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Up until now, we have been specifying what a system may do. The main purpose of
this lecture is to explain how to specify what a system must do. It’s based on a single
example: the Alternating Bit Protocol — a simple algorithm for sending data across a
channel that can lose messages.

In Part 1, we specify what the protocol should do. We will specify how it does it in Part
2.

But before we get to the protocol, we learn about the TLA+ operators for using a very
important data structure: finite sequences, which programmers often call lists.
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FINITE SEQUENCES
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Finite sequence is another name for tuple .

〈−3, “xyz ”, {0,2} 〉 is a sequence of length 3.

A sequence of length N is a function with domain 1 . .N .

〈 − 3, “xyz ”, {0,2} 〉[1] = −3

〈 − 3, “xyz ”, {0,2} 〉[2] = “xyz ”

〈 − 3, “xyz ”, {0,2} 〉[3] = {0,2}

Finite sequence is just another name for tuple .

So this tuple is a sequence of length 3.

Remember that this tuple is typed like this.

Where the angle brackets are typed double less-than and double
greater-than.

[ slide 4 ]



Finite sequence is another name for tuple .

〈−3, “xyz ”, {0,2} 〉 is a sequence of length 3.

A sequence of length N is a function with domain 1 . .N .

〈 − 3, “xyz ”, {0,2} 〉[1] = −3

〈 − 3, “xyz ”, {0,2} 〉[2] = “xyz ”

〈 − 3, “xyz ”, {0,2} 〉[3] = {0,2}

Finite sequence is just another name for tuple .

So this tuple is a sequence of length 3.

Remember that this tuple is typed like this.

Where the angle brackets are typed double less-than and double
greater-than.

[ slide 5 ]



Finite sequence is another name for tuple .

〈 −3, “xyz ” , {0,2} 〉
<< -3, "xyz", {0,2} >>

is a sequence of length 3.

A sequence of length N is a function with domain 1 . .N .

〈 − 3, “xyz ”, {0,2} 〉[1] = −3

〈 − 3, “xyz ”, {0,2} 〉[2] = “xyz ”

〈 − 3, “xyz ”, {0,2} 〉[3] = {0,2}

Finite sequence is just another name for tuple .

So this tuple is a sequence of length 3.

Remember that this tuple is typed like this.

Where the angle brackets are typed double less-than and double
greater-than.

[ slide 6 ]



Finite sequence is another name for tuple .

〈 −3, “xyz ” , {0,2} 〉
<< -3, "xyz", {0,2} >>

is a sequence of length 3.

A sequence of length N is a function with domain 1 . .N .

〈 − 3, “xyz ”, {0,2} 〉[1] = −3

〈 − 3, “xyz ”, {0,2} 〉[2] = “xyz ”

〈 − 3, “xyz ”, {0,2} 〉[3] = {0,2}

Finite sequence is just another name for tuple .

So this tuple is a sequence of length 3.

Remember that this tuple is typed like this.

Where the angle brackets are typed double less-than and double
greater-than.

[ slide 7 ]



Finite sequence is another name for tuple .

〈 −3, “xyz ” , {0,2} 〉
<< -3, "xyz", {0,2} >>

A sequence of length N is a function with domain 1 . .N .

〈 − 3, “xyz ”, {0,2} 〉[1] = −3

〈 − 3, “xyz ”, {0,2} 〉[2] = “xyz ”

〈 − 3, “xyz ”, {0,2} 〉[3] = {0,2}

Finite sequence is just another name for tuple .

So this tuple is a sequence of length 3.

Remember that this tuple is typed like this.

Where the angle brackets are typed double less-than and double
greater-than.

[ slide 8 ]



Finite sequence is another name for tuple .

〈−3, “xyz ”, {0,2} 〉 is a sequence of length 3.

A sequence of length N is a function with domain 1 . .N .

〈 − 3, “xyz ”, {0,2} 〉[1] = −3

〈 − 3, “xyz ”, {0,2} 〉[2] = “xyz ”

〈 − 3, “xyz ”, {0,2} 〉[3] = {0,2}

Finite sequence is just another name for tuple .

So this tuple is a sequence of length 3.

Remember that this tuple is typed like this.

Where the angle brackets are typed double less-than and double
greater-than.

[ slide 9 ]



Finite sequence is another name for tuple .

〈−3, “xyz ”, {0,2} 〉 is a sequence of length 3.

A sequence of length N is a function with domain 1 . .N .

〈 − 3, “xyz ”, {0,2} 〉[1] = −3

〈 − 3, “xyz ”, {0,2} 〉[2] = “xyz ”

〈 − 3, “xyz ”, {0,2} 〉[3] = {0,2}

A sequence of length N is a function whose domain is the set of integers
from 1 through N .

This sequence of length 3 applied to the number one equals its first element.

The sequence applied to the number two equals its second element.

And applied to the number three equals its third element.
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The sequence 〈1, 4, 9, . . . , N 2〉 is the function such that

〈1, 4, 9, . . . , N 2〉 [i ] = i2

for all i in 1 . .N .

It is written [ i ∈ 1 . .N 7→ i2 ] .

The sequence of the squares of the first N positive integers is the function
which
when applied to the number i , equals i squared
for all i in its domain, the integers from 1 through N .

That function is usually written this way
where the exponentiation operator is represented by the caret character.

[ slide 18 ]



The sequence 〈1, 4, 9, . . . , N 2〉 is the function such that

〈1, 4, 9, . . . , N 2〉 [i ] = i2

for all i in 1 . .N .

It is written [ i ∈ 1 . .N 7→ i2 ] .

The sequence of the squares of the first N positive integers is the function
which
when applied to the number i , equals i squared
for all i in its domain, the integers from 1 through N .

That function is usually written this way
where the exponentiation operator is represented by the caret character.

[ slide 19 ]



The sequence 〈1, 4, 9, . . . , N 2〉 is the function such that

〈1, 4, 9, . . . , N 2〉 [i ] = i2

for all i in 1 . .N .

It is written [ i ∈ 1 . .N 7→ i2 ] .

The sequence of the squares of the first N positive integers is the function
which
when applied to the number i , equals i squared
for all i in its domain, the integers from 1 through N .

That function is usually written this way
where the exponentiation operator is represented by the caret character.

[ slide 20 ]



The sequence 〈1, 4, 9, . . . , N 2〉 is the function such that

〈1, 4, 9, . . . , N 2〉 [i ] = i2

for all i in 1 . .N .

It is written [ i ∈ 1 . .N 7→ i2 ] .

The sequence of the squares of the first N positive integers is the function
which
when applied to the number i , equals i squared
for all i in its domain, the integers from 1 through N .

That function is usually written this way
where the exponentiation operator is represented by the caret character.

[ slide 21 ]



The sequence 〈1, 4, 9, . . . , N 2〉 is the function such that

〈1, 4, 9, . . . , N 2〉 [i ] = i2

for all i in 1 . .N .

It is written [ i ∈ 1 . .N 7→ i2 ] .

typed i^2

The sequence of the squares of the first N positive integers is the function
which
when applied to the number i , equals i squared
for all i in its domain, the integers from 1 through N .

That function is usually written this way
where the exponentiation operator is represented by the caret character.
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The Sequences Module

Tail( 〈s1, . . . , sn〉) equals 〈s2, . . . , sn〉 .

Head(seq)
∆
= seq [1]

◦ (concatenation)

Append(seq , e)
∆
= seq ◦ 〈e〉

The standard Sequences module defines some useful operators on finite
sequences.

The tail of a non-empty sequence equals the sequence obtained 1by
chopping off its first element

And since it would be funny to have a tail without a head, we call the first
element its head.
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∆
= seq [1]

◦ (concatenation)

Append(seq , e)
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= seq ◦ 〈e〉

The concatenation operator which we type backslash lower-case Oh,
concatenates two sequences as in this example.

Any non-empty sequence is the concatenation of the one-element sequence
containing only its head, with its tail.

The append operator appends an element to the end of a sequence.
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The Sequences Module

Tail( 〈s1, . . . , sn〉) equals 〈s2, . . . , sn〉 .

Head(seq)
∆
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Len(seq) equals the length of sequence seq .

Seq(S ) is the set of all sequences with elements in S .

The operator L-E-N applied to a sequence equals the sequence’s length.

Note that the domain of a sequence is the set of integers from 1 to the
sequence’s length.

Note also that one dot-dot zero is the empty set, which is the domain of the
empty sequence.
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Len(seq) equals the length of sequence seq .

