
TLA+ Video Course – Lecture 8, Part 1
Leslie Lamport

IMPLEMENTATION
PRELIMINARIES

This video should be viewed in conjunction with a Web page.
To find that page, search the Web for TLA+ Video Course .

The TLA+ Video Course
Lecture 8, Part 1
Implementation: Preliminaries

This lecture explains what it means for the two-phase commit protocol to
implement the specification of transaction commit. It’s divided into two parts.
Part One reviews and categorizes the kinds of TLA+ expressions you’ve
already seen, and introduces a new kind: temporal formulas. A specification
can be written as a single temporal formula. We begin with an explanation of
logical implication.

[slide 2]

IMPLICATION

[slide 3]

P ⇒ Q equals

This formula asserts that

If formula P is true then formula Q is true.

This symbol is read implies and is typed equals greater than.

[slide 4]

P ⇒ Q equals

If P is true then Q is true.

This formula asserts that

If formula P is true then formula Q is true.

This symbol is read implies and is typed equals greater than.

[slide 5]

P ⇒ Q equals

This formula asserts that

If formula P is true then formula Q is true.

This symbol is read implies and is typed equals greater than.

[slide 6]

P ⇒ Q equals
=>

This formula asserts that

If formula P is true then formula Q is true.

This symbol is read implies and is typed equals greater than.

[slide 7]

P ⇒ Q equals

The formula P implies Q equals
If P is true then Q is true.
Else, we know nothing.

The way we assert mathematically that we know nothing is with the formula
TRUE. Since saying that TRUE is true says nothing.

[slide 8]

P ⇒ Q equals

IF P THEN Q

ELSE

The formula P implies Q equals
If P is true then Q is true.
Else, we know nothing.

The way we assert mathematically that we know nothing is with the formula
TRUE. Since saying that TRUE is true says nothing.

[slide 9]

P ⇒ Q equals

IF P THEN Q

ELSE

The formula P implies Q equals
If P is true then Q is true.
Else, we know nothing.

The way we assert mathematically that we know nothing is with the formula
TRUE. Since saying that TRUE is true says nothing.

[slide 10]

P ⇒ Q equals

IF P THEN Q

ELSE we know nothing

The formula P implies Q equals
If P is true then Q is true.
Else, we know nothing.

The way we assert mathematically that we know nothing is with the formula
TRUE. Since saying that TRUE is true says nothing.

[slide 11]

P ⇒ Q equals

IF P THEN Q

ELSE TRUE

The formula P implies Q equals
If P is true then Q is true.
Else, we know nothing.

The way we assert mathematically that we know nothing is with the formula
TRUE. Since saying that TRUE is true says nothing.

[slide 12]

P ⇒ Q equals ¬Q ⇒ ¬P

because

IF P THEN Q

ELSE TRUE

equals IF ¬Q THEN ¬P
ELSE TRUE

A useful property of implies is that P implies Q equals
not Q implies not P.

That’s true because the definition of P implies Q

equals the definition of not Q implies not P.

We can check this by substituting all four possible combinations of
Boolean values for P and Q .

[slide 13]

P ⇒ Q equals ¬Q ⇒ ¬P

because

IF P THEN Q

ELSE TRUE

equals IF ¬Q THEN ¬P
ELSE TRUE

A useful property of implies is that P implies Q equals
not Q implies not P.

That’s true because the definition of P implies Q

equals the definition of not Q implies not P.

We can check this by substituting all four possible combinations of
Boolean values for P and Q .

[slide 14]

P ⇒ Q equals ¬Q ⇒ ¬P

because

IF P THEN Q

ELSE TRUE

equals IF ¬Q THEN ¬P
ELSE TRUE

A useful property of implies is that P implies Q equals
not Q implies not P.

That’s true because the definition of P implies Q

equals the definition of not Q implies not P.

We can check this by substituting all four possible combinations of
Boolean values for P and Q .

[slide 15]

P ⇒ Q equals ¬Q ⇒ ¬P

because

IF P THEN Q

ELSE TRUE

equals IF ¬Q THEN ¬P
ELSE TRUE

A useful property of implies is that P implies Q equals
not Q implies not P.

That’s true because the definition of P implies Q

equals the definition of not Q implies not P.

We can check this by substituting all four possible combinations of
Boolean values for P and Q .

[slide 16]

P ⇒ Q equals ¬Q ⇒ ¬P

because

IF P THEN Q

ELSE TRUE

equals IF ¬Q THEN ¬P
ELSE TRUE

We can check this by substituting all combinations of
Boolean values for P and Q .

A useful property of implies is that P implies Q equals
not Q implies not P.

That’s true because the definition of P implies Q

equals the definition of not Q implies not P.

We can check this by substituting all four possible combinations of
Boolean values for P and Q .

[slide 17]

P ⇒ Q equals ¬Q ⇒ ¬P

because

IF P THEN Q

ELSE TRUE

equals IF ¬Q THEN ¬P
ELSE TRUE

For example: P ← TRUE and Q ← FALSE

For example, let’s substitute TRUE for P and FALSE for Q. like this.

Evaluating this IF / THEN / ELSE expression yields the value FALSE.

Not FALSE equals TRUE. So this IF / THEN / ELSE equals not TRUE, which
equals FALSE, so the two formulas are equal for this substitution of Boolean
values for P and Q .

[slide 18]

P ⇒ Q equals ¬Q ⇒ ¬P

because

IF PTRUE THEN QFALSE

ELSE TRUE

equals IF¬ QFALSE THEN ¬PTRUE

ELSE TRUE

For example: P ← TRUE and Q ← FALSE

For example, let’s substitute TRUE for P and FALSE for Q. like this.

Evaluating this IF / THEN / ELSE expression yields the value FALSE.

Not FALSE equals TRUE. So this IF / THEN / ELSE equals not TRUE, which
equals FALSE, so the two formulas are equal for this substitution of Boolean
values for P and Q .

[slide 19]

P ⇒ Q equals ¬Q ⇒ ¬P

because

IF PTRUE THEN QFALSE

ELSE TRUE

equals IF¬ QFALSE THEN ¬PTRUE

ELSE TRUE

For example, let’s substitute TRUE for P and FALSE for Q. like this.

Evaluating this IF / THEN / ELSE expression yields the value FALSE.

Not FALSE equals TRUE. So this IF / THEN / ELSE equals not TRUE, which
equals FALSE, so the two formulas are equal for this substitution of Boolean
values for P and Q .

[slide 20]

P ⇒ Q equals ¬Q ⇒ ¬P

because

IF P THEN QFALSE

ELSE TRUE

equals IF¬ QFALSE THEN ¬PTRUE

ELSE TRUE

For example, let’s substitute TRUE for P and FALSE for Q. like this.

Evaluating this IF / THEN / ELSE expression yields the value FALSE.

Not FALSE equals TRUE. So this IF / THEN / ELSE equals not TRUE, which
equals FALSE, so the two formulas are equal for this substitution of Boolean
values for P and Q .

[slide 21]

P ⇒ Q equals ¬Q ⇒ ¬P

because

IF P THEN QFALSE

ELSE TRUE

equals IF¬ QFALSE THEN ¬PTRUE

ELSE TRUE

For example, let’s substitute TRUE for P and FALSE for Q. like this.

Evaluating this IF / THEN / ELSE expression yields the value FALSE.

Not FALSE equals TRUE. So this IF / THEN / ELSE equals not TRUE, which
equals FALSE, so the two formulas are equal for this substitution of Boolean
values for P and Q .

[slide 22]

P ⇒ Q equals ¬Q ⇒ ¬P

because

IF P THEN QFALSE

ELSE TRUE

equals IF¬ QTRUE THEN ¬PTRUE

ELSE TRUE

For example, let’s substitute TRUE for P and FALSE for Q. like this.

Evaluating this IF / THEN / ELSE expression yields the value FALSE.

Not FALSE equals TRUE. So this IF / THEN / ELSE equals not TRUE, which
equals FALSE, so the two formulas are equal for this substitution of Boolean
values for P and Q .

[slide 23]

P ⇒ Q equals ¬Q ⇒ ¬P

because

IF P THEN QFALSE

ELSE TRUE

equals IF¬ Q THEN ¬PTRUE

ELSE TRUE

For example, let’s substitute TRUE for P and FALSE for Q. like this.

Evaluating this IF / THEN / ELSE expression yields the value FALSE.

Not FALSE equals TRUE. So this IF / THEN / ELSE equals not TRUE, which
equals FALSE, so the two formulas are equal for this substitution of Boolean
values for P and Q .

[slide 24]

P ⇒ Q equals ¬Q ⇒ ¬P

because

IF P THEN QFALSE

ELSE TRUE

equals IF¬ Q THEN ¬PFALSE

ELSE TRUE

For example, let’s substitute TRUE for P and FALSE for Q. like this.

Evaluating this IF / THEN / ELSE expression yields the value FALSE.

Not FALSE equals TRUE. So this IF / THEN / ELSE equals not TRUE, which
equals FALSE, so the two formulas are equal for this substitution of Boolean
values for P and Q .

[slide 25]

P ⇒ Q equals ¬Q ⇒ ¬P

because

IF P THEN Q

ELSE TRUE

equals IF ¬Q THEN ¬P
ELSE TRUE

You can check the other three possible substitutions of Boolean values for P
and Q yourself.

[slide 26]

P ⇒ Q equals ¬Q ⇒ ¬P

because

IF P THEN Q

ELSE TRUE

equals IF ¬Q THEN ¬P
ELSE TRUE

You can check the other values of P and Q .

You can check the other three possible substitutions of Boolean values for P
and Q yourself.

[slide 27]

P ⇒ Q equals ¬Q ⇒ ¬P

If it’s raining then the ground is wet.

has the same meaning as

If the ground is not wet then it’s not raining.

In speech, implication asserts causality.

In math, implication asserts only correlation.

Let’s take a closer look at this equality.

Suppose we substitute “it’s raining” for P and “the ground is wet” for Q .

The equality of these two formulas means that “If it’s raining then the ground
is wet.”

[slide 28]

P ⇒ Q equals ¬Q ⇒ ¬P

Let’s substitute: P ← it’s raining
Q ← the ground is wet

If it’s raining then the ground is wet.

has the same meaning as

If the ground is not wet then it’s not raining.

In speech, implication asserts causality.

In math, implication asserts only correlation.

Let’s take a closer look at this equality.

Suppose we substitute “it’s raining” for P and “the ground is wet” for Q .

The equality of these two formulas means that “If it’s raining then the ground
is wet.”

[slide 29]

P ⇒ Q equals ¬Q ⇒ ¬P

If it’s raining then the ground is wet.

has the same meaning as

If the ground is not wet then it’s not raining.

In speech, implication asserts causality.

