TLA+ Video Course - Lecture 8, Part 1
 Leslie Lamport
 IMPLEMENTATION PRELIMINARIES

This video should be viewed in conjunction with a Web page.
To find that page, search the Web for TLA+Video Course .

The TLA ${ }^{+}$Video Course
Lecture 8, Part 1
Implementation: Preliminaries

This lecture explains what it means for the two-phase commit protocol to implement the specification of transaction commit. It's divided into two parts. Part One reviews and categorizes the kinds of TLA+ expressions you've already seen, and introduces a new kind: temporal formulas. A specification can be written as a single temporal formula. We begin with an explanation of logical implication.

IMPLICATION

$$
P \Rightarrow Q
$$

This formula asserts that
[slide 4]
$P \Rightarrow Q$
If P is true then Q is true.

This formula asserts that

If formula P is true then formula Q is true.
$P \Rightarrow Q$

This formula asserts that

If formula P is true then formula Q is true.
This symbol is read implies and is typed
[slide 6]

$$
\begin{aligned}
P & \Rightarrow Q \\
& \Rightarrow
\end{aligned}
$$

This formula asserts that

If formula P is true then formula Q is true.
This symbol is read implies and is typed equals greater than.
[slide 7]
$P \Rightarrow Q$ equals

The formula P implies Q equals
[slide 8]
$P \Rightarrow Q$ equals

$$
\text { IF } P
$$

The formula P implies Q equals If P is true
$P \Rightarrow Q$ equals

$$
\text { IF } P \text { THEN } Q
$$

The formula P implies Q equals
If P is true then Q is true.
$P \Rightarrow Q$ equals

IF P THEN Q
ELSE we know nothing

The formula P implies Q equals
If P is true then Q is true.
Else, we know nothing.
The way we assert mathematically that we know nothing is
$P \Rightarrow Q$ equals

IF P THEN Q
ELSE TRUE

The formula P implies Q equals

If P is true then Q is true.
Else, we know nothing.
The way we assert mathematically that we know nothing is with the formula TRUE. Since saying that TRUE is true says nothing.
[slide 12]

$P \Rightarrow Q$ equals

A useful property of implies is that P implies Q equals

$$
P \Rightarrow Q \text { equals } \neg Q \Rightarrow \neg P
$$

A useful property of implies is that P implies Q equals not Q implies not P.
$P \Rightarrow Q$ equals $\neg Q \Rightarrow \neg P$

because

IF P THEN Q
ELSE TRUE

A useful property of implies is that P implies Q equals
not Q implies not P .
That's true because the definition of P implies Q
$P \Rightarrow Q$ equals $\neg Q \Rightarrow \neg P$

because

IF P THEN
 equals IF $\neg Q$
THEN $\neg P$
ELSE TRUE

A useful property of implies is that P implies Q equals not Q implies not P.

That's true because the definition of P implies Q
equals the definition of not Q implies not P.

$P \Rightarrow Q$ equals $\neg Q \Rightarrow \neg P$

because

IF	P	THEN	Q	equals	IF	$\neg Q$	THEN
		$\neg P$					
	ELSE	TRUE				ELSE	TRUE

We can check this by substituting all combinations of Boolean values for P and Q.

A useful property of implies is that P implies Q equals not Q implies not P.

That's true because the definition of P implies Q
equals the definition of not Q implies not P.
We can check this by substituting all four possible combinations of Boolean values for P and Q.
[slide 17]

because

IF P	THEN	Q	equals	IF $\neg Q$	THEN	$\neg P$	
	ELSE	TRUE				ELSE	TRUE

For example: $P \leftarrow$ TRUE and $Q \leftarrow$ FALSE

For example, let's substitute TRUE for P and FALSE for Q.
$P \Rightarrow Q$ equals $\neg Q \Rightarrow \neg P$

because

IF true THEN	FALSE	equals	IF \neg FALSETHEN
ELSE	TRUE	ELRUE	
TRUE			

For example: $P \leftarrow$ TRUE and $Q \leftarrow$ FALSE

For example, let's substitute TRUE for P and FALSE for Q. like this.

$P \Rightarrow Q$ equals $\neg Q \Rightarrow \neg P$
 because

IF TRUE THEN FALSE	equals	IF \neg FALSETHEN
else true		ELSE

For example, let's substitute TRUE for P and FALSE for Q. like this.
Evaluating this IF/THEN/ELSE expression yields
$P \Rightarrow Q$ equals $\neg Q \Rightarrow \neg P$

because

FALSE equals IF \neg FALSETHEN \neg TRUE ELSE TRUE

For example, let's substitute TRUE for P and FALSE for Q. like this.
Evaluating this IF / THEN / ELSE expression yields the value FALSE.
$P \Rightarrow Q$ equals $\neg Q \Rightarrow \neg P$

because

FALSE equals IF \neg FALSETHEN \neg TRUE ELSE TRUE

For example, let's substitute TRUE for P and FALSE for Q. like this.
Evaluating this IF / THEN / ELSE expression yields the value FALSE.
Not FALSE
$P \Rightarrow Q$ equals $\neg Q \Rightarrow \neg P$

because

false equals IF true then \neg true ELSE TRUE

For example, let's substitute TRUE for P and FALSE for Q. like this.
Evaluating this IF / THEN / ELSE expression yields the value FALSE.
Not FALSE equals TRUE. So this IF /THEN/ELSE equals
$P \Rightarrow Q$ equals $\neg Q \Rightarrow \neg P$

because

FALSE equals \quad TRUE

For example, let's substitute TRUE for P and FALSE for Q. like this.
Evaluating this IF / THEN / ELSE expression yields the value FALSE.
Not FALSE equals TRUE. So this IF / THEN / ELSE equals not TRUE, which equals
$P \Rightarrow Q$ equals $\neg Q \Rightarrow \neg P$

because

FALSE equals FALSE

For example, let's substitute TRUE for P and FALSE for Q. like this.
Evaluating this IF / THEN / ELSE expression yields the value FALSE.
Not FALSE equals TRUE. So this IF /THEN / ELSE equals not TRUE, which equals FALSE, so the two formulas are equal for this substitution of Boolean values for P and Q.
$P \Rightarrow Q$ equals $\neg Q \Rightarrow \neg P$

because

IF P	THEN	Q	equals	IF	$\neg Q$	THEN	$\neg P$
	ELSE	TRUE				ELSE	TRUE

because

IF	P	THEN	Q	equals	IF	$\neg Q$	THEN
		$\neg P$					
	ELSE	TRUE				ELSE	TRUE

You can check the other values of P and Q.

You can check the other three possible substitutions of Boolean values for P and Q yourself.
[slide 27]
$P \Rightarrow Q$ equals $\neg Q \Rightarrow \neg P$

Let's take a closer look at this equality.
$P \Rightarrow Q$ equals $\neg Q \Rightarrow \neg P$

Let's substitute: $P \leftarrow$ it's raining
$Q \leftarrow$ the ground is wet

Let's take a closer look at this equality.

Suppose we substitute "it's raining" for P and "the ground is wet" for Q.
$P \Rightarrow Q$ equals $\neg Q \Rightarrow \neg P$

If it's raining then the ground is wet.

Let's take a closer look at this equality.

Suppose we substitute "it's raining" for P and "the ground is wet" for Q.
The equality of these two formulas means that "If it's raining then the ground is wet."
$P \Rightarrow Q$ equals $\neg Q \Rightarrow \neg P$

If it's raining then the ground is wet.
has the same meaning as
If the ground is not wet then it's not raining.

Means the same thing as "If the ground is not wet then it's not raining." But does it?
$P \Rightarrow Q$ equals $\neg Q \Rightarrow \neg P$

If it's raining then the ground is wet.
has the same meaning as
If the ground is not wet then it's not raining.

Means the same thing as "If the ground is not wet then it's not raining."

But does it?

This sounds right.
$P \Rightarrow Q$ equals $\neg Q \Rightarrow \neg P$

If it's raining then the ground is wet.
has the same meaning as
If the ground is not wet then it's not raining.

Means the same thing as "If the ground is not wet then it's not raining."
But does it?
This sounds right. But this doesn't. That's because
$P \Rightarrow Q$ equals $\neg Q \Rightarrow \neg P$

If it's raining then the ground is wet.
has the same meaning as
If the ground is not wet then it's not raining.

In speech, implication asserts causality.

Means the same thing as "If the ground is not wet then it's not raining."

But does it?

This sounds right. But this doesn't. That's because in ordinary speech, implication asserts causality.
[slide 34]
$P \Rightarrow Q$ equals $\neg Q \Rightarrow \neg P$

If it's raining then the ground is wet
has the same meaning as
If the ground is not wet then it's not raining.

In speech, implication asserts causality.

Raining causes the ground to be wet.
$P \Rightarrow Q$ equals $\neg Q \Rightarrow \neg P$

If it's raining then the ground is wet.
has the same meaning as
If the ground is not wet then it's not raining.