The domain of seq is 1 . .Len(seq) .

1 . .0 = {} , which is the domain of 〈 〉 .

Seq(S ) is the set of all sequences with elements in S .

The operator L-E-N applied to a sequence equals the sequence’s length.

Note that the domain of a sequence is the set of integers from 1 to the
sequence’s length.

Note also that one dot-dot zero is the empty set, which is the domain of the
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Len(seq) equals the length of sequence seq .

Seq(S ) is the set of all sequences with elements in S .

The S-E-Q operator applied to a set equals the set of all finite sequences
formed from the elements of that set.

For example, S-E-Q applied to the set containing the single element 3 equals
this infinite set of sequences.
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Len(seq) equals the length of sequence seq .

Seq(S ) is the set of all sequences with elements in S .

Seq({3}) = {〈 〉, 〈3〉, 〈3,3〉, 〈3,3,3〉, . . .} .

The S-E-Q operator applied to a set equals the set of all finite sequences
formed from the elements of that set.

For example, S-E-Q applied to the set containing the single element 3 equals
this infinite set of sequences.
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Let’s define Remove(i , seq) to be the sequence
obtained by removing the i th element from the
sequence seq .

Len(Remove(i , seq)) = Len(seq)− 1 , so

Remove(i , seq)
∆
= [ j ∈ 1 . . (Len(seq)− 1) 7→

Let’s check this.

For later use, let’s now define the Remove operator so Remove of i , seek is
the sequence obtained by removing the i th element from the sequence seek .

The length of Remove of i , seek should be one less than the length of seek .
so Remove of i , seek should be defined like this to be a function whose
domain is the set of integers from one to the length of seek minus one.
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Let’s define Remove(i , seq) to be the sequence
obtained by removing the i th element from the
sequence seq .

Len(Remove(i , seq)) = Len(seq)− 1 , so

Remove(i , seq)
∆
= [ j ∈ 1 . . (Len(seq)− 1) 7→

. . . ]

Let’s check this.

We just have to fill in the dot-dot-dot.

A little thought shows that the definition should be this.

Well, a little thought when you’re more used to writing specs. It might be a lot
of thought now.

So we should check this definition. Here’s how.
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sequence seq .

Len(Remove(i , seq)) = Len(seq)− 1 , so

Remove(i , seq)
∆
= [ j ∈ 1 . . (Len(seq)− 1) 7→

IF j < i THEN seq [j ]

ELSE seq [j + 1] ]
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Create a new spec with this body, which
you can copy from the Web page:

EXTENDS Integers,Sequences

Remove(i , seq)
∆
= [ j ∈ 1 . . (Len(seq)− 1) 7→

IF j < i THEN seq[j ] ELSE seq[j + 1] ]

Create a new model.

Create a new spec with this body, which
you can copy from the Web page.

Now create a new model.
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The Model Overview page will show

The model’s Model Overview page will show
that there are no behaviors to be checked.

(TLC can still check assumptions.)
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that there are no behaviors to be checked.
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On the Model Checking Results page

Enter an expression to check. TLC computes its value.

Run TLC on the model.

On the Model Checking Results page Enter an expression to check, such as
this one.

Run TLC on the model.

TLC will compute the value of the expression.
in this case checking that Remove has the correct value for these arguments.
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Remove(3, <<1, 2, 3, 4>>)

Enter an expression to check. TLC computes its value.

Run TLC on the model.
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On the Model Checking Results page
You can evaluate a constant expression on
any model of any spec.

You can evaluate a constant expression on any model, with or without a
behavioral spec.
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The Cartesian Product

For any sets S and T

S ×T =

The Cartesian Product

For any sets S and T their cartesian product S cross T equals the set of all
pairs a, b with a in S and b in T .

That set can also be written like this.

The cross operator is typed backslash upper-case X.
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The Cartesian Product

For any sets S and T

S ×T = the set of all 〈a, b〉 with
a ∈ S and b ∈ T .

The Cartesian Product

For any sets S and T their cartesian product S cross T equals the set of all
pairs a, b with a in S and b in T .

That set can also be written like this.

The cross operator is typed backslash upper-case X.
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The Cartesian Product

For any sets S and T

S ×T = {〈a, b〉 : a ∈ S , b ∈ T}

The Cartesian Product

For any sets S and T their cartesian product S cross T equals the set of all
pairs a, b with a in S and b in T .

That set can also be written like this.

The cross operator is typed backslash upper-case X.
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The Cartesian Product

For any sets S and T

S ×T = {〈a, b〉 : a ∈ S , b ∈ T}
ASCII: \X

The Cartesian Product

For any sets S and T their cartesian product S cross T equals the set of all
pairs a, b with a in S and b in T .

That set can also be written like this.

The cross operator is typed backslash upper-case X.
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The Cartesian Product

For any sets S and T

S ×T = {〈a, b〉 : a ∈ S , b ∈ T}

Let TLC compute (1 . .3)× {“a”, “b”}.

It’s parsed as 1 . . (3× {“a”, “b”}) .

Stop the video and let TLC compute this 6-element set.

Now see what happens if you remove the parentheses.

You get an error because this is how that expression is parsed.
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The Cartesian Product

For any sets S and T

S ×T = {〈a, b〉 : a ∈ S , b ∈ T}

Let TLC compute (1 . .3)× {“a”, “b”}.

It’s parsed as 1 . . (3× {“a”, “b”}) .

Stop the video and let TLC compute this 6-element set.

Now see what happens if you remove the parentheses.

You get an error because this is how that expression is parsed.
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The Cartesian Product

For any sets S and T

S ×T = {〈a, b〉 : a ∈ S , b ∈ T}

Let TLC compute (1 . .3)× {“a”, “b”}.

It’s parsed as 1 . . (3× {“a”, “b”}) .

Stop the video and let TLC compute this 6-element set.

Now see what happens if you remove the parentheses.

You get an error because this is how that expression is parsed.
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The Cartesian Product

For any sets S , T , and U

S ×T = {〈a, b〉 : a ∈ S , b ∈ T}

S × T × U = {〈a, b, c〉 : a ∈ S , b ∈ T c ∈ U }
...

The cross product of three sets is the obvious set of triples.

And so on for the cross product of any number of sets.
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The Cartesian Product

For any sets S , T , and U

S ×T = {〈a, b〉 : a ∈ S , b ∈ T}

S × T × U = {〈a, b, c〉 : a ∈ S , b ∈ T c ∈ U }
...

The cross product of three sets is the obvious set of triples.

And so on for the cross product of any number of sets.
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WHAT THE PROTOCOL
SHOULD ACCOMPLISH
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In the Alternating Bit protocolAB protocol a sender A sends
a sequence of

to a receiver B .

Here’s an obvious way to represent this.

In the Alternating Bit protocol We abbreviate “alternating bit” as A-B.

In the AB protocol, a sender A sends a sequence of data items to a
receiver B .

Let’s suppose for now that those data items are strings.

Here’s an obvious way to represent this.
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In the AB protocol a sender A sends a sequence of
to a receiver B .

Here’s an obvious way to represent this.

In the Alternating Bit protocol We abbreviate “alternating bit” as A-B.

In the AB protocol, a sender A sends a sequence of data items to a
receiver B .

Let’s suppose for now that those data items are strings.

Here’s an obvious way to represent this.

[ slide 64 ]



In the AB protocol a sender A sends a sequence of
data items to a receiver B .

Here’s an obvious way to represent this.

In the Alternating Bit protocol We abbreviate “alternating bit” as A-B.

In the AB protocol, a sender A sends a sequence of data items to a
receiver B .

Let’s suppose for now that those data items are strings.

Here’s an obvious way to represent this.
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In the AB protocol a sender A sends a sequence of
strings to a receiver B .

Here’s an obvious way to represent this.

In the Alternating Bit protocol We abbreviate “alternating bit” as A-B.

In the AB protocol, a sender A sends a sequence of data items to a
receiver B .

Let’s suppose for now that those data items are strings.

Here’s an obvious way to represent this.
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In the AB protocol a sender A sends a sequence of
strings to a receiver B .

Here’s an obvious way to represent this.

In the Alternating Bit protocol We abbreviate “alternating bit” as A-B.

In the AB protocol, a sender A sends a sequence of data items to a
receiver B .

Let’s suppose for now that those data items are strings.

Here’s an obvious way to represent this.
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AVar :

A

BVar :

B

What sequence of values was sent?

“Fred ”, “Mary”, “Ted ”, “Ann”

How can this sequence of values be sent?

With additional state that can change.