In math, implication asserts only correlation.

Let’s take a closer look at this equality.

Suppose we substitute “it’s raining” for P and “the ground is wet” for Q .

The equality of these two formulas means that “If it’s raining then the ground
is wet.”

[slide 30]

P ⇒ Q equals ¬Q ⇒ ¬P

If it’s raining then the ground is wet.

has the same meaning as

If the ground is not wet then it’s not raining.

In speech, implication asserts causality.

In math, implication asserts only correlation.

Means the same thing as “If the ground is not wet then it’s not raining.”

But does it?

This sounds right. But this doesn’t. That’s because in ordinary speech,
implication asserts causality.

[slide 31]

P ⇒ Q equals ¬Q ⇒ ¬P

If it’s raining then the ground is wet.

has the same meaning as

If the ground is not wet then it’s not raining.

In speech, implication asserts causality.

In math, implication asserts only correlation.

Means the same thing as “If the ground is not wet then it’s not raining.”

But does it?

This sounds right. But this doesn’t. That’s because in ordinary speech,
implication asserts causality.

[slide 32]

P ⇒ Q equals ¬Q ⇒ ¬P

If it’s raining then the ground is wet.

has the same meaning as

If the ground is not wet then it’s not raining.

In speech, implication asserts causality.

In math, implication asserts only correlation.

Means the same thing as “If the ground is not wet then it’s not raining.”

But does it?

This sounds right. But this doesn’t. That’s because in ordinary speech,
implication asserts causality.

[slide 33]

P ⇒ Q equals ¬Q ⇒ ¬P

If it’s raining then the ground is wet.

has the same meaning as

If the ground is not wet then it’s not raining.

In speech, implication asserts causality.

In math, implication asserts only correlation.

Means the same thing as “If the ground is not wet then it’s not raining.”

But does it?

This sounds right. But this doesn’t. That’s because in ordinary speech,
implication asserts causality.

[slide 34]

P ⇒ Q equals ¬Q ⇒ ¬P

If it’s raining then the ground is wet.

has the same meaning as

If the ground is not wet then it’s not raining.

In speech, implication asserts causality.

In math, implication asserts only correlation.

Raining causes the ground to be wet.

But, the ground not being wet doesn’t cause it not to be raining.

So in ordinary speech, these two sentences don’t have the same meaning.

[slide 35]

P ⇒ Q equals ¬Q ⇒ ¬P

If it’s raining then the ground is wet.

has the same meaning as

If the ground is not wet then it’s not raining.

In speech, implication asserts causality.

In math, implication asserts only correlation.

Raining causes the ground to be wet.

But, the ground not being wet doesn’t cause it not to be raining.

So in ordinary speech, these two sentences don’t have the same meaning.

[slide 36]

P ⇒ Q equals ¬Q ⇒ ¬P

If it’s raining then the ground is wet.

has the same meaning as

If the ground is not wet then it’s not raining.

In speech, implication asserts causality.

In math, implication asserts only correlation.

But in math and hence in TLA+, implication asserts only correlation, not
causality.

In math, these two sentences and these two formulas have the same
meaning. And TLA+ is math.

[slide 37]

ORDINARY EXPRESSIONS

[slide 38]

A module-closed expression is a TLA+

expression that contains only:

– built-in TLA+ operators and constructs,

– numbers and strings

– declared constants and variables,

– identifiers declared locally within it.

Let’s define a module-closed expression of a module to be a TLA+

expression that (after expanding all definitions) contains only:

built-in TLA+ operators and constructs.

[slide 39]

A module-closed expression is a TLA+

expression that

(after expanding definitions)contains only:

– built-in TLA+ operators and constructs,

– numbers and strings

– declared constants and variables,

– identifiers declared locally within it.

Let’s define a module-closed expression of a module to be a TLA+

expression that (after expanding all definitions) contains only:

built-in TLA+ operators and constructs.

[slide 40]

A module-closed expression is a TLA+

expression that contains only:

– built-in TLA+ operators and constructs,

– numbers and strings

– declared constants and variables,

– identifiers declared locally within it.

Let’s define a module-closed expression of a module to be a TLA+

expression that (after expanding all definitions) contains only:

built-in TLA+ operators and constructs.

[slide 41]

A module-closed expression is a TLA+

expression that contains only:

– built-in TLA+ operators and constructs,

– numbers and strings

– declared constants and variables,

– identifiers declared locally within it.

Let’s define a module-closed expression of a module to be a TLA+

expression that (after expanding all definitions) contains only:

built-in TLA+ operators and constructs.

[slide 42]

A module-closed expression is a TLA+

expression that contains only:

– built-in TLA+ operators and constructs,

– numbers and strings

– declared constants and variables,

– identifiers declared locally within it.

numbers and strings

Identifiers declared in the module’s CONSTANT and VARIABLE statements.

And identifiers declared locally within the expression.

[slide 43]

A module-closed expression is a TLA+

expression that contains only:

– built-in TLA+ operators and constructs,

– numbers and strings, like 42 and “abc”

– declared constants and variables,

– identifiers declared locally within it.

numbers and strings like 42 and the string abc.

Identifiers declared in the module’s CONSTANT and VARIABLE statements.

And identifiers declared locally within the expression.

[slide 44]

A module-closed expression is a TLA+

expression that contains only:

– built-in TLA+ operators and constructs,

– numbers and strings,

– declared constants and variables,

– identifiers declared locally within it.

numbers and strings

Identifiers declared in the module’s CONSTANT and VARIABLE statements.

And identifiers declared locally within the expression.

[slide 45]

A module-closed expression is a TLA+

expression that contains only:

– built-in TLA+ operators and constructs,

– numbers and strings,

– declared constants and variables,

– identifiers declared locally within it.

numbers and strings

Identifiers declared in the module’s CONSTANT and VARIABLE statements.

And identifiers declared locally within the expression.

[slide 46]

A module-closed expression is a TLA+

expression that contains only:

– identifiers declared locally within it.

Including ones introduced by:

∀ v ∈ S : . . . and ∃ v ∈ S : . . .

[v ∈ S 7→ . . .]

{ v ∈ S : . . . } and { . . . : v ∈ S }

Locally declared identifiers include identifiers introduced by these constructs
occurring in the expression:

Forall and exists.

This function constructor.

And these set constructors.

[slide 47]

A module-closed expression is a TLA+

expression that contains only:

– identifiers declared locally within it.

Including ones introduced by:

∀ v ∈ S : . . . and ∃ v ∈ S : . . .

[v ∈ S 7→ . . .]

{ v ∈ S : . . . } and { . . . : v ∈ S }

Locally declared identifiers include identifiers introduced by these constructs
occurring in the expression:

Forall and exists.

This function constructor.

And these set constructors.

[slide 48]

A module-closed expression is a TLA+

expression that contains only:

– identifiers declared locally within it.

Including ones introduced by:

∀ v ∈ S : . . . and ∃ v ∈ S : . . .

[v ∈ S 7→ . . .]

{ v ∈ S : . . . } and { . . . : v ∈ S }

Locally declared identifiers include identifiers introduced by these constructs
occurring in the expression:

Forall and exists.

This function constructor.

And these set constructors.

[slide 49]

A module-closed expression is a TLA+

expression that contains only:

– identifiers declared locally within it.

Including ones introduced by:

∀ v ∈ S : . . . and ∃ v ∈ S : . . .

[v ∈ S 7→ . . .]

{ v ∈ S : . . . } and { . . . : v ∈ S }

Locally declared identifiers include identifiers introduced by these constructs
occurring in the expression:

Forall and exists.

This function constructor.

And these set constructors.

[slide 50]

A module-closed expression is a TLA+

expression that contains only:

– identifiers declared locally within it.

Including ones introduced by:

∀ v ∈ S : . . . and ∃ v ∈ S : . . .

[v ∈ S 7→ . . .]

{ v ∈ S : . . . } and { . . . : v ∈ S }

Locally declared identifiers include identifiers introduced by these constructs
occurring in the expression:

Forall and exists.

This function constructor.

And these set constructors.

[slide 51]

This expression is module-complete

∃ v ∈ Nat : x ′ = x + v

This subexpression is not
module-complete because
v is locally declared outside it.

For example, this expression is module-complete if x is a declared variable.

But this subexpression is not module-complete
because v is locally declared outside the subexpression.

[slide 52]

This expression is module-complete

∃ v ∈ Nat : x ′ = x + v

if x is a declared variable.

This subexpression is not
module-complete because
v is locally declared outside it.

For example, this expression is module-complete if x is a declared variable.

But this subexpression is not module-complete
because v is locally declared outside the subexpression.

[slide 53]

This expression is module-complete

∃ v ∈ Nat : x ′ = x + v

This subexpression is not
module-complete because
v is locally declared outside it.

For example, this expression is module-complete if x is a declared variable.

But this subexpression is not module-complete
because v is locally declared outside the subexpression.

[slide 54]

This expression is module-complete

∃ v ∈ Nat : x ′ = x + v

This subexpression is not
module-complete because
v is locally declared outside it.

For example, this expression is module-complete if x is a declared variable.

But this subexpression is not module-complete
because v is locally declared outside the subexpression.

[slide 55]

A module-closed formula is a Boolean-valued
module-closed expression.

(x ∈ 1 . .42) ∧ (y ′ = x + 1)

A module-closed formula is a Boolean-valued module-closed expression.

That is, one whose value is either TRUE or FALSE.

For example, this expression – assuming x and y are declared variables.

[slide 56]

A module-closed formula is a Boolean-valued
module-closed expression.

(One whose value is either TRUE or FALSE.)

(x ∈ 1 . .42) ∧ (y ′ = x + 1)

A module-closed formula is a Boolean-valued module-closed expression.

That is, one whose value is either TRUE or FALSE.

For example, this expression – assuming x and y are declared variables.

[slide 57]

A module-closed formula is a Boolean-valued
module-closed expression.

(x ∈ 1 . .42) ∧ (y ′ = x + 1)

A module-closed formula is a Boolean-valued module-closed expression.

That is, one whose value is either TRUE or FALSE.

For example, this expression – assuming x and y are declared variables.

[slide 58]

A module-closed formula is a Boolean-valued
module-closed expression.

(x ∈ 1 . .42) ∧ (y ′ = x + 1)

Be aware that quite a few people use the word formula to mean any
mathematical expression. But I’ll use it to mean a Boolean-valued
expression.

[slide 59]

For this lecture:

– expression means module-closed expression

– formula means module-closed formula

Just for this lecture:

expression will mean module-closed expression

and formula will mean module-closed formula.

[slide 60]

For this lecture:

– expression means module-closed expression

– formula means module-closed formula

Just for this lecture:

expression will mean module-closed expression

and formula will mean module-closed formula.

