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In this lecture, we study a specification of Paxos Commit – a fault-tolerant
distributed algorithm that implements transaction commit. The spec
illustrates most of the TLA+ constructs you don’t already know that you will
use in writing specs.

I hope you’ll also study the algorithm itself. I think it’s neat, but then I’m
prejudiced, since Jim Gray and I invented it. But that’s up to you. These
lectures are about TLA+, not distributed algorithms.
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THE ALGORITHM

The Paxos Commit algorithm.
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The problem with two-phase commit:

It can hang forever if the TM fails.

A simple engineering solution:

Have a backup TM take over if the TM fails.

You can find it in textbooks.

It’s straightforward to implement
and test that it works.

There’s an obvious problem with two-phase commit: It can hang forever if
the transaction manager fails.

There’s a simple engineering solution.

Have a backup transaction manager take over if the primary transaction
manager fails.
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It’s deployed and works fine until one day:

The primary TM decides to commit and then pauses.

The backup TM thinks the primary failed and it decides
to take over.

The backup TM broadcasts an Abort message.

The primary TM resumes and broadcasts
a Commit message.

Some RMs abort and others commit.

SYSTEM FAILURE

The system is deployed and works fine, and everyone’s happy until one day:

The primary transaction manager decides to commit and then pauses for
some reason.

Perhaps it’s pre-empted by a higher priority task.
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It’s deployed and works fine until one day:

The primary TM decides to commit and then pauses.

The backup TM thinks the primary failed and it decides
to take over.

The backup TM broadcasts an Abort message.

The primary TM resumes and broadcasts
a Commit message.

Some RMs abort and others commit.

SYSTEM FAILURE

Which constitutes a system failure.
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Finding fault-tolerant distributed algorithms is hard.

They’re easy to get wrong, and hard to find errors by testing.

We should get the algorithm right before we code.

Writing and checking a TLA+ spec is the
best way I know to do that.

Finding fault-tolerant distributed algorithms is hard.

They’re easy to get wrong , and it’s hard to find that they’re wrong by testing.

It’s important to get the algorithm right before we code it.

Writing and checking a TLA+ spec is the best way I know to do that.
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Paxos Commit is a fault-tolerant transaction-commit algorithm
described in this paper:

Consensus on Transaction Commit
Jim Gray and Leslie Lamport

ACM Transactions on Database Systems (TODS)
Volume 31, issue 1 (March 2006), pages 133–160

The paper explains the algorithm and specifies
it in module PaxosCommit .

Paxos Commit is a fault-tolerant transaction-commit algorithm described in
this 2006 paper by Jim Gray and me.

The paper explains the algorithm and specifies it in a TLA+ module named
PaxosCommit .
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We’re looking at this module for two reasons:

– To see what a real spec looks like.

– To learn some more TLA+.

You can read the paper if you want to understand the algorithm.

This lecture explains only the TLA+ operators
you haven’t seen yet that are used in the spec.

We’re looking at this module for two reasons:

The first is to see what a real spec looks like.

The second is to learn some more TLA+.

You should read the paper if you want to understand the algorithm.
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Stop the video now and:

Download module PaxosCommit to the same folder
as TCommit .

Download the paper.

Modules TCommit , TwoPhase, PaxosCommit
used in these lectures differ slightly from the
ones in the paper.

Stop the video now and download module PaxosCommit to the same folder
as module TCommit ; and download the paper if you want to read it.

The module PaxosCommit that we use here, as well as modules TCommit
and TwoPhase used in previous lectures, differ slightly from the ones in the
paper.
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THE SPECIFICATION

The Paxos Commit algorithm’s specification
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The module begins with an EXTENDS statement that imports the definition of
arithmetic operators from the standard Integers module.
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The module then defines Maximum(S) to be the largest element of S if S is
a finite set of integers, and to equal −1 if it’s the empty set.

We don’t care what it equals if S is infinite or not a set of numbers.
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The largest element of the finite set S of integers,
or −1 if S is the empty set.

The module then defines Maximum(S) to be the largest element of S if S is
a finite set of integers, and to equal −1 if it’s the empty set.

We don’t care what it equals if S is infinite or not a set of numbers.
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smallest number in S

The definition has this form

The smallest number in S is written this way
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n ≥ every element in S

where the CHOOSE expression equals an arbitrarily chosen value n in S

satisfying the condition that n is greater-than or equal to every element in S .
If n is finite and nonempty, then there is exactly one such n.

That condition on n is written this way.
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It’s a little easier to read with parentheses.

This formula states that for every m in S , n is greater than or equal to m.
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CHOOSE v ∈ S : P equals

if there is a v in S for which P is true

then some such v

else a completely unspecified value.

CHOOSE i ∈ 1 . .99 : TRUE

Is an unspecified integer between 1 and 99.

It might or might not equal 37.

In general, the expression CHOOSE variable v in expression S colon formula
P equals

If there is at least one value v in the set S for which formula P is true

then the expression equals some such v .

If there’s more than one, then the semantics of TLA+ don’t specify which one.
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In math, any expression equals itself.

(CHOOSE i ∈ 1 . .99 : TRUE) = (CHOOSE i ∈ 1 . .99 : TRUE)

There is no nondeterminism in a mathematical expression.

If CHOOSE i ∈ 1 . .99 : TRUE equals 37 today;
it will equal 37 next week.

TLC will always get the same number when it evaluates it.

In math, any expression always equals itself.

So this CHOOSE expression always equals itself

There is no nondeterminism in any mathematical expression, including a
CHOOSE expression.
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x ′ ∈ 1 . .99

Allows the value of x in the next state to be
any number in 1 . .99 .

x ′ = CHOOSE i ∈ 1 . .99 : TRUE

Allows the value of x in the next state to be
one particular number.

The formula x prime in the set 1 dot dot 99 allows the value of x in the next
state to be any of the 99 numbers from 1 to 99.

The formula x’ equals this CHOOSE expression allows the value of x in the
next state to be some particular number between 1 and 99 — perhaps 37.

There’s no reason why you’d ever want to write something like this.
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You should write CHOOSE v ∈ S : P

Only when there’s exactly one v in S satisfying P .

Or when it’s part of a larger expression whose value
doesn’t depend on which v is chosen.

You should write this CHOOSE expression only when there’s exactly one value
v in S satisfying formula P .

For example, the way it was used in the definition of Maximum of S .