The states of A and B are represented by two variables, AVar and BVar .

They’re initially set to some default value, say the empty string.

If A wants to send a string, say the string Fred,
it sets AVar to that value.

B must eventually receive that string
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AVar :

A

“ ” BVar :

B

“ ”

What sequence of values was sent?

“Fred ”, “Mary”, “Ted ”, “Ann”

How can this sequence of values be sent?

With additional state that can change.

The states of A and B are represented by two variables, AVar and BVar .

They’re initially set to some default value, say the empty string.

If A wants to send a string, say the string Fred,
it sets AVar to that value.

B must eventually receive that string
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AVar :

A

“Fred ” BVar :

B

“ ”

What sequence of values was sent?

“Fred ”, “Mary”, “Ted ”, “Ann”

How can this sequence of values be sent?

With additional state that can change.

The states of A and B are represented by two variables, AVar and BVar .

They’re initially set to some default value, say the empty string.

If A wants to send a string, say the string Fred,
it sets AVar to that value.

B must eventually receive that string
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AVar :

A

“Fred ” BVar :

B

“Fred ”

What sequence of values was sent?

“Fred ”, “Mary”, “Ted ”, “Ann”

How can this sequence of values be sent?

With additional state that can change.

by setting BVar equal to it.

A chooses a new value, say Mary

which it sends and B receives.

and so on.
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AVar :

A

“Mary” BVar :

B

“Fred ”

What sequence of values was sent?

“Fred ”, “Mary”, “Ted ”, “Ann”

How can this sequence of values be sent?

With additional state that can change.

by setting BVar equal to it.

A chooses a new value, say Mary

which it sends and B receives.

and so on.
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AVar :

A

“Mary” BVar :

B

“Mary”

What sequence of values was sent?

“Fred ”, “Mary”, “Ted ”, “Ann”

How can this sequence of values be sent?

With additional state that can change.

by setting BVar equal to it.

A chooses a new value, say Mary

which it sends and B receives.

and so on.
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AVar :

A

“Ted ” BVar :

B

“Mary”

What sequence of values was sent?

“Fred ”, “Mary”, “Ted ”, “Ann”

How can this sequence of values be sent?

With additional state that can change.

by setting BVar equal to it.

A chooses a new value, say Mary

which it sends and B receives.

and so on.
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AVar :

A

“Ted ” BVar :

B

“Ted ”

What sequence of values was sent?

“Fred ”, “Mary”, “Ted ”, “Ann”

How can this sequence of values be sent?

With additional state that can change.

by setting BVar equal to it.

A chooses a new value, say Mary

which it sends and B receives.

and so on.
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AVar :

A

“Ann” BVar :

B

“Ted ”

What sequence of values was sent?

“Fred ”, “Mary”, “Ted ”, “Ann”

How can this sequence of values be sent?

With additional state that can change.

by setting BVar equal to it.

A chooses a new value, say Mary

which it sends and B receives.

and so on.
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AVar :

A

“Ann” BVar :

B

“Ann”

What sequence of values was sent?

“Fred ”, “Mary”, “Ted ”, “Ann”

How can this sequence of values be sent?

With additional state that can change.

by setting BVar equal to it.

A chooses a new value, say Mary

which it sends and B receives.

and so on.
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AVar :

A

“Ann” BVar :

B

“Ann”

What sequence of values was sent?

“Fred ”, “Mary”, “Ted ”, “Ann”

How can this sequence of values be sent?

With additional state that can change.

What sequence of values was sent?

Obviously, the sequence Fred, Mary, Ted, and Ann.

No, it was actually this sequence.

Didn’t you see AVar change from Mary to Mary , and BVar do the same
thing?
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AVar :

A

“Ann” BVar :

B

“Ann”

What sequence of values was sent?

“Fred ”, “Mary”, “Ted ”, “Ann”

How can this sequence of values be sent?

With additional state that can change.

What sequence of values was sent?

Obviously, the sequence Fred, Mary, Ted, and Ann.

No, it was actually this sequence.

Didn’t you see AVar change from Mary to Mary , and BVar do the same
thing?
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AVar :

A

“Ann” BVar :

B

“Ann”

What sequence of values was sent?

“Fred ”, “Mary”, “Mary”, “Ted ”, “Ted ”, “Ted ”, “Ann”

How can this sequence of values be sent?

With additional state that can change.

What sequence of values was sent?

Obviously, the sequence Fred, Mary, Ted, and Ann.

No, it was actually this sequence.

Didn’t you see AVar change from Mary to Mary , and BVar do the same
thing?

[ slide 80 ]



AVar :

A

“Mary” BVar :

B

“Mary”

What sequence of values was sent?

“Fred ”, “Mary”, “Mary”, “Ted ”, “Ted ”, “Ted ”, “Ann”

How can this sequence of values be sent?

With additional state that can change.

What sequence of values was sent?

Obviously, the sequence Fred, Mary, Ted, and Ann.

No, it was actually this sequence.

Didn’t you see AVar change from Mary to Mary , and BVar do the same
thing?
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AVar :

A

“Ted ” BVar :

B

“Ted ”

What sequence of values was sent?

“Fred ”, “Mary”, “Mary”, “Ted ”, “Ted ”, “Ted ”, “Ann”

How can this sequence of values be sent?

With additional state that can change.

And didn’t you see them changing from Ted to Ted twice?

Of course not. A value can’t have been sent if nothing changed.

How can we let the same value be sent twice in a row?

By adding something to the state that can change when the value is sent for
the second time.
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AVar :

A

“Ted ” BVar :

B

“Ted ”

What sequence of values was sent?

“Fred ”, “Mary”, “Mary”, “Ted ”, “Ted ”, “Ted ”, “Ann”

How can this sequence of values be sent?

With additional state that can change.

And didn’t you see them changing from Ted to Ted twice?

Of course not. A value can’t have been sent if nothing changed.

How can we let the same value be sent twice in a row?

By adding something to the state that can change when the value is sent for
the second time.
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AVar :

A

“Ted ” BVar :

B

“Ted ”

What sequence of values was sent?

“Fred ”, “Mary”, “Mary”, “Ted ”, “Ted ”, “Ted ”, “Ann”

How can this sequence of values be sent?

With additional state that can change.

And didn’t you see them changing from Ted to Ted twice?

Of course not. A value can’t have been sent if nothing changed.

How can we let the same value be sent twice in a row?

By adding something to the state that can change when the value is sent for
the second time.
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AVar :

A

“Ted ” BVar :

B

“Ted ”

What sequence of values was sent?

“Fred ”, “Mary”, “Mary”, “Ted ”, “Ted ”, “Ted ”, “Ann”

How can this sequence of values be sent?

With additional state that can change.

And didn’t you see them changing from Ted to Ted twice?

Of course not. A value can’t have been sent if nothing changed.

How can we let the same value be sent twice in a row?

By adding something to the state that can change when the value is sent for
the second time.
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AVar :

A

“Ted ” BVar :

B

“Ted ”

We could add a variable clock And let the value in AVar be sent again when
the value of clock changes. But we’ll take a different approach

We’ll let the values of AVar and BVar be ordered pairs, the first element of
which is the value being sent and the second element is a one-bit value that
is changed when a value is chosen. So we can send this sequence of values
Like this [15 × (1 per second) pause ]
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clock :

AVar :

A

“Ted ” BVar :

B

“Ted ”

We could add a variable clock And let the value in AVar be sent again when
the value of clock changes. But we’ll take a different approach

We’ll let the values of AVar and BVar be ordered pairs, the first element of
which is the value being sent and the second element is a one-bit value that
is changed when a value is chosen. So we can send this sequence of values
Like this [15 × (1 per second) pause ]

[ slide 87 ]



clock :

AVar :

A

“Ted ” BVar :

B

“Ted ”

We could add a variable clock And let the value in AVar be sent again when
the value of clock changes. But we’ll take a different approach

We’ll let the values of AVar and BVar be ordered pairs, the first element of
which is the value being sent and the second element is a one-bit value that
is changed when a value is chosen. So we can send this sequence of values
Like this [15 × (1 per second) pause ]
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AVar :

A

“Ted ” BVar :

B

“Ted ”

We could add a variable clock And let the value in AVar be sent again when
the value of clock changes. But we’ll take a different approach

We’ll let the values of AVar and BVar be ordered pairs, the first element of
which is the value being sent and the second element is a one-bit value that
is changed when a value is chosen. So we can send this sequence of values
Like this [15 × (1 per second) pause ]
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AVar :

