TLA+ Video Course - Lecture 9, Part 2
 Leslie Lamport

 THE ALTERNATING BIT PROTOCOL

 THE ALTERNATING BIT PROTOCOL

 THE PROTOCOL

 THE PROTOCOL}

This video should be viewed in conjunction with a Web page.
To find that page, search the Web for TLA+Video Course .

The TLA ${ }^{+}$Video Course
Lecture 9
The Alternating Bit Protocol

In this part, we examine the Alternating Bit Protocol itself, and how it implements the liveness property of its high-level specification.

In the process, we learn about strong fairness and some more about using the TLC model checker.

THE SAFETY SPECIFICATION

What the Protocol Accomplishes

Remember what the $A B$ protocol is supposed to accomplish.

What the Protocol Accomplishes

A Sends:
B Receives:

Remember what the $A B$ protocol is supposed to accomplish.

It starts with A Var and B Var having values like these, where the first component is an arbitrary data item.

What the Protocol Accomplishes

$$
\begin{gathered}
\frac{\mathrm{A}}{\mathrm{~B}} \\
\text { AVar: } \\
\langle " \text { Fred", } 0\rangle \\
\text { BVar: }:\langle ", 1\rangle \\
\hline
\end{gathered}
$$

A Sends: "Fred"
B Receives:

Remember what the $A B$ protocol is supposed to accomplish.

It starts with A Var and B Var having values like these, where the first component is an arbitrary data item.
A sends a data item by setting the first element of A Var to that item and complementing the one-bit second element.

What the Protocol Accomplishes

A AVar: $\langle " F r e d ", 0\rangle \quad$ BVar: \langle "Fred", 0\rangle

A Sends: "Fred"
B Receives: "Fred"

B receives that item.

What the Protocol Accomplishes

A
 AVar: \langle "Mary", 1〉
 B Var: $\langle "$ Fred", 0〉

A Sends: "Fred", "Mary"
B Receives: "Fred"

B receives that item.

A sends the next data item.

What the Protocol Accomplishes

A
 AVar: \langle "Mary", 1〉
 BVar: \langle "Mary", 1〉

A Sends: "Fred", "Mary"
B Receives: "Fred", "Mary"

B receives that item.
 A sends the next data item.

And so on.

What the Protocol Accomplishes

A
 B
 AVar：〈＂Mary＂，0〉
 $$
\text { B Var: }\langle\text { "Mary", } 1\rangle
$$

A Sends：＂Fred＂，＂Mary＂，＂Mary＂
B Receives：＂Fred＂，＂Mary＂

B receives that item．
 A sends the next data item．

And so on．

What the Protocol Accomplishes

A
 B
 AVar：〈＂Mary＂，0〉
 $$
\text { B Var: }\langle\text { "Mary", 0〉 }
$$

A Sends：＂Fred＂，＂Mary＂，＂Mary＂
B Receives：＂Fred＂，＂Mary＂，＂Mary＂

B receives that item．
 A sends the next data item．

And so on．

What the Protocol Accomplishes

A
 B
 $$
\text { AVar: }\langle\text { "Mary", 0ो BVar: }\langle\text { "Mary", } 0\rangle
$$

A Sends：＂Fred＂，＂Mary＂，＂Mary＂，．．．
B Receives：＂Fred＂，＂Mary＂，＂Mary＂，．．．

B receives that item．
 A sends the next data item．

And so on．

How the Protocol Works

Here's how the protocol works.

How the Protocol Works

Here's how the protocol works.

A and B communicate over two channels, one from A to B and one from B to A. The channels can lose messages.

How the Protocol Works

Here's how the protocol works.
A and B communicate over two channels, one from A to B and one from B
to A. The channels can lose messages.
A sends its current value to B.

How the Protocol Works

Here's how the protocol works.
A and B communicate over two channels, one from A to B and one from B
to A. The channels can lose messages.
A sends its current value to B.

How the Protocol Works

Here's how the protocol works.
A and B communicate over two channels, one from A to B and one from B
to A. The channels can lose messages.
A sends its current value to B.

How the Protocol Works

Here's how the protocol works.
A and B communicate over two channels, one from A to B and one from B
to A. The channels can lose messages.
A sends its current value to B.

How the Protocol Works

Here's how the protocol works.
A and B communicate over two channels, one from A to B and one from B
to A. The channels can lose messages.
A sends its current value to B.
Since messages can be lost, A keeps sending its value

How the Protocol Works

Here's how the protocol works.
A and B communicate over two channels, one from A to B and one from B
to A. The channels can lose messages.
A sends its current value to B.
Since messages can be lost, A keeps sending its value
[slide 20]

How the Protocol Works

Meanwhile, B acknowledges the last value it received by sending its bit.

How the Protocol Works

Meanwhile, B acknowledges the last value it received by sending its bit.

How the Protocol Works

Meanwhile, B acknowledges the last value it received by sending its bit.

How the Protocol Works

Meanwhile, B acknowledges the last value it received by sending its bit.
And because the message might get lost,

How the Protocol Works

Meanwhile, B acknowledges the last value it received by sending its bit.
And because the message might get lost,
B keeps sending it.

How the Protocol Works

Meanwhile, B acknowledges the last value it received by sending its bit.
And because the message might get lost,
B keeps sending it.

How the Protocol Works

Meanwhile, B acknowledges the last value it received by sending its bit.
And because the message might get lost,
B keeps sending it.

How the Protocol Works

Meanwhile, B acknowledges the last value it received by sending its bit.
And because the message might get lost,
B keeps sending it.

How the Protocol Works

Meanwhile, B acknowledges the last value it received by sending its bit.
And because the message might get lost,
B keeps sending it.

How the Protocol Works

Meanwhile, B acknowledges the last value it received by sending its bit.

And because the message might get lost, B keeps sending it.

When B receives the next message on the channel A to B, it knows that this is a new value because the message's bit is different from its bit.

How the Protocol Works

So it changes B Var.

How the Protocol Works

So it changes B Var.
It then starts sending its new bit.

How the Protocol Works

So it changes B Var.
It then starts sending its new bit.

How the Protocol Works

So it changes $B \operatorname{Var}$.
It then starts sending its new bit.

How the Protocol Works

So it changes B Var.

It then starts sending its new bit.

When A receives the next message on the channel B to A, it knows that this is an acknowledgement of its previous value because the message's bit is different from its bit.

How the Protocol Works

So A ignores the message

How the Protocol Works

So A ignores the message and keeps sending its current value.

How the Protocol Works

So A ignores the message and keeps sending its current value.

How the Protocol Works

So A ignores the message and keeps sending its current value.

Similarly, when B receives its next message on channel A to B, it knows this is a value it has already received because the message's bit is the same as its bit.

How the Protocol Works

So A ignores the message and keeps sending its current value.
Similarly, when B receives its next message on channel A to B, it knows this is a value it has already received because the message's bit is the same as its bit.

So B ignores the message.
[slide 40]

How the Protocol Works

So A ignores the message and keeps sending its current value.
Similarly, when B receives its next message on channel A to B, it knows this is a value it has already received because the message's bit is the same as its bit.

So B ignores the message. and keeps sending its bit.
[slide 41]

How the Protocol Works

So A ignores the message and keeps sending its current value.
Similarly, when B receives its next message on channel A to B, it knows this is a value it has already received because the message's bit is the same as its bit.

So B ignores the message. and keeps sending its bit.
[slide 42]

How the Protocol Works

So A ignores the message and keeps sending its current value.
Similarly, when B receives its next message on channel A to B, it knows this is a value it has already received because the message's bit is the same as its bit.

So B ignores the message. and keeps sending its bit.

How the Protocol Works

When A receives the next message on the channel B to A, it knows that this is an acknowledgement of its current value because the message's bit is the same as its bit.

How the Protocol Works

When A receives the next message on the channel B to A, it knows that this is an acknowledgement of its current value because the message's bit is the same as its bit.

So A chooses a new data item and flips its bit.

How the Protocol Works

When A receives the next message on the channel B to A, it knows that this is an acknowledgement of its current value because the message's bit is the same as its bit.

So A chooses a new data item and flips its bit.
And so on.
[slide 46]

How the Protocol Works

When A receives the next message on the channel B to A, it knows that this is an acknowledgement of its current value because the message's bit is the same as its bit.

So A chooses a new data item and flips its bit.
And so on.
[slide 47]

How the Protocol Works

When A receives the next message on the channel B to A, it knows that this is an acknowledgement of its current value because the message's bit is the same as its bit.

So A chooses a new data item and flips its bit.
And so on.
[slide 48]

How the Protocol Works

When A receives the next message on the channel B to A, it knows that this is an acknowledgement of its current value because the message's bit is the same as its bit.

So A chooses a new data item and flips its bit.
And so on.
[slide 49]

The TLA+ Specification

We now look at the safety part of the TLA ${ }^{+}$specification.

The TLA+ Specification

Download module $A B$ and open it in the Toolbox.

We now look at the safety part of the TLA+ specification.

It's in module $A B$. Download that spec now and open it in the Toolbox.

The TLA+ Specification

> Download module $A B$ and open it in the Toolbox.

Nothing new except the use of operations on sequences.

We now look at the safety part of the TLA ${ }^{+}$specification.

It's in module $A B$. Download that spec now and open it in the Toolbox.
There's nothing new in the safety spec except that it uses the operations on sequences we examined in part one of this lecture.
[slide 52]

Extends Integers, Sequences

As usual, the module begins with an EXTENDS statement that imports the Integers module

> EXTENDS Integers, Sequences Imports operators on sequences.

As usual, the module begins with an EXTENDS statement that imports the Integers module and the Sequences module that defines the operators on sequences.
extends Integers, Sequences
CONSTANT Data

As usual, the module begins with an EXTENDS statement that imports the Integers module and the Sequences module that defines the operators on sequences.

The constant Data
extends Integers, Sequences
CONSTANT Data Same as in ABSpec.

As usual, the module begins with an EXTENDS statement that imports the Integers module
and the Sequences module that defines the operators on sequences.
The constant Data is the same set of data items as in module $A B S p e c$.