Or when it’s part of a larger expression whose value doesn’t depend on which
possible value of v is chosen.

We’ll see an example of that later.
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After defining Maximum, the module contains a CONSTANTS statement
declaring these four constants

RM is again the set of resource managers and Acceptor is another a set of
processes called acceptors.

The constants Majority and Ballot are sets described in the following
statement.
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the set of acceptor processes
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The constants Majority and Ballot are sets described in the following
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This ASSUME statement asserts assumptions being made about the
constants.

For example, the second conjunct asserts the assumption that zero is an
element of the set Ballot .
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These assumptions use some TLA+ notation that you haven’t seen yet.

Nat is defined in the imported Integers module to be the set of natural
numbers (that is, the non-negative integers).

The first conjunct asserts that Ballot is a subset of Nat , meaning that every
element of Ballot is an element of the set Nat of natural numbers.
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the set of natural numbers

These assumptions use some TLA+ notation that you haven’t seen yet.

Nat is defined in the imported Integers module to be the set of natural
numbers (that is, the non-negative integers).

The first conjunct asserts that Ballot is a subset of Nat , meaning that every
element of Ballot is an element of the set Nat of natural numbers.
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Ballot is a subset of Nat .

These assumptions use some TLA+ notation that you haven’t seen yet.

Nat is defined in the imported Integers module to be the set of natural
numbers (that is, the non-negative integers).

The first conjunct asserts that Ballot is a subset of Nat , meaning that every
element of Ballot is an element of the set Nat of natural numbers.
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\subseteq

The subset symbol is typed backslash subset e-q.

SUBSET Acceptor is the set of all subsets of the set Acceptor .

Mathematicians call it the powerset of Acceptor and write it P of Acceptor .

The conjunct asserts the assumption that every element of Majority is a
subset of the set Acceptor .
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the set of all subsets of Acceptor

The subset symbol is typed backslash subset e-q.

SUBSET Acceptor is the set of all subsets of the set Acceptor .

Mathematicians call it the powerset of Acceptor and write it P of Acceptor .

The conjunct asserts the assumption that every element of Majority is a
subset of the set Acceptor .
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the set of all subsets of Acceptor

Also called the powerset of Acceptor , written P(Acceptor)

The subset symbol is typed backslash subset e-q.

SUBSET Acceptor is the set of all subsets of the set Acceptor .

Mathematicians call it the powerset of Acceptor and write it P of Acceptor .

The conjunct asserts the assumption that every element of Majority is a
subset of the set Acceptor .

[ slide 77 ]



The elements of Majority are subsets of Acceptor .

The subset symbol is typed backslash subset e-q.

SUBSET Acceptor is the set of all subsets of the set Acceptor .

Mathematicians call it the powerset of Acceptor and write it P of Acceptor .

The conjunct asserts the assumption that every element of Majority is a
subset of the set Acceptor .
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intersection of MS1 and MS2

This subexpression is the intersection of the sets MS1 and MS2.

It’s the set consisting of all elements in both MS1 and MS2.

The intersection symbol is typed either backslash intersect or backslash cap.

The conjunct asserts that every two elements of the set Majority are sets
having at least one element in common.

[ slide 79 ]



the set of elements in both MS1 and MS2

This subexpression is the intersection of the sets MS1 and MS2.

It’s the set consisting of all elements in both MS1 and MS2.

The intersection symbol is typed either backslash intersect or backslash cap.

The conjunct asserts that every two elements of the set Majority are sets
having at least one element in common.
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\intersect
\cap

This subexpression is the intersection of the sets MS1 and MS2.

It’s the set consisting of all elements in both MS1 and MS2.

The intersection symbol is typed either backslash intersect or backslash cap.

The conjunct asserts that every two elements of the set Majority are sets
having at least one element in common.
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Any two elements of Majority have an element in common.

This subexpression is the intersection of the sets MS1 and MS2.

It’s the set consisting of all elements in both MS1 and MS2.

The intersection symbol is typed either backslash intersect or backslash cap.

The conjunct asserts that every two elements of the set Majority are sets
having at least one element in common.
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TLC will check these assumptions.

TLC will check all these assumptions.
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The module next defines Messages to be a set consisting of several kinds of
records. The definition contains this expression.

This set minus operator is defined as follows. For any sets S and T ,

S set-minus T is the set of all elements in S that are not in T .
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The module next defines Messages to be a set consisting of several kinds of
records. The definition contains this expression.

This set minus operator is defined as follows. For any sets S and T ,

S set-minus T is the set of all elements in S that are not in T .
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Ballot \ {0}

The module next defines Messages to be a set consisting of several kinds of
records. The definition contains this expression.

This set minus operator is defined as follows. For any sets S and T ,

S set-minus T is the set of all elements in S that are not in T .
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Ballot \ {0}

The module next defines Messages to be a set consisting of several kinds of
records. The definition contains this expression.

This set minus operator is defined as follows. For any sets S and T ,

S set-minus T is the set of all elements in S that are not in T .
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Ballot \ {0}

S \T is the set of elements in S not in T .

The module next defines Messages to be a set consisting of several kinds of
records. The definition contains this expression.

This set minus operator is defined as follows. For any sets S and T ,

S set-minus T is the set of all elements in S that are not in T .
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Ballot \ {0}

S \T is the set of elements in S not in T .

(10 . .20) \ (1 . .14) = 15 . .20

For example, the integers from 10 to 20 set-minus the integers from 1 to 14
equals the set of integers from 15 to 20.

So, Ballot set-minus the set containing only 0 is the set of non-zero elements
in Ballot .
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Ballot \ {0}

The set of non-0 elements in Ballot .

For example, the integers from 10 to 20 set-minus the integers from 1 to 14
equals the set of integers from 15 to 20.

So, Ballot set-minus the set containing only 0 is the set of non-zero elements
in Ballot .
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r ∈ RM implies aState[r ] is a function with
domain Acceptor .

a ∈ Acceptor implies aState[r ][a] is a record
with three fields.

aState[r ][a].bal is in Ballot or equals −1 .

The module next declares its variables and defines the type-correctness
invariant PCTypeOK .

As in the two-phase commit spec, there is a variable m-s-g-s whose value is
a set of messages.
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The module next declares its variables and defines the type-correctness
invariant PCTypeOK .

As in the two-phase commit spec, there is a variable m-s-g-s whose value is
a set of messages.
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r ∈ RM implies aState[r ] is a function with
domain Acceptor .

a ∈ Acceptor implies aState[r ][a] is a record
with three fields.

aState[r ][a].bal is in Ballot or equals −1 .