A

〈“Ted ”, 1〉 BVar :

B

〈“Ted ”, 1〉

We could add a variable clock And let the value in AVar be sent again when
the value of clock changes. But we’ll take a different approach

We’ll let the values of AVar and BVar be ordered pairs, the first element of
which is the value being sent and the second element is a one-bit value that
is changed when a value is chosen. So we can send this sequence of values
Like this [15 × (1 per second) pause ]
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AVar :

A

〈“Ted ”, 1〉 BVar :

B

〈“Ted ”, 1〉

We could add a variable clock And let the value in AVar be sent again when
the value of clock changes. But we’ll take a different approach

We’ll let the values of AVar and BVar be ordered pairs, the first element of
which is the value being sent and the second element is a one-bit value that
is changed when a value is chosen. So we can send this sequence of values
Like this [15 × (1 per second) pause ]
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AVar :

A

〈“Ted ”, 1〉 BVar :

B

〈“Ted ”, 1〉

We could add a variable clock And let the value in AVar be sent again when
the value of clock changes. But we’ll take a different approach

We’ll let the values of AVar and BVar be ordered pairs, the first element of
which is the value being sent and the second element is a one-bit value that
is changed when a value is chosen. So we can send this sequence of values
Like this [15 × (1 per second) pause ]
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AVar :

A

〈“Ann”, 0〉 BVar :

B

〈“Ted ”, 1〉

We could add a variable clock And let the value in AVar be sent again when
the value of clock changes. But we’ll take a different approach

We’ll let the values of AVar and BVar be ordered pairs, the first element of
which is the value being sent and the second element is a one-bit value that
is changed when a value is chosen. So we can send this sequence of values
Like this [15 × (1 per second) pause ]
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AVar :

A

BVar :

B

“Fred ”, “Mary”, “Mary” , “Ted ” , “Ted ” , “Ted ” , “Ann”

We could add a variable clock And let the value in AVar be sent again when
the value of clock changes. But we’ll take a different approach

We’ll let the values of AVar and BVar be ordered pairs, the first element of
which is the value being sent and the second element is a one-bit value that
is changed when a value is chosen. So we can send this sequence of values
Like this [15 × (1 per second) pause ]
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AVar :

A

〈“ ”, 1〉 BVar :

B

〈“ ”, 1〉

We could add a variable clock And let the value in AVar be sent again when
the value of clock changes. But we’ll take a different approach

We’ll let the values of AVar and BVar be ordered pairs, the first element of
which is the value being sent and the second element is a one-bit value that
is changed when a value is chosen. So we can send this sequence of values
Like this [15 × (1 per second) pause ]
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AVar :

A

〈“Fred ”, 0〉 BVar :

B

〈“ ”, 1〉

We could add a variable clock And let the value in AVar be sent again when
the value of clock changes. But we’ll take a different approach

We’ll let the values of AVar and BVar be ordered pairs, the first element of
which is the value being sent and the second element is a one-bit value that
is changed when a value is chosen. So we can send this sequence of values
Like this [15 × (1 per second) pause ]
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AVar :

A

〈“Fred ”, 0〉 BVar :

B

〈“Fred ”, 0〉

“Fred ”

We could add a variable clock And let the value in AVar be sent again when
the value of clock changes. But we’ll take a different approach

We’ll let the values of AVar and BVar be ordered pairs, the first element of
which is the value being sent and the second element is a one-bit value that
is changed when a value is chosen. So we can send this sequence of values
Like this [15 × (1 per second) pause ]
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AVar :

A

〈“Mary”, 1〉 BVar :

B

〈“Fred ”, 0〉

“Fred ”

We could add a variable clock And let the value in AVar be sent again when
the value of clock changes. But we’ll take a different approach

We’ll let the values of AVar and BVar be ordered pairs, the first element of
which is the value being sent and the second element is a one-bit value that
is changed when a value is chosen. So we can send this sequence of values
Like this [15 × (1 per second) pause ]
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AVar :

A

〈“Mary”, 1〉 BVar :

B

〈“Mary”, 1〉

“Fred ”, “Mary”

We could add a variable clock And let the value in AVar be sent again when
the value of clock changes. But we’ll take a different approach

We’ll let the values of AVar and BVar be ordered pairs, the first element of
which is the value being sent and the second element is a one-bit value that
is changed when a value is chosen. So we can send this sequence of values
Like this [15 × (1 per second) pause ]
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AVar :

A

〈“Mary”, 0〉 BVar :

B

〈“Mary”, 1〉

“Fred ”, “Mary”

We could add a variable clock And let the value in AVar be sent again when
the value of clock changes. But we’ll take a different approach

We’ll let the values of AVar and BVar be ordered pairs, the first element of
which is the value being sent and the second element is a one-bit value that
is changed when a value is chosen. So we can send this sequence of values
Like this [15 × (1 per second) pause ]
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AVar :

A

〈“Mary”, 0〉 BVar :

B

〈“Mary”, 0〉

“Fred ”, “Mary”, “Mary”

We could add a variable clock And let the value in AVar be sent again when
the value of clock changes. But we’ll take a different approach

We’ll let the values of AVar and BVar be ordered pairs, the first element of
which is the value being sent and the second element is a one-bit value that
is changed when a value is chosen. So we can send this sequence of values
Like this [15 × (1 per second) pause ]
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AVar :

A

〈“Ted ”, 1〉 BVar :

B

〈“Mary”, 0〉

“Fred ”, “Mary”, “Mary”

We could add a variable clock And let the value in AVar be sent again when
the value of clock changes. But we’ll take a different approach

We’ll let the values of AVar and BVar be ordered pairs, the first element of
which is the value being sent and the second element is a one-bit value that
is changed when a value is chosen. So we can send this sequence of values
Like this [15 × (1 per second) pause ]
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AVar :

A

〈“Ted ”, 1〉 BVar :

B

〈“Ted ”, 1〉

“Fred ”, “Mary”, “Mary” , “Ted ”

We could add a variable clock And let the value in AVar be sent again when
the value of clock changes. But we’ll take a different approach

We’ll let the values of AVar and BVar be ordered pairs, the first element of
which is the value being sent and the second element is a one-bit value that
is changed when a value is chosen. So we can send this sequence of values
Like this [15 × (1 per second) pause ]
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AVar :

A

〈“Ted ”, 0〉 BVar :

B

〈“Ted ”, 1〉

“Fred ”, “Mary”, “Mary” , “Ted ”

We could add a variable clock And let the value in AVar be sent again when
the value of clock changes. But we’ll take a different approach

We’ll let the values of AVar and BVar be ordered pairs, the first element of
which is the value being sent and the second element is a one-bit value that
is changed when a value is chosen. So we can send this sequence of values
Like this [15 × (1 per second) pause ]
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AVar :

A

〈“Ted ”, 0〉 BVar :

B

〈“Ted ”, 0〉

“Fred ”, “Mary”, “Mary” , “Ted ” , “Ted ”

We could add a variable clock And let the value in AVar be sent again when
the value of clock changes. But we’ll take a different approach

We’ll let the values of AVar and BVar be ordered pairs, the first element of
which is the value being sent and the second element is a one-bit value that
is changed when a value is chosen. So we can send this sequence of values
Like this [15 × (1 per second) pause ]
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AVar :

A

〈“Ted ”, 1〉 BVar :

B

〈“Ted ”, 0〉

“Fred ”, “Mary”, “Mary” , “Ted ” , “Ted ”

We could add a variable clock And let the value in AVar be sent again when
the value of clock changes. But we’ll take a different approach

We’ll let the values of AVar and BVar be ordered pairs, the first element of
which is the value being sent and the second element is a one-bit value that
is changed when a value is chosen. So we can send this sequence of values
Like this [15 × (1 per second) pause ]
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AVar :

A

〈“Ted ”, 1〉 BVar :

B

〈“Ted ”, 1〉

“Fred ”, “Mary”, “Mary” , “Ted ” , “Ted ” , “Ted ”

We could add a variable clock And let the value in AVar be sent again when
the value of clock changes. But we’ll take a different approach

We’ll let the values of AVar and BVar be ordered pairs, the first element of
which is the value being sent and the second element is a one-bit value that
is changed when a value is chosen. So we can send this sequence of values
Like this [15 × (1 per second) pause ]
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AVar :

A

〈“Ann”, 0〉 BVar :

B

〈“Ted ”, 1〉

“Fred ”, “Mary”, “Mary” , “Ted ” , “Ted ” , “Ted ”

We could add a variable clock And let the value in AVar be sent again when
the value of clock changes. But we’ll take a different approach

We’ll let the values of AVar and BVar be ordered pairs, the first element of
which is the value being sent and the second element is a one-bit value that
is changed when a value is chosen. So we can send this sequence of values
Like this [15 × (1 per second) pause ]
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AVar :

A

〈“Ann”, 0〉 BVar :

B

〈“Ann”, 0〉

“Fred ”, “Mary”, “Mary” , “Ted ” , “Ted ” , “Ted ” , “Ann”

We could add a variable clock And let the value in AVar be sent again when
the value of clock changes. But we’ll take a different approach

We’ll let the values of AVar and BVar be ordered pairs, the first element of
which is the value being sent and the second element is a one-bit value that
is changed when a value is chosen. So we can send this sequence of values
Like this [15 × (1 per second) pause ]
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THE HIGH LEVEL SPEC
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The spec of what the AB protocol is supposed to accomplish is in a module
named ABSpec.