[slide 61]

For this lecture:

– expression means module-closed expression

– formula means module-closed formula

Just for this lecture:

expression will mean module-closed expression

and formula will mean module-closed formula.

[slide 62]

Constant Expressions

A constant expression is a (module-complete)
expression that

– Has no declared variables.

– Has no non-constant operators.

The only ones you’ve seen so far are
′ (prime) and UNCHANGED.

Constant Expressions.

A constant expression is a (module-complete) expression that

(after expanding all definitions)

Has no declared variables.

[slide 63]

Constant Expressions

A constant expression is a (module-complete)
expression that

– Has no declared variables.

– Has no non-constant operators.

The only ones you’ve seen so far are
′ (prime) and UNCHANGED.

Constant Expressions.

A constant expression is a (module-complete) expression that

(after expanding all definitions)

Has no declared variables.

[slide 64]

Constant Expressions

A constant expression is a (module-complete)
expression that
(after expanding all definitions)

– Has no declared variables.

– Has no non-constant operators.

The only ones you’ve seen so far are
′ (prime) and UNCHANGED.

Constant Expressions.

A constant expression is a (module-complete) expression that

(after expanding all definitions)

Has no declared variables.

[slide 65]

Constant Expressions

A constant expression is a (module-complete)
expression that

– Has no declared variables.

– Has no non-constant operators.

The only ones you’ve seen so far are
′ (prime) and UNCHANGED.

Constant Expressions.

A constant expression is a (module-complete) expression that

(after expanding all definitions)

Has no declared variables.

[slide 66]

Constant Expressions

A constant expression is a (module-complete)
expression that

– Has no declared variables.

– Has no non-constant operators.

The only ones you’ve seen so far are
′ (prime) and UNCHANGED.

And has no non-constant operators.

The only non-constant operators that you’ve seen so far are prime and
UNCHANGED.

[slide 67]

Constant Expressions

A constant expression is a (module-complete)
expression that

– Has no declared variables.

– Has no non-constant operators.

The only ones you’ve seen so far are
′ (prime) and UNCHANGED.

And has no non-constant operators.

The only non-constant operators that you’ve seen so far are prime and
UNCHANGED.

[slide 68]

The value of a constant expression

foo ∪ {n ∈ 1 . .22 : n2 > m }

depends only on the values of the declared
constants it contains.

The value of a constant expression like this one

depends only on the values of the declared constants it contains.
In this example, those are the constants foo and m.

The constant n is locally defined within the expression.

[slide 69]

The value of a constant expression

foo ∪ {n ∈ 1 . .22 : n2 > m }

depends only on the values of the declared
constants it contains.

The value of a constant expression like this one

depends only on the values of the declared constants it contains.
In this example, those are the constants foo and m.

The constant n is locally defined within the expression.

[slide 70]

The value of a constant expression

foo ∪ {n ∈ 1 . .22 : n2 > m }

depends only on the values of the declared
constants it contains.

The value of a constant expression like this one

depends only on the values of the declared constants it contains.
In this example, those are the constants foo and m.

The constant n is locally defined within the expression.

[slide 71]

The value of a constant expression

foo ∪ {n ∈ 1 . .22 : n2 > m }

depends only on the values of the declared
constants it contains.

The value of a constant expression like this one

depends only on the values of the declared constants it contains.
In this example, those are the constants foo and m.

The constant n is locally defined within the expression.

[slide 72]

An assumption

ASSUME . . .

must be a constant formula.

An assumption

which is asserted by an ASSUME statement

must be a constant formula.
Remember that a constant formula is a Boolean-valued constant expression.
[slide 73]

An assumption

ASSUME . . .

must be a constant formula.

An assumption

which is asserted by an ASSUME statement

must be a constant formula.
Remember that a constant formula is a Boolean-valued constant expression.
[slide 74]

An assumption

ASSUME . . .

must be a constant formula.

An assumption

which is asserted by an ASSUME statement

must be a constant formula.
Remember that a constant formula is a Boolean-valued constant expression.
[slide 75]

State Expressions

A state expression can contain anything a constant
expression can as well as declared variables.

x + y [foo]

The value of a state expression depends on:
– The values of declared variables.

I will ignore dependence on the values of
declared constants.

State expressions.

A state expression is an expression that can contain anything a constant
expression can contain as well as variables declared in a VARIABLES

statement.

For example, this is a state expression, if foo is a declared constant and x

and y are declared variables.

[slide 76]

State Expressions

A state expression can contain anything a constant
expression can as well as declared variables.

x + y [foo]

The value of a state expression depends on:
– The values of declared variables.

I will ignore dependence on the values of
declared constants.

State expressions.

A state expression is an expression that can contain anything a constant
expression can contain as well as variables declared in a VARIABLES

statement.

For example, this is a state expression, if foo is a declared constant and x

and y are declared variables.

[slide 77]

State Expressions

A state expression can contain anything a constant
expression can as well as declared variables.

x + y [foo]

The value of a state expression depends on:
– The values of declared variables.

I will ignore dependence on the values of
declared constants.

State expressions.

A state expression is an expression that can contain anything a constant
expression can contain as well as variables declared in a VARIABLES

statement.

For example, this is a state expression, if foo is a declared constant and x

and y are declared variables.

[slide 78]

State Expressions

A state expression can contain anything a constant
expression can as well as declared variables.

x + y [foo]

The value of a state expression depends on:
– The values of declared variables.

I will ignore dependence on the values of
declared constants.

State expressions.

A state expression is an expression that can contain anything a constant
expression can contain as well as variables declared in a VARIABLES

statement.

For example, this is a state expression, if foo is a declared constant and x

and y are declared variables.

[slide 79]

State Expressions

A state expression can contain anything a constant
expression can as well as declared variables.

x + y [foo] if CONSTANT foo

VARIABLES x , y

The value of a state expression depends on:
– The values of declared variables.

I will ignore dependence on the values of
declared constants.

State expressions.

A state expression is an expression that can contain anything a constant
expression can contain as well as variables declared in a VARIABLES

statement.

For example, this is a state expression, if foo is a declared constant and x

and y are declared variables.

[slide 80]

State Expressions

A state expression can contain anything a constant
expression can as well as declared variables.

x + y [foo]

The value of a state expression depends on:
– The values of declared variables.

I will ignore dependence on the values of
declared constants.

State expressions.

A state expression is an expression that can contain anything a constant
expression can contain as well as variables declared in a VARIABLES

statement.

For example, this is a state expression, if foo is a declared constant and x

and y are declared variables.

[slide 81]

State Expressions

A state expression can contain anything a constant
expression can as well as declared variables.

x + y [foo]

The value of a state expression depends on:
– The values of declared variables.

I will ignore dependence on the values of
declared constants.

The value of a state expression depends on:
The values of declared constants.
and the values of declared variables.
I will ignore all dependencies on the values of declared constants
and assume that the values of all declared constants are fixed throughout the
discussion. And I’ll avoid declared constants in the examples I use.

[slide 82]

State Expressions

A state expression can contain anything a constant
expression can as well as declared variables.

x + y [foo]

The value of a state expression depends on:
– The values of declared constants.
– The values of declared variables.

I will ignore dependence on the values of
declared constants.

The value of a state expression depends on:
The values of declared constants.
and the values of declared variables.
I will ignore all dependencies on the values of declared constants
and assume that the values of all declared constants are fixed throughout the
discussion. And I’ll avoid declared constants in the examples I use.

[slide 83]

State Expressions

A state expression can contain anything a constant
expression can as well as declared variables.

x + y [foo]

The value of a state expression depends on:
– The values of declared constants.
– The values of declared variables.

I will ignore dependence on the values of
declared constants.

The value of a state expression depends on:
The values of declared constants.
and the values of declared variables.
I will ignore all dependencies on the values of declared constants
and assume that the values of all declared constants are fixed throughout the
discussion. And I’ll avoid declared constants in the examples I use.

[slide 84]

State Expressions

A state expression can contain anything a constant
expression can as well as declared variables.

x + y [foo]

The value of a state expression depends on:
– The values of declared constants.
– The values of declared variables.

I will ignore dependence on the values of
declared constants.

The value of a state expression depends on:
The values of declared constants.
and the values of declared variables.
I will ignore all dependencies on the values of declared constants
and assume that the values of all declared constants are fixed throughout the
discussion. And I’ll avoid declared constants in the examples I use.

[slide 85]

State Expressions

A state expression can contain anything a constant
expression can as well as declared variables.

x + y [foo]

The value of a state expression depends on:
– The values of declared variables.

I will ignore dependence on the values of
declared constants.

The value of a state expression depends on:
The values of declared constants.
and the values of declared variables.
I will ignore all dependencies on the values of declared constants
and assume that the values of all declared constants are fixed throughout the
discussion. And I’ll avoid declared constants in the examples I use.

[slide 86]

A state expression has a value on a state.

Remember that a state assigns values to variables.

If state s assigns v ← Nat and w ← −42 , then

v ∪ {w} has the value Nat ∪ {−42}

on state s .

A state expression has a value on a state.

Remember that a state assigns values to variables.

If state s assigns the set Nat of natural numbers to variable v and the
number −42 to variable w ,

then this state expression has this value on state s .

[slide 87]

A state expression has a value on a state.

Remember that a state assigns values to variables.

If state s assigns v ← Nat and w ← −42 , then

v ∪ {w} has the value Nat ∪ {−42}

on state s .

A state expression has a value on a state.

Remember that a state assigns values to variables.

If state s assigns the set Nat of natural numbers to variable v and the
number −42 to variable w ,

then this state expression has this value on state s .

[slide 88]

A state expression has a value on a state.

Remember that a state assigns values to variables.

If state s assigns v ← Nat and w ← −42 , then

v ∪ {w} has the value Nat ∪ {−42}

on state s .

A state expression has a value on a state.

Remember that a state assigns values to variables.

If state s assigns the set Nat of natural numbers to variable v and the
number −42 to variable w ,

then this state expression has this value on state s .

[slide 89]

A state expression has a value on a state.

Remember that a state assigns values to variables.

If state s assigns v ← Nat and w ← −42 , then

v ∪ {w} has the value Nat ∪ {−42}

on state s .

A state expression has a value on a state.

Remember that a state assigns values to variables.

If state s assigns the set Nat of natural numbers to variable v and the
number −42 to variable w ,

then this state expression has this value on state s .

[slide 90]

A state expression has a value on a state.

Remember that a state assigns values to variables.

If state s assigns v ← Nat and w ← −42 , then

v ∪ {w} has the value Nat ∪ {−42}

on state s .

A state expression has a value on a state.

Remember that a state assigns values to variables.

If state s assigns the set Nat of natural numbers to variable v and the
number −42 to variable w ,

then this state expression has this value on state s .