In speech, implication asserts causality.

Raining causes the ground to be wet.

But, the ground not being wet doesn't cause it not to be raining.
So in ordinary speech, these two sentences don't have the same meaning.
$P \Rightarrow Q$ equals $\neg Q \Rightarrow \neg P$

If it's raining then the ground is wet.
has the same meaning as
If the ground is not wet then it's not raining.

In speech, implication asserts causality.
In math, implication asserts only correlation.

But in math and hence in TLA+, implication asserts only correlation, not causality.

In math, these two sentences and these two formulas have the same meaning. And TLA + is math.

ORDINARY EXPRESSIONS

A module-closed expression is a TLA+ expression that

Let's define a module-closed expression of a module to be a TLA ${ }^{+}$ expression that

A module-closed expression is a TLA+ expression that
(after expanding definitions)

Let's define a module-closed expression of a module to be a TLA+
expression that (after expanding all definitions)

A module-closed expression is a TLA+ expression that contains only:

Let's define a module-closed expression of a module to be a TLA+

 expression that (after expanding all definitions) contains only:A module-closed expression is a TLA+
expression that contains only:

- built-in TLA+ operators and constructs,

Let's define a module-closed expression of a module to be a TLA+ expression that (after expanding all definitions) contains only:
built-in TLA ${ }^{+}$operators and constructs.

A module-closed expression is a TLA+

expression that contains only:

- built-in TLA+ operators and constructs,
- numbers and strings
numbers and strings

A module-closed expression is a TLA+ expression that contains only:

- built-in TLA+ operators and constructs,
- numbers and strings, like 42 and " $a b c$ "
numbers and strings like 42 and the string $a b c$.

A module-closed expression is a TLA+ expression that contains only:

- built-in TLA+ operators and constructs,
- numbers and strings,
- declared constants and variables,
numbers and strings
Identifiers declared in the module's CONSTANT and VARIABLE statements.

A module-closed expression is a TLA+ expression that contains only:

- built-in TLA+ operators and constructs,
- numbers and strings,
- declared constants and variables,
- identifiers declared locally within it.
numbers and strings
Identifiers declared in the module's CONSTANT and VARIABLE statements.
And identifiers declared locally within the expression.

A module-closed expression is a TLA+ expression that contains only:

- identifiers declared locally within it.

Locally declared identifiers

A module-closed expression is a TLA+ expression that contains only:

- identifiers declared locally within it. Including ones introduced by:

Locally declared identifiers include identifiers introduced by these constructs occurring in the expression:

A module－closed expression is a TLA＋

 expression that contains only：－identifiers declared locally within it． Including ones introduced by：

$$
\forall ⿴ 囗 S: \ldots \quad \text { and } \quad \exists ⿴ 囗 S: \ldots
$$

Locally declared identifiers include identifiers introduced by these constructs occurring in the expression：

Forall and exists．

A module－closed expression is a TLA＋ expression that contains only：
－identifiers declared locally within it． Including ones introduced by：

$$
\begin{aligned}
& \forall \text { } ⿴ 囗 S: \ldots \text { and } \quad \exists \text { 四 } S \\
& {[\text { [囵 } \mapsto \ldots]}
\end{aligned}
$$

Locally declared identifiers include identifiers introduced by these constructs occurring in the expression：

Forall and exists．
This function constructor．

A module-closed expression is a TLA+ expression that contains only:

- identifiers declared locally within it. Including ones introduced by:

$$
\begin{aligned}
& \forall v \in S: \ldots \text { and } \exists v \in S: \ldots \\
& {[v \in S \mapsto \ldots]} \\
& \{v \in S: \ldots\} \quad \text { and } \quad\{\ldots: v \in S\}
\end{aligned}
$$

Locally declared identifiers include identifiers introduced by these constructs occurring in the expression:

Forall and exists.
This function constructor.
And these set constructors.
[slide 51]

This expression is module-complete

$$
\exists v \in N a t: x^{\prime}=x+v
$$

For example, this expression is module-complete

This expression is module-complete

$$
\exists v \in N a t: x^{\prime}=x+v
$$

if x is a declared variable.

For example, this expression is module-complete if x is a declared variable.

This expression is module-complete

$$
\exists v \in \text { Nat }: x^{\prime}=x+v
$$

This subexpression is not module-complete

For example, this expression is module-complete if x is a declared variable.
But this subexpression is not module-complete

This expression is module-complete

$$
\exists v \in N a t: x^{\prime}=x+v
$$

This subexpression is not module-complete because v is locally declared outside it.

For example, this expression is module-complete if x is a declared variable.
But this subexpression is not module-complete because v is locally declared outside the subexpression.

A module-closed formula is a Boolean-valued module-closed expression.

A module-closed formula is a Boolean-valued module-closed expression.

A module-closed formula is a Boolean-valued module-closed expression.

(One whose value is either TRUE or FALSE.)

A module-closed formula is a Boolean-valued module-closed expression.
That is, one whose value is either true or FALSE.
For example,

A module-closed formula is a Boolean-valued module-closed expression.

$$
(x \in 1 . .42) \wedge\left(y^{\prime}=x+1\right)
$$

A module-closed formula is a Boolean-valued module-closed expression.
That is, one whose value is either TRUE or FALSE.
For example, this expression - assuming x and y are declared variables.

A module-closed formula is a Boolean-valued

 module-closed expression.$$
(x \in 1 . .42) \wedge\left(y^{\prime}=x+1\right)
$$

Be aware that quite a few people use the word formula to mean any mathematical expression. But l'll use it to mean a Boolean-valued expression.

For this lecture:

Just for this lecture:

For this lecture:

- expression means module-closed expression

Just for this lecture:

expression will mean module-closed expression

For this lecture:

- expression means module-closed expression
- formula means module-closed formula

Just for this lecture:

expression will mean module-closed expression
and formula will mean module-closed formula.

Constant Expressions

Constant Expressions.

Constant Expressions

A constant expression is a (module-complete) expression that

Constant Expressions.

A constant expression is a (module-complete) expression that

Constant Expressions

A constant expression is a (module-complete)
expression that
(after expanding all definitions)

Constant Expressions.

A constant expression is a (module-complete) expression that (after expanding all definitions)

Constant Expressions

A constant expression is a (module-complete) expression that

- Has no declared variables.

Constant Expressions.

A constant expression is a (module-complete) expression that
(after expanding all definitions)
Has no declared variables.

Constant Expressions

A constant expression is a (module-complete) expression that

- Has no declared variables.

- Has no non-constant operators.

And has no non-constant operators.

Constant Expressions

A constant expression is a (module-complete) expression that

- Has no declared variables.

- Has no non-constant operators.

The only ones you've seen so far are ' (prime) and UNCHANGED.

And has no non-constant operators.

The only non-constant operators that you've seen so far are prime and UNCHANGED.

The value of a constant expression

The value of a constant expression

The value of a constant expression

$$
\text { foo } \cup\left\{n \in 1 . .22: n^{2}>m\right\}
$$

The value of a constant expression like this one

The value of a constant expression

$$
f o o \cup\left\{n \in 1 \ldots 22: n^{2}>m\right\}
$$

depends only on the values of the declared constants it contains.

The value of a constant expression like this one

depends only on the values of the declared constants it contains.
In this example, those are the constants foo and m.

The value of a constant expression

$$
f o o \cup\left\{n \in 1 \ldots 22: n^{2}>m\right\}
$$

depends only on the values of the declared constants it contains.

The value of a constant expression like this one depends only on the values of the declared constants it contains.
In this example, those are the constants foo and m.
The constant n is locally defined within the expression.

An assumption

An assumption

[slide 73]

An assumption

ASSUME
 \square

An assumption

which is asserted by an ASSUME statement
[slide 74]

An assumption

ASSUME
 \square

 must be a constant formula.
An assumption

which is asserted by an ASSUME statement

must be a constant formula.
Remember that a constant formula is a Boolean-valued constant expression.
[slide 75]

State Expressions

State expressions.

State Expressions

A state expression can contain anything a constant expression can

State expressions.

A state expression is an expression that can contain anything a constant expression can contain

State Expressions

A state expression can contain anything a constant expression can as well as declared variables.

State expressions.

A state expression is an expression that can contain anything a constant expression can contain as well as variables declared in a VARIABLES statement.

State Expressions

A state expression can contain anything a constant
expression can as well as declared variables.

$$
x+y[f o o]
$$

State expressions.

A state expression is an expression that can contain anything a constant expression can contain as well as variables declared in a VARIABLES statement.

For example, this is a state expression,

State Expressions

A state expression can contain anything a constant expression can as well as declared variables.

$$
\begin{aligned}
x+y[f o o] \text { if } & \text { CONSTANT foo } \\
& \text { variables } x, y
\end{aligned}
$$

State expressions.

A state expression is an expression that can contain anything a constant expression can contain as well as variables declared in a VARIABLES statement.

