r .

Resource manager r sets its state to prepared and sends a Prepared
message to the transaction manager.

It’s enabled if and only if rmState of r equals “working”.

[slide 150]

RMChooseToAbort(r)
∆
=

When in its “working” state, RM r can go to the “aborted ” state.

Formula RMChooseToAbort of r .

When in its “working” state, resource manager r can go to the “aborted ”
state.

[slide 151]

RMChooseToAbort(r)
∆
=

When in its “working” state, RM r can go to the “aborted ” state.

Formula RMChooseToAbort of r .

When in its “working” state, resource manager r can go to the “aborted ”
state.

[slide 152]

After r has aborted, no RM can ever commit; and the
TM should eventually take a TMAbort step.

In practice, r would inform the TM that it has aborted
so the TM knows it should abort the transaction.

But that optimization isn’t relevant
for implementing TCommit .

After r has aborted, no resource manager can ever commit; and the
transaction manager should eventually take a TMAbort step.

In practice, r would inform the transaction manager that it has aborted so the
transaction manager knows it should abort the transaction.

But that’s an optimization and isn’t relevant for implementing TCommit , so
we omit it from the spec.

[slide 153]

After r has aborted, no RM can ever commit; and the
TM should eventually take a TMAbort step.

In practice, r would inform the TM that it has aborted
so the TM knows it should abort the transaction.

But that optimization isn’t relevant
for implementing TCommit .

After r has aborted, no resource manager can ever commit; and the
transaction manager should eventually take a TMAbort step.

In practice, r would inform the transaction manager that it has aborted so the
transaction manager knows it should abort the transaction.

But that’s an optimization and isn’t relevant for implementing TCommit , so
we omit it from the spec.

[slide 154]

After r has aborted, no RM can ever commit; and the
TM should eventually take a TMAbort step.

In practice, r would inform the TM that it has aborted
so the TM knows it should abort the transaction.

But that optimization isn’t relevant
for implementing TCommit .

After r has aborted, no resource manager can ever commit; and the
transaction manager should eventually take a TMAbort step.

In practice, r would inform the transaction manager that it has aborted so the
transaction manager knows it should abort the transaction.

But that’s an optimization and isn’t relevant for implementing TCommit , so
we omit it from the spec.

[slide 155]

RMRcvCommitMsg(r)
∆
=

RMRcvAbortMsg(r)
∆
=

RM r receives a “commit” or “abort” message and
sets its state accordingly.

Formulas RMRcvCommitMsg of r and RMRcvAbortMsg of r .

Resource manager r receives a “commit” or “abort” message and sets its
state accordingly.

[slide 156]

RMRcvCommitMsg(r)
∆
=

RMRcvAbortMsg(r)
∆
=

RM r receives a “commit” or “abort” message and
sets its state accordingly.

Formulas RMRcvCommitMsg of r and RMRcvAbortMsg of r .

Resource manager r receives a “commit” or “abort” message and sets its
state accordingly.

[slide 157]

The next-state formula

is the disjunction of all seven subformulas

where the formulas with parameter r are existentially quantified
over all r in the set of resource managers.

[slide 158]

The next-state formula

is the disjunction of all seven subformulas

where the formulas with parameter r are existentially quantified
over all r in the set of resource managers.

[slide 159]

The next-state formula

is the disjunction of all seven subformulas

where the formulas with parameter r are existentially quantified
over all r in the set of resource managers.

[slide 160]

Existential quantification over the disjunction of these formulas

is equivalent to the disjunction of existential quantification over each one.

Stop the video and convince yourself that these two formulas
are equivalent.

[slide 161]

is equivalent to

Existential quantification over the disjunction of these formulas

is equivalent to the disjunction of existential quantification over each one.

Stop the video and convince yourself that these two formulas
are equivalent.

[slide 162]

is equivalent to

Existential quantification over the disjunction of these formulas

is equivalent to the disjunction of existential quantification over each one.