Extends Integers, Sequences
CONSTANT Data
$\operatorname{Remove}(i, s e q) \triangleq$

As usual, the module begins with an EXTENDS statement that imports the Integers module
and the Sequences module that defines the operators on sequences.
The constant Data is the same set of data items as in module $A B S p e c$.
Remove of i, seek was defined in part 1 to equal
extends Integers, Sequences
CONSTANT Data
$\operatorname{Remove}(i, s e q) \triangleq$ Sequence seq with its $i^{\text {th }}$ element removed.

As usual, the module begins with an EXTENDS statement that imports the Integers module
and the Sequences module that defines the operators on sequences.
The constant Data is the same set of data items as in module $A B S p e c$.
Remove of i, seek was defined in part 1 to equal
sequence seq with its $i^{\text {th }}$ element removed.
[slide 58]

Extends Integers, Sequences
CONSTANT Data
$\operatorname{Remove}(i, \operatorname{seq}) \triangleq$
$[j \in 1 \ldots(\operatorname{Len}(s e q)-1) \mapsto$ IF $j<i$ THEN $\operatorname{seq}[j]$
ELSE $\operatorname{seq}[j+1]]$

And this is the definition we saw before.

VARIABLES $A V a r, B V a r$

AVar and BVar are the same variables as in ABSpec,

variables A Var, B Var, Ato B, Bto A

$A V a r$ and B Var are the same variables as in $A B S p e c$, while A to B and B to A are additional variables that represent the message channels.
variables A Var, B Var, Ato B, Bto A
vars $\triangleq\langle A V a r, B V a r, A t o B, B t o A\rangle$
$A V a r$ and BVar are the same variables as in ABSpec, while A to B and B to A are additional variables that represent the message channels.

As usual, we define vars to be the tuple of all variables.
variables A Var, B Var, Ato B, Bto A
vars $\triangleq\langle A V a r, B V a r, A t o B, B t o A\rangle$
TypeOK \triangleq
$A V a r$ and BVar are the same variables as in ABSpec, while A to B and B to A are additional variables that represent the message channels.

As usual, we define vars to be the tuple of all variables.
Next is the type-correctness invariant.
variables A Var, B Var, Ato B, BtoA
vars $\triangleq\langle A V a r, B V a r, A t o B, B t o A\rangle$
Type $O K \triangleq \wedge$ AVar $\in \operatorname{Data} \times\{0,1\}$
$\wedge B V a r \in D a t a \times\{0,1\}$
Same as in ABSpec.

AVar and BVar are the same variables as in ABSpec, while A to B and B to A are additional variables that represent the message channels.

As usual, we define vars to be the tuple of all variables.
Next is the type-correctness invariant.
The possible values of AVar and BVar are the same as in ABSpec.
[slide 64]
variables A Var, B Var, Ato B, Bto A vars $\triangleq\langle A V a r, B V a r, A t o B, B t o A\rangle$

TypeOK $\triangleq \wedge$ AVar $\in \operatorname{Data} \times\{0,1\}$
$\wedge B \operatorname{Var} \in \operatorname{Data} \times\{0,1\}$
$\wedge \operatorname{AtoB} \in \operatorname{Seq}($ Data $\times\{0,1\})$

Ato B is an element of
variables A Var, B Var, Ato B, Bto A vars $\triangleq\langle A V a r, B V a r, A t o B, B t o A\rangle$

Type $O K \triangleq \wedge$ AVar $\in \operatorname{Data} \times\{0,1\}$
$\wedge B \operatorname{Var} \in \operatorname{Data} \times\{0,1\}$
$\wedge A t o B \in S e q($ Data $\times\{0,1\})$
The set of sequences of
$A t o B$ is an element of the set of all sequences of
variables A Var, B Var, Ato B, Bto A vars $\triangleq\langle A V a r, B V a r, A t o B, B t o A\rangle$

Type $O K \triangleq \wedge$ AVar $\in \operatorname{Data} \times\{0,1\}$
$\wedge B \operatorname{Var} \in \operatorname{Data} \times\{0,1\}$
$\wedge A t o B \in \operatorname{Seq}(D a t a \times\{0,1\})$
The set of sequences of values A can send.

Ato B is an element of the set of all sequences of values that A can send.
variables A Var, B Var, Ato B, BtoA

$$
\text { vars } \triangleq\langle A V a r, B \operatorname{Var}, A t o B, B t o A\rangle
$$

$$
\text { TypeOK } \triangleq \wedge A \operatorname{Var} \in \operatorname{Data} \times\{0,1\}
$$

$$
\wedge B \operatorname{Var} \in \operatorname{Data} \times\{0,1\}
$$

$$
\wedge A t o B \in \operatorname{Seq}(D a t a \times\{0,1\})
$$

A sends a message by appending it to the end of $A t o B$.

Ato B is an element of the set of all sequences of values that A can send.
A sends a message by appending it to the end of AtoB.
variables A Var, B Var, Ato B, Bto A
vars $\triangleq\langle A V a r, B V a r, A t o B, B t o A\rangle$
Type $O K \triangleq \wedge$ AVar $\in \operatorname{Data} \times\{0,1\}$
$\wedge B \operatorname{Var} \in \operatorname{Data} \times\{0,1\}$
$\wedge A t o B \in \operatorname{Seq}($ Data $\times\{0,1\})$
A sends a message by appending it to the end of $A t o B$.
B receives the message at the head of $A t o B$.

Ato B is an element of the set of all sequences of values that A can send.
A sends a message by appending it to the end of $A t o B$.
B receives the message at the head of AtoB.
[slide 69]
variables $A V a r, B V a r, A t o B, B t o A$

$$
\text { vars } \triangleq\langle A V a r, B \operatorname{Var}, A t o B, B t o A\rangle
$$

$$
\text { TypeOK } \triangleq \wedge A \operatorname{Var} \in \operatorname{Data} \times\{0,1\}
$$

$$
\wedge B \operatorname{Var} \in \operatorname{Data} \times\{0,1\}
$$

$$
\wedge A t o B \in \operatorname{Seq}(\text { Data } \times\{0,1\})
$$

$$
\wedge B t o A \in \operatorname{Seq}(\{0,1\})
$$

The set of sequences of bits

And similarly, the value of $B t o A$ is always a sequence of bits.
variables A Var, B Var, Ato B, Bto A
vars $\triangleq\langle A V a r, B V a r, A t o B, B t o A\rangle$
TypeOK $\triangleq \wedge$ AVar \in Data $\times\{0,1\}$
$\wedge B \operatorname{Var} \in \operatorname{Data} \times\{0,1\}$
\wedge AtoB $\in \operatorname{Seq}($ Data $\times\{0,1\})$
$\wedge B t o A \in \operatorname{Seq}(\{0,1\})$
Init $\triangleq \wedge$ AVar \in Data $\times\{1\} \quad$ Same as in ABSpec

$$
\wedge B \operatorname{Var}=A \operatorname{Var}
$$

And similarly, the value of $B t o A$ is always a sequence of bits.

AVar and BVar have the same initial values as in ABSpec.
variables A Var, B Var, Ato B, BtoA
vars $\triangleq\langle A V a r, B V a r, A t o B, B t o A\rangle$
TypeOK $\triangleq \wedge$ AVar \in Data $\times\{0,1\}$ $\wedge B \operatorname{Var} \in \operatorname{Data} \times\{0,1\}$ \wedge AtoB $\in \operatorname{Seq}($ Data $\times\{0,1\})$ $\wedge B t o A \in \operatorname{Seq}(\{0,1\})$

$$
\begin{aligned}
\text { Init } \triangleq & \wedge A V a r \in \text { Data } \times\{1\} \\
& \wedge B \operatorname{Var}=A V a r \\
& \wedge A t o B=\langle \rangle \quad \text { Channels are empty. } \\
& \wedge B \text { to } A=\langle \rangle
\end{aligned}
$$

And similarly, the value of $B t o A$ is always a sequence of bits.

AVar and BVar have the same initial values as in ABSpec.
And the channels initially equal the empty sequence.
[slide 72]
variables A Var, B Var, Ato B, BtoA
vars $\triangleq\langle A V a r, B V a r, A t o B, B t o A\rangle$
TypeOK $\triangleq \wedge$ AVar \in Data $\times\{0,1\}$ $\wedge B \operatorname{Var} \in \operatorname{Data} \times\{0,1\}$ $\wedge A t o B \in \operatorname{Seq}($ Data $\times\{0,1\})$ $\wedge B t o A \in \operatorname{Seq}(\{0,1\})$

$$
\begin{aligned}
\text { Init } \triangleq & \wedge A \operatorname{Var} \in \text { Data } \times\{1\} \\
& \wedge B \operatorname{Var}=A \operatorname{Var} \\
& \wedge \text { Ato } B=\langle \rangle \\
& \wedge B t o A=\langle \rangle
\end{aligned}
$$

And similarly, the value of $B t o A$ is always a sequence of bits.

AVar and BVar have the same initial values as in ABSpec.
And the channels initially equal the empty sequence.
[slide 73]

The subactions of Next

The next-state action is the disjunction of five subactions whose definitions come next.

The subactions of Next
ASnd \triangleq

The next-state action is the disjunction of five subactions whose definitions come next.
A-send is defined to be

The subactions of Next

$A S n d \triangleq \mathrm{~A}$ sends a message.

The next-state action is the disjunction of five subactions whose definitions come next.
A-send is defined to be the action of A sending a message.

The subactions of Next

ASnd $\triangleq A$ sends a message.
$A R c v \triangleq$

The next-state action is the disjunction of five subactions whose definitions come next.
A-send is defined to be the action of A sending a message.
A-receive is defined to be

The subactions of Next

$A S n d \triangleq A$ sends a message.
$A R c v \triangleq \mathrm{~A}$ receives a message.

The next-state action is the disjunction of five subactions whose definitions come next.
A-send is defined to be the action of A sending a message.
A-receive is defined to be the action of A receiving a message.