PCTypeOK also asserts that the value of the variable aState is a function
with domain RM such that for every r in RM , aState[r ] is a function with
domain Acceptor such that for every a in the set Acceptor , aState[r ][a] is a
record these three fields

And, for example, aState[r ][a].bal is in the set Ballot or equals −1.
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r ∈ RM implies aState[r ] is a function with
domain Acceptor .

a ∈ Acceptor implies aState[r ][a] is a record
with three fields.

aState[r ][a].bal is in Ballot or equals −1 .

PCTypeOK also asserts that the value of the variable aState is a function
with domain RM such that for every r in RM , aState[r ] is a function with
domain Acceptor such that for every a in the set Acceptor , aState[r ][a] is a
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And, for example, aState[r ][a].bal is in the set Ballot or equals −1.

[ slide 96 ]



r ∈ RM implies aState[r ] is a function with
domain Acceptor .

a ∈ Acceptor implies aState[r ][a] is a record
with three fields.

aState[r ][a].bal is in Ballot or equals −1 .

PCTypeOK also asserts that the value of the variable aState is a function
with domain RM such that for every r in RM , aState[r ] is a function with
domain Acceptor such that for every a in the set Acceptor , aState[r ][a] is a
record these three fields

And, for example, aState[r ][a].bal is in the set Ballot or equals −1.
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There’s nothing new here.

There’s nothing new here; it’s just a little more complicated than the formulas
you’ve seen so far.

That’s true for what follows in the module, up until
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This definition of Phase2a, which introduces several new features of TLA+.

The first is this LET-IN expression.

The LET clause makes three definitions local to the let-in expression.

The defined identifiers can be used only in the expression.
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This definition of Phase2a, which introduces several new features of TLA+.

The first is this LET-IN expression.

The LET clause makes three definitions local to the let-in expression.
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This definition of Phase2a, which introduces several new features of TLA+.

The first is this LET-IN expression.

The LET clause makes three definitions local to the let-in expression.

The defined identifiers can be used only in the expression.
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The next TLA+ notation introduced here is this set expression. It equals The
subset of msgs consisting of all its elements m satisfying this formula.
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The next TLA+ notation introduced here is this set expression. It equals The
subset of msgs consisting of all its elements m satisfying this formula.
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The subset of msgs containing all elements m

satisfying this formula.

The next TLA+ notation introduced here is this set expression. It equals The
subset of msgs consisting of all its elements m satisfying this formula.
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The subset of msgs containing all elements m

satisfying this formula.

The next TLA+ notation introduced here is this set expression. It equals The
subset of msgs consisting of all its elements m satisfying this formula.
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The subset of msgs containing all elements m

satisfying this formula.

The next TLA+ notation introduced here is this set expression. It equals The
subset of msgs consisting of all its elements m satisfying this formula.
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The LET-IN expression also introduces another set notation.

This expresion equals the set of all elements of the form m.bal for all m in
the set mset .
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The LET-IN expression also introduces another set notation.

This expresion equals the set of all elements of the form m.bal for all m in
the set mset .
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The set of all m.bal

The LET-IN expression also introduces another set notation.

This expresion equals the set of all elements of the form m.bal for all m in
the set mset .
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The set of all m.bal with m in mset .

The LET-IN expression also introduces another set notation.

This expresion equals the set of all elements of the form m.bal for all m in
the set mset .
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Two Set Constructors

{v ∈ S : P}
the subset of S consisting of all v satisfying P

{e : v ∈ S}
the set of all e for v in S

These are two different set constructors.

The first has the form variable v in set S colon formula P .

It’s the subset of S consisting of all values v for which the formula P is true.

For example, this expression equals the set of all natural numbers greater
than 17.
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Two Set Constructors

{v ∈ S : P}
the subset of S consisting of all v satisfying P

{e : v ∈ S}
the set of all e for v in S

These are two different set constructors.

The first has the form variable v in set S colon formula P .

It’s the subset of S consisting of all values v for which the formula P is true.

For example, this expression equals the set of all natural numbers greater
than 17.
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Two Set Constructors

{v ∈ S : P}
the subset of S consisting of all v satisfying P

{e : v ∈ S}
the set of all e for v in S

These are two different set constructors.

The first has the form variable v in set S colon formula P .

It’s the subset of S consisting of all values v for which the formula P is true.

For example, this expression equals the set of all natural numbers greater
than 17.
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Two Set Constructors

{v ∈ S : P}
the subset of S consisting of all v satisfying P

{n ∈ Nat : n > 17}

{e : v ∈ S}
the set of all e for v in S

These are two different set constructors.

The first has the form variable v in set S colon formula P .

It’s the subset of S consisting of all values v for which the formula P is true.

For example, this expression equals the set of all natural numbers greater
than 17.
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Two Set Constructors

{v ∈ S : P}
the subset of S consisting of all v satisfying P

{n ∈ Nat : n > 17} = {18, 19, 20, . . .}
the set of all natural numbers greater than 17

{e : v ∈ S}
the set of all e for v in S

These are two different set constructors.

The first has the form variable v in set S colon formula P .

It’s the subset of S consisting of all values v for which the formula P is true.

For example, this expression equals the set of all natural numbers greater
than 17.
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Two Set Constructors

{v ∈ S : P}
the subset of S consisting of all v satisfying P

{e : v ∈ S}
the set of all e for v in S

The second constructor has the form expression e colon variable v in set S .

It’s the set consisting of all values assumed by the expression e when v is an
element of S .

For example, this expression equals the set of all squares of natural
numbers.
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Two Set Constructors

{v ∈ S : P}
the subset of S consisting of all v satisfying P

{e : v ∈ S}
the set of all e for v in S

The second constructor has the form expression e colon variable v in set S .

It’s the set consisting of all values assumed by the expression e when v is an
element of S .

For example, this expression equals the set of all squares of natural
numbers.
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Two Set Constructors

{v ∈ S : P}
the subset of S consisting of all v satisfying P

{e : v ∈ S}
the set of all e for v in S

{n2 : n ∈ Nat}

The second constructor has the form expression e colon variable v in set S .

It’s the set consisting of all values assumed by the expression e when v is an
element of S .