Stop the video and convince yourself that these two formulas
are equivalent.

[slide 163]

CHECKING THE SPEC

Let’s now check the specification.

[slide 164]

Create a New Model

In the Toolbox, create a new model.

Because we’re not using the default names, you’ll have to enter the initial
and next-state formulas.

[slide 165]

Create a New Model

In the Toolbox, create a new model.

Because we’re not using the default names, you’ll have to enter the initial
and next-state formulas.

[slide 166]

Create a New Model

TPnit
TPNext

In the Toolbox, create a new model.

Because we’re not using the default names, you’ll have to enter the initial
and next-state formulas.

[slide 167]

You’ll also have to enter a value for the constant RM.

[slide 168]

{"r1", "r2", "r3"}

As we did for TCommit , let RM be the set of three strings
r1, r2, and r3.

[slide 169]

Run TLC.

And add TPTypeOK as an invariant to be checked.

Run TLC on the model.

[slide 170]

Run TLC.

And add TPTypeOK as an invariant to be checked.

Run TLC on the model.

[slide 171]

TLC should detect no errors.

Remember the number of distinct states that TLC found.

[slide 172]

TLC should detect no errors.

Remember the number of distinct states that TLC found.

[slide 173]

Check Your Definitions

To check a definition:

– Comment out the definition in the spec.

– Insert your definition.

– Run TLC.

TLC should find no error and again find 288 distinct states.

You can now check the definitions you wrote of those six subformulas of the
next-state formula.

To check a definition that you’re not sure of: Comment out the definition
that’s in the spec. Insert your definition. And run TLC on the same model.

[slide 174]

Check Your Definitions

To check a definition:

– Comment out the definition in the spec.

– Insert your definition.

– Run TLC.

TLC should find no error and again find 288 distinct states.

You can now check the definitions you wrote of those six subformulas of the
next-state formula.

To check a definition that you’re not sure of: Comment out the definition
that’s in the spec. Insert your definition. And run TLC on the same model.

[slide 175]

Check Your Definitions

To check a definition:

– Comment out the definition in the spec.

– Insert your definition.

– Run TLC.

TLC should find no error and again find 288 distinct states.

You can now check the definitions you wrote of those six subformulas of the
next-state formula.

To check a definition that you’re not sure of: Comment out the definition
that’s in the spec. Insert your definition. And run TLC on the same model.

[slide 176]

Check Your Definitions

To check a definition:

– Comment out the definition in the spec.

– Insert your definition.

– Run TLC.

TLC should find no error and again find 288 distinct states.

You can now check the definitions you wrote of those six subformulas of the
next-state formula.

To check a definition that you’re not sure of: Comment out the definition
that’s in the spec. Insert your definition. And run TLC on the same model.

[slide 177]

Check Your Definitions

To check a definition:

– Comment out the definition in the spec.

– Insert your definition.

– Run TLC.

TLC should find no error and again find 288 distinct states.

You can now check the definitions you wrote of those six subformulas of the
next-state formula.

To check a definition that you’re not sure of: Comment out the definition
that’s in the spec. Insert your definition. And run TLC on the same model.

[slide 178]

Check Your Definitions

To check a definition:

– Comment out the definition in the spec.

– Insert your definition.

– Run TLC.

TLC should find no error and again find 288 distinct states.

Your definition is probably correct if TLC finds no error and again finds 288
distinct states.

[slide 179]

MODEL VALUES

Model Values

[slide 180]

Symmetry Sets

All RMs are identical / interchangeable.

Suppose RM = {“r1”, “r2”, “r3”}.

“r1” ↔ “r3”

Symmetry Sets

In two-phase commit, every resource manager plays an identical role. The
resource managers are interchangeable.

For example, suppose the resource managers are named “r1”, “r2”, and
“r3”.

[slide 181]

Symmetry Sets

All RMs are identical / interchangeable.