The subactions of Next

> ASnd $\triangleq A$ sends a message.
> $A R c v \triangleq \mathrm{~A}$ receives a message.
> $B S n d \triangleq$

Similarly for B-send
[slide 79]

The subactions of Next

> ASnd $\triangleq A$ sends a message.
> $A R c v \triangleq A$ receives a message.
> $B S n d \triangleq B$ sends a message.

Similarly for B-send
[slide 80]

The subactions of Next

> ASnd $\triangleq A$ sends a message.
> $A R c v \triangleq \mathrm{~A}$ receives a message.
> $B S n d \triangleq B$ sends a message.
> $B R c v \triangleq$

Similarly for B-send and B-receive.

The subactions of Next

> ASnd $\triangleq A$ sends a message.
> $A R c v \triangleq \mathrm{~A}$ receives a message.
> $B S n d \triangleq B$ sends a message.
> $B R c v \triangleq B$ receives a message.

Similarly for B-send and B-receive.

The subactions of Next

> ASnd $\triangleq A$ sends a message.
> $A R c v \triangleq \mathrm{~A}$ receives a message.
> $B S n d \triangleq B$ sends a message.
> $B R c v \triangleq B$ receives a message.
> LoseMsg \triangleq

Similarly for B-send and B-receive.
And Lose-Message is the action

The subactions of Next

> ASnd $\triangleq A$ sends a message.
> $A R c v \triangleq \mathrm{~A}$ receives a message.
> $B S n d \triangleq B$ sends a message.
> $B R c v \triangleq B$ receives a message.
> LoseMsg \triangleq A message is lost.

Similarly for B-send and B-receive.
And Lose-Message is the action that describes losing a message.

ASnd \triangleq

The definition of A-send is simple.
$A S n d \triangleq \wedge$ AtoB ${ }^{\prime}=\operatorname{Append}($ AtoB, AVar $)$

The definition of A-send is simple.
It appends the value of $A \operatorname{Var}$ to the end of the sequence A-to- B

$$
\begin{aligned}
A S n d \triangleq & \wedge A t o B^{\prime}=A p p e n d(\text { AtoB, AVar }) \\
& \wedge \text { UNCHANGED }\langle A V a r, B t o A, B \operatorname{Var}\rangle
\end{aligned}
$$

The definition of A-send is simple.
It appends the value of $A \operatorname{Var}$ to the end of the sequence A-to- B
And leaves all the other variables unchanged.
The action is always enabled.

$$
\begin{aligned}
A S n d \triangleq & \wedge A t o B^{\prime}=A p p e n d(\text { AtoB, AVar }) \\
& \wedge \text { UNCHANGED }\langle\text { AVar, BtoA, BVar }\rangle
\end{aligned}
$$

$A R c v \triangleq$

The definition of A-send is simple.
It appends the value of $A \operatorname{Var}$ to the end of the sequence A-to- B
And leaves all the other variables unchanged.
The action is always enabled.
The action of A receiving a message from B
[slide 88]

$$
\begin{aligned}
A S n d \triangleq & \wedge \text { AtoB' }=\text { Append }(\text { AtoB, AVar }) \\
& \wedge \text { UNCHANGED }\langle\text { AVar, BtoA, BVar }\rangle \\
A R c v \triangleq & \wedge B t o A \neq\langle \rangle
\end{aligned}
$$

is enabled only when the sequence B-to- A of messages from B is not empty.

$$
\begin{aligned}
A S n d \triangleq & \wedge \text { AtoB' }=\text { Append }(\text { AtoB, AVar }) \\
& \wedge \text { UNCHANGED }\langle A \text { Var, BtoA, BVar }\rangle \\
A R c v \triangleq & \wedge \text { BtoA } \neq\langle \rangle \\
& \wedge \text { IF } \operatorname{Head}(B t o A)=A \operatorname{Var}[2] \\
& \text { THEN } \\
& \quad \text { ELSE }
\end{aligned}
$$

If the bit at the head of B-to- A equals A Var's bit, so B is acknowledging AVar's current value,

$$
\begin{aligned}
A S n d \triangleq & \wedge \text { AtoB' }=\text { Append }(\text { AtoB, AVar }) \\
& \wedge \text { UNCHANGED }\langle\text { AVar, BtoA, BVar }\rangle \\
A R c v \triangleq & \wedge \text { BtoA } \neq\langle \rangle \\
& \wedge \text { IF Head }(\text { BtoA })=A \operatorname{Var}[2] \\
& \quad \text { THEN } \exists d \in \operatorname{data}: \\
& \quad \text { AVar }=\langle d, 1-\text { AVar }[2]\rangle
\end{aligned}
$$

ELSE
is enabled only when the sequence B-to- A of messages from B is not empty.

If the bit at the head of B-to- A equals $A \operatorname{Var}$'s bit, so B is acknowledging AVar's current value,
then the new value of $A V a r$ is set just like in the A action of $A B S p e c$: to a pair

$$
\begin{aligned}
& \text { ASnd } \triangleq \wedge \text { AtoB }{ }^{\prime}=\operatorname{Append}(\text { AtoB }, \text { AVar }) \\
& \wedge \text { unchanged }\langle A \text { Var, BtoA, BVar〉 } \\
& A R c v \triangleq \wedge B t o A \neq\langle \rangle \\
& \wedge \text { IF } \operatorname{Head}(B t o A)=A \operatorname{Var}[2] \\
& \text { then } \exists d \in \text { Data: } \\
& A \operatorname{Var}^{\prime}=\langle d, 1-A \operatorname{Var}[2]\rangle
\end{aligned}
$$

ELSE
is enabled only when the sequence B-to- A of messages from B is not empty.

If the bit at the head of B-to- A equals $A V a r$'s bit, so B is acknowledging AVar's current value,
then the new value of $A V a r$ is set just like in the A action of $A B S p e c$: to a pair whose first element is a non-deterministically chosen element of Data, [slide 92]

$$
\begin{aligned}
\text { ASnd } \triangleq & \wedge \text { AtoB' }=\text { Append }(\text { AtoB, AVar }) \\
& \wedge \text { UnCHANGED }\langle\text { AVar, BtoA, BVar }\rangle \\
\text { ARcv } \triangleq & \wedge \text { BtoA } \neq\langle \rangle \\
& \wedge \text { IF Head }(\text { BtoA })=\text { AVar }[2] \\
& \quad \text { THEN } \exists d \in \text { Data }: \\
& \quad \text { AVar }=\langle d, 1-\text { AVar }[2]\rangle
\end{aligned}
$$

ELSE
and whose second element is the complement of the current value of AVar's bit.

$$
\begin{aligned}
& \text { ASnd } \triangleq \wedge \text { AtoB }{ }^{\prime}=\operatorname{Append}(\text { AtoB }, \text { AVar }) \\
& \wedge \text { unchanged }\langle A \text { Var, BtoA, BVar〉 } \\
& A R c v \triangleq \wedge B t o A \neq\langle \rangle \\
& \wedge \text { IF } \operatorname{Head}(B t o A)=A \operatorname{Var}[2] \\
& \text { then } \exists d \in \text { Data : } \\
& A \operatorname{Var}^{\prime}=\langle d, 1-A \operatorname{Var}[2]\rangle \\
& \text { ELSE } A V a r^{\prime}=A V a r
\end{aligned}
$$

and whose second element is the complement of the current value of AVar's bit.

Otherwise, AVar is unchanged.

$$
\begin{aligned}
\text { ASnd } \triangleq & \wedge \text { AtoB' }=\text { Append }(\text { AtoB, AVar }) \\
& \wedge \text { UNCHANGED }\langle\text { AVar }, \text { BtoA, BVar }\rangle \\
A R c v \triangleq & \wedge \text { BtoA } \neq\langle \rangle \\
& \wedge \text { IF } \operatorname{Head}(\text { BtoA })=A \operatorname{Var}[2] \\
& \text { THEN } \exists d \in \text { Data }: \\
& \text { AVar }=\langle d, 1-\text { AVar }[2]\rangle \\
& \text { ELSE AVar }=\text { AVar } \\
& \wedge \text { BtoA }^{\prime}=\operatorname{Tail}(\text { BtoA })
\end{aligned}
$$

and whose second element is the complement of the current value of AVar's bit.

Otherwise, AVar is unchanged.

And the message A is receiving, which is at the head of the sequence B-to- A, is removed from B-to- A.

$$
\begin{aligned}
B S n d \triangleq & \wedge \text { BtoA }=\text { Append }(\text { BtoA, BVar }[2]) \\
& \wedge \text { UNCHANGED }\langle\text { AVar, BVar, AtoB }\rangle \\
B R c v \triangleq & \wedge \text { AtoB } \neq\langle \rangle \\
& \wedge \text { IF } \operatorname{Head}(\text { AtoB })[2] \neq \text { BVar }[2] \\
& \text { THEN } B \operatorname{Var}^{\prime}=\operatorname{Head}(\text { AtoB }) \\
& \quad \text { ELSE } B \operatorname{Var}^{\prime}=\text { BVar } \\
& \wedge \text { AtoB' }=\operatorname{Tail}(\text { AtoB }) \\
& \wedge \text { UNCHANGED }\langle\text { AVar }, \text { BtoA }\rangle
\end{aligned}
$$

The definitions of $B S n d$ and $B R c v$ are similar; you can read them yourself.

LoseMsg \triangleq

Next comes the definition of Lose Message.

LoseMsg $\triangleq \wedge \vee$ Remove a message from AtoB.
\checkmark Remove a message from BtoA.

$$
\wedge \text { UNCHANGED }\langle A V a r, B V a r\rangle
$$

Next comes the definition of Lose Message.

It removes a message from $A t o B$ or BtoA and leaves A Var and B Var unchanged.

$$
\operatorname{LoseMsg} \triangleq \wedge \vee \wedge \exists i \in 1 \ldots \operatorname{Len}(\text { Ato } B):
$$

\checkmark Remove a message from Bto A.

$$
\wedge \text { UNCHANGED }\langle A V a r, B V a r\rangle
$$

Next comes the definition of Lose Message.
It removes a message from Ato B or BtoA and leaves AVar and BVar unchanged.