For example, this is a state expression, if foo is a declared constant and x and y are declared variables.
[slide 80]

State Expressions

A state expression can contain anything a constant expression can as well as declared variables.

$$
x+y[f o o]
$$

State expressions.

A state expression is an expression that can contain anything a constant expression can contain as well as variables declared in a VARIABLES statement.

For example, this is a state expression, if foo is a declared constant and x and y are declared variables.
[slide 81]

State Expressions

A state expression can contain anything a constant expression can as well as declared variables.

$$
x+y[f o o]
$$

The value of a state expression depends on:

The value of a state expression depends on:

State Expressions

A state expression can contain anything a constant expression can as well as declared variables.

$$
x+y[f o o]
$$

The value of a state expression depends on:

- The values of declared constants.

The value of a state expression depends on:
The values of declared constants.

State Expressions

A state expression can contain anything a constant expression can as well as declared variables.

$$
x+y[f o o]
$$

The value of a state expression depends on:

- The values of declared constants.
- The values of declared variables.

The value of a state expression depends on:
The values of declared constants.
and the values of declared variables.

State Expressions

A state expression can contain anything a constant expression can as well as declared variables.

$$
x+y[f o o]
$$

The value of a state expression depends on:

- The values of declared constants.
- The values of declared variables.

I will ignore dependence on the values of declared constants.

The value of a state expression depends on:
The values of declared constants.
and the values of declared variables.
I will ignore all dependencies on the values of declared constants

State Expressions

A state expression can contain anything a constant expression can as well as declared variables.

$$
x+y[f o o]
$$

The value of a state expression depends on:

- The values of declared variables.

I will ignore dependence on the values of declared constants.

The value of a state expression depends on:
The values of declared constants.
and the values of declared variables.
I will ignore all dependencies on the values of declared constants and assume that the values of all declared constants are fixed throughout the discussion. And I'll avoid declared constants in the examples I use.

A state expression has a value on a state.

A state expression has a value on a state.

A state expression has a value on a state.

Remember that a state assigns values to variables.

A state expression has a value on a state.

Remember that a state assigns values to variables.

A state expression has a value on a state.

Remember that a state assigns values to variables.

If state s assigns $v \leftarrow$ Nat and $w \leftarrow-42$

A state expression has a value on a state.
Remember that a state assigns values to variables.
If state s assigns the set Nat of natural numbers to variable v and the number - 42 to variable w,

A state expression has a value on a state.

Remember that a state assigns values to variables.

If state s assigns $v \leftarrow N a t$ and $w \leftarrow-42$, then

$$
v \cup\{w\}
$$

A state expression has a value on a state.
Remember that a state assigns values to variables.
If state s assigns the set Nat of natural numbers to variable v and the number -42 to variable w,
then this state expression
[slide 90]

A state expression has a value on a state.

Remember that a state assigns values to variables.

If state s assigns $v \leftarrow N a t$ and $w \leftarrow-42$, then
$v \cup\{w\}$ has the value $N a t \cup\{-42\}$

A state expression has a value on a state.
Remember that a state assigns values to variables.
If state s assigns the set Nat of natural numbers to variable v and the number -42 to variable w,
then this state expression has this value
[slide 91]

A state expression has a value on a state.

Remember that a state assigns values to variables.

If state s assigns $v \leftarrow N a t$ and $w \leftarrow-42$, then
$v \cup\{w\}$ has the value $N a t \cup\{-42\}$
on state s.

A state expression has a value on a state.
Remember that a state assigns values to variables.
If state s assigns the set Nat of natural numbers to variable v and the number -42 to variable w,
then this state expression has this value on state s.
[slide 92]

A constant expression is a state expression that has the same value on all states.

A constant expression is a state expression that has the same value on all states.

A constant expression is a state expression that has the same value on all states.

The constant expression $2+2$ has the value 4 on every state.

A constant expression is a state expression that has the same value on all

 states.The constant expression $2+2$ has the value 4 on every state.

Action Expressions

Action Expressions.

Action Expressions

An action expression can contain anything a state expression can

Action Expressions.

An action expression can contain anything a state expression can

Action Expressions

An action expression can contain anything a state expression can as well as ' (prime) and UNCHANGED.

Action Expressions.

An action expression can contain anything a state expression can as well as prime and UNCHANGED.

Action Expressions

An action expression can contain anything a state expression can as well as ' (prime) and UNCHANGED.

A state expression has a value on a step (pair of states).

Action Expressions.

An action expression can contain anything a state expression can

as well as prime and UNCHANGED. A state expression has a value on a step (remember that a step is a pair of states).

Action Expressions

An action expression can contain anything a state expression can as well as ' (prime) and UNCHANGED.

A state expression has a value on a step (pair of states).
If state s assigns $p \leftarrow 42$

Action Expressions.
An action expression can contain anything a state expression can
as well as prime and UNCHANGED. A state expression has a value on a step (remember that a step is a pair of states).

If state s assigns the value 42 to variable p

Action Expressions

An action expression can contain anything a state expression can as well as ' (prime) and UNCHANGED.

A state expression has a value on a step (pair of states).
If state s assigns $p \leftarrow 42$ and
state t assigns $q \leftarrow 24$

Action Expressions.
An action expression can contain anything a state expression can
as well as prime and UNCHANGED. A state expression has a value on a step (remember that a step is a pair of states).

If state s assigns the value 42 to variable p
and state t assigns the value 24 to variable q
[slide 100]

Action Expressions

An action expression can contain anything a state expression can as well as ' (prime) and UNCHANGED.

A state expression has a value on a step (pair of states).
If state s assigns $p \leftarrow 42$ and state t assigns $q \leftarrow 24$, then

$$
p-q^{\prime}
$$

then the action expression $p-q^{\prime}$

Action Expressions

An action expression can contain anything a state expression can as well as ' (prime) and UNCHANGED.

A state expression has a value on a step (pair of states).
If state s assigns $p \leftarrow 42$ and state t assigns $q \leftarrow 24$, then $p-q^{\prime}$ has the value $42-24$
then the action expression $p-q^{\prime}$
has the value $42-24$, (which equals 18)

Action Expressions

An action expression can contain anything a state expression can as well as ' (prime) and UNCHANGED.

A state expression has a value on a step (pair of states).
If state s assigns $p \leftarrow 42$ and state t assigns $q \leftarrow 24$, then $p-q^{\prime}$ has the value $42-24$
on the step $s \rightarrow t$.
then the action expression $p-q^{\prime}$
has the value $42-24$, (which equals 18)
on the step $s t$.

A state expression is an action expression whose value on the step $s \rightarrow t$ depends only on state s.

A state expression is an action expression whose value on the step $s t$ depends only on the first state s.

A state expression is an action expression whose value on the step $s \rightarrow t$ depends only on state s.

An action formula is called an action.

A state expression is an action expression whose value on the step $s t$ depends only on the first state s.

An action formula is called simply an action.

Priming a State Expression

So far we've only primed variables. We can actually prime any state expression.

Priming a State Expression

For any state expression e the value of the action expression e^{\prime} on $s \rightarrow t$ is the value of e on state t.

So far we've only primed variables. We can actually prime any state expression.

For any state expression e, the value of the action expression e prime on the step $s t$ is the value of e on state t.

Priming a State Expression

For any state expression e the value of the action expression e^{\prime} on $s \rightarrow t$ is the value of e on state t.

UNCHANGED e equals $e^{\prime}=e$

So far we've only primed variables. We can actually prime any state expression.

For any state expression e, the value of the action expression e prime on the step $s t$ is the value of e on state t.

UNCHANGED of an expression e is defined to equal the formula $e^{\prime}=e$.

Priming a State Expression

For any state expression e the value of the action expression e^{\prime} on $s \rightarrow t$ is the value of e on state t.

UNCHANGED e equals $e^{\prime}=e$
UNCHANGED $\langle x, y, z\rangle$

So far we've only primed variables. We can actually prime any state expression.

For any state expression e, the value of the action expression e prime on the step $s t$ is the value of e on state t.

UNCHANGED of an expression e is defined to equal the formula $e^{\prime}=e$.
Therefore, UNCHANGED of a triple x, y, z
[slide 109]

Priming a State Expression

For any state expression e the value of the action expression e^{\prime} on $s \rightarrow t$ is the value of e on state t.

UNCHANGED e equals $e^{\prime}=e$
UNCHANGED $\langle x, y, z\rangle$ equals $\langle x, y, z\rangle^{\prime}=\langle x, y, z\rangle$
by definition of UNCHANGED is equivalent to the triple primed equals the triple.

Priming a State Expression

For any state expression e the value of the action expression e^{\prime} on $s \rightarrow t$ is the value of e on state t.

UNCHANGED e equals $e^{\prime}=e$
UNCHANGED $\langle x, y, z\rangle$ equals $\frac{\langle x, y, z\rangle^{\prime}}{\left\langle x^{\prime}, y^{\prime}, z^{\prime}\right\rangle}=\langle x, y, z\rangle$
by definition of UNCHANGED is equivalent to the triple primed equals the triple.