As usual, it extends the Integers module.

And it declares the constant Data, which is the set of all values that can be
transmitted.
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The spec of what the AB protocol is supposed to accomplish is in a module
named ABSpec.

As usual, it extends the Integers module.

And it declares the constant Data, which is the set of all values that can be
transmitted.
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The set of values that can be transmitted.

The spec of what the AB protocol is supposed to accomplish is in a module
named ABSpec.

As usual, it extends the Integers module.

And it declares the constant Data, which is the set of all values that can be
transmitted.
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We declare the spec’s two variables and the type correctness invariant
asserting that both variables are pairs whose first element is in the set Data,
and whose second element is either zero or one.

It’s convenient to define vars to be the tuple of all variables.
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AVar and BVar are
〈data, 0 or 1〉 pairs.

We declare the spec’s two variables and the type correctness invariant
asserting that both variables are pairs whose first element is in the set Data,
and whose second element is either zero or one.

It’s convenient to define vars to be the tuple of all variables.
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We declare the spec’s two variables and the type correctness invariant
asserting that both variables are pairs whose first element is in the set Data,
and whose second element is either zero or one.

It’s convenient to define vars to be the tuple of all variables.
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The initial-state formula asserts that
AVar can equal any pair whose first element is in Data and whose second
element is 1.

And BVar must equal AVar .
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AVar can equal 〈any element of Data, 1〉 .

The initial-state formula asserts that
AVar can equal any pair whose first element is in Data and whose second
element is 1.

And BVar must equal AVar .
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The initial-state formula asserts that
AVar can equal any pair whose first element is in Data and whose second
element is 1.

And BVar must equal AVar .
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A chooses a new value to send.

We’re going to define A to be the action in which the sender A chooses a
new value to send.

And we’re going to define B to be the action in which the receiver B receives
a value.

The next-state action permits an A step or a B step.
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B receives a value.

We’re going to define A to be the action in which the sender A chooses a
new value to send.

And we’re going to define B to be the action in which the receiver B receives
a value.

The next-state action permits an A step or a B step.
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new value to send.
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a value.

The next-state action permits an A step or a B step.
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And here’s the complete spec.

Remember that vars was defined to be the tuple of all variables.
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And here’s the complete spec.

Remember that vars was defined to be the tuple of all variables.
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Now for the definition of action A.

The action can be taken when AVar equals BVar .

The new value of AVar is a pair that can have any data value as its first
component and whose second component is the complement of AVar ’s
original second component.
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the complement of AVar [2]

Now for the definition of action A.

The action can be taken when AVar equals BVar .

The new value of AVar is a pair that can have any data value as its first
component and whose second component is the complement of AVar ’s
original second component.
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the complement of AVar [2]
IF AVar [2] = 0 THEN 1

ELSE 0

A programmer might write that complement this way.

A mathematician might write it this way where percent is the modulus
operator used in many programming languages.

TLC will show you how it’s defined for negative arguments.
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the complement of AVar [2]
IF AVar [2] = 0 THEN 1

ELSE 0
(AVar [2] + 1) % 2

A programmer might write that complement this way.

A mathematician might write it this way where percent is the modulus
operator used in many programming languages.

TLC will show you how it’s defined for negative arguments.
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the complement of AVar [2]
IF AVar [2] = 0 THEN 1

ELSE 0
(AVar [2] + 1) % 2

A programmer might write that complement this way.

A mathematician might write it this way where percent is the modulus
operator used in many programming languages.

TLC will show you how it’s defined for negative arguments.
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the complement of AVar [2]

We’ll write it like this, the way a bright child might.

The action leaves BVar unchanged.
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We’ll write it like this, the way a bright child might.

The action leaves BVar unchanged.
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We’ll write it like this, the way a bright child might.

The action leaves BVar unchanged.
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We now define action B , in which a message is received.

A B step can be taken when the values of AVar and BVar are unequal.

The step sets the value of BVar to that of AVar

And it leaves AVar unchanged.
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We now define action B , in which a message is received.

A B step can be taken when the values of AVar and BVar are unequal.

The step sets the value of BVar to that of AVar

And it leaves AVar unchanged.
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This completes the definition of the specification Spec.
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– Stop the video.

– Download ABSpec.

– Open it in the Toolbox.

– Create a model that substitutes a
small set of model values for Data .

– Run TLC on the model to check
invariance of TypeOK .

Stop the video now to download ABSpec and open it in the Toolbox.

Create a model that substitutes a small set of model values, perhaps
containing 3 values, for Data .

And run TLC on the model to check that TypeOK is an invariant.
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– Stop the video.

– Download ABSpec.

– Open it in the Toolbox.

– Create a model that substitutes a
small set of model values for Data .

– Run TLC on the model to check
invariance of TypeOK .

Stop the video now to download ABSpec and open it in the Toolbox.

Create a model that substitutes a small set of model values, perhaps
containing 3 values, for Data .

And run TLC on the model to check that TypeOK is an invariant.
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Type correctness doesn’t mean
the spec is correct.

To find errors, check that formulas
which should be invariants are.

Here’s one such formula defined in ABSpec :

Convince yourself that it should be an invariant
and have TLC check that it is.

Type correctness doesn’t mean that a specification is correct.

To find errors, we should check that formulas which should be invariants
actually are invariants.

Here’s one such formula defined in the ABSpec module.
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Type correctness doesn’t mean
the spec is correct.

To find errors, check that formulas
which should be invariants are.

Here’s one such formula defined in ABSpec :

Convince yourself that it should be an invariant
and have TLC check that it is.

Type correctness doesn’t mean that a specification is correct.
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Type correctness doesn’t mean
the spec is correct.

To find errors, check that formulas
which should be invariants are.

Here’s one such formula defined in ABSpec :

Convince yourself that it should be an invariant
and have TLC check that it is.

Type correctness doesn’t mean that a specification is correct.

To find errors, we should check that formulas which should be invariants
actually are invariants.

Here’s one such formula defined in the ABSpec module.
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Type correctness doesn’t mean
the spec is correct.

To find errors, check that formulas
which should be invariants are.

Here’s one such formula defined in ABSpec :

Convince yourself that it should be an invariant
and have TLC check that it is.

Convince yourself that it should be an invariant and have TLC check that it
actually is.

[ slide 146 ]



Formula Spec asserts what may happen.

We now specify what must happen.

Exactly what do may and must mean?

Like all the specifications we’ve written so far, formula Spec asserts only what
may happen.

We will now specify what must happen.

But first, we look at exactly what may and must mean.
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Formula Spec asserts what may happen.

We now specify what must happen.

Exactly what do may and must mean?

Like all the specifications we’ve written so far, formula Spec asserts only what
may happen.

We will now specify what must happen.

But first, we look at exactly what may and must mean.
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Formula Spec asserts what may happen.

We now specify what must happen.

Exactly what do may and must mean?

Like all the specifications we’ve written so far, formula Spec asserts only what
may happen.

We will now specify what must happen.

But first, we look at exactly what may and must mean.
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SAFETY AND LIVENESS
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Safety Formula

Asserts what may happen.

Any behavior that violates it does so at
some point.

Example: Init ∧ 2 [Next ]vars can be violated either:

at an initial state not satisfying Init

or at a step not satisfying [Next ]vars .

Nothing past that point can make any difference.

A safety formula is a temporal formula that asserts only what may happen.

More precisely, it’s a temporal formula that if a behavior violates it – meaning
that if the formula is false on the behavior, then that violation occurs at some
particular point in the behavior.