The formula that describes removing a message from AtoB asserts that for some i between 1 and the length of the sequence $A t o B$

$$
\begin{aligned}
& \operatorname{LoseMsg} \triangleq \wedge \vee \wedge \exists i \in 1 \ldots \operatorname{Len}(\operatorname{AtoB}): \\
& \text { AtoB} B^{\prime}=\operatorname{Remove}(i, \operatorname{AtoB})
\end{aligned}
$$

\checkmark Remove a message from BtoA.

\wedge UNCHANGED $\langle A V a r, B \operatorname{Var}\rangle$

the new value of $A t o B$ is the sequence obtained by removing the $i^{\text {th }}$ element from the current value of $A t o B$.

LoseMsg $\triangleq \wedge \vee \wedge \exists i \in 1 . . \operatorname{Len}($ AtoB $):$ Ato $B^{\prime}=\operatorname{Remove}(i, A t o B)$
$\wedge B$ to $A^{\prime}=B t o A$
\checkmark Remove a message from Bto A.

\wedge UNCHANGED $\langle A V a r, B$ Var \rangle

the new value of $A t o B$ is the sequence obtained by removing the $i^{\text {th }}$ element from the current value of $A t o B$.

And BtoA is unchanged.

LoseMsg $\triangleq \wedge \vee \wedge \exists i \in 1 . . \operatorname{Len}($ AtoB $):$ Ato $B^{\prime}=\operatorname{Remove}(i, A t o B)$
$\wedge B$ to $A^{\prime}=B$ to A
\checkmark Remove a message from BtoA.

$$
\wedge \text { UNCHANGED }\langle A V a r, B \text { Var }\rangle
$$

the new value of $A t o B$ is the sequence obtained by removing the $i^{\text {th }}$ element from the current value of $A t o B$.

And $B t o A$ is unchanged.

The formula that describes removing a message from Bto A

LoseMsg $\triangleq \wedge \vee \wedge \exists i \in 1 . . \operatorname{Len}($ AtoB $):$ Ato $B^{\prime}=\operatorname{Remove}(i, A t o B)$
$\wedge B t o A^{\prime}=B t o A$
$\vee \wedge \exists i \in 1 \ldots \operatorname{Len}($ Bto $A):$
BtoA ${ }^{\prime}=\operatorname{Remove}(i, B t o A)$
$\wedge A t o B^{\prime}=A t o B$
\wedge UNCHANGED $\langle A$ Var, B Var \rangle
the new value of $A t o B$ is the sequence obtained by removing the $i^{\text {th }}$ element from the current value of $A t o B$.

And $B t o A$ is unchanged.
The formula that describes removing a message from $B t o A$ is similar.

$$
N e x t \triangleq A S n d \vee A R c v \vee B S n d \vee B R c v \vee L o s e M s g
$$

Then comes the definition of Next

Next $\triangleq A S n d \vee A R c v \vee B S n d \vee B R c v \vee$ LoseMsg
Spec \triangleq Init $\wedge \square[\text { Next }]_{\text {vars }}$

Then comes the definition of Next

and the standard safety specification.

CHECKING SAFETY

Create a new model with the default specification Spec,
\square What is the behavior spec?
Onitial predicate and next-state relation
Init:
Next:
(O) Temporal formula
\squareNo Behavior Spec
\square What is the model?
Specify the values of declared constants.
Data <- [model value $]\{\mathrm{d} 1, \mathrm{~d} 2, \mathrm{~d} 3\}$

Create a new model with the default specification Spec,

letting Data be a small set of model values.
\square Invariants
Formulas true in every reachable state.

Have TLC check that TypeOK is an invariant.

Formulas true in every reachable state.

But don't run TLC yet.

Have TLC check that TypeOK is an invariant.

But don't run it yet.

A and B can keep sending messages faster than they get lost or received.

A and B can keep sending messages faster than they get lost or received.

A and B can keep sending messages faster than they get lost or received.

There is no limit to how long the sequences AtoB and BtoA can be.

A and B can keep sending messages faster than they get lost or received.

So there's no limit to how long the sequences $A t o B$ and $B t o A$ can be.

A and B can keep sending messages faster than they get lost or received.
 There is no limit to how long the sequences AtoB and BtoA can be.

There are infinitely many reachable states
A and B can keep sending messages faster than they get lost or received.
So there's no limit to how long the sequences $A t o B$ and $B t o A$ can be.
The specification allows infinitely many reachable states, and since TLC tries to compute all reachable states,

A and B can keep sending messages faster than they get lost or received.
 There is no limit to how long the sequences AtoB and BtoA can be.

There are infinitely many reachable states, so TLC will run forever.

A and B can keep sending messages faster than they get lost or received.
So there's no limit to how long the sequences $A t o B$ and Bto A can be.
The specification allows infinitely many reachable states, and since TLC tries to compute all reachable states, it will run forever.

A and B can keep sending messages faster than they get lost or received.
 There is no limit to how long the sequences $A t o B$ and BtoA can be.
 There are infinitely many reachable states, so TLC will run forever.

We could change the spec to limit the lengths of $A t o B$ and BtoA

We could change the spec to limit the lengths of $A t o B$ and $B t o A$,

A and B can keep sending messages faster than they get lost or received.
 There is no limit to how long the sequences $A t o B$ and BtoA can be.
 There are infinitely many reachable states, so TLC will run forever.

We could change the spec to limit the lengths of AtoB and BtoA, but we shouldn't have to change the specification to model check it.

We could change the spec to limit the lengths of A to B and $B t o A$, but we shouldn't have to change the spec to model check it.

We can tell TLC to examine only states where $A t o B$ and BtoA are not too long.

Here's how we can tell TLC to examine only states in which AtoB and BtoA aren't too long.
-1 TLA+ Toolbox
File Edit Window TLC Model Checker TLA Proof Manager Help
$\stackrel{5}{5}$
AB. AB Eoj Model_1 S_{3}
[1) Model Overview Advanced Options Model Checking Results
ti: Advanced Options

Additional Definitions
State Constraint
A state constraint is a formula restricting the possible states by a state predicate.

> Here's how we can tell TLC to examine only states in which Ato B and BtoA aren't too long.

On the model's advanced options page,

[slide 118]

Ti TLA+ Toolbox
File Edit Window TLC Model Checker TLA Proof Manager Help

Iิ Model Overview Advanced Options Model Checking Results
for Advanced Options
(1) 狍 (1)

Additional Definitions

> Here's how we can tell TLC to examine only states in which AtoB and BtoA aren't too long.

On the model's advanced options page, go to the state constraint section.
[slide 119]
BAB．tla Model＿1 ES
Model Overview Advanced Options Model Checking Results
E\% Advanced Options
(1) 明目 (

+ Additional Definitions

Tell TLC to examine only states with $\operatorname{Len}(A t o B)$ and Len（BtoA）at most 3.

For example，you can tell TLC to examine only states in which the lengths of $A t o B$ and $B t o A$ are at most 3 ，
BAB.tla Model_1 ES
IT) Model Overview Advanced Options Model Checking Results
for Advanced Options
(1) 風 (1)

+ Additional Definitions

```
| State Constrain!
```

A state constraint is a formula restricting the possible states by a state predicate.
$/ \backslash \operatorname{Len}($ AtoB $)=<3$
$/ \backslash \operatorname{Len}(B t \circ A)=<3$

Tell TLC to examine only states with $\operatorname{Len}(A t o B)$ and Len(BtoA) at most 3.

For example, you can tell TLC to examine only states in which the lengths of Ato B and BtoA are at most 3,
by entering this state formula.

```
TLA+ Toolbox
File Edit Window TLC Model Checker TLA Proof Manager Help
F}\mathrm{ AB.tla 后若 Model_1 &S
[TY Model Overview Advanced Options Model Checking Results
    for Advanced Options
```


Additional Definitions

- State Constraint
A state constraint is a formula restricting the possible states by a
state predicate.
$/ \backslash \operatorname{Len}($ AtoB $)=<3$
$/ \backslash \operatorname{Len}($ BtoA $)=<3$

> Tell TLC to examine only states with $\operatorname{Len}($ AtoB) and Len(BtoA) at most 3.

For example, you can tell TLC to examine only states in which the lengths of AtoB and BtoA are at most 3, by entering this state formula.

To understand exactly what this does

[slide 122]

How TLC Computes Reachable States

you need to understand how TLC computes reachable states when it has no state constraint.

How TLC Computes Reachable States

you need to understand how TLC computes reachable states when it has no state constraint.

Starting from the set of initial states.

How TLC Computes Reachable States

$\bigcirc \bigcirc$
you need to understand how TLC computes reachable states when it has no state constraint.

Starting from the set of initial states. It chooses one.

How TLC Computes Reachable States

you need to understand how TLC computes reachable states when it has no state constraint.

Starting from the set of initial states. It chooses one. and computes all possible next states from that state.

How TLC Computes Reachable States

It then chooses another state to explore.

How TLC Computes Reachable States

It then chooses another state to explore. and finds all possible next states from it.

How TLC Computes Reachable States

It then chooses another state to explore. and finds all possible next states from it.

It then chooses another unexplored state

How TLC Computes Reachable States

It then chooses another state to explore. and finds all possible next states from it.

It then chooses another unexplored state and finds its next states.

How TLC Computes Reachable States

It then chooses another state to explore. and finds all possible next states from it.

It then chooses another unexplored state and finds its next states.
And it keeps on doing this.

How TLC Computes Reachable States

It then chooses another state to explore. and finds all possible next states from it.

It then chooses another unexplored state and finds its next states.
And it keeps on doing this.

How TLC Computes Reachable States

It then chooses another state to explore. and finds all possible next states from it.

It then chooses another unexplored state and finds its next states.
And it keeps on doing this.

How TLC Computes Reachable States

It then chooses another state to explore. and finds all possible next states from it.