[slide 91]

A state expression has a value on a state.

Remember that a state assigns values to variables.

If state s assigns v ← Nat and w ← −42 , then

v ∪ {w} has the value Nat ∪ {−42}

on state s .

A state expression has a value on a state.

Remember that a state assigns values to variables.

If state s assigns the set Nat of natural numbers to variable v and the
number −42 to variable w ,

then this state expression has this value on state s .

[slide 92]

A constant expression is a state expression that has
the same value on all states.

The constant expression 2 + 2 has the value 4
on every state.

A constant expression is a state expression that has the same value on all
states.

The constant expression 2 + 2 has the value 4 on every state.

[slide 93]

A constant expression is a state expression that has
the same value on all states.

The constant expression 2 + 2 has the value 4
on every state.

A constant expression is a state expression that has the same value on all
states.

The constant expression 2 + 2 has the value 4 on every state.

[slide 94]

Action Expressions

An action expression can contain anything a
state expression can as well as ′ (prime) and
UNCHANGED.

A state expression has a value on a step (pair of states).

If state s assigns p ← 42 and
state t assigns q ← 24 , then

p − q ′ has the value 42− 24

on the step s → t .

Action Expressions.

An action expression can contain anything a state expression can
as well as prime and UNCHANGED. A state expression has a value on a step
(remember that a step is a pair of states).

If state s assigns the value 42 to variable p

and state t assigns the value 24 to variable q

[slide 95]

Action Expressions

An action expression can contain anything a
state expression can as well as ′ (prime) and
UNCHANGED.

A state expression has a value on a step (pair of states).

If state s assigns p ← 42 and
state t assigns q ← 24 , then

p − q ′ has the value 42− 24

on the step s → t .

Action Expressions.

An action expression can contain anything a state expression can
as well as prime and UNCHANGED. A state expression has a value on a step
(remember that a step is a pair of states).

If state s assigns the value 42 to variable p

and state t assigns the value 24 to variable q

[slide 96]

Action Expressions

An action expression can contain anything a
state expression can as well as ′ (prime) and
UNCHANGED.

A state expression has a value on a step (pair of states).

If state s assigns p ← 42 and
state t assigns q ← 24 , then

p − q ′ has the value 42− 24

on the step s → t .

Action Expressions.

An action expression can contain anything a state expression can
as well as prime and UNCHANGED. A state expression has a value on a step
(remember that a step is a pair of states).

If state s assigns the value 42 to variable p

and state t assigns the value 24 to variable q

[slide 97]

Action Expressions

An action expression can contain anything a
state expression can as well as ′ (prime) and
UNCHANGED.

A state expression has a value on a step (pair of states).

If state s assigns p ← 42 and
state t assigns q ← 24 , then

p − q ′ has the value 42− 24

on the step s → t .

Action Expressions.

An action expression can contain anything a state expression can
as well as prime and UNCHANGED. A state expression has a value on a step
(remember that a step is a pair of states).

If state s assigns the value 42 to variable p

and state t assigns the value 24 to variable q

[slide 98]

Action Expressions

An action expression can contain anything a
state expression can as well as ′ (prime) and
UNCHANGED.

A state expression has a value on a step (pair of states).

If state s assigns p ← 42 and
state t assigns q ← 24 , then

p − q ′ has the value 42− 24

on the step s → t .

Action Expressions.

An action expression can contain anything a state expression can
as well as prime and UNCHANGED. A state expression has a value on a step
(remember that a step is a pair of states).

If state s assigns the value 42 to variable p

and state t assigns the value 24 to variable q

[slide 99]

Action Expressions

An action expression can contain anything a
state expression can as well as ′ (prime) and
UNCHANGED.

A state expression has a value on a step (pair of states).

If state s assigns p ← 42 and
state t assigns q ← 24 , then

p − q ′ has the value 42− 24

on the step s → t .

Action Expressions.

An action expression can contain anything a state expression can
as well as prime and UNCHANGED. A state expression has a value on a step
(remember that a step is a pair of states).

If state s assigns the value 42 to variable p

and state t assigns the value 24 to variable q

[slide 100]

Action Expressions

An action expression can contain anything a
state expression can as well as ′ (prime) and
UNCHANGED.

A state expression has a value on a step (pair of states).

If state s assigns p ← 42 and
state t assigns q ← 24 , then

p − q ′ has the value 42− 24

on the step s → t .

then the action expression p − q ′

has the value 42 − 24, (which equals 18)
on the step s t .

[slide 101]

Action Expressions

An action expression can contain anything a
state expression can as well as ′ (prime) and
UNCHANGED.

A state expression has a value on a step (pair of states).

If state s assigns p ← 42 and
state t assigns q ← 24 , then

p − q ′ has the value 42− 24

on the step s → t .

then the action expression p − q ′

has the value 42 − 24, (which equals 18)
on the step s t .

[slide 102]

Action Expressions

An action expression can contain anything a
state expression can as well as ′ (prime) and
UNCHANGED.

A state expression has a value on a step (pair of states).

If state s assigns p ← 42 and
state t assigns q ← 24 , then

p − q ′ has the value 42− 24

on the step s → t .

then the action expression p − q ′

has the value 42 − 24, (which equals 18)
on the step s t .

[slide 103]

A state expression is an action expression
whose value on the step s → t depends
only on state s .

An action formula is called an action.

A state expression is an action expression whose value on the step s t

depends only on the first state s.

An action formula is called simply an action.

[slide 104]

A state expression is an action expression
whose value on the step s → t depends
only on state s .

An action formula is called an action.

A state expression is an action expression whose value on the step s t

depends only on the first state s.

An action formula is called simply an action.

[slide 105]

Priming a State Expression

For any state expression e the value of the
action expression e ′ on s → t is the value
of e on state t .

UNCHANGED e equals e ′ = e

UNCHANGED 〈x , y , z 〉 equals 〈x , y , z 〉′ = 〈x , y , z 〉
equals 〈x ′, y ′, z ′〉 = 〈x , y , z 〉
equals (x ′ = x) ∧ (y ′ = y) ∧ (z ′ = z)

So far we’ve only primed variables. We can actually prime any state
expression.

For any state expression e, the value of the action expression e prime on the
step s t is the value of e on state t .

UNCHANGED of an expression e is defined to equal the formula e ′ = e.

Therefore, UNCHANGED of a triple x , y , z
[slide 106]

Priming a State Expression

For any state expression e the value of the
action expression e ′ on s → t is the value
of e on state t .

UNCHANGED e equals e ′ = e

UNCHANGED 〈x , y , z 〉 equals 〈x , y , z 〉′ = 〈x , y , z 〉
equals 〈x ′, y ′, z ′〉 = 〈x , y , z 〉
equals (x ′ = x) ∧ (y ′ = y) ∧ (z ′ = z)

So far we’ve only primed variables. We can actually prime any state
expression.

For any state expression e, the value of the action expression e prime on the
step s t is the value of e on state t .

UNCHANGED of an expression e is defined to equal the formula e ′ = e.

Therefore, UNCHANGED of a triple x , y , z
[slide 107]

Priming a State Expression

For any state expression e the value of the
action expression e ′ on s → t is the value
of e on state t .

UNCHANGED e equals e ′ = e

UNCHANGED 〈x , y , z 〉 equals 〈x , y , z 〉′ = 〈x , y , z 〉
equals 〈x ′, y ′, z ′〉 = 〈x , y , z 〉
equals (x ′ = x) ∧ (y ′ = y) ∧ (z ′ = z)

So far we’ve only primed variables. We can actually prime any state
expression.

For any state expression e, the value of the action expression e prime on the
step s t is the value of e on state t .

UNCHANGED of an expression e is defined to equal the formula e ′ = e.

Therefore, UNCHANGED of a triple x , y , z
[slide 108]

Priming a State Expression

For any state expression e the value of the
action expression e ′ on s → t is the value
of e on state t .

UNCHANGED e equals e ′ = e

UNCHANGED 〈x , y , z 〉 equals 〈x , y , z 〉′ = 〈x , y , z 〉
equals 〈x ′, y ′, z ′〉 = 〈x , y , z 〉
equals (x ′ = x) ∧ (y ′ = y) ∧ (z ′ = z)

So far we’ve only primed variables. We can actually prime any state
expression.

For any state expression e, the value of the action expression e prime on the
step s t is the value of e on state t .

UNCHANGED of an expression e is defined to equal the formula e ′ = e.

Therefore, UNCHANGED of a triple x , y , z
[slide 109]

Priming a State Expression

For any state expression e the value of the
action expression e ′ on s → t is the value
of e on state t .

UNCHANGED e equals e ′ = e

UNCHANGED 〈x , y , z 〉 equals 〈x , y , z 〉′ = 〈x , y , z 〉
equals 〈x ′, y ′, z ′〉 = 〈x , y , z 〉
equals (x ′ = x) ∧ (y ′ = y) ∧ (z ′ = z)

by definition of UNCHANGED is equivalent to the triple primed equals the
triple.

The value of a triple in the next state is the triple of the values of its
components in the next state, so we have this equality of formulas. Which in
turn gives us this formula, since two triples are equal if and only if their
corresponding components are equal.

[slide 110]

Priming a State Expression

For any state expression e the value of the
action expression e ′ on s → t is the value
of e on state t .

UNCHANGED e equals e ′ = e

UNCHANGED 〈x , y , z 〉 equals 〈x , y , z 〉′ = 〈x , y , z 〉
equals 〈x ′, y ′, z ′〉 = 〈x , y , z 〉
equals (x ′ = x) ∧ (y ′ = y) ∧ (z ′ = z)

by definition of UNCHANGED is equivalent to the triple primed equals the
triple.

The value of a triple in the next state is the triple of the values of its
components in the next state, so we have this equality of formulas. Which in
turn gives us this formula, since two triples are equal if and only if their
corresponding components are equal.

[slide 111]

Priming a State Expression

For any state expression e the value of the
action expression e ′ on s → t is the value
of e on state t .

UNCHANGED e equals e ′ = e

UNCHANGED 〈x , y , z 〉 equals 〈x , y , z 〉′ = 〈x , y , z 〉
equals 〈x ′, y ′, z ′〉 = 〈x , y , z 〉
equals (x ′ = x) ∧ (y ′ = y) ∧ (z ′ = z)

by definition of UNCHANGED is equivalent to the triple primed equals the
triple.

The value of a triple in the next state is the triple of the values of its
components in the next state, so we have this equality of formulas. Which in
turn gives us this formula, since two triples are equal if and only if their
corresponding components are equal.

[slide 112]

Priming a State Expression

For any state expression e the value of the
action expression e ′ on s → t is the value
of e on state t .