Suppose RM = {“r1”, “r2”, “r3”}.

“r1” ↔ “r3”

Symmetry Sets

In two-phase commit, every resource manager plays an identical role. The
resource managers are interchangeable.

For example, suppose the resource managers are named “r1”, “r2”, and
“r3”.

[slide 182]

Symmetry Sets

All RMs are identical / interchangeable.

Suppose RM = {“r1”, “r2”, “r3”}.

“r1” ↔ “r3”

Symmetry Sets

In two-phase commit, every resource manager plays an identical role. The
resource managers are interchangeable.

For example, suppose the resource managers are named “r1”, “r2”, and
“r3”.

[slide 183]

Symmetry Sets

All RMs are identical / interchangeable.

Suppose RM = {“r1”, “r2”, “r3”}.

“r1” ↔ “r3” in one possible state yields a possible state.

If we interchange “r1” and “r3” in a possible state of a behavior, we get
another possible state of a behavior.

Interchanging “r1” and “r3” in a state means

interchanging the values of rmState[“r1”] and rmState[“r3”],

[slide 184]

Symmetry Sets

All RMs are identical / interchangeable.

Suppose RM = {“r1”, “r2”, “r3”}.

“r1” ↔ “r3” means

• rmState[“r1”] ↔ rmState[“r3”]

• [type 7→ “Prepared ”, rm 7→ “r1”] ∈ msgs

↔
[type 7→ “Prepared ”, rm 7→ “r3”] ∈ msgs

. . .

If we interchange “r1” and “r3” in a possible state of a behavior, we get
another possible state of a behavior.

Interchanging “r1” and “r3” in a state means

interchanging the values of rmState[“r1”] and rmState[“r3”],

[slide 185]

Symmetry Sets

All RMs are identical / interchangeable.

Suppose RM = {“r1”, “r2”, “r3”}.

“r1” ↔ “r3” means

• rmState[“r1”] ↔ rmState[“r3”]

• [type 7→ “Prepared ”, rm 7→ “r1”] ∈ msgs

↔
[type 7→ “Prepared ”, rm 7→ “r3”] ∈ msgs

. . .

If we interchange “r1” and “r3” in a possible state of a behavior, we get
another possible state of a behavior.

Interchanging “r1” and “r3” in a state means

interchanging the values of rmState[“r1”] and rmState[“r3”],

[slide 186]

Symmetry Sets

All RMs are identical / interchangeable.

Suppose RM = {“r1”, “r2”, “r3”}.

“r1” ↔ “r3” means

• rmState[“r1”] ↔ rmState[“r3”]

• [type 7→ “Prepared ”, rm 7→ “r1”] ∈ msgs

↔
[type 7→ “Prepared ”, rm 7→ “r3”] ∈ msgs

. . .

replacing this message in m-s-g-s

with this one, and vice-versa.

and so on.

[slide 187]

Symmetry Sets

All RMs are identical / interchangeable.

Suppose RM = {“r1”, “r2”, “r3”}.

“r1” ↔ “r3” means

• rmState[“r1”] ↔ rmState[“r3”]

• [type 7→ “Prepared ”, rm 7→ “r1”] ∈ msgs

↔
[type 7→ “Prepared ”, rm 7→ “r3”] ∈ msgs

. . .

replacing this message in m-s-g-s

with this one, and vice-versa.

and so on.

[slide 188]

Symmetry Sets

All RMs are identical / interchangeable.

Suppose RM = {“r1”, “r2”, “r3”}.

“r1” ↔ “r3” means

• rmState[“r1”] ↔ rmState[“r3”]

• [type 7→ “Prepared ”, rm 7→ “r1”] ∈ msgs

↔
[type 7→ “Prepared ”, rm 7→ “r3”] ∈ msgs

. . .

replacing this message in m-s-g-s

with this one, and vice-versa.

and so on.