For example, this expression equals the set of all squares of natural
numbers.
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Two Set Constructors

{v ∈ S : P}
the subset of S consisting of all v satisfying P

{e : v ∈ S}
the set of all e for v in S

{n2 : n ∈ Nat} = {0, 1, 4, 9, . . .}
the set of all squares of natural numbers

The second constructor has the form expression e colon variable v in set S .

It’s the set consisting of all values assumed by the expression e when v is an
element of S .

For example, this expression equals the set of all squares of natural
numbers.
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There’s one more thing I’d like to point out about this expression.

This CHOOSE expression can allow more than one possible choice for m.

In any reachable state of the algorithm, all possible choices of m have the
same value of m.val .

[ slide 122 ]



There’s one more thing I’d like to point out about this expression.

This CHOOSE expression can allow more than one possible choice for m.

In any reachable state of the algorithm, all possible choices of m have the
same value of m.val .
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Choice of m need not be unique.

There’s one more thing I’d like to point out about this expression.

This CHOOSE expression can allow more than one possible choice for m.

In any reachable state of the algorithm, all possible choices of m have the
same value of m.val .
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All choices of m have same value of m.val .

There’s one more thing I’d like to point out about this expression.

This CHOOSE expression can allow more than one possible choice for m.

In any reachable state of the algorithm, all possible choices of m have the
same value of m.val .
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Paxos Commit is not an easy algorithm to understand, and this is probably its
most subtle part.

I don’t know how to write a clearer precise description of this step of the
algorithm.

If you understand the algorithm, then when you get used to the math, I think
you’ll find this definition as elegant as I do.
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The next new construct is in this definition.

In this subformula. you haven’t seen this form of EXCEPT expression. It’s an
abbreviation for
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The next new construct is in this definition.
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The next new construct is in this definition.

In this subformula. you haven’t seen this form of EXCEPT expression. It’s an
abbreviation for
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[aState EXCEPT ![m.ins] =

[aState[m.ins] EXCEPT ![acc] =

[aState[m.ins][acc] EXCEPT !.mbal = m.bal ] ] ]

aState EXCEPT its value on m.ins equals
aState of m.ins EXCEPT its value on a-c-c equals
aState of m.ins of a-c-c EXCEPT its m-bal component equals m dot bal.
Whew.
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[aState EXCEPT ![m.ins] =

[aState[m.ins] EXCEPT ![acc] =

[aState[m.ins][acc] EXCEPT !.mbal = m.bal ] ] ]

aState EXCEPT its value on m.ins equals
aState of m.ins EXCEPT its value on a-c-c equals
aState of m.ins of a-c-c EXCEPT its m-bal component equals m dot bal.
Whew.
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[aState EXCEPT ![m.ins] =

[aState[m.ins] EXCEPT ![acc] =

[aState[m.ins][acc] EXCEPT !.mbal = m.bal ] ] ]

aState EXCEPT its value on m.ins equals
aState of m.ins EXCEPT its value on a-c-c equals
aState of m.ins of a-c-c EXCEPT its m-bal component equals m dot bal.
Whew.
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[aState EXCEPT ![m.ins] =

[aState[m.ins] EXCEPT ![acc] =

[aState[m.ins][acc] EXCEPT !.mbal = m.bal ] ] ]

aState EXCEPT its value on m.ins equals
aState of m.ins EXCEPT its value on a-c-c equals
aState of m.ins of a-c-c EXCEPT its m-bal component equals m dot bal.
Whew.
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[aState EXCEPT ![m.ins] =

[aState[m.ins] EXCEPT ![acc] =

[aState[m.ins][acc] EXCEPT !.mbal = m.bal ] ] ]

If you stop and decipher this, you’ll see that
this formula corresponds to this programming-language statement.

So you just have to remember this idiom and not try to figure out the EXCEPT

expression. That’s what I do.
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If you stop and decipher this, you’ll see that
this formula corresponds to this programming-language statement.

So you just have to remember this idiom and not try to figure out the EXCEPT

expression. That’s what I do.
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aState[m.ins][acc].mbal = m.bal

If you stop and decipher this, you’ll see that
this formula corresponds to this programming-language statement.

So you just have to remember this idiom and not try to figure out the EXCEPT

expression. That’s what I do.
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This definition contains another generalization of the EXCEPT construct.
no pause

If you want, you can try to figure out what this EXCEPT expression means
when I tell you that
this subformula describes the same change to aState as
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This definition contains another generalization of the EXCEPT construct.
no pause

If you want, you can try to figure out what this EXCEPT expression means
when I tell you that
this subformula describes the same change to aState as
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aState[m.ins][acc].mbal = m.bal;

aState[m.ins][acc].bal = m.bal;

aState[m.ins][acc].val = m.val;

executing this sequence of three program statements.

Notice the correspondence between the parts of the EXCEPT expression and
the program statements.
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aState[m.ins][acc].mbal = m.bal;

aState[m.ins][acc].bal = m.bal;

aState[m.ins][acc].val = m.val;

executing this sequence of three program statements.

Notice the correspondence between the parts of the EXCEPT expression and
the program statements.
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CHECKING THE SPEC

Checking the Specification
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Open PaxosCommit in the Toolbox and create a new model.

You have to enter

Open module PaxosCommit in the Toolbox and create a new model.

You have to enter the initial and next-state formulas and the values of the
constants.
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Open module PaxosCommit in the Toolbox and create a new model.

You have to enter the initial and next-state formulas and the values of the
constants.
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Open PaxosCommit in the Toolbox and create a new model.

You have to enter

and

Open module PaxosCommit in the Toolbox and create a new model.

You have to enter the initial and next-state formulas and the values of the
constants.
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Open PaxosCommit in the Toolbox and create a new model.

You have to enter

and

The initial and next-state formulas are named PCInit and PCNext .

Now for the values assigned to the constants.
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Open PaxosCommit in the Toolbox and create a new model.

You have to enter

and

The initial and next-state formulas are named PCInit and PCNext .

Now for the values assigned to the constants.
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Ballot �

Acceptor �

Majority �

RM �

We normally start with a tiny model, but we’ll skip that.

Instead, we’ll use the smallest model that
could reveal an error in the algorithm.

We normally start with a tiny model but we’ll skip that.

Instead, we’ll use a model which, if you understand the algorithm, you’ll see
is the smallest one that could reveal a non-trivial error.

We assign a set of three model values to Acceptor , and a set of two model
values to RM .
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values to RM .
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Ballot �

Acceptor �

Majority �

RM �

We normally start with a tiny model, but we’ll skip that.