And nothing in the behavior past that point can prevent the violation.
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some point.
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Safety Formula

Asserts what may happen.

Any behavior that violates it does so at
some point.

Example: Init ∧ 2 [Next ]vars can be violated either:

at an initial state not satisfying Init

or at a step not satisfying [Next ]vars .

Nothing past that point can make any difference.

A safety formula is a temporal formula that asserts only what may happen.

More precisely, it’s a temporal formula that if a behavior violates it – meaning
that if the formula is false on the behavior, then that violation occurs at some
particular point in the behavior.

And nothing in the behavior past that point can prevent the violation.
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Safety Formula

Asserts what may happen.

Any behavior that violates it does so at
some point.

Example: Init ∧ 2 [Next ]vars can be violated either:

at an initial state not satisfying Init

or at a step not satisfying [Next ]vars .

Nothing past that point can make any difference.

A safety formula is a temporal formula that asserts only what may happen.

More precisely, it’s a temporal formula that if a behavior violates it – meaning
that if the formula is false on the behavior, then that violation occurs at some
particular point in the behavior.

And nothing in the behavior past that point can prevent the violation.
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Safety Formula

Asserts what may happen.

Any behavior that violates it does so at
some point.
Nothing past that point makes any difference.

Example: Init ∧ 2 [Next ]vars can be violated either:

at an initial state not satisfying Init

or at a step not satisfying [Next ]vars .

Nothing past that point can make any difference.

A safety formula is a temporal formula that asserts only what may happen.

More precisely, it’s a temporal formula that if a behavior violates it – meaning
that if the formula is false on the behavior, then that violation occurs at some
particular point in the behavior.

And nothing in the behavior past that point can prevent the violation.

[ slide 155 ]



Safety Formula

Asserts what may happen.

Any behavior that violates it does so at
some point.

Example: Init ∧ 2 [Next ]vars can be violated either:

at an initial state not satisfying Init

or at a step not satisfying [Next ]vars .

Nothing past that point can make any difference.

For example the kind of specification we’ve been writing can be violated by a
behavior only if either The initial formula is false on the behavior’s first state,
or the action Next sub vars is false on some step.

Remember that this action false on a step means that the step neither
satisfies the action Next nor leaves the tuple vars of variables unchanged.

[ slide 156 ]



Safety Formula

Asserts what may happen.

Any behavior that violates it does so at
some point.

Example: Init ∧ 2 [Next ]vars can be violated either:

at an initial state not satisfying Init

or at a step not satisfying [Next ]vars .

Nothing past that point can make any difference.

For example the kind of specification we’ve been writing can be violated by a
behavior only if either The initial formula is false on the behavior’s first state,
or the action Next sub vars is false on some step.

Remember that this action false on a step means that the step neither
satisfies the action Next nor leaves the tuple vars of variables unchanged.
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Safety Formula

Asserts what may happen.

Any behavior that violates it does so at
some point.

Example: Init ∧ 2 [Next ]vars can be violated either:

at an initial state not satisfying Init

or at a step not satisfying [Next ]vars .

Nothing past that point can make any difference.

For example the kind of specification we’ve been writing can be violated by a
behavior only if either The initial formula is false on the behavior’s first state,
or the action Next sub vars is false on some step.

Remember that this action false on a step means that the step neither
satisfies the action Next nor leaves the tuple vars of variables unchanged.
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Safety Formula

Asserts what may happen.

Any behavior that violates it does so at
some point.

Example: Init ∧ 2 [Next ]vars can be violated either:

at an initial state not satisfying Init

or at a step not satisfying [Next ]vars .
The step neither satisfies Next nor leaves vars unchanged.

Nothing past that point can make any difference.

For example the kind of specification we’ve been writing can be violated by a
behavior only if either The initial formula is false on the behavior’s first state,
or the action Next sub vars is false on some step.

Remember that this action false on a step means that the step neither
satisfies the action Next nor leaves the tuple vars of variables unchanged.
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Safety Formula

Asserts what may happen.

Any behavior that violates it does so at
some point.

Example: Init ∧ 2 [Next ]vars can be violated either:

at an initial state not satisfying Init

or at a step not satisfying [Next ]vars .

Nothing past that point can make any difference.

And nothing in the behavior past that point of violation can cause the formula
to be true.
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Liveness Formula

Asserts what must happen.

A behavior can not violate it at any point.

Example: x = 5 on some state of the behavior .

At any point, it’s always possible for a later state
to satisfy x = 5.

A liveness formula is a temporal formula that asserts only what must happen.

More precisely, it’s a temporal formula for which a behavior can not violate it
at any particular point.
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Liveness Formula

Asserts what must happen.

A behavior can not violate it at any point.

Example: x = 5 on some state of the behavior .
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to satisfy x = 5.

A liveness formula is a temporal formula that asserts only what must happen.

More precisely, it’s a temporal formula for which a behavior can not violate it
at any particular point.
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Liveness Formula

Asserts what must happen.

A behavior can not violate it at any point.

Example: x = 5 on some state of the behavior .

At any point, it’s always possible for a later state
to satisfy x = 5.

A liveness formula is a temporal formula that asserts only what must happen.

More precisely, it’s a temporal formula for which a behavior can not violate it
at any particular point.
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Liveness Formula

Asserts what must happen.

A behavior can not violate it at any point.

The rest of the behavior can always
make it true.

Example: x = 5 on some state of the behavior .

At any point, it’s always possible for a later state
to satisfy x = 5.

At any point in a behavior, there’s a way to complete the behavior so it
satisfies the formula.

An example of a liveness formula is one asserting that x equals 5 on some
state of the behavior.

We’ll see in a minute how to write a formula that asserts this.
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Liveness Formula

Asserts what must happen.

A behavior can not violate it at any point.

Example: x = 5 on some state of the behavior .

At any point, it’s always possible for a later state
to satisfy x = 5.

At any point in a behavior, there’s a way to complete the behavior so it
satisfies the formula.

An example of a liveness formula is one asserting that x equals 5 on some
state of the behavior.

We’ll see in a minute how to write a formula that asserts this.
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Liveness Formula

Asserts what must happen.

A behavior can not violate it at any point.

Example: x = 5 on some state of the behavior .
We’ll see later how to write a formula that asserts this.

At any point, it’s always possible for a later state
to satisfy x = 5.

At any point in a behavior, there’s a way to complete the behavior so it
satisfies the formula.

An example of a liveness formula is one asserting that x equals 5 on some
state of the behavior.

We’ll see in a minute how to write a formula that asserts this.
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Liveness Formula

Asserts what must happen.

A behavior can not violate it at any point.

Example: x = 5 on some state of the behavior .

At any point, it’s always possible for a later state
to satisfy x = 5.

At any point in a behavior, it’s always possible for x to equal 5 in some later
state.

So the behavior isn’t violated at that point.

Remember that a behavior is any infinite sequence of states. We’re not
talking only about behaviors that satisfy some specification.
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Liveness Formula

Asserts what must happen.

A behavior can not violate it at any point.

Example: x = 5 on some state of the behavior .

At any point, it’s always possible for a later state
to satisfy x = 5.

At any point in a behavior, it’s always possible for x to equal 5 in some later
state.

So the behavior isn’t violated at that point.

Remember that a behavior is any infinite sequence of states. We’re not
talking only about behaviors that satisfy some specification.
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Liveness Formula

Asserts what must happen.

A behavior can not violate it at any point.

Example: x = 5 on some state of the behavior .

At any point, it’s always possible for a later state
to satisfy x = 5.

A behavior is any infinite sequence of states.

At any point in a behavior, it’s always possible for x to equal 5 in some later
state.

So the behavior isn’t violated at that point.

Remember that a behavior is any infinite sequence of states. We’re not
talking only about behaviors that satisfy some specification.
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x = 5 on some state of the behavior

asserted by 3 (x = 5)

“x equals 5 is true on some state of the behavior” is asserted by this
temporal formula.

where this symbol is typed less-than greater than and pronounced
eventually.
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x = 5 on some state of the behavior

asserted by 3 (x = 5)

“x equals 5 is true on some state of the behavior” is asserted by this
temporal formula.

where this symbol is typed less-than greater than and pronounced
eventually.
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x = 5 on some state of the behavior

asserted by 3 (x = 5)
typed <>

“x equals 5 is true on some state of the behavior” is asserted by this
temporal formula.

where this symbol is typed less-than greater than and pronounced
eventually.
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x = 5 on some state of the behavior

asserted by 3 (x = 5)
typed <>

pronounced eventually

“x equals 5 is true on some state of the behavior” is asserted by this
temporal formula.

where this symbol is typed less-than greater than and pronounced
eventually.
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x = 5 on some state of the behavior

asserted by 3 (x = 5)

“x equals 5 is true on some state of the behavior” is asserted by this
temporal formula.

where this symbol is typed less-than greater than and pronounced
eventually.
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The only liveness property sequential programs
must satisfy is termination.