[slide 189]

“r1” ↔ “r3” in all states of a behavior b allowed by TwoPhase

produces a behavior b1↔3 allowed by TwoPhase .

TLC does not have to check b1↔3 if it has checked b .

RM is a symmetry set of TwoPhase .

TLC will check fewer states if the model sets a
symmetry set to a set of model values.

Moreover, if we interchange r1 and r3 in every state of a behavior b allowed
by the TwoPhase spec,

we get another behavior, let’s call it b-1-3, that’s also allowed by the spec.

TLC doesn’t have to check that some property of two-phase commit holds in
behavior b-1-3 if it has checked that it holds for behavior b.

[slide 190]

“r1” ↔ “r3” in all states of a behavior b allowed by TwoPhase

produces a behavior b1↔3 allowed by TwoPhase .

TLC does not have to check b1↔3 if it has checked b .

RM is a symmetry set of TwoPhase .

TLC will check fewer states if the model sets a
symmetry set to a set of model values.

Moreover, if we interchange r1 and r3 in every state of a behavior b allowed
by the TwoPhase spec,

we get another behavior, let’s call it b-1-3, that’s also allowed by the spec.

TLC doesn’t have to check that some property of two-phase commit holds in
behavior b-1-3 if it has checked that it holds for behavior b.

[slide 191]

“r1” ↔ “r3” in all states of a behavior b allowed by TwoPhase

produces a behavior b1↔3 allowed by TwoPhase .

TLC does not have to check b1↔3 if it has checked b .

RM is a symmetry set of TwoPhase .

TLC will check fewer states if the model sets a
symmetry set to a set of model values.

Moreover, if we interchange r1 and r3 in every state of a behavior b allowed
by the TwoPhase spec,

we get another behavior, let’s call it b-1-3, that’s also allowed by the spec.

TLC doesn’t have to check that some property of two-phase commit holds in
behavior b-1-3 if it has checked that it holds for behavior b.

[slide 192]

“r1” ↔ “r3” in all states of a behavior b allowed by TwoPhase

produces a behavior b1↔3 allowed by TwoPhase .

TLC does not have to check b1↔3 if it has checked b .

RM is a symmetry set of TwoPhase .

TLC will check fewer states if the model sets a
symmetry set to a set of model values.

Because this observation holds for interchanging any two elements of RM,
we say that RM is a symmetry set of the specification.

TLC will check fewer states if the model sets a symmetry set to a set
consisting a special kind of values called model values.

Let’s do that now for our model.

[slide 193]

“r1” ↔ “r3” in all states of a behavior b allowed by TwoPhase

produces a behavior b1↔3 allowed by TwoPhase .

TLC does not have to check b1↔3 if it has checked b .

RM is a symmetry set of TwoPhase .

TLC will check fewer states if the model sets a
symmetry set to a set of model values.

Because this observation holds for interchanging any two elements of RM,
we say that RM is a symmetry set of the specification.

TLC will check fewer states if the model sets a symmetry set to a set
consisting a special kind of values called model values.

Let’s do that now for our model.

[slide 194]

{"r1", "r2", "r3"}

Replace this set of strings with this set of identifiers. We can use any
identifiers that aren’t defined in the spec.

Select Set of model values and check Symmetry set.

Then click Next and then click Finish.

[slide 195]

{r1, r2, r3}

Replace this set of strings with this set of identifiers. We can use any
identifiers that aren’t defined in the spec.

Select Set of model values and check Symmetry set.

Then click Next and then click Finish.

[slide 196]

{r1, r2, r3}

Replace this set of strings with this set of identifiers. We can use any
identifiers that aren’t defined in the spec.

Select Set of model values and check Symmetry set.

Then click Next and then click Finish.

[slide 197]

{r1, r2, r3}

Replace this set of strings with this set of identifiers. We can use any
identifiers that aren’t defined in the spec.

Select Set of model values and check Symmetry set.