The value of a triple in the next state is the triple of the values of its components in the next state,

Priming a State Expression

For any state expression e the value of the action expression e^{\prime} on $s \rightarrow t$ is the value of e on state t.

UNCHANGED e equals $e^{\prime}=e$
UNCHANGED $\langle x, y, z\rangle$ equals $\langle x, y, z\rangle^{\prime}=\langle x, y, z\rangle$
equals $\left\langle x^{\prime}, y^{\prime}, z^{\prime}\right\rangle=\langle x, y, z\rangle$
by definition of UNCHANGED is equivalent to the triple primed equals the triple.

The value of a triple in the next state is the triple of the values of its components in the next state, so we have this equality of formulas.

Priming a State Expression

For any state expression e the value of the action expression e^{\prime} on $s \rightarrow t$ is the value of e on state t.

UNCHANGED e equals $e^{\prime}=e$
UNCHANGED $\langle x, y, z\rangle$ equals $\langle x, y, z\rangle^{\prime}=\langle x, y, z\rangle$

$$
\begin{array}{ll}
\text { equals } & \left\langle x^{\prime}, y^{\prime}, z^{\prime}\right\rangle=\langle x, y, z\rangle \\
\text { equals } & \left(x^{\prime}=x\right) \wedge\left(y^{\prime}=y\right) \wedge\left(z^{\prime}=z\right)
\end{array}
$$

by definition of UNCHANGED is equivalent to the triple primed equals the triple.

The value of a triple in the next state is the triple of the values of its components in the next state, so we have this equality of formulas. Which in turn gives us this formula, since two triples are equal if and only if their corresponding components are equal.

Priming a State Expression

For any state expression e the value of the action expression e^{\prime} on $s \rightarrow t$ is the value of e on state t.

UNCHANGED e equals $e^{\prime}=e$

UNCHANGED $\langle x, y, z\rangle$ equals $\langle x, y, z\rangle^{\prime}=\langle x, y, z\rangle$

$$
\begin{aligned}
& \text { equals }\left\langle x^{\prime}, y^{\prime}, z^{\prime}\right\rangle=\langle x, y, z\rangle \\
& \text { equals } \quad\left(x^{\prime}=x\right) \wedge\left(y^{\prime}=y\right) \wedge\left(z^{\prime}=z\right)
\end{aligned}
$$

by definition of UNCHANGED is equivalent to the triple primed equals the triple.

The value of a triple in the next state is the triple of the values of its components in the next state, so we have this equality of formulas. Which in turn gives us this formula, since two triples are equal if and only if their corresponding components are equal.

TEMPORAL FORMULAS

Temporal Formulas

A temporal formula

A temporal formula is something we haven't seen before.

A temporal formula has a Boolean value on a sequence $s_{1} \rightarrow s_{2} \rightarrow s_{3} \rightarrow \cdots$ of states.

A temporal formula is something we haven't seen before.

It has a Boolean value on a sequence of states.

A temporal formula has a Boolean value on a sequence $s_{1} \rightarrow s_{2} \rightarrow s_{3} \rightarrow \cdots$ of states.

TLA ${ }^{+}$has only Boolean-valued temporal expressions.

A temporal formula is something we haven't seen before.

It has a Boolean value on a sequence of states.
TLA ${ }^{+}$has only Boolean-valued temporal expressions - that is, temporal formulas.

A temporal formula has a Boolean value on a sequence $s_{1} \rightarrow s_{2} \rightarrow s_{3} \rightarrow \cdots$ of states.

A temporal formula is something we haven't seen before.

It has a Boolean value on a sequence of states.
TLA ${ }^{+}$has only Boolean-valued temporal expressions - that is, temporal formulas.

A temporal formula has a Boolean value on a sequence $s_{1} \rightarrow s_{2} \rightarrow s_{3} \rightarrow \cdots$ of states.

A sequence of states

A temporal formula has a Boolean value on a behavior $s_{1} \rightarrow s_{2} \rightarrow s_{3} \rightarrow \cdots$.

A sequence of states is just what we've been calling a behavior.

```
A temporal formula has a Boolean value on a behavior
s}1->\mp@subsup{s}{2}{}->\mp@subsup{s}{3}{}->\cdots
```

We will now write a specification as a temporal formula

A sequence of states is just what we've been calling a behavior.

We will now write a specification as a temporal formula

A temporal formula has a Boolean value on a behavior
$s_{1} \rightarrow s_{2} \rightarrow s_{3} \rightarrow \cdots$.

We will now write a specification as a temporal formula a formula whose value is TRUE on the behaviors allowed by the spec.

A sequence of states is just what we've been calling a behavior.

We will now write a specification as a temporal formula - a formula whose value is TRUE on just those behaviors that are allowed by the spec.

As an example,

A temporal formula has a Boolean value on a behavior $s_{1} \rightarrow s_{2} \rightarrow s_{3} \rightarrow \cdots$.

We will now write a specification as a temporal formula a formula whose value is TRUE on the behaviors allowed by the spec.

We now define TPSpec to be the specification of the two-phase commit protocol.

A sequence of states is just what we've been calling a behavior.

We will now write a specification as a temporal formula - a formula whose value is TRUE on just those behaviors that are allowed by the spec.

As an example, we now define the temporal formula TPSpec to be the specification of the two-phase commit protocol.
[slide 124]

The two-phase commit spec has initial formula TPInit next-state formula TPNext

Recall that the two-phase commit spec has initial formula TPInit and next-state formula TPNext.

The two-phase commit spec has initial formula TPInit next-state formula TPNext

TPSpec should be true on $s_{1} \rightarrow s_{2} \rightarrow s_{3} \rightarrow s_{4} \rightarrow \cdots$ iff

Recall that the two-phase commit spec has initial formula TPInit and next-state formula TPNext.

The temporal formula TPSpec should be true on a behavior if and only if:

> The two-phase commit spec has initial formula $\begin{aligned} & \text { TPInit }\end{aligned}$ $\begin{aligned} & \text { next-state formula TPNext }\end{aligned}$ TPSpec should be true on $s_{1} \rightarrow s_{2} \rightarrow s_{3} \rightarrow s_{4} \rightarrow \begin{aligned} & \cdots \text { iff } \\ & \text { if and only if }\end{aligned}$

Recall that the two-phase commit spec has initial formula TPInit and next-state formula TPNext.

The temporal formula TPSpec should be true on a behavior if and only if:
This is an abbreviation for if and only if.

The two-phase commit spec has

initial formula TPInit

next-state formula TPNext
TPSpec should be true on $s_{1} \rightarrow s_{2} \rightarrow s_{3} \rightarrow s_{4} \rightarrow \cdots$ iff TPInit is true on s_{1}

Recall that the two-phase commit spec has initial formula TPInit and next-state formula TPNext.

The temporal formula TPSpec should be true on a behavior if and only if:
This is an abbreviation for if and only if.
TPSpec should be true on the behavior if and only if TPInit is true on the behavior's first state.

The two-phase commit spec has

initial formula TPInit

next-state formula TPNext
TPSpec should be true on $s_{1} \rightarrow s_{2} \rightarrow s_{3} \rightarrow s_{4} \rightarrow \cdots$ iff
TPInit is true on s_{1}
TPNext is true on $s_{i} \rightarrow s_{i+1}$ for all i

And TPNext is true on all steps

The two-phase commit spec has

initial formula TPInit

next-state formula TPNext
TPSpec should be true on $s_{1} \rightarrow s_{2} \rightarrow s_{3} \rightarrow s_{4} \rightarrow \cdots$ iff
TPInit is true on s_{1}
TPNext is true on $s_{i} \rightarrow s_{i+1}$ for all i

And TPNext is true on all steps

The two-phase commit spec has

initial formula TPInit
next-state formula TPNext
TPSpec should be true on $s_{1} \rightarrow s_{2} \rightarrow s_{3} \rightarrow s_{4} \rightarrow \cdots$ iff TPInit is true on s_{1}
TPNext is true on $s_{i} \rightarrow s_{i+1}$ for all i

And TPNext is true on all steps

The two-phase commit spec has

initial formula TPInit

next-state formula TPNext
TPSpec should be true on $s_{1} \rightarrow s_{2} \rightarrow s_{3} \rightarrow s_{4} \rightarrow \cdots$ iff
TPInit is true on s_{1}
TPNext is true on $s_{i} \rightarrow s_{i+1}$ for all i

And TPNext is true on all steps

The two-phase commit spec has initial formula TPInit
 next-state formula TPNext

TPSpec should be true on $s_{1} \rightarrow s_{2} \rightarrow s_{3} \rightarrow s_{4} \rightarrow \cdots$ iff
TPInit is true on s_{1}
TPNext is true on $s_{i} \rightarrow s_{i+1}$ for all i

And TPNext is true on all steps of the behavior.