3 Terminated

Concurrent systems can have a wide
variety of liveness requirements.

The only liveness property sequential programs must satisfy is termination.

It’s expressed by the formula eventually Terminated , for a state formula
Terminated which asserts that the program has reached a terminated state.

Concurrent systems can have a wide variety of liveness requirements.
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3 Terminated

Concurrent systems can have a wide
variety of liveness requirements.

The only liveness property sequential programs must satisfy is termination.

It’s expressed by the formula eventually Terminated , for a state formula
Terminated which asserts that the program has reached a terminated state.

Concurrent systems can have a wide variety of liveness requirements.
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Liveness property for ABSpec :

If AVar = 〈“hi”,0〉 in some state
then BVar = 〈“hi”,0〉 in that state or a later state.

(AVar = 〈“hi”,0〉) ; (BVar = 〈“hi”,0〉)

Here’s a liveness property we might like the AB protocol to ensure.

If AVar equals the pair “hi” zero in some state
which means it’s a state in which A is sending that pair to B

then BVar equals this pair either in that state or in a later state.
which means it’s a state in which B has received the pair.
That property is expressed in TLA+
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Liveness property for ABSpec :
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Liveness property for ABSpec :

If AVar = 〈“hi”,0〉 in some state
then BVar = 〈“hi”,0〉 in that state or a later state.
B has received 〈“hi”, 0〉

(AVar = 〈“hi”, 0〉) ; (BVar = 〈“hi”, 0〉)

Here’s a liveness property we might like the AB protocol to ensure.

If AVar equals the pair “hi” zero in some state
which means it’s a state in which A is sending that pair to B

then BVar equals this pair either in that state or in a later state.
which means it’s a state in which B has received the pair.
That property is expressed in TLA+
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Liveness property for ABSpec :

If AVar = 〈“hi”,0〉 in some state
then BVar = 〈“hi”,0〉 in that state or a later state.

(AVar = 〈“hi”,0〉) ; (BVar = 〈“hi”,0〉)

by this temporal formula, where

this symbol is read leads to

and is typed in ascii as tilde greater-than.
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Liveness property for ABSpec :

If AVar = 〈“hi”,0〉 in some state
then BVar = 〈“hi”,0〉 in that state or a later state.

(AVar = 〈“hi”,0〉) ; (BVar = 〈“hi”,0〉)
pronounced leads to

by this temporal formula, where

this symbol is read leads to

and is typed in ascii as tilde greater-than.
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Liveness property for ABSpec :

If AVar = 〈“hi”,0〉 in some state
then BVar = 〈“hi”,0〉 in that state or a later state.

(AVar = 〈“hi”,0〉) ; (BVar = 〈“hi”,0〉)
typed ~>

by this temporal formula, where

this symbol is read leads to

and is typed in ascii as tilde greater-than.
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More generally:

Any value being sent by A is eventually received by B .

∀ v ∈ Data × {0, 1} : (AVar = v) ; (BVar = v)

Exercise: Convince yourself that
3P is equivalent to ¬2¬P .

In general, we’d like the AB protocol to satisfy this property:
Any value being sent by A is eventually received by B .

This is expressed as follows:

For all v in this set, which is the set of all possible values of AVar and
BVar .
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More generally:

Any value being sent by A is eventually received by B .

∀ v ∈ Data × {0, 1} : (AVar = v) ; (BVar = v)

the possible values of AVar and BVar

Exercise: Convince yourself that
3P is equivalent to ¬2¬P .

In general, we’d like the AB protocol to satisfy this property:
Any value being sent by A is eventually received by B .

This is expressed as follows:

For all v in this set, which is the set of all possible values of AVar and
BVar .
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More generally:

Any value being sent by A is eventually received by B .

∀ v ∈ Data × {0, 1} : (AVar = v) ; (BVar = v)

Exercise: Convince yourself that
3P is equivalent to ¬2¬P .

AVar equals v leads to BVar equals v .

As an exercise, convince yourself that eventually P is equivalent to not
always not P.
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WEAK FAIRNESS
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Enabled

An action A is enabled in a state s iff there is
a state t such that A is true on s → t .

For example, action A of ABSpec

A
∆
= ∧ AVar = BVar

∧ ∃ d ∈ Data : AVar ′ = 〈d ,1− AVar [2]〉
∧ BVar ′ = BVar

is enabled iff AVar = BVar and Data 6= {} .

Enabled.

[ slide 193 ]



Enabled

An action A is enabled in a state s iff there is
a state t such that A is true on s → t .

For example, action A of ABSpec

A
∆
= ∧ AVar = BVar

∧ ∃ d ∈ Data : AVar ′ = 〈d ,1− AVar [2]〉
∧ BVar ′ = BVar

is enabled iff AVar = BVar and Data 6= {} .

Let A be an arbitrary action. A is said to be enabled in a state s if and only if
there is some next state t such that A is true on the step from s to t .

Instead of saying A is true on the step s to t , we often say that s to t is an A

step.

As an example, remember action A of ABSpec which is defined like this.
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Enabled

An action A is enabled in a state s iff there is
a state t such that s → t is an A step.

For example, action A of ABSpec

A
∆
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∧ ∃ d ∈ Data : AVar ′ = 〈d ,1− AVar [2]〉
∧ BVar ′ = BVar

is enabled iff AVar = BVar and Data 6= {} .

Let A be an arbitrary action. A is said to be enabled in a state s if and only if
there is some next state t such that A is true on the step from s to t .

Instead of saying A is true on the step s to t , we often say that s to t is an A

step.

As an example, remember action A of ABSpec which is defined like this.
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Enabled

An action A is enabled in a state s iff there is
a state t such that s → t is an A step.

For example, action A of ABSpec

A
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Enabled

An action A is enabled in a state s iff there is
a state t such that s → t is an A step.

For example, action A of ABSpec

A
∆
= ∧ AVar = BVar

∧ ∃ d ∈ Data : AVar ′ = 〈d ,1− AVar [2]〉
∧ BVar ′ = BVar

is enabled iff AVar = BVar and Data 6= {} .

For it to be enabled The first conjunct must be true.
A conjunct with no primes is an assertion about the first state, so it’s an
enabling condition for an action.

We can obviously choose values of AVar and BVar in the next state to make
these two conjuncts true –
except that the second conjunct is false if Data is the empty set, so Data

must be non-empty for A to be enabled.
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Enabled

An action A is enabled in a state s iff there is
a state t such that s → t is an A step.
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is enabled iff AVar = BVar and Data 6= {} .
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must be non-empty for A to be enabled.
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Weak fairness of action A asserts of a behavior:

If A ever remains continuously enabled,
then an A step must eventually occur.

· · · → s42 → s43 → s44 → s45 → s46 → s47 → s48 → s49 → s50 → · · ·
A enabled:

Or equivalently:

A cannot remain enabled forever
without another A step occurring.

Weak fairness of action A asserts of a behavior: that if A ever remains
continuously enabled, then an A step must eventually occur.

For example, suppose we have a behavior, And A enabled is false in this
state, then true, then false again, then true, and it remains continuously
true
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Weak fairness of action A asserts of a behavior:

If A ever remains continuously enabled,
then an A step must eventually occur.

· · · → s42

false
→ s43 → s44 → s45 → s46 → s47 → s48 → s49 → s50 → · · ·

A enabled:

Or equivalently:

A cannot remain enabled forever
without another A step occurring.

Weak fairness of action A asserts of a behavior: that if A ever remains
continuously enabled, then an A step must eventually occur.

For example, suppose we have a behavior, And A enabled is false in this
state, then true, then false again, then true, and it remains continuously
true
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Weak fairness of action A asserts of a behavior:

If A ever remains continuously enabled,
then an A step must eventually occur.

· · · → s42

false
→ s43

true
→ s44 → s45 → s46 → s47 → s48 → s49 → s50 → · · ·

A enabled:

Or equivalently:

A cannot remain enabled forever
without another A step occurring.

Weak fairness of action A asserts of a behavior: that if A ever remains
continuously enabled, then an A step must eventually occur.