Then click Next and then click Finish.

[slide 198]

Replace this set of strings with this set of identifiers. We can use any
identifiers that aren’t defined in the spec.

Select Set of model values and check Symmetry set.

Then click Next and then click Finish.

[slide 199]

Replace this set of strings with this set of identifiers. We can use any
identifiers that aren’t defined in the spec.

Select Set of model values and check Symmetry set.

Then click Next and then click Finish.

[slide 200]

Run the model.

The model has the same 288 reachable states as before.

Now run the model.

Because there are still 3 resource managers, the model has the same 288
reachable states as before.

But TLC only had to check 80 of them—fewer than one-third as many states .

[slide 201]

Run the model.

The model has the same 288 reachable states as before.

Now run the model.

Because there are still 3 resource managers, the model has the same 288
reachable states as before.

But TLC only had to check 80 of them—fewer than one-third as many states .

[slide 202]

Run the model.

The model has the same 288 reachable states as before.

Now run the model.

Because there are still 3 resource managers, the model has the same 288
reachable states as before.

But TLC only had to check 80 of them—fewer than one-third as many states .

[slide 203]

TLC may miss errors if you claim a set is a symmetry set
when it’s not.

For now, you can declare a set to be a symmetry set
if its model values are not used elsewhere.

The next lecture fully explains when a set
of model values can be a symmetry set.

TLC may miss errors if you claim a set is a symmetry set when it’s not.

For now, you can safely declare a set to be a symmetry set if its model values
are not used elsewhere.

The next lecture fully explains when a set of model values can be a symmetry
set.

[slide 204]

TLC may miss errors if you claim a set is a symmetry set
when it’s not.

For now, you can declare a set to be a symmetry set
if its model values are not used elsewhere.

The next lecture fully explains when a set
of model values can be a symmetry set.

TLC may miss errors if you claim a set is a symmetry set when it’s not.

For now, you can safely declare a set to be a symmetry set if its model values
are not used elsewhere.

The next lecture fully explains when a set of model values can be a symmetry
set.

[slide 205]

TLC may miss errors if you claim a set is a symmetry set
when it’s not.

For now, you can declare a set to be a symmetry set
if its model values are not used elsewhere.

The next lecture fully explains when a set
of model values can be a symmetry set.

TLC may miss errors if you claim a set is a symmetry set when it’s not.

For now, you can safely declare a set to be a symmetry set if its model values
are not used elsewhere.

The next lecture fully explains when a set of model values can be a symmetry
set.

[slide 206]

CORRECTNESS OF

TWO-PHASE COMMIT

Correctness of the two-phase commit protocol.

[slide 207]

We’ve checked that TypeOK is an invariant of the spec.

We should check that formula TCConsistent of TCommit ,
which asserts that one RM can’t commit and another abort,
is also an invariant.

The statement

INSTANCE TCommit

imports the definitions from TCommit into module TwoPhase .

Add the invariant TCConsistent to your model and have TLC check it.

So far, we’ve only checked that TypeOK is an invariant of the spec.

To check that two-phase commit actually is a transaction commit protocol, we
should check that formula TCConsistent of the TCommit spec, which
asserts that one resource manager can’t commit if another aborts, is also an
invariant of the TwoPhase spec.

[slide 208]

We’ve checked that TypeOK is an invariant of the spec.

We should check that formula TCConsistent of TCommit ,
which asserts that one RM can’t commit and another abort,
is also an invariant.

The statement

INSTANCE TCommit

imports the definitions from TCommit into module TwoPhase .

Add the invariant TCConsistent to your model and have TLC check it.

So far, we’ve only checked that TypeOK is an invariant of the spec.

To check that two-phase commit actually is a transaction commit protocol, we
should check that formula TCConsistent of the TCommit spec, which
asserts that one resource manager can’t commit if another aborts, is also an
invariant of the TwoPhase spec.