It then chooses another unexplored state and finds its next states.
And it keeps on doing this.

How TLC Computes Reachable States

It then chooses another state to explore. and finds all possible next states from it.

It then chooses another unexplored state and finds its next states.
And it keeps on doing this.

How TLC Computes Reachable States

It then chooses another state to explore. and finds all possible next states from it.

It then chooses another unexplored state and finds its next states.
And it keeps on doing this.

How TLC Computes Reachable States

It then chooses another state to explore. and finds all possible next states from it.

It then chooses another unexplored state and finds its next states.
And it keeps on doing this.
And so on, until it has explored all reachable states.

How TLC Uses a Constraint

Now here's how TLC computes reachable states when it has a state constraint.

How TLC Uses a Constraint

Now here's how TLC computes reachable states when it has a state constraint.

Starting from the set of initial states.

How TLC Uses a Constraint


```
Now here's how TLC computes reachable states when it has a state constraint.
```

Starting from the set of initial states. It chooses one and then checks if the state satisfies the constraint.

How TLC Uses a Constraint

Now here's how TLC computes reachable states when it has a state constraint.

Starting from the set of initial states. It chooses one and then checks if the state satisfies the constraint.

Let's suppose it does.

How TLC Uses a Constraint

As before, TLC then computes all possible next states from that state

How TLC Uses a Constraint

As before, TLC then computes all possible next states from that state

and chooses another state to explore. It checks if that state satisfies the constraint

How TLC Uses a Constraint

As before, TLC then computes all possible next states from that state

and chooses another state to explore. It checks if that state satisfies the constraint Again, let's suppose it does.

How TLC Uses a Constraint

TLC then finds all possible next states from it.

How TLC Uses a Constraint

TLC then finds all possible next states from it.

It keeps going like this

How TLC Uses a Constraint

TLC then finds all possible next states from it.
It keeps going like this
As long as it finds states that satisfy the constraint.

How TLC Uses a Constraint

TLC then finds all possible next states from it.

It keeps going like this
As long as it finds states that satisfy the constraint.

How TLC Uses a Constraint

TLC then finds all possible next states from it.

It keeps going like this
As long as it finds states that satisfy the constraint.

How TLC Uses a Constraint

TLC then finds all possible next states from it.

It keeps going like this

As long as it finds states that satisfy the constraint.

Suppose it now finds a state that doesn't satisfy the constraint.

How TLC Uses a Constraint

It doesn't explore further from that state and instead just goes on to the next unexplored state,

How TLC Uses a Constraint

It doesn't explore further from that state and instead just goes on to the next unexplored state, exploring that state if it satisfies the constraint.

How TLC Uses a Constraint

It doesn't explore further from that state and instead just goes on to the next unexplored state, exploring that state if it satisfies the constraint.

How TLC Uses a Constraint

It doesn't explore further from that state and instead just goes on to the next unexplored state, exploring that state if it satisfies the constraint.

How TLC Uses a Constraint

It doesn't explore further from that state and instead just goes on to the next unexplored state, exploring that state if it satisfies the constraint.

And continuing like that, exploring only states that satisfy the constraint,

How TLC Uses a Constraint

It doesn't explore further from that state and instead just goes on to the next unexplored state, exploring that state if it satisfies the constraint.

And continuing like that, exploring only states that satisfy the constraint, until it finds no more states to explore.

You can now run TLC on your model.

You can now run TLC on your model.

The $A B$ protocol should implement its high-level specification,

You can now run TLC on your model.

The alternating bit protocol should implement its high-level specification,

The $A B$ protocol should implement its high-level specification, so formula Spec of module $A B$ should imply formula Spec of module ABSpec.

You can now run TLC on your model.

The alternating bit protocol should implement its high-level specification, which means that formula Spec of module $A B$ should imply formula Spec of module $A B S p e c$.

The AB protocol should implement its high-level specification, so formula Spec of module $A B$ should imply formula Spec of module ABSpec.

This should be a theorem of module $A B$,

You can now run TLC on your model.
The alternating bit protocol should implement its high-level specification, which means that formula Spec of module $A B$ should imply formula Spec of module ABSpec.

This should be a theorem of module $A B$ that TLC can check,

The AB protocol should implement its high-level specification, so formula Spec of module $A B$ should imply formula Spec of module ABSpec.

This should be a theorem of module $A B$, but how can we write it?

You can now run TLC on your model.
The alternating bit protocol should implement its high-level specification, which means that formula Spec of module $A B$ should imply formula Spec of module ABSpec.

This should be a theorem of module $A B$ that TLC can check, but how can we write it?

The $A B$ protocol should implement its high-level specification, so formula Spec of module $A B$ should imply formula Spec of module ABSpec.
 This should be a theorem of module $A B$,
 but how can we write it?

INSTANCE $A B S p e c$
is illegal in module $A B$ because it imports definitions of Spec, ..., which are already defined in $A B$.

The statement "INSTANCE $A B S p e c$ " is illegal in module $A B$ because it imports definitions of identifiers like Spec, which are already defined in $A B$.

$A B S \triangleq$ INSTANCE $A B S p e c$

Module $A B$ contains the statement: A-B-S is defined to equal this instantiation.
$A B S \triangleq$ INSTANCE $A B S p e c$
Imports definitions of Spec, ... from ABSpec

Module $A B$ contains the statement: A-B-S is defined to equal this instantiation.

This statement imports into module $A B$ all the definitions, such as that of Spec, from module ABSpec

$A B S \triangleq$ INSTANCE $A B S p e c$

Imports definitions of Spec, ... from ABSpec renamed as $A B S!s p e c, \ldots$.

Module $A B$ contains the statement: A-B-S is defined to equal this instantiation.

This statement imports into module $A B$ all the definitions, such as that of Spec, from module $A B S p e c$ except renaming them by prefacing their names with A-B-S-bang.
$A B S \triangleq$ INSTANCE $A B S p e c$
Imports definitions of Spec, ... from ABSpec
renamed as $A B S!S p e c, \ldots$.

THEOREM Spec \Rightarrow ABS!Spec

This theorem states that the safety specification of the alternating bit protocol implements its high-level safety specification from module ABSpec.
$A B S \triangleq$ INSTANCE $A B S p e c$
Imports definitions of Spec, ... from ABSpec renamed as $A B S!S p e c, \ldots$.

THEOREM Spec $\Rightarrow A B S!$ Spec

```
| What to check?
Deadlock
\(\oplus\) Invariants
- Properties
Temporal formulas true for every possible behavior.
```


This theorem states that the safety specification of the alternating bit protocol implements its high-level safety specification from module $A B S p e c$.

TLC will verify it by checking that specification Spec satisfies the temporal property A-B-S bang spec .

LIVENESS

The complete AB protocol specification should be

The complete protocol specification should be

The complete AB protocol specification should be

FairSpec $\triangleq S p e c \wedge$ fairness properties

The complete protocol specification should be a formula we'll call FairSpec that's the conjunction of the safety spec and one or more fairness properties.

FairSpec \triangleq Spec \wedge fairness properties

Should imply that messages
keep getting sent and received.

The complete protocol specification should be a formula we'll call FairSpec that's the conjunction of the safety spec and one or more fairness properties.

These fairness properties should imply that messages keep getting sent and received.

FairSpec \triangleq Spec \wedge fairness properties

Should imply that messages
keep getting sent and received.

$$
\text { THEOREM FairSpec } \Rightarrow \text { ABS!FairSpec }
$$

Which means that this theorem should be true.

FairSpec \triangleq Spec \wedge fairness properties

Which means that this theorem should be true.

$$
\text { FairSpec } \triangleq S p e c \wedge \mathrm{WF}_{\text {vars }}(\text { Next })
$$

Weak fairness of the Next action doesn't work.

Weak fairness of the Next action doesn't work.

For example, it allows a behavior in which

Weak fairness of the Next action doesn't work.

For example, it allows a behavior in which B just keeps sending acknowledgments

Weak fairness of the Next action doesn't work.

For example, it allows a behavior in which B just keeps sending acknowledgments

Weak fairness of the Next action doesn't work.

For example, it allows a behavior in which B just keeps sending acknowledgments

Weak fairness of the Next action doesn't work.

For example, it allows a behavior in which B just keeps sending acknowledgments
and nothing else ever happens.

Weak fairness of the Next action doesn't work.

For example, it allows a behavior in which B just keeps sending acknowledgments
and nothing else ever happens.

Weak fairness of the Next action doesn't work.

For example, it allows a behavior in which B just keeps sending acknowledgments
and nothing else ever happens.

FairSpec $\triangleq S p e c \wedge$ fairness properties

Weak fairness of the Next action doesn't work.
For example, it allows a behavior in which B just keeps sending acknowledgments
and nothing else ever happens.
So we need a stronger fairness property.
[slide 182]

FairSpec \triangleq Spec \wedge fairness properties

Next $\triangleq A S n d \vee A R c v \vee B S n d \vee B R c v \vee$ LoseMsg

Remember the definition of the next-state action.

FairSpec \triangleq Spec \wedge fairness properties

$$
\text { Next } \triangleq A S n d \vee A R c v \vee B S n d \vee B R c v \vee \text { LoseMsg }
$$

Remember the definition of the next-state action.

We need separate fairness requirements on these four subactions, to make sure that each of them keeps being executed.

FairSpec \triangleq Spec \wedge fairness properties

$$
\text { Next } \triangleq A S n d \vee A R c v \vee B S n d \vee B R c v \vee \text { LoseMsg }
$$

Remember the definition of the next-state action.

We need separate fairness requirements on these four subactions, to make sure that each of them keeps being executed.

We don't want any fairness requirement on the Lose-Message action because we don't want to require that messages have to be lost.

FairSpec \triangleq Spec \wedge fairness properties

Next $\triangleq A S n d \vee A R c v \vee B S n d \vee B R c v \vee$ LoseMsg

Remember the definition of the next-state action.
We need separate fairness requirements on these four subactions, to make sure that each of them keeps being executed.

We don't want any fairness requirement on the Lose-Message action because we don't want to require that messages have to be lost.