For example, suppose we have a behavior, And A enabled is false in this
state, then true, then false again, then true, and it remains continuously
true
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Weak fairness of action A asserts of a behavior:
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Weak fairness of action A asserts of a behavior:

If A ever remains continuously enabled,
then an A step must eventually occur.

· · · → s42

false
→ s43

true
→ s44

false
→ s45

true
→ s46

true
→ s47

true
→ s48

true
→ s49

true
→ s50

true
→ · · ·

A enabled:

Or equivalently:

A cannot remain enabled forever
without another A step occurring.

Then an A step must occur in this green part of the behavior.

After which, A need not remain enabled.

An equivalent way of saying this is that A cannot remain enabled forever
without another A step occurring.
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Weak fairness of A is written as the temporal
formula WFvars(A) , where vars is the tuple of
all the spec’s variables.

Later, we’ll see the strong fairness formula SFvars(A) .

Weak fairness of A is written as this temporal formula, where vars is the
tuple of all the spec’s variables.

It’s typed as WF underscore vars parentheses A in ASCII.

It’s usually read “WF of A”, omitting the vars.

I’ll explain the vars later.
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Weak fairness of A is written as the temporal
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Weak fairness of A is written as the temporal
formula WFvars(A) , where vars is the tuple of
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Weak fairness of A is written as the temporal
formula WFvars(A) , where vars is the tuple of
all the spec’s variables.

It’s a liveness property because it can always be made
true by an A step or a state in which A is not enabled.

Later, we’ll see the strong fairness formula SFvars(A) .

WF of A is a liveness property because, at any point in a behavior, it can be
made true by an A step or a state in which A is not enabled.

Later, in the second part of this lecture, we’ll see the strong fairness formula
SF of A.
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ADDING LIVENESS TO A SPEC
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A spec with liveness is written

Init ∧2[Next ]vars ∧ Fairness

Module ABSpec defines

FairSpec
∆
= Init ∧2[Next ]vars ∧WFvars(Next)

Asserts that a behavior keeps taking Next steps
as long as Next is enabled

A TLA+ spec with liveness is written in this form
where Fairness is a conjunction of one or more WF and/or SF of A formulas
and each A is a subaction of Next Which means that every possible A step
is a Next step.
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A spec with liveness is written

Init ∧2[Next ]vars ∧ Fairness

Module ABSpec defines

FairSpec
∆
= Init ∧2[Next ]vars ∧WFvars(Next)

Asserts that a behavior keeps taking Next steps
as long as Next is enabled

Module ABSpec defines FairSpec to be this specification, Where WF of Next
asserts that a behavior keeps taking Next steps as long as Next is enabled.

Which means as long as the system is not in a deadlocked or terminated
state.
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A spec with liveness is written

Init ∧2[Next ]vars ∧ Fairness

Module ABSpec defines

FairSpec
∆
= Init ∧2[Next ]vars ∧WFvars(Next)

Asserts that a behavior keeps taking Next steps
as long as Next is enabled.

not in a deadlocked / terminated state

And the safety part of the spec implies that such a state cannot be reached.

So the behavior must keep taking Next steps, with A sending and B

receiving values forever.
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A spec with liveness is written

Init ∧2[Next ]vars ∧ Fairness

Module ABSpec defines

FairSpec
∆
= Init ∧2[Next ]vars ∧WFvars(Next)

Asserts that a behavior keeps taking Next steps
as long as Next is enabled – which means it
keeps sending and receiving values forever.

And the safety part of the spec implies that such a state cannot be reached.

So the behavior must keep taking Next steps, with A sending and B

receiving values forever.
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Clone the model you’ve created for ABSpec
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For liveness checking, your model must not have any
symmetry set.

For liveness checking, your model must not have any symmetry set.

If it does, change it.
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For liveness checking, your model must not have any
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For liveness checking, your model must not have any symmetry set.

If it does, change it.
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Set its behavior spec to FairSpec.
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Have TLC check this temporal property:

∀ v ∈ Data × {0, 1} : (AVar = v) ; (BVar = v)

You can copy it from the Web page.

Have TLC check that FairSpec satisfies this liveness property, which we
looked at before.

You can copy it from the Web page.
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Another possible high-level spec of the AB protocol:
Init ∧2[Next ]vars ∧WFvars(B)

Action B is enabled when the sender has sent a value that hasn’t
been received.

It remains enabled until a B step occurs.

This spec requires every sent value to be received,
but allows the sender to stop sending.

Here’s another possible high-level spec of the AB protocol.
which has this fairness requirement.

Action B is enabled when the sender has sent a value that hasn’t been
received.
And it remains enabled until a B step occurs.
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Init ∧2[Next ]vars ∧WFvars(B)

Action B is enabled when the sender has sent a value that hasn’t
been received.

It remains enabled until a B step occurs.

This spec requires every sent value to be received,
but allows the sender to stop sending.

Here’s another possible high-level spec of the AB protocol.
which has this fairness requirement.

Action B is enabled when the sender has sent a value that hasn’t been
received.
And it remains enabled until a B step occurs.
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Another possible high-level spec of the AB protocol:
Init ∧2[Next ]vars ∧WFvars(B)

Action B is enabled when the sender has sent a value that hasn’t
been received.

It remains enabled until a B step occurs.

This spec requires every sent value to be received,
but allows the sender to stop sending.

This spec requires every sent value to be received,
but allows the sender to stop sending at any time.

[ slide 247 ]



Exercise Explain why these two formulas are equivalent,
when Init , Next , . . . are defined as in module ABSpec :

Init ∧ 2[Next ]vars ∧ WFvars(Next)

Init ∧ 2[Next ]vars ∧ WFvars(A) ∧ WFvars(B)

Use TLC to check their equivalence.

Here’s an exercise for you. Explain why these two formulas are equivalent,
when Init , Next , and so on are defined as they are in module ABSpec.

And use TLC to check that they really are equivalent.
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The vars Subscript

An A ∧ (vars ′ 6= vars) step is a non-stuttering
A step.

It makes no sense to require a stuttering step
to occur.

Here’s what that vars subscript is all about.

Remember our definition of weak fairness of an action A.

WF of A means weak fairness of the action A and vars prime not equal to
vars.

A step of that action is a non-stuttering A step.
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The vars Subscript

Weak fairness of A asserts of a behavior:

If A ever remains continuously enabled,
then an A step must eventually occur.

An A ∧ (vars ′ 6= vars) step is a non-stuttering
A step.

It makes no sense to require a stuttering step
to occur.

Here’s what that vars subscript is all about.

Remember our definition of weak fairness of an action A.

WF of A means weak fairness of the action A and vars prime not equal to
vars.

A step of that action is a non-stuttering A step.
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The vars Subscript

WFvars(A) asserts of a behavior:

If A ∧ (vars ′ 6= vars) ever remains continuously enabled,
then an A ∧ (vars ′ 6= vars) step must eventually occur.

An A ∧ (vars ′ 6= vars) step is a non-stuttering
A step.

It makes no sense to require a stuttering step
to occur.

Here’s what that vars subscript is all about.

Remember our definition of weak fairness of an action A.

WF of A means weak fairness of the action A and vars prime not equal to
vars.

A step of that action is a non-stuttering A step.
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The vars Subscript

WFvars(A) asserts of a behavior:

If A ∧ (vars ′ 6= vars) ever remains continuously enabled,
then an A ∧ (vars ′ 6= vars) step must eventually occur.

An A ∧ (vars ′ 6= vars) step is a non-stuttering
A step.

It makes no sense to require a stuttering step
to occur.

Here’s what that vars subscript is all about.

Remember our definition of weak fairness of an action A.

WF of A means weak fairness of the action A and vars prime not equal to
vars.

A step of that action is a non-stuttering A step.
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The vars Subscript

WFvars(A) asserts of a behavior:

If A ∧ (vars ′ 6= vars) ever remains continuously enabled,
then an A ∧ (vars ′ 6= vars) step must eventually occur.

An A ∧ (vars ′ 6= vars) step is a non-stuttering
A step.

It makes no sense to require a stuttering step
to occur.

We add the non-stuttering requirement because it makes no sense to require
a stuttering step to occur, since there’s no way of telling whether it did.
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You now know what the AB protocol is supposed to do, but you still don’t
know how it does it. And what is this mysterious strong fairness? Tune in to
the second exciting part of this lecture to find out.

Meanwhile, you’ll be happy to learn that sequences are the last of the
commonly used TLA+ data types that you need to know. And you’ve seen
almost all of the built-in TLA+ operators on those data types.
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