Instead, we’ll use the smallest model that
could reveal an error in the algorithm.

We normally start with a tiny model but we’ll skip that.

Instead, we’ll use a model which, if you understand the algorithm, you’ll see
is the smallest one that could reveal a non-trivial error.

We assign a set of three model values to Acceptor , and a set of two model
values to RM .
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Ballot �

Acceptor �{a1,a2,a3} a set of model values
Majority �

RM �

We normally start with a tiny model but we’ll skip that.

Instead, we’ll use a model which, if you understand the algorithm, you’ll see
is the smallest one that could reveal a non-trivial error.

We assign a set of three model values to Acceptor , and a set of two model
values to RM .
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Ballot �

Acceptor �{a1,a2,a3}
Majority �

RM �{r1,r2} a set of model values

We normally start with a tiny model but we’ll skip that.

Instead, we’ll use a model which, if you understand the algorithm, you’ll see
is the smallest one that could reveal a non-trivial error.

We assign a set of three model values to Acceptor , and a set of two model
values to RM .
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Ballot �{0,1}
Acceptor �{a1,a2,a3}
Majority �

RM �{r1,r2}

We assign this set of two numbers to Ballot , and this set of sets of acceptors
to Majority .

This is an ordinary assignment, because the model values a1, a2, and a3
are declared in the assignment of a set of model values to Acceptor .
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Ballot �{0,1}
Acceptor �{a1,a2,a3}
Majority �{{a1,a2},{a1,a3},{a2,a3}}
RM �{r1,r2}

We assign this set of two numbers to Ballot , and this set of sets of acceptors
to Majority .

This is an ordinary assignment, because the model values a1, a2, and a3
are declared in the assignment of a set of model values to Acceptor .
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Ballot �{0,1}
Acceptor �{a1,a2,a3}
Majority �{{a1,a2},{a1,a3},{a2,a3}}
RM �{r1,r2}

We assign this set of two numbers to Ballot , and this set of sets of acceptors
to Majority .

This is an ordinary assignment, because the model values a1, a2, and a3
are declared in the assignment of a set of model values to Acceptor .
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Ballot �{0,1}
Acceptor �{a1,a2,a3}
Majority �{{a1,a2},{a1,a3},{a2,a3}}
RM �{r1,r2}

We assign this set of two numbers to Ballot , and this set of sets of acceptors
to Majority .

This is an ordinary assignment, because the model values a1, a2, and a3
are declared in the assignment of a set of model values to Acceptor .
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Ballot �{0,1}
Acceptor �{a1,a2,a3}
Majority �{{a1,a2},{a1,a3},{a2,a3}}
RM �{r1,r2}

We assign this set of two numbers to Ballot , and this set of sets of acceptors
to Majority .

This is an ordinary assignment, because the model values a1, a2, and a3
are declared in the assignment of a set of model values to Acceptor .
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Ballot �{0,1}
Acceptor �{a1,a2,a3}
Majority �{{a1,a2},{a1,a3},{a2,a3}}
RM �{r1,r2}

This can be a symmetry set, because
r1 and r2 aren’t used elsewhere.

The set we assigned to RM can be a symmetry set because its elements
aren’t used elsewhere.

But what about the set we assigned to Acceptor?

Its elements are used in the value assigned to Majority .

But this use is OK because the expression they appear in is symmetric in the
elements of the set we assigned to Acceptor .
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Ballot �{0,1}
Acceptor �{a1,a2,a3}
Majority �{{a1,a2},{a1,a3},{a2,a3}}
RM �{r1,r2}

But what about this set?

a1, a2, a3 are used here.

The set we assigned to RM can be a symmetry set because its elements
aren’t used elsewhere.

But what about the set we assigned to Acceptor?

Its elements are used in the value assigned to Majority .

But this use is OK because the expression they appear in is symmetric in the
elements of the set we assigned to Acceptor .
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Ballot �{0,1}
Acceptor �{a1,a2,a3}
Majority �{{a1,a2},{a1,a3},{a2,a3}}
RM �{r1,r2}

But what about this set?

a1, a2, a3 are used here.

The set we assigned to RM can be a symmetry set because its elements
aren’t used elsewhere.

But what about the set we assigned to Acceptor?

Its elements are used in the value assigned to Majority .

But this use is OK because the expression they appear in is symmetric in the
elements of the set we assigned to Acceptor .
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Ballot �{0,1}
Acceptor �{a1,a2,a3}
Majority �{{a1,a2},{a1,a3},{a2,a3}}
RM �{r1,r2}

This use is OK because the expression is
symmetric in a1, a2, a3 .

The set we assigned to RM can be a symmetry set because its elements
aren’t used elsewhere.

But what about the set we assigned to Acceptor?

Its elements are used in the value assigned to Majority .

But this use is OK because the expression they appear in is symmetric in the
elements of the set we assigned to Acceptor .

[ slide 169 ]



Ballot �{0,1}
Acceptor �{a1,a2,a3}
Majority �{{a1,a2},{a1,a3},{a2,a3}}
RM �{r1,r2}

This use is OK because the expression is
symmetric in a1, a2, a3 .

Interchanging any two of these elements
leaves the expression unchanged.

Remember, this means that interchanging any two elements of that set
leaves the expression unchanged.

For example, if we interchange a1 and a3 in the expression, we get this
expression.

And these two expressions are equal because they describe sets with the
same three elements one two three
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Ballot �{0,1}
Acceptor �{a1,a2,a3}
Majority �{{a1,a2},{a1,a3},{a2,a3}}
RM �{r1,r2}

For example, interchanging a1↔ a3 in

{{a1,a2},{a1,a3},{a2,a3}}

Remember, this means that interchanging any two elements of that set
leaves the expression unchanged.

For example, if we interchange a1 and a3 in the expression, we get this
expression.

And these two expressions are equal because they describe sets with the
same three elements one two three
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Ballot �{0,1}
Acceptor �{a1,a2,a3}
Majority �{{a1,a2},{a1,a3},{a2,a3}}
RM �{r1,r2}

For example, interchanging a1↔ a3 in

{{a1,a2},{a1,a3},{a2,a3}}

produces l l l l

{{a3,a2},{a3,a1},{a2,a1}}

Remember, this means that interchanging any two elements of that set
leaves the expression unchanged.

For example, if we interchange a1 and a3 in the expression, we get this
expression.

