Summary of TLA⁺ **Module-Level Constructs** The Constant Operators **Miscellaneous Constructs** **Action Operators** Temporal Operators **User-Definable Operator Symbols** **Precedence Ranges of Operators** Operators Defined in Standard Modules. **ASCII** Representation of Typeset Symbols ## Module-Level Constructs ---- module M ----- Begins the module or submodule named M. EXTENDS M_1, \ldots, M_n Incorporates the declarations, definitions, assumptions, and theorems from the modules named M_1, \ldots, M_n into the current module. Constants C_1, \ldots, C_n (1) Declares the C_j to be constant parameters (rigid variables). Each C_j is either an identifier or has the form $C(_, ..., _)$, the latter form indicating that C is an operator with the indicated number of arguments. VARIABLES x_1, \ldots, x_n (1) Declares the x_i to be variables (parameters that are flexible variables). ASSUME P Asserts P as an assumption. $F(x_1, \ldots, x_n) \stackrel{\Delta}{=} exp$ Defines F to be the operator such that $F(e_1, \ldots, e_n)$ equals exp with each identifier x_k replaced by e_k . (For n = 0, it is written $F \triangleq exp$.) $f[x \in S] \stackrel{\Delta}{=} exp^{(2)}$ Defines f to be the function with domain S such that f[x] = exp for all x in S. (The symbol f may occur in exp, allowing a recursive definition.) INSTANCE M WITH $p_1 \leftarrow e_1, \ldots, p_m \leftarrow e_m$ For each defined operator F of module M, this defines F to be the operator whose definition is obtained from the definition of F in M by replacing each declared constant or variable p_i of M with e_i . (If m = 0, the WITH is omitted.) ⁽¹⁾ The terminal s in the keyword is optional. ⁽²⁾ $x \in S$ may be replaced by a comma-separated list of items $v \in S$, where v is either a comma-separated list or a tuple of identifiers. $N(x_1, \ldots, x_n) \stackrel{\Delta}{=} \text{INSTANCE } M \text{ WITH } p_1 \leftarrow e_1, \ldots, p_m \leftarrow e_m$ For each defined operator F of module M, this defines $N(d_1,\ldots,d_n)!F$ to be the operator whose definition is obtained from the definition of F by replacing each declared constant or variable p_i of M with e_i , and then replacing each identifier x_k with d_k . (If m = 0, the WITH is omitted.) ### THEOREM P Asserts that P can be proved from the definitions and assumptions of the current module. ### LOCAL def Makes the definition(s) of def (which may be a definition or an INSTANCE statement) local to the current module, thereby not obtained when extending or instantiating the module. Ends the current module or submodule. ## The Constant Operators ### Logic ``` \begin{array}{lll} \land & \lor & \neg & \Rightarrow & \equiv \\ \text{TRUE} & \text{FALSE} & \text{BOOLEAN} & [\text{the set } \{\text{TRUE, FALSE}\}] \\ \forall \, x \in S \, : \, p^{-(1)} & \exists \, x \in S \, : \, p^{-(1)} \\ \text{CHOOSE} & x \in S \, : \, p & [\text{An } x \text{ in } S \text{ satisfying } p] \end{array} ``` #### Sets ``` = \neq \in \notin \cup \cap \subseteq \setminus [\text{set difference}] \{e_1, \dots, e_n\} \qquad [\text{Set consisting of elements } e_i] \{x \in S : p\} \qquad [\text{Set of elements } x \text{ in } S \text{ satisfying } p] \{e : x \in S\} \qquad [\text{Set of elements } e \text{ such that } x \text{ in } S] \text{SUBSET } S \qquad [\text{Set of subsets of } S] \text{UNION } S \qquad [\text{Union of all elements of } S] ``` #### **Functions** ``` \begin{array}{ll} f[e] & [\text{Function application}] \\ \text{DOMAIN } f & [\text{Domain of function } f] \\ [x \in S \mapsto e] \ ^{(1)} & [\text{Function } f \text{ such that } f[x] = e \text{ for } x \in S] \\ [S \to T] & [\text{Set