TPSpec should be true on $s_{1} \rightarrow s_{2} \rightarrow s_{3} \rightarrow s_{4} \rightarrow \cdots$ iff

TPInit is true on s_{1} TPNext is true on $s_{i} \rightarrow s_{i+1}$ for all i

Let's consider the first condition.
When the state formula TPInit is considered to be an action...

TPSpec should be true on $s_{1} \rightarrow s_{2} \rightarrow s_{3} \rightarrow s_{4} \rightarrow \cdots$ iff

TPInit is true on s_{1}
TPNext is true on $s_{i} \rightarrow s_{i+1}$ for all i
The value of TPInit on $s_{1} \rightarrow s_{2}$
equals value on s_{1}.

Let's consider the first condition.
When the state formula TPInit is considered to be an action... its value on a step equals its value on the first state.

Similarly, when we consider it to be a temporal formula...

TPSpec should be true on $s_{1} \rightarrow s_{2} \rightarrow s_{3} \rightarrow s_{4} \rightarrow \cdots$ iff

TPInit is true on s_{1}
TPNext is true on $s_{i} \rightarrow s_{i+1}$ for all i
The value of TPInit on $s_{1} \rightarrow s_{2} \rightarrow s_{3} \rightarrow s_{4} \rightarrow \cdots$ equals value on s_{1}.

Let's consider the first condition.
When the state formula TPInit is considered to be an action... its value on a step equals its value on the first state.

Similarly, when we consider it to be a temporal formula... the same is true for its value on a behavior.

TPSpec should be true on $s_{1} \rightarrow s_{2} \rightarrow s_{3} \rightarrow s_{4} \rightarrow \cdots$ iff

TPInit is true on s_{1} TPNext is true on $s_{i} \rightarrow s_{i+1}$ for all i

TPInit is true on $s_{1} \rightarrow s_{2} \rightarrow s_{3} \rightarrow s_{4} \rightarrow \cdots$ iff it is true on s_{1}.

Which means TPInit is true on the behavior if and only if it's true on the behavior's first state.

TPSpec should be true on $s_{1} \rightarrow s_{2} \rightarrow s_{3} \rightarrow s_{4} \rightarrow \cdots$ iff
TPInit is true on s_{1}
TPNext is true on $s_{i} \rightarrow s_{i+1}$ for all i
TPInit is true on $s_{1} \rightarrow s_{2} \rightarrow s_{3} \rightarrow s_{4} \rightarrow \cdots$ iff
it is true on s_{1}.

Which means TPInit is true on the behavior if and only if it's true on the behavior's first state.

So this first condition can be written

TPSpec should be true on $s_{1} \rightarrow s_{2} \rightarrow s_{3} \rightarrow s_{4} \rightarrow \cdots$ iff TPInit is true on $s_{1} \rightarrow s_{2} \rightarrow s_{3} \rightarrow s_{4} \rightarrow \cdots$ TPNext is true on $s_{i} \rightarrow s_{i+1}$ for all i

TPInit is true on $s_{1} \rightarrow s_{2} \rightarrow s_{3} \rightarrow s_{4} \rightarrow \cdots$ iff
it is true on s_{1}.

Which means TPInit is true on the behavior if and only if it's true on the behavior's first state.

So this first condition can be written like this.

TPSpec should be true on $s_{1} \rightarrow s_{2} \rightarrow s_{3} \rightarrow s_{4} \rightarrow \cdots$ iff
TPInit is true on $s_{1} \rightarrow s_{2} \rightarrow s_{3} \rightarrow s_{4} \rightarrow \cdots$
TPNext is true on $s_{i} \rightarrow s_{i+1}$ for all i
TPInit is true on $s_{1} \rightarrow s_{2} \rightarrow s_{3} \rightarrow s_{4} \rightarrow \cdots$ iff
it is true on s_{1}.

TPSpec should be true on $s_{1} \rightarrow s_{2} \rightarrow s_{3} \rightarrow s_{4} \rightarrow \cdots$ iff

 TPInit is true on $s_{1} \rightarrow s_{2} \rightarrow s_{3} \rightarrow s_{4} \rightarrow \cdots$ TPNext is true on $s_{i} \rightarrow s_{i+1}$ for all iTPInit is true on $s_{1} \rightarrow s_{2} \rightarrow s_{3} \rightarrow s_{4} \rightarrow \cdots$ iff it is true on s_{1}.

A state formula like TPInit is true on a behavior if and only if it's true on the first state of the behavior.

Similarly

TPSpec should be true on $s_{1} \rightarrow s_{2} \rightarrow s_{3} \rightarrow s_{4} \rightarrow \cdots$ iff
TPInit is true on $s_{1} \rightarrow s_{2} \rightarrow s_{3} \rightarrow s_{4} \rightarrow \cdots$
TPNext is true on $s_{i} \rightarrow s_{i+1}$ for all i
TPNext is true on $s_{1} \rightarrow s_{2} \rightarrow s_{3} \rightarrow s_{4} \rightarrow \cdots$ iff
it is true on $s_{1} \rightarrow s_{2}$.

A state formula like TPInit is true on a behavior if and only if it's true on the first state of the behavior.

Similarly an action like TPNext is true on a behavior if and only if it's true on the first step of the behavior.

TPSpec should be true on $s_{1} \rightarrow s_{2} \rightarrow s_{3} \rightarrow s_{4} \rightarrow \cdots$ iff TPInit is true on $s_{1} \rightarrow s_{2} \rightarrow s_{3} \rightarrow s_{4} \rightarrow \cdots$ TPNext is true on $s_{i} \rightarrow s_{i+1}$ for all i

TPNext is true on $s_{1} \rightarrow s_{2} \rightarrow s_{3} \rightarrow s_{4} \rightarrow \cdots$ iff
it is true on $s_{1} \rightarrow s_{2}$.
$\overbrace{\uparrow}{ }^{\text {TPNext }}$

A state formula like TPInit is true on a behavior if and only if it's true on the first state of the behavior.

Similarly an action like TPNext is true on a behavior if and only if it's true on the first step of the behavior.

If we apply this temporal operator to the action TPNext

TPSpec should be true on $s_{1} \rightarrow s_{2} \rightarrow s_{3} \rightarrow s_{4} \rightarrow \cdots$ iff
TPInit is true on $s_{1} \rightarrow s_{2} \rightarrow s_{3} \rightarrow s_{4} \rightarrow \cdots$
TPNext is true on $s_{i} \rightarrow s_{i+1}$ for all i
TPNext is true on $s_{1} \rightarrow s_{2} \rightarrow s_{3} \rightarrow s_{4} \rightarrow \cdots$ iff
it is true on $s_{1} \rightarrow s_{2}$.
\square TPNext

[] in ASCII

A state formula like TPInit is true on a behavior if and only if it's true on the first state of the behavior.

Similarly an action like TPNext is true on a behavior if and only if it's true on the first step of the behavior.

If we apply this temporal operator to the action TPNext
This operator is typed left bracket right bracket
[slide 144]

TPSpec should be true on $s_{1} \rightarrow s_{2} \rightarrow s_{3} \rightarrow s_{4} \rightarrow \cdots$ iff
TPInit is true on $s_{1} \rightarrow s_{2} \rightarrow s_{3} \rightarrow s_{4} \rightarrow \cdots$
TPNext is true on $s_{i} \rightarrow s_{i+1}$ for all i
TPNext is true on $s_{1} \rightarrow s_{2} \rightarrow s_{3} \rightarrow s_{4} \rightarrow \cdots$ iff
it is true on $s_{1} \rightarrow s_{2}$.

[] in ASCII Read always

A state formula like TPInit is true on a behavior if and only if it's true on the first state of the behavior.

Similarly an action like TPNext is true on a behavior if and only if it's true on the first step of the behavior.