And these two expressions are equal because they describe sets with the
same three elements one two three
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Ballot �{0,1}
Acceptor �{a1,a2,a3}
Majority �{{a1,a2},{a1,a3},{a2,a3}}
RM �{r1,r2}

These two sets are equal:

{{a1,a2},{a1,a3},{a2,a3}}

p

{{a3,a2},{a3,a1},{a2,a1}}

Remember, this means that interchanging any two elements of that set
leaves the expression unchanged.

For example, if we interchange a1 and a3 in the expression, we get this
expression.

And these two expressions are equal because they describe sets with the
same three elements one two three

[ slide 173 ]



Ballot �{0,1}
Acceptor �{a1,a2,a3}
Majority �{{a1,a2},{a1,a3},{a2,a3}}
RM �{r1,r2}

XXXXXXXXXX

These two sets are equal:

{{a1,a2},{a1,a3},{a2,a3}}

p

{{a3,a2},{a3,a1},{a2,a1}}

Remember, this means that interchanging any two elements of that set
leaves the expression unchanged.

For example, if we interchange a1 and a3 in the expression, we get this
expression.

And these two expressions are equal because they describe sets with the
same three elements one two three
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Ballot �{0,1}
Acceptor �{a1,a2,a3}
Majority �{{a1,a2},{a1,a3},{a2,a3}}
RM �{r1,r2}

These two sets are equal:

{{a1,a2},{a1,a3},{a2,a3}}

p

{{a3,a2},{a3,a1},{a2,a1}}

Remember, this means that interchanging any two elements of that set
leaves the expression unchanged.

For example, if we interchange a1 and a3 in the expression, we get this
expression.

And these two expressions are equal because they describe sets with the
same three elements one two three
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Ballot �{0,1}
Acceptor �{a1,a2,a3}
Majority �{{a1,a2},{a1,a3},{a2,a3}}
RM �{r1,r2}

����������

These two sets are equal:

{{a1,a2},{a1,a3},{a2,a3}}

p

{{a3,a2},{a3,a1},{a2,a1}}

Remember, this means that interchanging any two elements of that set
leaves the expression unchanged.

For example, if we interchange a1 and a3 in the expression, we get this
expression.

And these two expressions are equal because they describe sets with the
same three elements one two three
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Ballot �{0,1}
Acceptor �{a1,a2,a3}
Majority �{{a1,a2},{a1,a3},{a2,a3}}
RM �{r1,r2}

It’s OK to use elements of a symmetry set

In general, it’s OK to use elements of a symmetry set
in an expression assigned to another constant
if the expression is symmetric
in the elements of the symmetry set.

[ slide 177 ]



Ballot �{0,1}
Acceptor �{a1,a2,a3}
Majority �{{a1,a2},{a1,a3},{a2,a3}}
RM �{r1,r2}

It’s OK to use elements of a symmetry set
in an expression assigned to another constant

In general, it’s OK to use elements of a symmetry set
in an expression assigned to another constant
if the expression is symmetric
in the elements of the symmetry set.
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Ballot �{0,1}
Acceptor �{a1,a2,a3}
Majority �{{a1,a2},{a1,a3},{a2,a3}}
RM �{r1,r2}

It’s OK to use elements of a symmetry set
in an expression assigned to another constant
if the expression is symmetric

In general, it’s OK to use elements of a symmetry set
in an expression assigned to another constant
if the expression is symmetric
in the elements of the symmetry set.
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Ballot �{0,1}
Acceptor �{a1,a2,a3}
Majority �{{a1,a2},{a1,a3},{a2,a3}}
RM �{r1,r2}

It’s OK to use elements of a symmetry set
in an expression assigned to another constant
if the expression is symmetric in the elements
of the symmetry set.

In general, it’s OK to use elements of a symmetry set
in an expression assigned to another constant
if the expression is symmetric
in the elements of the symmetry set.
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Ballot �{0,1}
Acceptor �{a1,a2,a3}
Majority �{{a1,a2},{a1,a3},{a2,a3}}
RM �{r1,r2}

There’s one additional condition for symmetry sets.

Elements of a symmetry set , or
a constant assigned elements of a symmetry set
may not appear in a CHOOSE expression.

There’s just one additional condition a symmetry set must satisfy that I can
now explain.

Elements of a symmetry set,
or a constant that’s assigned elements of a symmetry set
may not appear in a CHOOSE expression.
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Ballot �{0,1}
Acceptor �{a1,a2,a3}
Majority �{{a1,a2},{a1,a3},{a2,a3}}
RM �{r1,r2}

There’s one additional condition for symmetry sets.

Elements of a symmetry set , or
a constant assigned elements of a symmetry set
may not appear in a CHOOSE expression.

There’s just one additional condition a symmetry set must satisfy that I can
now explain.

Elements of a symmetry set,
or a constant that’s assigned elements of a symmetry set
may not appear in a CHOOSE expression.
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Ballot �{0,1}
Acceptor �{a1,a2,a3}
Majority �{{a1,a2},{a1,a3},{a2,a3}}
RM �{r1,r2}

There’s one additional condition for symmetry sets.

Elements of a symmetry set , or
a constant assigned elements of a symmetry set
may not appear in a CHOOSE expression.

There’s just one additional condition a symmetry set must satisfy that I can
now explain.

Elements of a symmetry set,
or a constant that’s assigned elements of a symmetry set
may not appear in a CHOOSE expression.

[ slide 183 ]



Ballot �{0,1}
Acceptor �{a1,a2,a3}
Majority �{{a1,a2},{a1,a3},{a2,a3}}
RM �{r1,r2}

There’s one additional condition for symmetry sets.

Elements of a symmetry set , or
a constant assigned elements of a symmetry set
may not appear in a CHOOSE expression.

There’s just one additional condition a symmetry set must satisfy that I can
now explain.

Elements of a symmetry set,
or a constant that’s assigned elements of a symmetry set
may not appear in a CHOOSE expression.
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Ballot �{0,1}
Acceptor �{a1,a2,a3}
Majority �{{a1,a2},{a1,a3},{a2,a3}}
RM �{r1,r2}

There’s one additional condition for symmetry sets.

Elements of a symmetry set , or
a constant assigned elements of a symmetry set
may not appear in a CHOOSE expression.

In the PaxosCommit spec, elements of a symmetry set don’t appear in a
CHOOSE because
they can appear only in these assignments and there’s no CHOOSE there.