So, let's try weak fairness of these actions.
[slide 186]

$$
\begin{aligned}
\text { FairSpec } \triangleq S p e c \wedge & \mathrm{SF}_{\text {vars }}(A R c v) \wedge \mathrm{SF}_{\text {vars }}(B R c v) \wedge \\
& \mathrm{WF}_{\text {vars }}(A S n d) \wedge \mathrm{WF}_{\text {vars }}(\text { BSnd })
\end{aligned}
$$

Module $A B$ contains this definition.

$$
\begin{aligned}
& \text { FairSpec } \triangleq S p e c \wedge \operatorname{SF}_{\text {vars }}(A R c v) \wedge \operatorname{SF}_{\text {vars }}(B R c v) \wedge \\
& \mathrm{WF}_{\text {vars }}(\text { ASnd }) \wedge \mathrm{WF}_{\text {vars }}(\text { BSnd })
\end{aligned}
$$

Module $A B$ contains this definition.

Change it by replacing these two ess-es by double-ewes.

$$
\begin{aligned}
\text { FairSpec } \triangleq \text { Spec } \wedge & \mathrm{WF}_{\text {vars }}(A R c v) \\
& \wedge \mathrm{WF}_{\text {vars }}(B R c v) \wedge \\
\mathrm{WF}_{\text {vars }}(A S n d) & \wedge \mathrm{WF}_{\text {vars }}(B S n d)
\end{aligned}
$$

Module $A B$ contains this definition.

Change it by replacing these two ess-es by double-ewes.
This is a plausible specification, so

$$
\begin{aligned}
\text { FairSpec } \triangleq S p e c \wedge & \mathrm{WF}_{\text {vars }}(A R c v) \\
& \wedge \mathrm{WF}_{\text {vars }}(B R c v) \wedge \\
\mathrm{WF}_{\text {vars }}(A S n d) & \wedge \mathrm{WF}_{\text {vars }}(B S n d)
\end{aligned}
$$

THEOREM FairSpec \Rightarrow ABS!FairSpec

Module $A B$ contains this definition.

Change it by replacing these two ess-es by double-ewes.
This is a plausible specification, so let's check if it satisfies this theorem.

Clone your model (removing any symmetry set).

Make a clone of the model you used before (removing any symmetry set).

Clone your model (removing any symmetry set).

Modify the specification and property to check.

Make a clone of the model you used before (removing any symmetry set).

In the clone, modify the specification and property to check by replacing Spec with FairSpec.

Run TLC on the model.

Run TLC on the model.

Run TLC on the model.

It reports that the temporal property was violated

Run TLC on the model.

It reports that the temporal property was violated

Run TLC on the model.

It reports that the temporal property was violated and produces a counterexample.

Run TLC on the model.

It reports that the temporal property was violated and produces a counterexample.

Here's the counterexample that TLC finds.

Here's the counterexample that TLC finds.

B sends an acknowledgment,

Here's the counterexample that TLC finds.

B sends an acknowledgment, A sends its value,

Here's the counterexample that TLC finds.
B sends an acknowledgment, A sends its value, A's message is lost,

Here's the counterexample that TLC finds.
B sends an acknowledgment, A sends its value, A's message is lost, B's message is lost,

Here's the counterexample that TLC finds.

B sends an acknowledgment, A sends its value, A's message is lost, B's message is lost, B sends a message,

Here's the counterexample that TLC finds.
B sends an acknowledgment, A sends its value, A's message is lost, B's message is lost, B sends a message, A sends a message,

Here's the counterexample that TLC finds.
B sends an acknowledgment, A sends its value, A's message is lost, B's message is lost, B sends a message, A sends a message, A's message is lost,

Here's the counterexample that TLC finds.
B sends an acknowledgment, A sends its value, A's message is lost, B's message is lost, B sends a message, A sends a message, A's message is lost, B's message is lost,

Here's the counterexample that TLC finds.
B sends an acknowledgment, A sends its value, A's message is lost, B's message is lost, B sends a message, A sends a message, A's message is lost, B's message is lost, B sends a message,

Here's the counterexample that TLC finds.
B sends an acknowledgment, A sends its value, A's message is lost, B's message is lost, B sends a message, A sends a message, A's message is lost, B's message is lost, B sends a message, A sends a message,

Here's the counterexample that TLC finds.
B sends an acknowledgment, A sends its value, A's message is lost, B's message is lost, B sends a message, A sends a message, A's message is lost, B's message is lost, B sends a message, A sends a message, A's message is lost,

Here's the counterexample that TLC finds.
B sends an acknowledgment, A sends its value, A's message is lost, B's message is lost, B sends a message, A sends a message, A's message is lost, B's message is lost, B sends a message, A sends a message, A's message is lost, B's message is lost.

And this continues forever.
[slide 208]

Weak fairness of A-send and B-send are true for this behavior because A-send and B-send steps keep occurring.

Weak fairness of A-send and B-send are true for this behavior because A-send and B-send steps keep occurring.

What about weak fairness of A-receive?

$A R c v$: not enabled

What about $\mathrm{WF}_{\text {vars }}(A R c v)$?

Weak fairness of A-send and B-send are true for this behavior because A-send and B-send steps keep occurring.

What about weak fairness of A-receive?
A-receive is not enabled in the initial state, since $B t o A$ contains no messages.

ARcv: enabled

What about $\mathrm{WF}_{\text {vars }}(A R c v)$?

Weak fairness of A-send and B-send are true for this behavior because A-send and B-send steps keep occurring.

What about weak fairness of A-receive?
A-receive is not enabled in the initial state, since Bto A contains no messages.

It becomes enabled when B sends a message.
[slide 212]

Weak fairness of A-send and B-send are true for this behavior because A-send and B-send steps keep occurring.

What about weak fairness of A-receive?
A-receive is not enabled in the initial state, since Bto A contains no messages.

It becomes enabled when B sends a message.
[slide 213]

ARcv: enabled

What about $\mathrm{WF}_{\text {vars }}(A R c v)$?

Weak fairness of A-send and B-send are true for this behavior because A-send and B-send steps keep occurring.

What about weak fairness of A-receive?
A-receive is not enabled in the initial state, since Bto A contains no messages.

It becomes enabled when B sends a message.
[slide 214]

$A R c v$: not enabled

What about $\mathrm{WF}_{\text {vars }}(A R c v)$?

It becomes disabled when that message is lost.

It becomes disabled when that message is lost.
It becomes enabled again when B sends another message.

It becomes disabled when that message is lost.
It becomes enabled again when B sends another message.

It becomes disabled when that message is lost.
It becomes enabled again when B sends another message.

$A R c v$: not enabled

What about $\mathrm{WF}_{\text {vars }}(A R c v)$?

It becomes disabled when that message is lost.
It becomes enabled again when B sends another message.
It is disabled again when that message is lost.

It becomes disabled when that message is lost.
It becomes enabled again when B sends another message.
It is disabled again when that message is lost.
It becomes enabled again when B sends yet another message.

It becomes disabled when that message is lost.
It becomes enabled again when B sends another message.
It is disabled again when that message is lost.
It becomes enabled again when B sends yet another message.

It becomes disabled when that message is lost.
It becomes enabled again when B sends another message.
It is disabled again when that message is lost.
It becomes enabled again when B sends yet another message.

$A R c v$: not enabled

What about $\mathrm{WF}_{\text {vars }}(A R c v)$?

It becomes disabled when that message is lost.
It becomes enabled again when B sends another message.
It is disabled again when that message is lost.
It becomes enabled again when B sends yet another message.
It's disabled again when that message is lost. And so on.
[slide 223]

ARcv: not enabled

What about $\mathrm{WF}_{\text {vars }}(A R c v)$?

So weak fairness of A-receive

$A R c v$: not enabled

What about $\mathrm{WF}_{\text {vars }}(A R c v)$? True

So weak fairness of A-receive is true on this behavior

So weak fairness of A-receive is true on this behavior

because A-receive keeps getting disabled after it's enabled, and it's never continuously enabled.

So weak fairness of A-receive is true on this behavior
because A-receive keeps getting disabled after it's enabled, and it's never continuously enabled.

Weak fairness of B-receive is also true on this behavior for the same reason.
[slide 227]

The behavior satisfies FairSpec, defined by:

$$
\begin{aligned}
\text { FairSpec } \triangleq S p e c & \wedge \mathrm{WF}_{\text {vars }}(A R c v) \\
\mathrm{WF}_{\text {vars }}(A S n d) & \wedge \mathrm{WF}_{\text {vars }}(B R c v) \wedge
\end{aligned} \wedge \mathrm{WF}_{\text {vars }}(\text { BSnd }) \mathrm{C}
$$

The behavior satisfies FairSpec, when it's defined like this.

The behavior satisfies FairSpec, defined by:

$$
\begin{aligned}
\text { FairSpec } \triangleq S p e c \wedge & \mathrm{WF}_{\text {vars }}(A R c v) \\
& \wedge \mathrm{WF}_{\text {vars }}(B R c v) \wedge \\
\mathrm{WF}_{\text {vars }}(A S n d) & \wedge \mathrm{WF}_{\text {vars }}(B S n d)
\end{aligned}
$$

but doesn't satisfy ABS!FairSpec .

The behavior satisfies FairSpec, when it's defined like this.

but it doesn't satisfy the high level fair spec in module ABSpec because no values are ever sent from A to B.

The behavior satisfies FairSpec, defined by:

$$
\begin{aligned}
\text { FairSpec } \triangleq S p e c \wedge & \mathrm{WF}_{\text {vars }}(A R c v) \\
& \wedge \mathrm{WF}_{\text {vars }}(B R c v) \wedge \\
\mathrm{WF}_{\text {vars }}(A S n d) & \wedge \mathrm{WF}_{\text {vars }}(B S n d)
\end{aligned}
$$

but doesn't satisfy ABS!FairSpec .

The behavior satisfies FairSpec, when it's defined like this.
but it doesn't satisfy the high level fair spec in module ABSpec because no values are ever sent from A to B.