If we apply this temporal operator to the action TPNext
This operator is typed left bracket right bracket and is read always.
[slide 145]

TPSpec should be true on $s_{1} \rightarrow s_{2} \rightarrow s_{3} \rightarrow s_{4} \rightarrow \cdots$ iff TPInit is true on $s_{1} \rightarrow s_{2} \rightarrow s_{3} \rightarrow s_{4} \rightarrow \cdots$ TPNext is true on $s_{i} \rightarrow s_{i+1}$ for all i

TPNext is true on $s_{1} \rightarrow s_{2} \rightarrow s_{3} \rightarrow s_{4} \rightarrow \cdots$ iff
it is true on $s_{1} \rightarrow s_{2}$.
\square TPNext

The temporal formula always TPNext

TPSpec should be true on $s_{1} \rightarrow s_{2} \rightarrow s_{3} \rightarrow s_{4} \rightarrow \cdots$ iff
TPInit is true on $s_{1} \rightarrow s_{2} \rightarrow s_{3} \rightarrow s_{4} \rightarrow \cdots$
TPNext is true on $s_{i} \rightarrow s_{i+1}$ for all i
TPNext is true on $s_{1} \rightarrow s_{2} \rightarrow s_{3} \rightarrow s_{4} \rightarrow \cdots$ iff
it is true on $s_{1} \rightarrow s_{2}$.
\square TPNext is true on $s_{1} \rightarrow s_{2} \rightarrow s_{3} \rightarrow s_{4} \rightarrow \cdots$ iff

The temporal formula always TPNext is true on a behavior if and only if

TPSpec should be true on $s_{1} \rightarrow s_{2} \rightarrow s_{3} \rightarrow s_{4} \rightarrow \cdots$ iff
TPInit is true on $s_{1} \rightarrow s_{2} \rightarrow s_{3} \rightarrow s_{4} \rightarrow \cdots$
TPNext is true on $s_{i} \rightarrow s_{i+1}$ for all i
TPNext is true on $s_{1} \rightarrow s_{2} \rightarrow s_{3} \rightarrow s_{4} \rightarrow \cdots$ iff
it is true on $s_{1} \rightarrow s_{2}$.
\square TPNext is true on $s_{1} \rightarrow s_{2} \rightarrow s_{3} \rightarrow s_{4} \rightarrow \cdots$ iff
TPNext is true on $s_{i} \rightarrow s_{i+1}$ for all i

The temporal formula always TPNext is true on a behavior if and only if TPNext is true on every step of the behavior.

TPSpec should be true on $s_{1} \rightarrow s_{2} \rightarrow s_{3} \rightarrow s_{4} \rightarrow \cdots$ iff

TPInit is true on $s_{1} \rightarrow s_{2} \rightarrow s_{3} \rightarrow s_{4} \rightarrow \cdots$
TPNext is true on $s_{i} \rightarrow s_{i+1}$ for all i

TPNext is true on $s_{1} \rightarrow s_{2} \rightarrow s_{3} \rightarrow s_{4} \rightarrow \cdots$ iff
it is true on $s_{1} \rightarrow s_{2}$.
\square TPNext is true on $s_{1} \rightarrow s_{2} \rightarrow s_{3} \rightarrow s_{4} \rightarrow \cdots$ iff
TPNext is true on $s_{i} \rightarrow s_{i+1}$ for all i

The temporal formula always TPNext is true on a behavior if and only if TPNext is true on every step of the behavior.

Which is exactly the second condition that TPSpec should assert.

TPSpec should be true on $s_{1} \rightarrow s_{2} \rightarrow s_{3} \rightarrow s_{4} \rightarrow \cdots$ iff
TPInit is true on $s_{1} \rightarrow s_{2} \rightarrow s_{3} \rightarrow s_{4} \rightarrow \cdots$
TPNext is true on $s_{i} \rightarrow s_{i+1}$ for all i
TPNext is true on $s_{1} \rightarrow s_{2} \rightarrow s_{3} \rightarrow s_{4} \rightarrow \cdots$ iff
it is true on $s_{1} \rightarrow s_{2}$.
\square TPNext is true on $s_{1} \rightarrow s_{2} \rightarrow s_{3} \rightarrow s_{4} \rightarrow \cdots$ iff
TPNext is true on $s_{i} \rightarrow s_{i+1}$ for all i

The temporal formula always TPNext is true on a behavior if and only if TPNext is true on every step of the behavior.

Which is exactly the second condition that TPSpec should assert.
So we can restate that condition
[slide 150]

TPSpec should be true on $s_{1} \rightarrow s_{2} \rightarrow s_{3} \rightarrow s_{4} \rightarrow \cdots$ iff
TPInit is true on $s_{1} \rightarrow s_{2} \rightarrow s_{3} \rightarrow s_{4} \rightarrow \cdots$
TPNext is true on $s_{i} \rightarrow s_{i+1}$ for all i

TPNext is true on $s_{1} \rightarrow s_{2} \rightarrow s_{3} \rightarrow s_{4} \rightarrow \cdots$ iff
it is true on $s_{1} \rightarrow s_{2}$.

$$
\square \text { TPNext is true on } s_{1} \rightarrow s_{2} \rightarrow s_{3} \rightarrow s_{4} \rightarrow \cdots
$$

TPNext is true on $s_{i} \rightarrow s_{i+1}$ for all i

The temporal formula always TPNext is true on a behavior if and only if TPNext is true on every step of the behavior.

Which is exactly the second condition that TPSpec should assert.
So we can restate that condition this way.
[slide 151]

TPSpec should be true on $s_{1} \rightarrow s_{2} \rightarrow s_{3} \rightarrow s_{4} \rightarrow \cdots$ iff
TPInit is true on $s_{1} \rightarrow s_{2} \rightarrow s_{3} \rightarrow s_{4} \rightarrow \cdots$
\square TPNext is true on $s_{1} \rightarrow s_{2} \rightarrow s_{3} \rightarrow s_{4} \rightarrow \cdots$
TPNext is true on $s_{1} \rightarrow s_{2} \rightarrow s_{3} \rightarrow s_{4} \rightarrow \cdots$ iff
it is true on $s_{1} \rightarrow s_{2}$.
\square TPNext is true on $s_{1} \rightarrow s_{2} \rightarrow s_{3} \rightarrow s_{4} \rightarrow \cdots$ iff
TPNext is true on $s_{i} \rightarrow s_{i+1}$ for all i

The temporal formula always TPNext is true on a behavior if and only if TPNext is true on every step of the behavior.

Which is exactly the second condition that TPSpec should assert.
So we can restate that condition this way.
[slide 152]

TPSpec should be true on $s_{1} \rightarrow s_{2} \rightarrow s_{3} \rightarrow s_{4} \rightarrow \cdots$ iff TPInit is true on $s_{1} \rightarrow s_{2} \rightarrow s_{3} \rightarrow s_{4} \rightarrow \cdots$
$\square T P N e x t$ is true on $s_{1} \rightarrow s_{2} \rightarrow s_{3} \rightarrow s_{4} \rightarrow \cdots$

From this, we see that

TPSpec should be true on $s_{1} \rightarrow s_{2} \rightarrow s_{3} \rightarrow s_{4} \rightarrow \cdots$ iff TPInit is true on $s_{1} \rightarrow s_{2} \rightarrow s_{3} \rightarrow s_{4} \rightarrow \cdots$
$\square T P N e x t$ is true on $s_{1} \rightarrow s_{2} \rightarrow s_{3} \rightarrow s_{4} \rightarrow \cdots$
TPSpec \triangleq

From this, we see that TPSpec should be defined to equal

TPSpec should be true on $s_{1} \rightarrow s_{2} \rightarrow s_{3} \rightarrow s_{4} \rightarrow \cdots$ iff
TPInit \quad is true on $s_{1} \rightarrow s_{2} \rightarrow s_{3} \rightarrow s_{4} \rightarrow \cdots$.

TPNext is true on $s_{1} \rightarrow s_{2} \rightarrow s_{3} \rightarrow s_{4} \rightarrow \cdots$
TPSpec \triangleq TPInit

From this, we see that TPSpec should be defined to equal
TPInit
[slide 155]

TPSpec should be true on $s_{1} \rightarrow s_{2} \rightarrow s_{3} \rightarrow s_{4} \rightarrow \cdots$ iff TPInit is true on $s_{1} \rightarrow s_{2} \rightarrow s_{3} \rightarrow s_{4} \rightarrow \cdots$
\square TPNext is true on $s_{1} \rightarrow s_{2} \rightarrow s_{3} \rightarrow s_{4} \rightarrow \cdots$

$$
\text { TPSpec } \triangleq \text { TPInit } \wedge \square \text { TPNext }
$$

From this, we see that TPSpec should be defined to equal

TPInit

conjoined with always TPNext.
[slide 156]

TPSpec should be true on $s_{1} \rightarrow s_{2} \rightarrow s_{3} \rightarrow s_{4} \rightarrow \cdots$ iff

 TPInit \quad is true on $s_{1} \rightarrow s_{2} \rightarrow s_{3} \rightarrow s_{4} \rightarrow \cdots$$\square$ TPNext is true on $s_{1} \rightarrow s_{2} \rightarrow s_{3} \rightarrow s_{4} \rightarrow \cdots$

TPSpec \triangleq TPInit $\wedge \square$ TPNext

So this is our definition of the temporal formula TPSpec that is the specification of the two-phase commit protocol.

Look how simple it is. Unfortunately, it's too simple.
If you look near the end of module TwoPhase, you'll find this definition.

TPSpec should be true on $s_{1} \rightarrow s_{2} \rightarrow s_{3} \rightarrow s_{4} \rightarrow \cdots$ iff TPInit is true on $s_{1} \rightarrow s_{2} \rightarrow s_{3} \rightarrow s_{4} \rightarrow \cdots$
\square TPNext is true on $s_{1} \rightarrow s_{2} \rightarrow s_{3} \rightarrow s_{4} \rightarrow \cdots$
TPSpec \triangleq TPInit $\wedge \square[\text { TPNext }]_{\langle r m S t a t e, ~ t m S t a t e, ~ t m P r e p a r e d, ~}^{\text {msgs }}{ }^{\text {, }}$

So this is our definition of the temporal formula TPSpec that is the specification of the two-phase commit protocol.