UNCHANGED e equals e ′ = e

UNCHANGED 〈x , y , z 〉 equals 〈x , y , z 〉′ = 〈x , y , z 〉
equals 〈x ′, y ′, z ′〉 = 〈x , y , z 〉
equals (x ′ = x) ∧ (y ′ = y) ∧ (z ′ = z)

by definition of UNCHANGED is equivalent to the triple primed equals the
triple.

The value of a triple in the next state is the triple of the values of its
components in the next state, so we have this equality of formulas. Which in
turn gives us this formula, since two triples are equal if and only if their
corresponding components are equal.

[slide 113]

Priming a State Expression

For any state expression e the value of the
action expression e ′ on s → t is the value
of e on state t .

UNCHANGED e equals e ′ = e

UNCHANGED 〈x , y , z 〉 equals 〈x , y , z 〉′ = 〈x , y , z 〉
equals 〈x ′, y ′, z ′〉 = 〈x , y , z 〉
equals (x ′ = x) ∧ (y ′ = y) ∧ (z ′ = z)

by definition of UNCHANGED is equivalent to the triple primed equals the
triple.

The value of a triple in the next state is the triple of the values of its
components in the next state, so we have this equality of formulas. Which in
turn gives us this formula, since two triples are equal if and only if their
corresponding components are equal.

[slide 114]

TEMPORAL FORMULAS

Temporal Formulas

[slide 115]

A temporal formula has a Boolean value on a sequence
s1 → s2 → s3 → · · · of states.

We will now write a specification as a temporal formula –
a formula whose value is TRUE on the behaviors allowed by the spec.

We now define TPSpec to be the specification
of the two-phase commit protocol.

A temporal formula is something we haven’t seen before.

It has a Boolean value on a sequence of states.

TLA+ has only Boolean-valued temporal expressions – that is, temporal
formulas.

[slide 116]

A temporal formula has a Boolean value on a sequence
s1 → s2 → s3 → · · · of states.

We will now write a specification as a temporal formula –
a formula whose value is TRUE on the behaviors allowed by the spec.

We now define TPSpec to be the specification
of the two-phase commit protocol.

A temporal formula is something we haven’t seen before.

It has a Boolean value on a sequence of states.

TLA+ has only Boolean-valued temporal expressions – that is, temporal
formulas.

[slide 117]

A temporal formula has a Boolean value on a sequence
s1 → s2 → s3 → · · · of states.

TLA+ has only Boolean-valued temporal expressions.

We will now write a specification as a temporal formula –
a formula whose value is TRUE on the behaviors allowed by the spec.

We now define TPSpec to be the specification
of the two-phase commit protocol.

A temporal formula is something we haven’t seen before.

It has a Boolean value on a sequence of states.

TLA+ has only Boolean-valued temporal expressions – that is, temporal
formulas.

[slide 118]

A temporal formula has a Boolean value on a sequence
s1 → s2 → s3 → · · · of states.

We will now write a specification as a temporal formula –
a formula whose value is TRUE on the behaviors allowed by the spec.

We now define TPSpec to be the specification
of the two-phase commit protocol.

A temporal formula is something we haven’t seen before.

It has a Boolean value on a sequence of states.

TLA+ has only Boolean-valued temporal expressions – that is, temporal
formulas.

[slide 119]

A temporal formula has a Boolean value on a sequence
s1 → s2 → s3 → · · · of states.

We will now write a specification as a temporal formula –
a formula whose value is TRUE on the behaviors allowed by the spec.

We now define TPSpec to be the specification
of the two-phase commit protocol.

A sequence of states is just what we’ve been calling a behavior.

We will now write a specification as a temporal formula – a formula whose
value is TRUE on just those behaviors that are allowed by the spec.

As an example, we now define the temporal formula TPSpec to be the
specification of the two-phase commit protocol.

[slide 120]

A temporal formula has a Boolean value on a behavior
s1 → s2 → s3 → · · · .

We will now write a specification as a temporal formula –
a formula whose value is TRUE on the behaviors allowed by the spec.

We now define TPSpec to be the specification
of the two-phase commit protocol.

A sequence of states is just what we’ve been calling a behavior.

We will now write a specification as a temporal formula – a formula whose
value is TRUE on just those behaviors that are allowed by the spec.

As an example, we now define the temporal formula TPSpec to be the
specification of the two-phase commit protocol.

[slide 121]

A temporal formula has a Boolean value on a behavior
s1 → s2 → s3 → · · · .

We will now write a specification as a temporal formula –
a formula whose value is TRUE on the behaviors allowed by the spec.

We now define TPSpec to be the specification
of the two-phase commit protocol.

A sequence of states is just what we’ve been calling a behavior.

We will now write a specification as a temporal formula – a formula whose
value is TRUE on just those behaviors that are allowed by the spec.

As an example, we now define the temporal formula TPSpec to be the
specification of the two-phase commit protocol.

[slide 122]

A temporal formula has a Boolean value on a behavior
s1 → s2 → s3 → · · · .

We will now write a specification as a temporal formula –
a formula whose value is TRUE on the behaviors allowed by the spec.

We now define TPSpec to be the specification
of the two-phase commit protocol.

A sequence of states is just what we’ve been calling a behavior.

We will now write a specification as a temporal formula – a formula whose
value is TRUE on just those behaviors that are allowed by the spec.

As an example, we now define the temporal formula TPSpec to be the
specification of the two-phase commit protocol.

[slide 123]

A temporal formula has a Boolean value on a behavior
s1 → s2 → s3 → · · · .

We will now write a specification as a temporal formula –
a formula whose value is TRUE on the behaviors allowed by the spec.

We now define TPSpec to be the specification
of the two-phase commit protocol.

A sequence of states is just what we’ve been calling a behavior.

We will now write a specification as a temporal formula – a formula whose
value is TRUE on just those behaviors that are allowed by the spec.

As an example, we now define the temporal formula TPSpec to be the
specification of the two-phase commit protocol.

[slide 124]

The two-phase commit spec has
initial formula TPInit

next-state formula TPNext

TPSpec should be true on iff

Recall that the two-phase commit spec has initial formula TPInit and
next-state formula TPNext .

The temporal formula TPSpec should be true on a behavior if and only if:

This is an abbreviation for if and only if.

TPSpec should be true on the behavior if and only if TPInit is true on the
behavior’s first state.

[slide 125]

The two-phase commit spec has
initial formula TPInit

next-state formula TPNext

TPSpec should be true on s1 → s2 → s3 → s4 → · · · iff

Recall that the two-phase commit spec has initial formula TPInit and
next-state formula TPNext .

The temporal formula TPSpec should be true on a behavior if and only if:

This is an abbreviation for if and only if.

TPSpec should be true on the behavior if and only if TPInit is true on the
behavior’s first state.

[slide 126]

The two-phase commit spec has
initial formula TPInit

next-state formula TPNext

TPSpec should be true on s1 → s2 → s3 → s4 → · · · iff
if and only if

Recall that the two-phase commit spec has initial formula TPInit and
next-state formula TPNext .

The temporal formula TPSpec should be true on a behavior if and only if:

This is an abbreviation for if and only if.

TPSpec should be true on the behavior if and only if TPInit is true on the
behavior’s first state.

[slide 127]

The two-phase commit spec has
initial formula TPInit

next-state formula TPNext

TPSpec should be true on s1 → s2 → s3 → s4 → · · · iff
TPInit is true on s1

TPNext is true on si → si+1 for all i

Recall that the two-phase commit spec has initial formula TPInit and
next-state formula TPNext .

The temporal formula TPSpec should be true on a behavior if and only if:

This is an abbreviation for if and only if.

TPSpec should be true on the behavior if and only if TPInit is true on the
behavior’s first state.

[slide 128]

The two-phase commit spec has
initial formula TPInit

next-state formula TPNext

TPSpec should be true on s1 → s2 → s3 → s4 → · · · iff
TPInit is true on s1

TPNext is true on si → si+1 for all i

And TPNext is true on all steps of the behavior.

[slide 129]

The two-phase commit spec has
initial formula TPInit

next-state formula TPNext

TPSpec should be true on s1 → s2 → s3 → s4 → · · · iff
TPInit is true on s1

TPNext is true on si → si+1 for all i

And TPNext is true on all steps of the behavior.

[slide 130]

The two-phase commit spec has
initial formula TPInit

next-state formula TPNext

TPSpec should be true on s1 → s2 → s3 → s4 → · · · iff
TPInit is true on s1

TPNext is true on si → si+1 for all i

And TPNext is true on all steps of the behavior.

[slide 131]

The two-phase commit spec has
initial formula TPInit

next-state formula TPNext

TPSpec should be true on s1 → s2 → s3 → s4 → · · · iff
TPInit is true on s1

TPNext is true on si → si+1 for all i

And TPNext is true on all steps of the behavior.

[slide 132]

The two-phase commit spec has
initial formula TPInit

next-state formula TPNext

TPSpec should be true on s1 → s2 → s3 → s4 → · · · iff
TPInit is true on s1

TPNext is true on si → si+1 for all i

And TPNext is true on all steps of the behavior.

[slide 133]

TPSpec should be true on s1 → s2 → s3 → s4 → · · · iff
TPInit is true on s1

TPNext is true on si → si+1 for all i

The value of TPInit on s1 → s2

equals value on s1 .

Let’s consider the first condition.

When the state formula TPInit is considered to be an action. . . its value on
a step equals its value on the first state.

Similarly, when we consider it to be a temporal formula. . . the same is true
for its value on a behavior.

[slide 134]

TPSpec should be true on s1 → s2 → s3 → s4 → · · · iff
TPInit is true on s1

TPNext is true on si → si+1 for all i

The value of TPInit on s1 → s2

equals value on s1 .

Let’s consider the first condition.

When the state formula TPInit is considered to be an action. . . its value on
a step equals its value on the first state.

Similarly, when we consider it to be a temporal formula. . . the same is true
for its value on a behavior.

[slide 135]

TPSpec should be true on s1 → s2 → s3 → s4 → · · · iff
TPInit is true on s1

TPNext is true on si → si+1 for all i

The value of TPInit on s1 → s2 → s3 → s4 → · · ·
equals value on s1 .

Let’s consider the first condition.

When the state formula TPInit is considered to be an action. . . its value on
a step equals its value on the first state.

Similarly, when we consider it to be a temporal formula. . . the same is true
for its value on a behavior.

[slide 136]

TPSpec should be true on s1 → s2 → s3 → s4 → · · · iff
TPInit is true on s1

TPNext is true on si → si+1 for all i

TPInit is true on s1 → s2 → s3 → s4 → · · · iff
it is true on s1 .

Which means TPInit is true on the behavior if and only if it’s true on the
behavior’s first state.

So this first condition can be written like this.