[slide 209]

We’ve checked that TypeOK is an invariant of the spec.

We should check that formula TCConsistent of TCommit ,
which asserts that one RM can’t commit and another abort,
is also an invariant.

The statement

INSTANCE TCommit

imports the definitions from TCommit into module TwoPhase .

Add the invariant TCConsistent to your model and have TLC check it.

The stuff at the end of module TwoPhase that I haven’t talked about includes
this INSTANCE statement, which imports all the definitions from module
TCommit , including the definition of TCConsistent , into the current module
TwoPhase.

So you can just add the invariant TCConsistent to your model and
have TLC check that it is indeed an invariant of the TwoPhase spec.

[slide 210]

We’ve checked that TypeOK is an invariant of the spec.

We should check that formula TCConsistent of TCommit ,
which asserts that one RM can’t commit and another abort,
is also an invariant.

The statement

INSTANCE TCommit

imports the definitions from TCommit into module TwoPhase .

Add the invariant TCConsistent to your model and have TLC check it.

The stuff at the end of module TwoPhase that I haven’t talked about includes
this INSTANCE statement, which imports all the definitions from module
TCommit , including the definition of TCConsistent , into the current module
TwoPhase.

So you can just add the invariant TCConsistent to your model and
have TLC check that it is indeed an invariant of the TwoPhase spec.

[slide 211]

Two-phase commit doesn’t just maintain the invariance
of TCConsistent ; it implements the specification of
transaction commit.

What does that mean?

A later lecture will explain precisely what it means, and
how to check that it does.

The two-phase commit protocol doesn’t just maintain the same invariant
TCConsistent as transaction commit;
it actually implements the transaction commit specification.

But just what does that mean?

In a later lecture, I’ll explain precisely what it means for the TwoPhase spec to
implement the TCommit spec

[slide 212]

Two-phase commit doesn’t just maintain the invariance
of TCConsistent ; it implements the specification of
transaction commit.

What does that mean?

A later lecture will explain precisely what it means, and
how to check that it does.

The two-phase commit protocol doesn’t just maintain the same invariant
TCConsistent as transaction commit;
it actually implements the transaction commit specification.

But just what does that mean?

In a later lecture, I’ll explain precisely what it means for the TwoPhase spec to
implement the TCommit spec

[slide 213]

Two-phase commit doesn’t just maintain the invariance
of TCConsistent ; it implements the specification of
transaction commit.

What does that mean?

A later lecture will explain precisely what it means, and
how to check that it does.

The two-phase commit protocol doesn’t just maintain the same invariant
TCConsistent as transaction commit;
it actually implements the transaction commit specification.

But just what does that mean?

In a later lecture, I’ll explain precisely what it means for the TwoPhase spec to
implement the TCommit spec

[slide 214]

Two-phase commit doesn’t just maintain the invariance
of TCConsistent ; it implements the specification of
transaction commit.

What does that mean?

A later lecture will explain precisely what it means, and
how to check that it does.

The two-phase commit protocol doesn’t just maintain the same invariant
TCConsistent as transaction commit;
it actually implements the transaction commit specification.

But just what does that mean?

In a later lecture, I’ll explain precisely what it means for the TwoPhase spec to
implement the TCommit spec

[slide 215]

Two-phase commit doesn’t just maintain the invariance
of TCConsistent ; it implements the specification of
transaction commit.

What does that mean?

A later lecture will explain precisely what it means, and
how to check that it does.

and I’ll show how to check that it does.

[slide 216]

The Two-Phase Commit specification is bigger than the Die Hard and
Transaction Commit specs. It’s still small and simple, but we’re on the path
towards specifying real systems. And you’re well on the way to learning the
TLA+ you’ll need to start writing your own specs.

In the next lecture, you’ll see a real spec of a real distributed algorithm.

[slide 217]

TLA+ Video Course

End of Lecture 6

TWO-PHASE COMMIT

[slide 218]