To verify that a constant which is assigned elements of a symmetry set
doesn’t appear in a CHOOSE expression,
we must check that these constants don’t appear in any CHOOSE expression
in the spec.

[ slide 185 ]



Ballot �{0,1}
Acceptor �{a1,a2,a3}
Majority �{{a1,a2},{a1,a3},{a2,a3}}
RM �{r1,r2}

There’s one additional condition for symmetry sets.

Elements of a symmetry set , or
a constant assigned elements of a symmetry set
may not appear in a CHOOSE expression.

In the PaxosCommit spec, elements of a symmetry set don’t appear in a
CHOOSE because
they can appear only in these assignments and there’s no CHOOSE there.

To verify that a constant which is assigned elements of a symmetry set
doesn’t appear in a CHOOSE expression,
we must check that these constants don’t appear in any CHOOSE expression
in the spec.
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Ballot �{0,1}
Acceptor �{a1,a2,a3}
Majority �{{a1,a2},{a1,a3},{a2,a3}}
RM �{r1,r2}

There’s one additional condition for symmetry sets.

Elements of a symmetry set , or
a constant assigned elements of a symmetry set
may not appear in a CHOOSE expression.

In the PaxosCommit spec, elements of a symmetry set don’t appear in a
CHOOSE because
they can appear only in these assignments and there’s no CHOOSE there.

To verify that a constant which is assigned elements of a symmetry set
doesn’t appear in a CHOOSE expression,
we must check that these constants don’t appear in any CHOOSE expression
in the spec.
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Ballot �{0,1}
Acceptor �{a1,a2,a3}
Majority �{{a1,a2},{a1,a3},{a2,a3}}
RM �{r1,r2}

We must check that these constants don’t appear
in a CHOOSE expression of the spec.

They don’t.

In the PaxosCommit spec, elements of a symmetry set don’t appear in a
CHOOSE because
they can appear only in these assignments and there’s no CHOOSE there.

To verify that a constant which is assigned elements of a symmetry set
doesn’t appear in a CHOOSE expression,
we must check that these constants don’t appear in any CHOOSE expression
in the spec.
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Ballot �{0,1}
Acceptor �{a1,a2,a3}
Majority �{{a1,a2},{a1,a3},{a2,a3}}
RM �{r1,r2}

We must check that these constants don’t appear
in a CHOOSE expression of the spec.

They don’t.

You can check that they don’t.

Assign these values in the model, letting Acceptor and RM be symmetry
sets.
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Ballot �{0,1}
Acceptor �{a1,a2,a3}
Majority �{{a1,a2},{a1,a3},{a2,a3}}
RM �{r1,r2}

Assign these values in the model, with Acceptor and RM

being symmetry sets.

You can check that they don’t.

Assign these values in the model, letting Acceptor and RM be symmetry
sets.
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What to Check

There are two invariants we can check:

– The type correctness invariant PCTypeOK

– Invariant TCConsistent imported from module TCommit

Add them and run TLC on the model.

We should check that the algorithm is correct.

We’ll see in a later video, how to check that it implements transaction commit.

For now, there are two invariants we can check:
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What to Check

There are two invariants we can check:

– The type correctness invariant PCTypeOK

– Invariant TCConsistent imported from module TCommit

Add them and run TLC on the model.

We should check that the algorithm is correct.

We’ll see in a later video, how to check that it implements transaction commit.

For now, there are two invariants we can check:
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What to Check

There are two invariants we can check:

– The type correctness invariant PCTypeOK

– Invariant TCConsistent imported from module TCommit

Add them and run TLC on the model.

The type correctness invariant PCTypeOK that we looked at earlier

and the invariant TCConsistent , which is imported with an INSTANCE

statement from module TCommit .

Add these invariants to the What to check part of the model and run TLC on
the model.
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What to Check

There are two invariants we can check:

– The type correctness invariant PCTypeOK

– Invariant TCConsistent imported from module TCommit

Add them and run TLC on the model.

The type correctness invariant PCTypeOK that we looked at earlier

and the invariant TCConsistent , which is imported with an INSTANCE

statement from module TCommit .

Add these invariants to the What to check part of the model and run TLC on
the model.
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What to Check

There are two invariants we can check:

– The type correctness invariant PCTypeOK

– Invariant TCConsistent imported from module TCommit

Add them and run TLC on the model.

The type correctness invariant PCTypeOK that we looked at earlier

and the invariant TCConsistent , which is imported with an INSTANCE

statement from module TCommit .

Add these invariants to the What to check part of the model and run TLC on
the model.
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TLC takes 30 seconds to run the model on my laptop using
two cores. It reports no error and finds 120 thousand distinct
states.

If we change the model to assign Ballot the set {0,1,2}
instead of {0,1} , TLC runs for 11

2 hours on a 128 core
machine and finds 220 million states.

Execution time and space grow exponentially with the size of
the model.

TLC takes about 30 seconds to run the model on my laptop using two cores.

It reports no error and finds about 120 thousand distinct states.

If we change the model to assign Ballot a set of three numbers instead of
two,
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TLC takes 30 seconds to run the model on my laptop using
two cores. It reports no error and finds 120 thousand distinct
states.

If we change the model to assign Ballot the set {0,1,2}
instead of {0,1} , TLC runs for 11

2 hours on a 128 core
machine and finds 220 million states.

Execution time and space grow exponentially with the size of
the model.

TLC takes about 30 seconds to run the model on my laptop using two cores.

It reports no error and finds about 120 thousand distinct states.

If we change the model to assign Ballot a set of three numbers instead of
two,

[ slide 197 ]



TLC takes 30 seconds to run the model on my laptop using
two cores. It reports no error and finds 120 thousand distinct
states.

If we change the model to assign Ballot the set {0,1,2}
instead of {0,1} , TLC runs for 11

2 hours on a 128 core
machine and finds 220 million states.

Execution time and space grow exponentially with the size of
the model.

TLC takes about 30 seconds to run the model on my laptop using two cores.

It reports no error and finds about 120 thousand distinct states.

If we change the model to assign Ballot a set of three numbers instead of
two,
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TLC takes 30 seconds to run the model on my laptop using
two cores. It reports no error and finds 120 thousand distinct
states.

If we change the model to assign Ballot the set {0,1,2}
instead of {0,1} , TLC runs for 11

2 hours on a 128 core
machine and finds 220 million states.

Execution time and space grow exponentially with the size of
the model.

TLC runs for about one and a half hours on a 128 core machine and finds
about 220 million states.