Look how simple it is. Unfortunately, it's too simple.
If you look near the end of module TwoPhase, you'll find this definition.
Where this part
[slide 158]

TPSpec should be true on $s_{1} \rightarrow s_{2} \rightarrow s_{3} \rightarrow s_{4} \rightarrow \cdots$ iff TPInit is true on $s_{1} \rightarrow s_{2} \rightarrow s_{3} \rightarrow s_{4} \rightarrow \cdots$
\square TPNext is true on $s_{1} \rightarrow s_{2} \rightarrow s_{3} \rightarrow s_{4} \rightarrow \cdots$
TPSpec \triangleq TPInit $\wedge \square[\text { TPNext }]_{\langle\text {rmState, tmState, tmPrepared, msgs }}$

So this is our definition of the temporal formula TPSpec that is the specification of the two-phase commit protocol.

Look how simple it is. Unfortunately, it's too simple.
If you look near the end of module TwoPhase, you'll find this definition.
Where this part is typed like this.
[slide 159]

TPSpec should be true on $s_{1} \rightarrow s_{2} \rightarrow s_{3} \rightarrow s_{4} \rightarrow \cdots$ iff
TPInit is true on $s_{1} \rightarrow s_{2} \rightarrow s_{3} \rightarrow s_{4} \rightarrow \cdots$
\square TPNext is true on $s_{1} \rightarrow s_{2} \rightarrow s_{3} \rightarrow s_{4} \rightarrow \cdots$
TPSpec \triangleq TPInit $\wedge \square[\text { TPNext }]_{\langle\text {rmState, tmState, tmPrepared, msgs }\rangle}$
[] [TPNext]_<<rmState, tmState, tmPrepared, msgs>>

So this is our definition of the temporal formula TPSpec that is the specification of the two-phase commit protocol.

Look how simple it is. Unfortunately, it's too simple.
If you look near the end of module TwoPhase, you'll find this definition.
Where this part is typed like this.
[slide 160]

TPSpec should be true on $s_{1} \rightarrow s_{2} \rightarrow s_{3} \rightarrow s_{4} \rightarrow \cdots$ iff TPInit is true on $s_{1} \rightarrow s_{2} \rightarrow s_{3} \rightarrow s_{4} \rightarrow \cdots$
\square TPNext is true on $s_{1} \rightarrow s_{2} \rightarrow s_{3} \rightarrow s_{4} \rightarrow \cdots$

So this is our definition of the temporal formula TPSpec that is the specification of the two-phase commit protocol.

Look how simple it is. Unfortunately, it's too simple.
If you look near the end of module TwoPhase, you'll find this definition.
Where this part is typed like this. In general,
[slide 161]

The specification with

The specification with

The specification with initial formula Init,

The specification with initial formula Init,

> The specification with initial formula Init, next-state formula Next,

The specification with initial formula Init, next-state formula Next,

The specification with initial formula Init, next-state formula Next, declared variables v_{1}, \ldots, v_{n}

The specification with initial formula Init, next-state formula Next, and declared variables v-one through v-n

The specification with initial formula Init, next-state formula Next, declared variables v_{1}, \ldots, v_{n} is expressed by the temporal formula

$$
\text { Init } \wedge \square[N e x t]_{\left\langle v_{1}, \ldots, v_{n}\right\rangle}
$$

The specification with initial formula Init, next-state formula Next, and declared variables v-one through $v-n$ is expressed by this temporal formula.

The specification with initial formula Init, next-state formula Next, declared variables v_{1}, \ldots, v_{n}
is expressed by the temporal formula

$$
\begin{aligned}
& \text { Init } \wedge \square[\text { Next }]_{\left\langle v_{1}, \ldots, v_{n}\right\rangle} \\
& \text { Init } 八[]^{[\text {Next }]_{-} \ll v_{1}, \ldots, v_{n} \gg}
\end{aligned}
$$

The specification with initial formula Init, next-state formula Next, and declared variables v -one through $\mathrm{v}-\mathrm{n}$ is expressed by this temporal formula. which is typed like this.

$$
\left.\begin{array}{rl}
\text { The specification with } \begin{array}{l}
\text { initial formula Init, } \\
\\
\\
\\
\\
\text { next-state formula } \text { Next, },
\end{array} \\
\text { declared variables } v_{1}, \ldots, v_{n}
\end{array}\right\}
$$

The specification with initial formula Init, next-state formula Next, and declared variables v-one through $v-n$ is expressed by this temporal formula. which is typed like this.

For now, you should ignore the red part and pretend the formula is this

The specification with initial formula Init, next-state formula Next, declared variables v_{1}, \ldots, v_{n} is expressed by the temporal formula
 Init $\wedge \square$ Next

a temporal formula that is true on behaviors

The specification with initial formula Init, next-state formula Next, declared variables v_{1}, \ldots, v_{n} is expressed by the temporal formula

Init $\wedge \square$ Next

a temporal formula that is true on behaviors
for which Init is true on the initial state

The specification with initial formula Init, next-state formula Next, declared variables v_{1}, \ldots, v_{n}
is expressed by the temporal formula

$$
\text { Init } \wedge \square \text { Next }
$$

a temporal formula that is true on behaviors
for which Init is true on the initial state
and Next is true on every step.

The specification with initial formula Init, next-state formula Next, declared variables v_{1}, \ldots, v_{n}
is expressed by the temporal formula

$$
\text { Init } \wedge \square[\text { Next }]_{\left\langle v_{1}, \ldots, v_{n}\right\rangle}
$$

a temporal formula that is true on behaviors
for which Init is true on the initial state
and Next is true on every step.
To help you do that, l'll color the other stuff gray.

The specification with initial formula Init, next-state formula Next, declared variables v_{1}, \ldots, v_{n}
is expressed by the temporal formula

$$
\text { Init } \wedge \square[\text { Next }]_{\left\langle v_{1}, \ldots, v_{n}\right\rangle}
$$

a temporal formula that is true on behaviors
for which Init is true on the initial state
and Next is true on every step.
To help you do that, l'll color the other stuff gray.

To tell TLC that the spec is:

$$
\text { TPInit } \wedge \square[\text { TPNext }]_{\langle r m \text { State,tmState,tmPrepared,msgs }\rangle}
$$

To tell TLC that the spec for a model is this temporal formula

To tell TLC that the spec is:

$$
\text { TPInit } \wedge \square[T P N e x t]_{\langle r m \text { State,tmState,tmPrepared,msgs }\rangle}
$$

\square What is the behavior spec?

Ol Initial predicate and next-state relation	
Init:	TPInit
Next:	TPNext

Temporal formula

O No Behavior Spec

To tell TLC that the spec for a model is this temporal formula
We can give it the initial formula and next-state formula.

To tell TLC that the spec is:

$$
\text { TPInit } \wedge \square[\text { TPNext }]_{\langle r m \text { State,tmState,tmPrepared,msgs }\rangle}
$$

\square What is the behavior spec?

Olnitial predicate and next-state relation
Init:
Next:
() Temporal formula

TPInit / $\$ [][TPNext]_<<rmState, tmState, tmPrepared, msgs>>

O No Behavior Spec

To tell TLC that the spec for a model is this temporal formula
We can give it the initial formula and next-state formula.
Or we can give it the temporal formula.

To tell TLC that the spec is:

$$
\text { TPSpec } \triangleq \text { TPInit } \wedge \square[\text { TPNext }]_{\langle r m S t a t e, t m S t a t e, t m P r e p a r e d, m s g s\rangle}
$$

\square What is the behavior spec?

Initial predicate and next-state relation
Init:
Next:
(O) Temporal formula

TPInit / [][TPNext]_<<rmState, tmState, tmPrepared, msgs>>

O No Behavior Spec

To tell TLC that the spec for a model is this temporal formula
We can give it the initial formula and next-state formula.
Or we can give it the temporal formula.
If we've given this formula a name

To tell TLC that the spec is:

$$
\text { TPSpec } \triangleq \text { TPInit } \wedge \square[\text { TPNext }]_{\langle r m S t a t e, t m S t a t e, t m P r e p a r e d, m s g s\rangle}
$$

\square What is the behavior spec?
\bigcirc Initial predicate and next-state relation
Init:
Next:
() Temporal formula

TPSpec

O No Behavior Spec

To tell TLC that the spec for a model is this temporal formula
We can give it the initial formula and next-state formula.
Or we can give it the temporal formula.
If we've given this formula a name
Then we can just give TLC that name.
[slide 178]

Applying \square to a State Formula

Let's now see what it means to apply the Always operator to a state formula.