So this theorem is not true.

$$
\begin{aligned}
\text { FairSpec } \triangleq \text { Spec } \wedge & \mathrm{WF}_{\text {vars }}(A R c v) \\
& \wedge \mathrm{WF}_{\text {vars }}(B R c v) \wedge \\
\mathrm{WF}_{\text {vars }}(A S n d) & \wedge \mathrm{WF}_{\text {vars }}(B S n d)
\end{aligned}
$$

The behavior satisfies FairSpec, when it's defined like this.
but it doesn't satisfy the high level fair spec in module $A B S p e c$ because no values are ever sent from A to B.

So this theorem is not true.

$$
\begin{aligned}
\text { FairSpec } \triangleq \text { Spec } \wedge & \mathrm{WF}_{\text {vars }}(A R c v) \\
& \wedge \mathrm{WF}_{\text {vars }}(B R c v) \wedge \\
\mathrm{WF}_{\text {vars }}(A S n d) & \wedge \mathrm{WF}_{\text {vars }}(B S n d)
\end{aligned}
$$

The problem is that

$$
\begin{aligned}
& \text { FairSpec } \triangleq S p e c \wedge \mathrm{WF}_{\text {vars }}(A R c v) \wedge \mathrm{WF}_{\text {vars }}(B R c v) \wedge \\
& \mathrm{WF}_{\text {vars }}(\text { ASnd }) \wedge \mathrm{WF}_{\text {vars }}(\text { BSnd })
\end{aligned}
$$

Don't imply ARcv or BRcv steps ever occur, because actions keep getting disabled.

The problem is that

these weak fairness conditions don't imply that any A-receive or B-recieve steps ever occur, because those actions keep getting disabled.

Weak fairness of action A asserts of a behavior:
If A ever remains continuously enabled, then an A step must eventually occur.

Remember that weak fairness of A means if A ever remains continuously enabled, then an A step must eventually occur.

Strong

Weak fairness of action A asserts of a behavior: is repeatedly
If A ever then an A step must eventually occur.

Remember that weak fairness of A means if A ever remains continuously

 enabled, then an A step must eventually occur.Strong fairness of A means that if A ever is repeatedly enabled, then an A step must eventually occur.

Strong

Weak fairness of action A asserts of a behavior: is repeatedly
If A ever remainseontinuously enabled, then an A step must eventually occur.
$\cdots \rightarrow s_{42} \rightarrow s_{43} \rightarrow s_{44} \rightarrow s_{45} \rightarrow s_{46} \rightarrow s_{47} \rightarrow s_{48} \rightarrow s_{49} \rightarrow s_{50} \rightarrow \cdots$

For example, suppose we have a behavior,

Strong

Weak fairness of action A asserts of a behavior: is repeatedly
If A ever remains-ontinuously enabled, then an A step must eventually occur.
$\cdots \rightarrow s_{42} \rightarrow s_{43} \rightarrow s_{44} \rightarrow s_{45} \rightarrow s_{46} \rightarrow s_{47} \rightarrow s_{48} \rightarrow s_{49} \rightarrow s_{50} \rightarrow \cdots$
A enabled:

For example, suppose we have a behavior, and A enabled is

Strong

Weak fairness of action A asserts of a behavior: is repeatedly
If A ever remains eontinuously enabled, then an A step must eventually occur.
$\cdots \rightarrow s_{42} \rightarrow s_{43} \rightarrow s_{44} \rightarrow s_{45} \rightarrow s_{46} \rightarrow s_{47} \rightarrow s_{48} \rightarrow s_{49} \rightarrow s_{50} \rightarrow \cdots$
A enabled: false

For example, suppose we have a behavior, and A enabled is false in this state,

Strong

Weak fairness of action A asserts of a behavior: is repeatedly
If A ever then an A step must eventually occur.
$\cdots \rightarrow s_{42} \rightarrow s_{43} \rightarrow s_{44} \rightarrow s_{45} \rightarrow s_{46} \rightarrow s_{47} \rightarrow s_{48} \rightarrow s_{49} \rightarrow s_{50} \rightarrow \cdots$
A enabled: false true

For example, suppose we have a behavior, and A enabled is false in this state, then true,

Strong

Weak fairness of action A asserts of a behavior: is repeatedly
If A ever then an A step must eventually occur.
$\cdots \rightarrow s_{42} \rightarrow s_{43} \rightarrow s_{44} \rightarrow s_{45} \rightarrow s_{46} \rightarrow s_{47} \rightarrow s_{48} \rightarrow s_{49} \rightarrow s_{50} \rightarrow \cdots$
A enabled: false true false

For example, suppose we have a behavior, and A enabled is false in this state, then true, the false again,

Strong

Weak fairness of action A asserts of a behavior: is repeatedly
If A ever then an A step must eventually occur.
$\cdots \rightarrow s_{42} \rightarrow s_{43} \rightarrow s_{44} \rightarrow s_{45} \rightarrow s_{46} \rightarrow s_{47} \rightarrow s_{48} \rightarrow s_{49} \rightarrow s_{50} \rightarrow \cdots$
A enabled: false true false true

For example, suppose we have a behavior, and A enabled is false in this state, then true, the false again, then true,

Strong

Warness of action A asserts of a behavior: is repeatedly
If A ever then an A step must eventually occur.
$\cdots \rightarrow s_{42} \rightarrow s_{43} \rightarrow s_{44} \rightarrow s_{45} \rightarrow s_{46} \rightarrow s_{47} \rightarrow s_{48} \rightarrow s_{49} \rightarrow s_{50} \rightarrow \cdots$
A enabled: false true false true false

For example, suppose we have a behavior, and A enabled is false in this state, then true, the false again, then true, then false

Strong

Weak fairness of action A asserts of a behavior: is repeatedly
If A ever then an A step must eventually occur.
$\cdots \rightarrow s_{42} \rightarrow s_{43} \rightarrow s_{44} \rightarrow s_{45} \rightarrow s_{46} \rightarrow s_{47} \rightarrow s_{48} \rightarrow s_{49} \rightarrow s_{50} \rightarrow \cdots$
A enabled: false true false true false true

For example, suppose we have a behavior, and A enabled is false in this state, then true, the false again, then true, then false and so on,

Strong

Warness of action A asserts of a behavior: is repeatedly
If A ever then an A step must eventually occur.
$\cdots \rightarrow s_{42} \rightarrow s_{43} \rightarrow s_{44} \rightarrow s_{45} \rightarrow s_{46} \rightarrow s_{47} \rightarrow s_{48} \rightarrow s_{49} \rightarrow s_{50} \rightarrow \cdots$
A enabled: false true false true false true false

For example, suppose we have a behavior, and A enabled is false in this state, then true, the false again, then true, then false and so on,

Strong

Weak fairness of action A asserts of a behavior: is repeatedly
If A ever then an A step must eventually occur.
$\cdots \rightarrow s_{42} \rightarrow s_{43} \rightarrow s_{44} \rightarrow s_{45} \rightarrow s_{46} \rightarrow s_{47} \rightarrow s_{48} \rightarrow s_{49} \rightarrow s_{50} \rightarrow \cdots$
A enabled: false true false true false true false false

For example, suppose we have a behavior, and A enabled is false in this state, then true, the false again, then true, then false and so on,

Strong

Weak fairness of action A asserts of a behavior: is repeatedly
If A ever remably enabled then an A step must eventually occur.
$\cdots \rightarrow s_{42} \rightarrow s_{43} \rightarrow s_{44} \rightarrow s_{45} \rightarrow s_{46} \rightarrow s_{47} \rightarrow s_{48} \rightarrow s_{49} \rightarrow s_{50} \rightarrow \cdots$
A enabled: false true false true false true false false true

For example, suppose we have a behavior, and A enabled is false in this state, then true, the false again, then true, then false and so on,

Strong

Weak fairness of action A asserts of a behavior: is repeatedly
If A ever remainseontinuously enabled, then an A step must eventually occur.
$\cdots \rightarrow s_{42} \rightarrow s_{43} \rightarrow s_{44} \rightarrow s_{45} \rightarrow s_{46} \rightarrow s_{47} \rightarrow s_{48} \rightarrow s_{49} \rightarrow s_{50} \rightarrow \cdots$
A enabled: false true false true false true false false true
where it keeps being re-enabled after it becomes disabled.
Then an A step must eventually occur.

Strong

Weak fairness of action A asserts of a behavior: is repeatedly
If A ever then an A step must eventually occur.

A enabled: false true false true false true false false true

Or equivalently:

A cannot be repeatedly enabled forever without another A step occurring.
where it keeps being re-enabled after it becomes disabled.
Then an A step must eventually occur.
An equivalent way of saying this is that A cannot be repeatedly enabled forever without another A step occurring.

$$
\begin{aligned}
\text { FairSpec } \triangleq \text { Spec } \wedge & \mathrm{WF}_{\text {vars }}(A R c v) \\
& \wedge \mathrm{WF}_{\text {vars }}(B R c v) \wedge \\
\mathrm{WF}_{\text {vars }}(A S n d) & \wedge \mathrm{WF}_{\text {vars }}(B S n d)
\end{aligned}
$$

We need to change the definition of FairSpec to what it was originally

$$
\text { FairSpec } \triangleq \text { Spec } \wedge \frac{\mathrm{WF}_{\text {vars }}(\text { ARcv })}{} \wedge \mathrm{WF}_{\text {vars }}(\text { BRcv }) \wedge \wedge
$$ changing these weak fairness conditions

$$
\text { FairSpec } \triangleq \text { Spec } \wedge \frac{\operatorname{SF} \text { vars }(A R c v)}{\mathrm{WF}_{\text {vars }}(\text { ASnd })} \wedge \mathrm{SF}_{\text {vars }}(\text { BRcv }) \wedge \mathrm{WF}_{\text {vars }}(\text { BSnd }) ~ \wedge
$$

We need to change the definition of FairSpec to what it was originally changing these weak fairness conditions to strong fairness.

$$
\begin{aligned}
& \text { FairSpec } \triangleq \text { Spec } \wedge \operatorname{SF}_{\text {vars }}(A R c v) \wedge \mathrm{SF}_{\text {vars }}(B R c v) \wedge \\
& \mathrm{WF}_{\text {vars }}(A S n d) \wedge \mathrm{WF}_{\text {vars }}(B S n d) \\
& B \text { must keep sending messages }
\end{aligned}
$$

We need to change the definition of FairSpec to what it was originally changing these weak fairness conditions to strong fairness.