We use very small models because

execution time and space grow exponentially with the size of the model.
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TLC takes 30 seconds to run the model on my laptop using
two cores. It reports no error and finds 120 thousand distinct
states.

If we change the model to assign Ballot the set {0,1,2}
instead of {0,1} , TLC runs for 11

2 hours on a 128 core
machine and finds 220 million states.

Execution time and space grow exponentially with the size of
the model.

TLC runs for about one and a half hours on a 128 core machine and finds
about 220 million states.

We use very small models because

execution time and space grow exponentially with the size of the model.
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What good is checking such small models?

Make this change to the model.

What good is checking such small models?

To answer that question, make this change to value the model assigns to
Majority .

Delete this element of an element of the set.

The expression is no longer symmetric in a1, a2, and a3.
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What good is checking such small models?

Make this change to the model.

Majority �{{a1,a2},{a1,a3},{a2,a3}}

What good is checking such small models?

To answer that question, make this change to value the model assigns to
Majority .

Delete this element of an element of the set.

The expression is no longer symmetric in a1, a2, and a3.
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What good is checking such small models?

Make this change to the model.

Majority �{{a1,a2},{a1,a3},{a2,a3}}

What good is checking such small models?

To answer that question, make this change to value the model assigns to
Majority .

Delete this element of an element of the set.

The expression is no longer symmetric in a1, a2, and a3.
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What good is checking such small models?

Make this change to the model.

Majority �{{a1,a2},{a1,a3},{a3}}

What good is checking such small models?

To answer that question, make this change to value the model assigns to
Majority .

Delete this element of an element of the set.

The expression is no longer symmetric in a1, a2, and a3.
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What good is checking such small models?

Make this change to the model.

Majority �{{a1,a2},{a1,a3},{a3}}

So we have to change the assignment to Acceptor

So it’s no longer a symmetry set.

Now if you run TLC on the model, it will complain that this assumption is
violated
Because this assertion is no longer true. So, we have to comment it out.
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What good is checking such small models?

Make this change to the model.

Majority �{{a1,a2},{a1,a3},{a3}}

So we have to change the assignment to Acceptor

So it’s no longer a symmetry set.

Now if you run TLC on the model, it will complain that this assumption is
violated
Because this assertion is no longer true. So, we have to comment it out.
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What good is checking such small models?

Make this change to the model.

Majority �{{a1,a2},{a1,a3},{a3}}

So we have to change the assignment to Acceptor

So it’s no longer a symmetry set.

Now if you run TLC on the model, it will complain that this assumption is
violated
Because this assertion is no longer true. So, we have to comment it out.
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What good is checking such small models?

Make this change to the model.

Majority �{{a1,a2},{a1,a3},{a3}}

If you run TLC on the model, it will complain that the
assumption is violated.

So we have to change the assignment to Acceptor

So it’s no longer a symmetry set.

Now if you run TLC on the model, it will complain that this assumption is
violated
Because this assertion is no longer true. So, we have to comment it out.
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What good is checking such small models?

Make this change to the model.

Majority �{{a1,a2},{a1,a3},{a3}}

So we have to change the assignment to Acceptor

So it’s no longer a symmetry set.

Now if you run TLC on the model, it will complain that this assumption is
violated
Because this assertion is no longer true. So, we have to comment it out.
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What good is checking such small models?

Make this change to the model.

Majority �{{a1,a2},{a1,a3},{a3}}

So we have to change the assignment to Acceptor

So it’s no longer a symmetry set.

Now if you run TLC on the model, it will complain that this assumption is
violated
Because this assertion is no longer true. So, we have to comment it out.
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What good is checking such small models?

Make this change to the model.

Majority �{{a1,a2},{a1,a3},{a3}}

So we have to change the assignment to Acceptor

So it’s no longer a symmetry set.

Now if you run TLC on the model, it will complain that this assumption is
violated
Because this assertion is no longer true. So, we have to comment it out.
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What good is checking such small models?

Make this change to the model.

Majority �{{a1,a2},{a1,a3},{a3}}

So we have to change the assignment to Acceptor

So it’s no longer a symmetry set.

Now if you run TLC on the model, it will complain that this assumption is
violated
Because this assertion is no longer true. So, we have to comment it out.
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What good is checking such small models?

Make this change to the model.

Majority �{{a1,a2},{a1,a3},{a3}}

So we have to change the assignment to Acceptor

So it’s no longer a symmetry set.

Now if you run TLC on the model, it will complain that this assumption is
violated
Because this assertion is no longer true. So, we have to comment it out.
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Run TLC on the model.

Because the assumption is not satisfied, the
algorithm is incorrect for this value of Majority .

TLC reports that invariant TCConsistent is violated,
and it produces a 14-state error trace.

Even a very small model can catch an error in an algorithm.

Run TLC on the model.

Because the assumption is not satisfied, the algorithm is incorrect for this
changed value of Majority .

TLC reports that invariant TCConsistent is violated and it produces a
minimal-length 14-state error trace.

The Paxos commit algorithm is correct.
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Run TLC on the model.

Because the assumption is not satisfied, the
algorithm is incorrect for this value of Majority .

TLC reports that invariant TCConsistent is violated,
and it produces a 14-state error trace.

Even a very small model can catch an error in an algorithm.

Run TLC on the model.

Because the assumption is not satisfied, the algorithm is incorrect for this
changed value of Majority .

TLC reports that invariant TCConsistent is violated and it produces a
minimal-length 14-state error trace.

The Paxos commit algorithm is correct.
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Run TLC on the model.

Because the assumption is not satisfied, the
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Because the assumption is not satisfied, the algorithm is incorrect for this
changed value of Majority .

TLC reports that invariant TCConsistent is violated and it produces a
minimal-length 14-state error trace.

The Paxos commit algorithm is correct.

[ slide 217 ]



Run TLC on the model.

Because the assumption is not satisfied, the
algorithm is incorrect for this value of Majority .

TLC reports that invariant TCConsistent is violated,
and it produces a 14-state error trace.

Even a very small model can catch an error in an algorithm.

But this example shows that even a very small model can catch an error in a
real algorithm.
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You’ve now learned enough of the TLA+ language to start writing your own
specs. However, before you do that, you should know more about what TLA+
specs mean. In particular, you should understand what it means for the
Paxos Commit algorithm to implement the transaction-commit spec. That’s
the topic of the next lecture.
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