Applying \square to a State Formula

For the action TPNext:
\square TPNext is true on $s_{1} \rightarrow s_{2} \rightarrow s_{3} \rightarrow s_{4} \rightarrow \cdots$ iff TPNext is true on $s_{i} \rightarrow s_{i+1}$ for all i.

Let's now see what it means to apply the Always operator to a state formula.

For the action TPNext, always TPNext is true on a behavior if and only if TPNext is true on every step of the behavior.

Applying \square to a State Formula

For the action TPNext:
\square TPNext is true on $s_{1} \rightarrow s_{2} \rightarrow s_{3} \rightarrow s_{4} \rightarrow \cdots$ iff TPNext is true on $s_{i} \rightarrow s_{i+1}$ for all i.

The state formula TPTypeOK is an action

Let's now see what it means to apply the Always operator to a state formula.
For the action TPNext, always TPNext is true on a behavior if and only if TPNext is true on every step of the behavior.

A state formula like TPType $O K$ is an action

Applying \square to a State Formula

For the action TPNext:
\square TPNext is true on $s_{1} \rightarrow s_{2} \rightarrow s_{3} \rightarrow s_{4} \rightarrow \cdots$ iff TPNext is true on $s_{i} \rightarrow s_{i+1}$ for all i

The state formula TPTypeOK is an action, so
\square TPType $O K$ is true on $s_{1} \rightarrow s_{2} \rightarrow s_{3} \rightarrow s_{4} \rightarrow \cdots$ iff
TPType $O K$ is true on $s_{i} \rightarrow s_{i+1}$ for all i.

So always TPTypeOK is true on a behavior if and only if TPTypeOK is true on every step of the behavior.

Applying \square to a State Formula

For the action TPNext:
\square TPNext is true on $s_{1} \rightarrow s_{2} \rightarrow s_{3} \rightarrow s_{4} \rightarrow \cdots$ iff TPNext is true on $s_{i} \rightarrow s_{i+1}$ for all i.

The state formula TPTypeOK is an action whose value on $s_{i} \rightarrow s_{i+1}$ depends only on s_{i}
\square TPType $O K$ is true on $s_{1} \rightarrow s_{2} \rightarrow s_{3} \rightarrow s_{4} \rightarrow \cdots$ iff TPType $O K$ is true on $s_{i} \rightarrow s_{i+1}$ for all i.

So always TPTypeOK is true on a behavior if and only if TPTypeOK is true on every step of the behavior.

But a state formula is an action whose value on a step depends only on the first state of the step.

Applying \square to a State Formula

For the action TPNext:
\square TPNext is true on $s_{1} \rightarrow s_{2} \rightarrow s_{3} \rightarrow s_{4} \rightarrow \cdots$ iff TPNext is true on $s_{i} \rightarrow s_{i+1}$ for all i.

The state formula TPTypeOK is an action whose value on $s_{i} \rightarrow s_{i+1}$ depends only on s_{i}, so
\square TPTypeOK is true on $s_{1} \rightarrow s_{2} \rightarrow s_{3} \rightarrow s_{4} \rightarrow \cdots$ iff TPType $O K$ is true on s_{i} for all i.

So always TP TypeOK is true on a behavior if and only if TPTypeOK is true on every step of the behavior.

But a state formula is an action whose value on a step depends only on the first state of the step.

So always TPTypeOK is true on a behavior if and only if TPTypeOK is true on every state of the behavior.
[slide 184]
\square TPTypeOK is true on a behavior iff TPTypeOK is true on every state of the behavior.
\square TPTypeOK is true on a behavior iff
TPType $O K$ is true on every state of the behavior.

You can write $\square T P T y p e O K$.

You can write simply always TPTypeOK.
\square TPTypeOK is true on a behavior iff TPType $O K$ is true on every state of the behavior.

You can write $\square T P T y p e O K$.
You don't need the [] $]_{\text {rmState, tmState, tmPrepared, msgs) }}$ for \square state formula.

You can write simply always TPTypeOK.

You don't need the square brackets and subscript when you apply always to a state formula.

THEOREMS

Theorems

For a temporal formula $T F$
theorem $T F$
asserts that $T F$ is true on every possible behavior.

If $T F$ is a temporal formula, the statement THEOREM $T F$ asserts that $T F$ is true on every possible behavior.

For a temporal formula $T F$
theorem $T F$
asserts that $T F$ is true on every possible behavior.
Not just for behaviors satisfying some spec.

If $T F$ is a temporal formula, the statement THEOREM $T F$ asserts that $T F$ is true on every possible behavior.

That's every possible behavior, not just every behavior satisfying some spec.

THEOREM TPSpec $\Rightarrow \square$ TPTypeOK

This theorem

THEOREM TPSpec $\Rightarrow \square$ TPTypeOK
Asserts that for every behavior:

This theorem asserts that for every behavior

THEOREM TPSpec $\Rightarrow \square$ TPTypeOK

Asserts that for every behavior:

if TPSpec is true on the behavior

This theorem asserts that for every behavior if TPSpec is true on the behavior

THEOREM TPSpec $\Rightarrow \square$ TPTypeOK

Asserts that for every behavior:

if TPSpec is true on the behavior
then \square TPTypeOK is true on the behavior

This theorem asserts that for every behavior if TPSpec is true on the behavior then always TPTypeOK is true on that behavior.

THEOREM TPSpec $\Rightarrow \square$ TPTypeOK

Asserts that for every behavior:

if TPSpec is true on the behavior
then \square TPTypeOK is true on the behavior

This theorem asserts that for every behavior if TPSpec is true on the behavior then always TPTypeOK is true on that behavior.

TPSpec true on the behavior

THEOREM TPSpec $\Rightarrow \square$ TPTypeOK
Asserts that for every behavior:
if the behavior satisfies TPSpec
then \square TPTypeOK is true on the behavior

This theorem asserts that for every behavior if TPSpec is true on the behavior then always TPTypeOK is true on that behavior.

TPSpec true on the behavior just means that the behavior satisfies TPSpec.

THEOREM TPSpec $\Rightarrow \square$ TPTypeOK
Asserts that for every behavior:
if the behavior satisfies TPSpec
then $\square T P T y p e O K$ is true on the behavior

This theorem asserts that for every behavior if TPSpec is true on the behavior then always TPTypeOK is true on that behavior.

TPSpec true on the behavior just means that the behavior satisfies TPSpec.
Always TPTypeOK is true on the behavior

THEOREM TPSpec $\Rightarrow \square$ TPTypeOK
Asserts that for every behavior:
if the behavior satisfies TPSpec
then TPTypeOK is true on every state of the behavior

This theorem asserts that for every behavior if TPSpec is true on the behavior then always TPTypeOK is true on that behavior.

TPSpec true on the behavior just means that the behavior satisfies TPSpec.
Always TPTypeOK is true on the behavior means that TPTypeOK is true on every state of the behavior.

THEOREM TPSpec $\Rightarrow \square$ TPTypeOK
Asserts that for every behavior:
if the behavior satisfies TPSpec
then TPTypeOK is true on every state of the behavior

So this theorem

THEOREM TPSpec $\Rightarrow \square$ TPTypeOK
Asserts that for every behavior:
if the behavior satisfies TPSpec
then TPTypeOK is true on every state of the behavior
Asserts that TPTypeOK is an invariant of TPSpec.

So this theorem

asserts that TPType $O K$ is an invariant of the specification TPSpec.

THEOREM TPSpec $\Rightarrow \square$ TPTypeOK
Asserts that TPTypeOK is an invariant of TPSpec.

THEOREM TPSpec $\Rightarrow \square$ TPTypeOK

Asserts that TPTypeOK is an invariant of TPSpec.

TLC does not automatically check theorems.

TLC does not automatically check theorems. (But you should put them in your specs to tell the reader what you expect to be true.)

THEOREM TPSpec $\Rightarrow \square$ TPTypeOK
Asserts that TPTypeOK is an invariant of TPSpec.
TLC does not automatically check theorems.
To check this theorem, add [] TPTypeOK to

```
\square \text { What to check?}
    Deadlock
    # Invariants
    # Properties
```

for a model with behavior spec TPSpec.

TLC does not automatically check theorems. (But you should put them in your specs to tell the reader what you expect to be true.)

To check this theorem with TLC, add always TPTypeOK to the Properties list of the What to check section of the Model overview page for a model having TPSpec as its behavior specification.

THEOREM TPSpec $\Rightarrow \square$ TPTypeOK

Asserts that TPTypeOK is an invariant of TPSpec.

TLC does not automatically check theorems.
To check this theorem, add TPTypeOK to

```
- What to check?
    Deadlock
    # Invariants
    + Properties
```

for a model with behavior spec TPSpec.

Or, since this is an invariance property, you can just check that TPTypeOK (without the always) is an invariant of TPSpec.

We're now ready to explain in Part Two what it means for the two-phase commit protocol to implement the specification of transaction commit, and how to use TLC to check that it does.

TLA+ Video Course

End of Lecture 8, Part 1

IMPLEMENTATION

 PRELIMINARIES