[slide 137]

TPSpec should be true on s1 → s2 → s3 → s4 → · · · iff
TPInit is true on s1

TPNext is true on si → si+1 for all i

TPInit is true on s1 → s2 → s3 → s4 → · · · iff
it is true on s1 .

Which means TPInit is true on the behavior if and only if it’s true on the
behavior’s first state.

So this first condition can be written like this.

[slide 138]

TPSpec should be true on s1 → s2 → s3 → s4 → · · · iff
TPInit is true on s1 → s2 → s3 → s4 → · · ·
TPNext is true on si → si+1 for all i

TPInit is true on s1 → s2 → s3 → s4 → · · · iff
it is true on s1 .

Which means TPInit is true on the behavior if and only if it’s true on the
behavior’s first state.

So this first condition can be written like this.

[slide 139]

TPSpec should be true on s1 → s2 → s3 → s4 → · · · iff
TPInit is true on s1 → s2 → s3 → s4 → · · ·
TPNext is true on si → si+1 for all i

TPInit is true on s1 → s2 → s3 → s4 → · · · iff
it is true on s1 .

2TPNext is true on s1 → s2 → s3 → s4 → · · ·

A state formula like TPInit is true on a behavior if and only if it’s true on the
first state of the behavior.

Similarly an action like TPNext is true on a behavior if and only if it’s true on
the first step of the behavior.

If we apply this temporal operator to the action TPNext

This operator is typed left bracket right bracket and is read always.

[slide 140]

TPSpec should be true on s1 → s2 → s3 → s4 → · · · iff
TPInit is true on s1 → s2 → s3 → s4 → · · ·
TPNext is true on si → si+1 for all i

TPInit is true on s1 → s2 → s3 → s4 → · · · iff
it is true on s1 .

2TPNext is true on s1 → s2 → s3 → s4 → · · ·

A state formula like TPInit is true on a behavior if and only if it’s true on the
first state of the behavior.

Similarly an action like TPNext is true on a behavior if and only if it’s true on
the first step of the behavior.

If we apply this temporal operator to the action TPNext

This operator is typed left bracket right bracket and is read always.

[slide 141]

TPSpec should be true on s1 → s2 → s3 → s4 → · · · iff
TPInit is true on s1 → s2 → s3 → s4 → · · ·
TPNext is true on si → si+1 for all i

TPNext is true on s1 → s2 → s3 → s4 → · · · iff
it is true on s1 → s2 .

2TPNext is true on s1 → s2 → s3 → s4 → · · ·

A state formula like TPInit is true on a behavior if and only if it’s true on the
first state of the behavior.

Similarly an action like TPNext is true on a behavior if and only if it’s true on
the first step of the behavior.

If we apply this temporal operator to the action TPNext

This operator is typed left bracket right bracket and is read always.

[slide 142]

TPSpec should be true on s1 → s2 → s3 → s4 → · · · iff
TPInit is true on s1 → s2 → s3 → s4 → · · ·
TPNext is true on si → si+1 for all i

TPNext is true on s1 → s2 → s3 → s4 → · · · iff
it is true on s1 → s2 .

2TPNext is true on s1 → s2 → s3 → s4 → · · ·
↑

A state formula like TPInit is true on a behavior if and only if it’s true on the
first state of the behavior.

Similarly an action like TPNext is true on a behavior if and only if it’s true on
the first step of the behavior.

If we apply this temporal operator to the action TPNext

This operator is typed left bracket right bracket and is read always.

[slide 143]

TPSpec should be true on s1 → s2 → s3 → s4 → · · · iff
TPInit is true on s1 → s2 → s3 → s4 → · · ·
TPNext is true on si → si+1 for all i

TPNext is true on s1 → s2 → s3 → s4 → · · · iff
it is true on s1 → s2 .

2TPNext is true on s1 → s2 → s3 → s4 → · · ·
↑
[] in ASCII

A state formula like TPInit is true on a behavior if and only if it’s true on the
first state of the behavior.

Similarly an action like TPNext is true on a behavior if and only if it’s true on
the first step of the behavior.

If we apply this temporal operator to the action TPNext

This operator is typed left bracket right bracket and is read always.

[slide 144]

TPSpec should be true on s1 → s2 → s3 → s4 → · · · iff
TPInit is true on s1 → s2 → s3 → s4 → · · ·
TPNext is true on si → si+1 for all i

TPNext is true on s1 → s2 → s3 → s4 → · · · iff
it is true on s1 → s2 .

2TPNext is true on s1 → s2 → s3 → s4 → · · ·
↑
[] in ASCII Read always

A state formula like TPInit is true on a behavior if and only if it’s true on the
first state of the behavior.

Similarly an action like TPNext is true on a behavior if and only if it’s true on
the first step of the behavior.

If we apply this temporal operator to the action TPNext

This operator is typed left bracket right bracket and is read always.

[slide 145]

TPSpec should be true on s1 → s2 → s3 → s4 → · · · iff
TPInit is true on s1 → s2 → s3 → s4 → · · ·
TPNext is true on si → si+1 for all i

TPNext is true on s1 → s2 → s3 → s4 → · · · iff
it is true on s1 → s2 .

2TPNext is true on s1 → s2 → s3 → s4 → · · ·

The temporal formula always TPNext is true on a behavior if and only if
TPNext is true on every step of the behavior.

Which is exactly the second condition that TPSpec should assert.

So we can restate that condition this way.
[slide 146]

TPSpec should be true on s1 → s2 → s3 → s4 → · · · iff
TPInit is true on s1 → s2 → s3 → s4 → · · ·
TPNext is true on si → si+1 for all i

TPNext is true on s1 → s2 → s3 → s4 → · · · iff
it is true on s1 → s2 .

2TPNext is true on s1 → s2 → s3 → s4 → · · · iff

TPNext is true on si → si+1 for all i

The temporal formula always TPNext is true on a behavior if and only if
TPNext is true on every step of the behavior.

Which is exactly the second condition that TPSpec should assert.

So we can restate that condition this way.
[slide 147]

TPSpec should be true on s1 → s2 → s3 → s4 → · · · iff
TPInit is true on s1 → s2 → s3 → s4 → · · ·
TPNext is true on si → si+1 for all i

TPNext is true on s1 → s2 → s3 → s4 → · · · iff
it is true on s1 → s2 .

2TPNext is true on s1 → s2 → s3 → s4 → · · · iff

TPNext is true on si → si+1 for all i

The temporal formula always TPNext is true on a behavior if and only if
TPNext is true on every step of the behavior.

Which is exactly the second condition that TPSpec should assert.

So we can restate that condition this way.
[slide 148]

TPSpec should be true on s1 → s2 → s3 → s4 → · · · iff
TPInit is true on s1 → s2 → s3 → s4 → · · ·
TPNext is true on si → si+1 for all i

TPNext is true on s1 → s2 → s3 → s4 → · · · iff
it is true on s1 → s2 .

2TPNext is true on s1 → s2 → s3 → s4 → · · · iff

TPNext is true on si → si+1 for all i

The temporal formula always TPNext is true on a behavior if and only if
TPNext is true on every step of the behavior.

Which is exactly the second condition that TPSpec should assert.

So we can restate that condition this way.
[slide 149]

TPSpec should be true on s1 → s2 → s3 → s4 → · · · iff
TPInit is true on s1 → s2 → s3 → s4 → · · ·
TPNext is true on si → si+1 for all i

TPNext is true on s1 → s2 → s3 → s4 → · · · iff
it is true on s1 → s2 .

2TPNext is true on s1 → s2 → s3 → s4 → · · · iff

TPNext is true on si → si+1 for all i

The temporal formula always TPNext is true on a behavior if and only if
TPNext is true on every step of the behavior.

Which is exactly the second condition that TPSpec should assert.

So we can restate that condition this way.
[slide 150]

TPSpec should be true on s1 → s2 → s3 → s4 → · · · iff
TPInit is true on s1 → s2 → s3 → s4 → · · ·
TPNext is true on si → si+1 for all i

TPNext is true on s1 → s2 → s3 → s4 → · · · iff
it is true on s1 → s2 .

2TPNext is true on s1 → s2 → s3 → s4 → · · · iff

TPNext is true on si → si+1 for all i

The temporal formula always TPNext is true on a behavior if and only if
TPNext is true on every step of the behavior.

Which is exactly the second condition that TPSpec should assert.

So we can restate that condition this way.
[slide 151]

TPSpec should be true on s1 → s2 → s3 → s4 → · · · iff
TPInit is true on s1 → s2 → s3 → s4 → · · ·
2TPNext is true on s1 → s2 → s3 → s4 → · · ·

TPNext is true on s1 → s2 → s3 → s4 → · · · iff
it is true on s1 → s2 .

2TPNext is true on s1 → s2 → s3 → s4 → · · · iff

TPNext is true on si → si+1 for all i

The temporal formula always TPNext is true on a behavior if and only if
TPNext is true on every step of the behavior.

Which is exactly the second condition that TPSpec should assert.

So we can restate that condition this way.
[slide 152]

TPSpec should be true on s1 → s2 → s3 → s4 → · · · iff
TPInit is true on s1 → s2 → s3 → s4 → · · ·
2TPNext is true on s1 → s2 → s3 → s4 → · · ·

TPSpec
∆
= TPInit ∧ 2TPNext

From this, we see that TPSpec should be defined to equal

TPInit

conjoined with always TPNext .

[slide 153]

TPSpec should be true on s1 → s2 → s3 → s4 → · · · iff
TPInit is true on s1 → s2 → s3 → s4 → · · ·
2TPNext is true on s1 → s2 → s3 → s4 → · · ·

TPSpec
∆
= TPInit ∧ 2TPNext

From this, we see that TPSpec should be defined to equal

TPInit

conjoined with always TPNext .

[slide 154]

TPSpec should be true on s1 → s2 → s3 → s4 → · · · iff
TPInit is true on s1 → s2 → s3 → s4 → · · ·
2TPNext is true on s1 → s2 → s3 → s4 → · · ·

TPSpec
∆
= TPInit ∧ 2TPNext

From this, we see that TPSpec should be defined to equal

TPInit

conjoined with always TPNext .

[slide 155]

TPSpec should be true on s1 → s2 → s3 → s4 → · · · iff
TPInit is true on s1 → s2 → s3 → s4 → · · ·
2TPNext is true on s1 → s2 → s3 → s4 → · · ·

TPSpec
∆
= TPInit ∧ 2TPNext

From this, we see that TPSpec should be defined to equal

TPInit

conjoined with always TPNext .

[slide 156]

TPSpec should be true on s1 → s2 → s3 → s4 → · · · iff
TPInit is true on s1 → s2 → s3 → s4 → · · ·
2TPNext is true on s1 → s2 → s3 → s4 → · · ·

TPSpec
∆
= TPInit ∧ 2TPNext

So this is our definition of the temporal formula TPSpec that is the
specification of the two-phase commit protocol.