Since the B-send action is always enabled, weak fairness of B-send implies that B keeps sending messages.

$$
\begin{aligned}
& \text { FairSpec } \triangleq \text { Spec } \wedge \stackrel{\operatorname{SF}_{\text {vars }}(A R c v)}{\mathrm{WF}_{\text {vars }}(A S n d)} \wedge \\
& \wedge \mathrm{SF}_{\text {vars }}(B R c v) \wedge \mathrm{WF}_{\text {vars }}(B S n d) \\
& \text { B must keep sending messages } \\
& \begin{array}{l}
\text { which implies } A \text { must eventually } \\
\\
\text { receive those messages. }
\end{array}
\end{aligned}
$$

We need to change the definition of FairSpec to what it was originally changing these weak fairness conditions to strong fairness.

Since the B-send action is always enabled, weak fairness of B-send implies that B keeps sending messages. This keeps enabling A-receive which, by strong fairness implies that A-receive steps must eventually occur to receive those messages - even if Lose-message actions keep disabling A-receive.

$$
\begin{aligned}
\text { FairSpec } \triangleq \text { Spec } \wedge & \mathrm{SF}_{\text {vars }}(A R c v) \\
& \wedge \mathrm{SF}_{\text {vars }}(B R c v) \wedge \\
\mathrm{WF}_{\text {vars }}(A S n d) & \wedge \mathrm{WF}_{\text {vars }}(B S n d) \\
& A \text { must keep sending messages }
\end{aligned}
$$

Similarly, A must keep sending messages

$$
\begin{aligned}
\text { FairSpec } \triangleq \text { Spec } \wedge & \mathrm{SF}_{\text {vars }}(A R c v) \wedge \mathrm{SF}_{\text {vars }}(B R c v) \\
& \wedge \\
& \mathrm{WF}_{\text {vars }}(A \text { Snd }) \\
& A \text { must keep sending messages } \\
& \text { that } B \text { must eventually receive. }
\end{aligned}
$$

Similarly, A must keep sending messages that B must eventually receive.

$$
\begin{aligned}
\text { FairSpec } \triangleq S p e c ~ & \operatorname{SF}_{\text {vars }}(A R c v) \wedge \mathrm{SF}_{\text {vars }}(B R c v) \wedge \\
& \mathrm{WF}_{\text {vars }}(A S n d) \wedge \mathrm{WF}_{\text {vars }}(B S n d)
\end{aligned}
$$

Similarly, A must keep sending messages that B must eventually receive.

With this definition,

FairSpec \triangleq Spec $\wedge \operatorname{SF}_{\text {vars }}(A R c v) \wedge \mathrm{SF}_{\text {vars }}($ BRcv $) \wedge$ $\mathrm{WF}_{\text {vars }}($ ASnd $) \wedge \mathrm{WF}_{\text {vars }}($ BSnd $)$

THEOREM FairSpec \Rightarrow ABS!FairSpec

Similarly, A must keep sending messages that B must eventually receive.

With this definition, the theorem is true.

FairSpec \triangleq Spec $\wedge \operatorname{SF}_{\text {vars }}(A R c v) \wedge \mathrm{SF}_{\text {vars }}($ BRcv $) \wedge$ $\mathrm{WF}_{\text {vars }}($ ASnd $) \wedge \mathrm{WF}_{\text {vars }}(B S n d)$

THEOREM FairSpec \Rightarrow ABS!FairSpec
TLC will now find no error.

Similarly, A must keep sending messages that B must eventually receive.

With this definition, the theorem is true.

You can change the definition of FairSpec in the module and rerun the model, and TLC will now find no error.
[slide 258]

What Good is Liveness?

What Good is Liveness?
[slide 259]

What Good is Liveness?

What good is knowing that something eventually happens?

What Good is Liveness?

What good is knowing that something eventually happens?

What Good is Liveness?

What good is knowing that something eventually happens - if it could be 10^{6} years from now?

What Good is Liveness?

What good is knowing that something eventually happens?

If it could be a million years from now when it happens.

What Good is Liveness?

What good is knowing that something eventually happens - if it could be 10^{6} years from now?

How can we ensure strong fairness of the $A R c v$ and $B R c v$ actions?

How can we ensure strong fairness of the $A R c v$ and $B R c v$ actions?

What Good is Liveness?

What good is knowing that something eventually happens - if it could be 10^{6} years from now?

How can we ensure strong fairness of the $A R c v$ and $B R c v$ actions? Or ever know that it's not satisfied?

How can we ensure strong fairness of the $A R c v$ and $B R c v$ actions?
Or ever know that it's not satisfied? Since it would take forever to be sure that it's not.

A specification is an abstraction.

A specification is an abstraction.

A specification is an abstraction.

It's a compromise between our desires for accuracy and simplicity.

A specification is an abstraction.
It's a compromise between our desires for accuracy and simplicity.

A specification is an abstraction.

It's a compromise between our desires for accuracy and simplicity.

We'd like to require that a message is received within 4.7 ms .

A specification is an abstraction.
It's a compromise between our desires for accuracy and simplicity.
We'd like to require that a message is received within 4.7 milliseconds of when it's sent.

A specification is an abstraction.

It's a compromise between our desires for accuracy and simplicity.

We'd like to require that a message is received within 4.7 ms .
But that would require specifying:

But that would require specifying:

A specification is an abstraction.

It's a compromise between our desires for

 accuracy and simplicity.
We'd like to require that a message is received within 4.7 ms .

But that would require specifying:

- How long it can take a message to be received.

But that would require specifying:
How long it can take a message to be received.

A specification is an abstraction.
It's a compromise between our desires for accuracy and simplicity.

We'd like to require that a message is received within 4.7 ms .
But that would require specifying:

- How long it can take a message to be received.
- How often messages can be lost.

But that would require specifying:
How long it can take a message to be received.
How often messages can be lost.

A specification is an abstraction.
It's a compromise between our desires for accuracy and simplicity.

We'd like to require that a message is received within 4.7 ms .
But that would require specifying:

- How long it can take a message to be received.
- How often messages can be lost.
- How frequently messages are retransmitted.

But that would require specifying:
How long it can take a message to be received.
How often messages can be lost.
And how frequently messages are retransmitted.

It's simpler to require that a message is eventually received.

It's simpler to require that a message is eventually received.

It's simpler to require that a message is eventually received.

If it's not eventually received, it can't be received within 4.7 ms .

It's simpler to require that a message is eventually received.
And if it's not eventually received, it certainly can't be received within 4.7 milliseconds.

It's simpler to require that a message is eventually received.

If it's not eventually received, it can't be received within 4.7 ms .

For systems without hard real-time response requirements,

It's simpler to require that a message is eventually received.
And if it's not eventually received, it certainly can't be received within 4.7 milliseconds.

For systems without hard real-time response requirements,

> It's simpler to require that a message is eventually received.

If it's not eventually received, it can't be received within 4.7 ms .

For systems without hard real-time response requirements, liveness checking is a useful way to find errors that prevent things from happening.

It's simpler to require that a message is eventually received.
And if it's not eventually received, it certainly can't be received within 4.7 milliseconds.

For systems without hard real-time response requirements,
liveness checking is a useful way to find errors that prevent things from happening.

Many systems use timeouts only to ensure that something must happen.

Many systems use timeouts only to ensure that something must happen.

Many systems use timeouts only to ensure that something must happen.

Many systems use timeouts only to ensure that something must happen.
By using timeouts only for that purpose, I mean that

Many systems use timeouts only to ensure that something must happen.

Correctness of such a system does not depend on how long it takes the timeouts to occur.

Many systems use timeouts only to ensure that something must happen. By using timeouts only for that purpose, I mean that correctness of such a system does not depend on how long it takes the timeouts to occur.

Many systems use timeouts only to ensure that something must happen.

Correctness of such a system does not depend on how long it takes the timeouts to occur.

That can influence only performance.

Many systems use timeouts only to ensure that something must happen.
By using timeouts only for that purpose, I mean that
correctness of such a system does not depend on how long it takes the timeouts to occur.

That can influence only performance.

Many systems use timeouts only to ensure that something must happen.
 Correctness of such a system does not depend on how long it takes the timeouts to occur.

Specifications of these systems can describe timeouts as actions with no time constraints, only weak fairness conditions.

Specifications of these systems can describe timeouts as actions with no time constraints, only weak fairness conditions.

Many systems use timeouts only to ensure that

 something must happen.Correctness of such a system does not depend on how long it takes the timeouts to occur.

Specifications of these systems can describe timeouts as actions with no time constraints, only weak fairness conditions.

This is true for most systems with no bounds on how long it can take an enabled operation (such as receiving a message) to occur.

Specifications of these systems can describe timeouts as actions with no time constraints, only weak fairness conditions.

This is true for most systems with no bounds on how long it can take an enabled operation (such as receiving a message) to occur.

In the first eight lectures, you learned about writing the safety part of a TLA+ spec. Now you know how to specify liveness. You simply add weak and strong fairness conditions. Simple, yes. Easy, no. Liveness is inherently subtle. TLA+ is the simplest way I know to express it, and it's still hard.

But don't worry if you have trouble with liveness. The safety part is by far the largest part and almost always the most important part of a spec. A major reason to add liveness is to catch errors in the safety part. If your fairness conditions don't imply the eventually or leads-to properties you expect to hold, it could be because the safety part doesn't allow behaviors that it should.

TLA+ Video Course

End of Lecture 9, Part 2

THE ALTERNATING BIT PROTOCOL THE PROTOCOL