Look how simple it is. Unfortunately, it’s too simple.

If you look near the end of module TwoPhase, you’ll find this definition.

Where this part is typed like this. In general,

[slide 157]

TPSpec should be true on s1 → s2 → s3 → s4 → · · · iff
TPInit is true on s1 → s2 → s3 → s4 → · · ·
2TPNext is true on s1 → s2 → s3 → s4 → · · ·

TPSpec
∆
= TPInit ∧ 2 [TPNext]〈rmState, tmState, tmPrepared,msgs〉

So this is our definition of the temporal formula TPSpec that is the
specification of the two-phase commit protocol.

Look how simple it is. Unfortunately, it’s too simple.

If you look near the end of module TwoPhase, you’ll find this definition.

Where this part is typed like this. In general,

[slide 158]

TPSpec should be true on s1 → s2 → s3 → s4 → · · · iff
TPInit is true on s1 → s2 → s3 → s4 → · · ·
2TPNext is true on s1 → s2 → s3 → s4 → · · ·

TPSpec
∆
= TPInit ∧ 2 [TPNext]〈rmState, tmState, tmPrepared,msgs〉

So this is our definition of the temporal formula TPSpec that is the
specification of the two-phase commit protocol.

Look how simple it is. Unfortunately, it’s too simple.

If you look near the end of module TwoPhase, you’ll find this definition.

Where this part is typed like this. In general,

[slide 159]

TPSpec should be true on s1 → s2 → s3 → s4 → · · · iff
TPInit is true on s1 → s2 → s3 → s4 → · · ·
2TPNext is true on s1 → s2 → s3 → s4 → · · ·

TPSpec
∆
= TPInit ∧ 2 [TPNext]〈rmState, tmState, tmPrepared,msgs〉

[][TPNext]_<<rmState,tmState,tmPrepared,msgs>>

So this is our definition of the temporal formula TPSpec that is the
specification of the two-phase commit protocol.

Look how simple it is. Unfortunately, it’s too simple.

If you look near the end of module TwoPhase, you’ll find this definition.

Where this part is typed like this. In general,

[slide 160]

TPSpec should be true on s1 → s2 → s3 → s4 → · · · iff
TPInit is true on s1 → s2 → s3 → s4 → · · ·
2TPNext is true on s1 → s2 → s3 → s4 → · · ·

TPSpec
∆
= TPInit ∧ 2 [TPNext]〈rmState, tmState, tmPrepared,msgs〉

So this is our definition of the temporal formula TPSpec that is the
specification of the two-phase commit protocol.

Look how simple it is. Unfortunately, it’s too simple.

If you look near the end of module TwoPhase, you’ll find this definition.

Where this part is typed like this. In general,

[slide 161]

The specification with initial formula Init ,
next-state formula Next ,
declared variables v1, . . . , vn

is expressed by the temporal formula

Init ∧ 2 [Next]〈v1, ... , vn 〉

The specification with initial formula Init , next-state formula Next , and
declared variables v-one through v-n is expressed by this temporal formula.

which is typed like this.

For now, you should ignore the red part and pretend the formula is this

[slide 162]

The specification with initial formula Init ,
next-state formula Next ,
declared variables v1, . . . , vn

is expressed by the temporal formula

Init ∧ 2 [Next]〈v1, ... , vn 〉

The specification with initial formula Init , next-state formula Next , and
declared variables v-one through v-n is expressed by this temporal formula.

which is typed like this.

For now, you should ignore the red part and pretend the formula is this

[slide 163]

The specification with initial formula Init ,
next-state formula Next ,
declared variables v1, . . . , vn

is expressed by the temporal formula

Init ∧ 2 [Next]〈v1, ... , vn 〉

The specification with initial formula Init , next-state formula Next , and
declared variables v-one through v-n is expressed by this temporal formula.

which is typed like this.

For now, you should ignore the red part and pretend the formula is this

[slide 164]

The specification with initial formula Init ,
next-state formula Next ,
declared variables v1, . . . , vn

is expressed by the temporal formula

Init ∧ 2 [Next]〈v1, ... , vn 〉

The specification with initial formula Init , next-state formula Next , and
declared variables v-one through v-n is expressed by this temporal formula.

which is typed like this.

For now, you should ignore the red part and pretend the formula is this

[slide 165]

The specification with initial formula Init ,
next-state formula Next ,
declared variables v1, . . . , vn

is expressed by the temporal formula

Init ∧ 2 [Next]〈v1, ... , vn 〉

The specification with initial formula Init , next-state formula Next , and
declared variables v-one through v-n is expressed by this temporal formula.

which is typed like this.

For now, you should ignore the red part and pretend the formula is this

[slide 166]

The specification with initial formula Init ,
next-state formula Next ,
declared variables v1, . . . , vn

is expressed by the temporal formula

Init ∧ 2 [Next]〈v1, ... , vn 〉

Init /\ [][Next]_<< v1, . . . , vn >>

The specification with initial formula Init , next-state formula Next , and
declared variables v-one through v-n is expressed by this temporal formula.

which is typed like this.

For now, you should ignore the red part and pretend the formula is this

[slide 167]

The specification with initial formula Init ,
next-state formula Next ,
declared variables v1, . . . , vn

is expressed by the temporal formula

Init ∧ 2 [Next]〈v1, ... , vn 〉

The specification with initial formula Init , next-state formula Next , and
declared variables v-one through v-n is expressed by this temporal formula.

which is typed like this.

For now, you should ignore the red part and pretend the formula is this

[slide 168]

The specification with initial formula Init ,
next-state formula Next ,
declared variables v1, . . . , vn

is expressed by the temporal formula

Init ∧ 2[Next]〈v1, ... , vn 〉

a temporal formula that is true on behaviors
for which Init is true on the initial state
and Next is true on every step.

To help you do that, I’ll color the other stuff gray.

[slide 169]

The specification with initial formula Init ,
next-state formula Next ,
declared variables v1, . . . , vn

is expressed by the temporal formula

Init ∧ 2[Next]〈v1, ... , vn 〉

a temporal formula that is true on behaviors
for which Init is true on the initial state
and Next is true on every step.

To help you do that, I’ll color the other stuff gray.

[slide 170]

The specification with initial formula Init ,
next-state formula Next ,
declared variables v1, . . . , vn

is expressed by the temporal formula

Init ∧ 2[Next]〈v1, ... , vn 〉

a temporal formula that is true on behaviors
for which Init is true on the initial state
and Next is true on every step.

To help you do that, I’ll color the other stuff gray.

[slide 171]

The specification with initial formula Init ,
next-state formula Next ,
declared variables v1, . . . , vn

is expressed by the temporal formula

Init ∧ 2 [Next]〈v1, ... , vn 〉

a temporal formula that is true on behaviors
for which Init is true on the initial state
and Next is true on every step.

To help you do that, I’ll color the other stuff gray.

[slide 172]

The specification with initial formula Init ,
next-state formula Next ,
declared variables v1, . . . , vn

is expressed by the temporal formula

Init ∧ 2 [Next]〈v1, ... , vn 〉

a temporal formula that is true on behaviors
for which Init is true on the initial state
and Next is true on every step.

To help you do that, I’ll color the other stuff gray.

[slide 173]

To tell TLC that the spec is:

TPSpec
∆
= TPInit ∧ 2[TPNext]〈rmState,tmState,tmPrepared ,msgs〉

To tell TLC that the spec for a model is this temporal formula

We can give it the initial formula and next-state formula.

Or we can give it the temporal formula.

If we’ve given this formula a name

Then we can just give TLC that name.

[slide 174]

To tell TLC that the spec is:

TPSpec
∆
= TPInit ∧ 2[TPNext]〈rmState,tmState,tmPrepared ,msgs〉

To tell TLC that the spec for a model is this temporal formula

We can give it the initial formula and next-state formula.

Or we can give it the temporal formula.

If we’ve given this formula a name

Then we can just give TLC that name.

[slide 175]

To tell TLC that the spec is:

TPSpec
∆
= TPInit ∧ 2[TPNext]〈rmState,tmState,tmPrepared ,msgs〉

To tell TLC that the spec for a model is this temporal formula

We can give it the initial formula and next-state formula.

Or we can give it the temporal formula.

If we’ve given this formula a name

Then we can just give TLC that name.

[slide 176]

To tell TLC that the spec is:

TPSpec
∆
= TPInit ∧ 2[TPNext]〈rmState,tmState,tmPrepared ,msgs〉

To tell TLC that the spec for a model is this temporal formula

We can give it the initial formula and next-state formula.

Or we can give it the temporal formula.

If we’ve given this formula a name

Then we can just give TLC that name.

[slide 177]

To tell TLC that the spec is:

TPSpec
∆
= TPInit ∧ 2[TPNext]〈rmState,tmState,tmPrepared ,msgs〉

To tell TLC that the spec for a model is this temporal formula

We can give it the initial formula and next-state formula.

Or we can give it the temporal formula.

If we’ve given this formula a name

Then we can just give TLC that name.

[slide 178]

Applying 2 to a State Formula

For the action TPNext :

2TPNext is true on s1 → s2 → s3 → s4 → · · · iff
TPNext is true on si → si+1 for all i .

The state formula TPTypeOK is an action

2TPTypeOK is true on s1 → s2 → s3 → s4 → · · · iff
TPTypeOK is true on si → si+1 for all i .

Let’s now see what it means to apply the Always operator to a state formula.

For the action TPNext , always TPNext is true on a behavior if and only if
TPNext is true on every step of the behavior.

A state formula like TPTypeOK is an action

[slide 179]

Applying 2 to a State Formula

For the action TPNext :

2TPNext is true on s1 → s2 → s3 → s4 → · · · iff
TPNext is true on si → si+1 for all i .

The state formula TPTypeOK is an action

2TPTypeOK is true on s1 → s2 → s3 → s4 → · · · iff
TPTypeOK is true on si → si+1 for all i .

Let’s now see what it means to apply the Always operator to a state formula.

For the action TPNext , always TPNext is true on a behavior if and only if
TPNext is true on every step of the behavior.

A state formula like TPTypeOK is an action

[slide 180]

Applying 2 to a State Formula

For the action TPNext :

2TPNext is true on s1 → s2 → s3 → s4 → · · · iff
TPNext is true on si → si+1 for all i .

The state formula TPTypeOK is an action

2TPTypeOK is true on s1 → s2 → s3 → s4 → · · · iff
TPTypeOK is true on si → si+1 for all i .

Let’s now see what it means to apply the Always operator to a state formula.

For the action TPNext , always TPNext is true on a behavior if and only if
TPNext is true on every step of the behavior.

A state formula like TPTypeOK is an action

[slide 181]

Applying 2 to a State Formula

For the action TPNext :

2TPNext is true on s1 → s2 → s3 → s4 → · · · iff
TPNext is true on si → si+1 for all i .

The state formula TPTypeOK is an action,
so

2TPTypeOK is true on s1 → s2 → s3 → s4 → · · · iff
TPTypeOK is true on si → si+1 for all i .

So always TPTypeOK is true on a behavior if and only if TPTypeOK is true
on every step of the behavior.

But a state formula is an action whose value on a step depends only on the
first state of the step.

So always TPTypeOK is true on a behavior if and only if TPTypeOK is true
on every state of the behavior.

[slide 182]

Applying 2 to a State Formula

For the action TPNext :

2TPNext is true on s1 → s2 → s3 → s4 → · · · iff
TPNext is true on si → si+1 for all i .

The state formula TPTypeOK is an action whose value
on si → si+1 depends only on si

2TPTypeOK is true on s1 → s2 → s3 → s4 → · · · iff
TPTypeOK is true on si → si+1 for all i .

So always TPTypeOK is true on a behavior if and only if TPTypeOK is true
on every step of the behavior.

But a state formula is an action whose value on a step depends only on the
first state of the step.

So always TPTypeOK is true on a behavior if and only if TPTypeOK is true
on every state of the behavior.

[slide 183]

Applying 2 to a State Formula

For the action TPNext :

2TPNext is true on s1 → s2 → s3 → s4 → · · · iff
TPNext is true on si → si+1 for all i .

The state formula TPTypeOK is an action whose value
on si → si+1 depends only on si , so

2TPTypeOK is true on s1 → s2 → s3 → s4 → · · · iff
TPTypeOK is true on si for all i .

So always TPTypeOK is true on a behavior if and only if TPTypeOK is true
on every step of the behavior.

But a state formula is an action whose value on a step depends only on the
first state of the step.

So always TPTypeOK is true on a behavior if and only if TPTypeOK is true
on every state of the behavior.

[slide 184]

2TPTypeOK is true on a behavior iff
TPTypeOK is true on every state of the behavior.

You can write 2TPTypeOK .

You don’t need the []〈rmState, tmState, tmPrepared,msgs〉
for 2 state formula.

You can write simply always TPTypeOK .

You don’t need the square brackets and subscript when you apply always to a
state formula.

[slide 185]

2TPTypeOK is true on a behavior iff
TPTypeOK is true on every state of the behavior.

You can write 2TPTypeOK .

You don’t need the []〈rmState, tmState, tmPrepared,msgs〉
for 2 state formula.

You can write simply always TPTypeOK .

You don’t need the square brackets and subscript when you apply always to a
state formula.

[slide 186]

2TPTypeOK is true on a behavior iff
TPTypeOK is true on every state of the behavior.

You can write 2TPTypeOK .

You don’t need the []〈rmState, tmState, tmPrepared,msgs〉
for 2 state formula.

You can write simply always TPTypeOK .

You don’t need the square brackets and subscript when you apply always to a
state formula.

[slide 187]

THEOREMS

Theorems

[slide 188]

For a temporal formula TF

THEOREM TF

asserts that TF is true on every possible behavior.

If TF is a temporal formula, the statement THEOREM TF asserts that TF is
true on every possible behavior.

That’s every possible behavior, not just every behavior satisfying some spec.

[slide 189]

For a temporal formula TF

THEOREM TF

asserts that TF is true on every possible behavior.

Not just for behaviors satisfying some spec.

If TF is a temporal formula, the statement THEOREM TF asserts that TF is
true on every possible behavior.

That’s every possible behavior, not just every behavior satisfying some spec.

[slide 190]

THEOREM TPSpec ⇒ 2TPTypeOK

Asserts that for every behavior:
if TPSpec is true on the behavior
then 2TPTypeOK is true on the behavior

Asserts that TPTypeOK is an invariant of TPSpec .

This theorem asserts that for every behavior if TPSpec is true on the
behavior then always TPTypeOK is true on that behavior.

TPSpec true on the behavior just means that the behavior satisfies TPSpec.

Always TPTypeOK is true on the behavior means that TPTypeOK is true on
every state of the behavior.

[slide 191]

THEOREM TPSpec ⇒ 2TPTypeOK

Asserts that for every behavior:
if TPSpec is true on the behavior
then 2TPTypeOK is true on the behavior

Asserts that TPTypeOK is an invariant of TPSpec .

This theorem asserts that for every behavior if TPSpec is true on the
behavior then always TPTypeOK is true on that behavior.

TPSpec true on the behavior just means that the behavior satisfies TPSpec.

Always TPTypeOK is true on the behavior means that TPTypeOK is true on
every state of the behavior.

[slide 192]

THEOREM TPSpec ⇒ 2TPTypeOK

Asserts that for every behavior:
if TPSpec is true on the behavior
then 2TPTypeOK is true on the behavior

Asserts that TPTypeOK is an invariant of TPSpec .

This theorem asserts that for every behavior if TPSpec is true on the
behavior then always TPTypeOK is true on that behavior.

TPSpec true on the behavior just means that the behavior satisfies TPSpec.

Always TPTypeOK is true on the behavior means that TPTypeOK is true on
every state of the behavior.

[slide 193]

THEOREM TPSpec ⇒ 2TPTypeOK

Asserts that for every behavior:
if TPSpec is true on the behavior
then 2TPTypeOK is true on the behavior

Asserts that TPTypeOK is an invariant of TPSpec .

This theorem asserts that for every behavior if TPSpec is true on the
behavior then always TPTypeOK is true on that behavior.

TPSpec true on the behavior just means that the behavior satisfies TPSpec.

Always TPTypeOK is true on the behavior means that TPTypeOK is true on
every state of the behavior.

[slide 194]

THEOREM TPSpec ⇒ 2TPTypeOK

Asserts that for every behavior:
if TPSpec is true on the behavior
then 2TPTypeOK is true on the behavior

Asserts that TPTypeOK is an invariant of TPSpec .

This theorem asserts that for every behavior if TPSpec is true on the
behavior then always TPTypeOK is true on that behavior.

TPSpec true on the behavior just means that the behavior satisfies TPSpec.

Always TPTypeOK is true on the behavior means that TPTypeOK is true on
every state of the behavior.

[slide 195]

THEOREM TPSpec ⇒ 2TPTypeOK

Asserts that for every behavior:
if the behavior satisfies TPSpec

then 2TPTypeOK is true on the behavior

Asserts that TPTypeOK is an invariant of TPSpec .

This theorem asserts that for every behavior if TPSpec is true on the
behavior then always TPTypeOK is true on that behavior.

TPSpec true on the behavior just means that the behavior satisfies TPSpec.

Always TPTypeOK is true on the behavior means that TPTypeOK is true on
every state of the behavior.

[slide 196]

THEOREM TPSpec ⇒ 2TPTypeOK

Asserts that for every behavior:
if the behavior satisfies TPSpec

then 2TPTypeOK is true on the behavior

Asserts that TPTypeOK is an invariant of TPSpec .

This theorem asserts that for every behavior if TPSpec is true on the
behavior then always TPTypeOK is true on that behavior.

TPSpec true on the behavior just means that the behavior satisfies TPSpec.

Always TPTypeOK is true on the behavior means that TPTypeOK is true on
every state of the behavior.

[slide 197]

THEOREM TPSpec ⇒ 2TPTypeOK

Asserts that for every behavior:
if the behavior satisfies TPSpec

then TPTypeOK is true on every state of the behavior

Asserts that TPTypeOK is an invariant of TPSpec .

This theorem asserts that for every behavior if TPSpec is true on the
behavior then always TPTypeOK is true on that behavior.

TPSpec true on the behavior just means that the behavior satisfies TPSpec.

Always TPTypeOK is true on the behavior means that TPTypeOK is true on
every state of the behavior.

[slide 198]

THEOREM TPSpec ⇒ 2TPTypeOK

Asserts that for every behavior:
if the behavior satisfies TPSpec

then TPTypeOK is true on every state of the behavior

Asserts that TPTypeOK is an invariant of TPSpec .

So this theorem

asserts that TPTypeOK is an invariant of the specification TPSpec.

[slide 199]

THEOREM TPSpec ⇒ 2TPTypeOK

Asserts that for every behavior:
if the behavior satisfies TPSpec

then TPTypeOK is true on every state of the behavior

Asserts that TPTypeOK is an invariant of TPSpec .

So this theorem

asserts that TPTypeOK is an invariant of the specification TPSpec.

[slide 200]

THEOREM TPSpec ⇒ 2TPTypeOK

Asserts that TPTypeOK is an invariant of TPSpec .

TLC does not automatically check theorems.

To check this theorem, add to

for a model with behavior spec TPSpec .

TLC does not automatically check theorems. (But you should put them in
your specs to tell the reader what you expect to be true.)

To check this theorem with TLC, add always TPTypeOK to the Properties list
of the What to check section of the Model overview page for a model having
TPSpec as its behavior specification.

[slide 201]

THEOREM TPSpec ⇒ 2TPTypeOK

Asserts that TPTypeOK is an invariant of TPSpec .

TLC does not automatically check theorems.

To check this theorem, add to

for a model with behavior spec TPSpec .

TLC does not automatically check theorems. (But you should put them in
your specs to tell the reader what you expect to be true.)

To check this theorem with TLC, add always TPTypeOK to the Properties list
of the What to check section of the Model overview page for a model having
TPSpec as its behavior specification.

[slide 202]

THEOREM TPSpec ⇒ 2TPTypeOK

Asserts that TPTypeOK is an invariant of TPSpec .

TLC does not automatically check theorems.

To check this theorem, add []TPTypeOK to

for a model with behavior spec TPSpec .

TLC does not automatically check theorems. (But you should put them in
your specs to tell the reader what you expect to be true.)

To check this theorem with TLC, add always TPTypeOK to the Properties list
of the What to check section of the Model overview page for a model having
TPSpec as its behavior specification.

[slide 203]

THEOREM TPSpec ⇒ 2TPTypeOK

Asserts that TPTypeOK is an invariant of TPSpec .

TLC does not automatically check theorems.

To check this theorem, add TPTypeOK to

for a model with behavior spec TPSpec .

Or, since this is an invariance property, you can just check that TPTypeOK
(without the always) is an invariant of TPSpec.

[slide 204]

We’re now ready to explain in Part Two what it means for the two-phase
commit protocol to implement the specification of transaction commit, and
how to use TLC to check that it does.

[slide 205]

TLA+ Video Course

End of Lecture 8, Part 1

IMPLEMENTATION
PRELIMINARIES

[slide 206]