of functions } f \text{ with } f[x] \in T \text{ for } x \in S] \\ [f \text{ EXCEPT } ![e_1] = e_2] \ ^{(3)} & [\text{Function } \widehat{f} \text{ equal to } f \text{ except } \widehat{f}[e_1] = e_2] \end{array} ``` #### Records $$\begin{array}{ll} e.h & [\text{The h-field of record e}] \\ [h_1 \mapsto e_1, \ldots, h_n \mapsto e_n] & [\text{The record whose h_i field is e_i}] \\ [h_1 : S_1, \ldots, h_n : S_n] & [\text{Set of all records with h_i field in S_i}] \\ [r \ \text{EXCEPT } !.h = e] & [\text{Record \widehat{r} equal to r except $\widehat{r}.h = e$}] \end{array}$$ ### **Tuples** ``` e[i] [The i^{ ext{th}} component of tuple e] \langle e_1, \dots, e_n \rangle [The n-tuple whose i^{ ext{th}} component is e_i] S_1 \times \dots \times S_n [The set of all n-tuples with i^{ ext{th}} component in S_i] ``` ⁽¹⁾ $x \in S$ may be replaced by a comma-separated list of items $v \in S$, where v is either a comma-separated list or a tuple of identifiers. ⁽²⁾ x may be an identifier or tuple of identifiers. ^{(3) ![} e_1] or !.h may be replaced by a comma separated list of items ! $a_1 \cdots a_n$, where each a_i is $[e_i]$ or . h_i . ## Miscellaneous Constructs $\vee p_n$ ## **Action Operators** $\wedge p_n$ $\begin{array}{ll} e' & \qquad & [\text{The value of } e \text{ in the final state of a step}] \\ [A]_e & \qquad & [A \lor (e' = e)] \\ \langle A \rangle_e & \qquad & [A \land (e' \neq e)] \\ \text{ENABLED } A & \qquad & [\text{An } A \text{ step is possible}] \\ \text{UNCHANGED } e & \qquad & [e' = e] \\ A \cdot B & \qquad & [\text{Composition of actions}] \end{array}$ ## **Temporal Operators** # **User-Definable Operator Symbols** ## Infix Operators | $+^{(1)}$ | _ (1) | * (1) | (2) | o ⁽³⁾ | ++ | |-------------------|--------------------------|------------------|------------------|------------------|------------| | ÷ (1) | % (1) | ^ (1,4) | (1) | | | | \oplus $^{(5)}$ | \ominus ⁽⁵⁾ | \otimes | \oslash | \odot | ** | | < (1) | > (1) | < ⁽¹⁾ | ≥ ⁽¹⁾ | П | // | | \prec | > | \preceq | \succeq | \sqcup | ^^ | | « | >> | <: | $:>^{(6)}$ | & | && | | | | | ⊒ | | %% | | \subset | \supset | | \supseteq | * | $@@^{(6)}$ | | \vdash | \dashv | = | = | • | ## | | \sim | \simeq | \approx | \cong | \$ | \$\$ | | \bigcirc | ::= | \asymp | Ė | ?? | !! | | \propto | } | \forall | | | | ### Postfix Operators (7) - (1) Defined by the Naturals, Integers, and Reals modules. - (2) Defined by the *Reals* module. - (3) Defined by the Sequences module. - (4) x^y is printed as x^y . - (5) Defined by the Bags module. - (6) Defined by the *TLC* module. - (7) e^+ is printed as e^+ , and similarly for * and *#. ## Precedence Ranges of Operators The relative precedence of two operators is unspecified if their ranges overlap. Left-associative operators are indicated by (a). ### **Prefix Operators** | \neg | 4-4 | | 4 - 15 | UNION | 8-8 | |-----------|--------|------------|--------|--------|---------| | ENABLED | 4 - 15 | \Diamond | 4 - 15 | DOMAIN | 9 - 9 | | UNCHANGED | 4 - 15 | SUBSET | 8-8 | _ | 12 - 12 | ### **Infix Operators** | mix Operators | | | | | | | | |----------------|-----------|-------------|----------|-----------|------------|------------|------------| | \Rightarrow | 1-1 | \leq | 5-5 | <: | 7–7 | \ominus | 11–11 (a) | | + > | 2-2 | « | 5-5 | \ | 8-8 | _ | 11-11 (a) | | = | 2-2 | \prec | 5-5 | \cap | 8–8 (a) | | 11-11 (a) | | \sim | 2-2 | \preceq | 5-5 | U | 8–8 (a) | & | 13–13 (a) | | \wedge | 3 - 3 (a) | \propto | 5-5 | | 9-9 | && | 13-13 (a) | | \vee | 3 - 3 (a) | \sim | 5-5 | | 9-9 | \odot | 13-13 (a) | | \neq | 5-5 | \simeq | 5-5 | !! | 9-13 | \oslash | 13-13 | | \dashv | 5-5 | | 5-5 | ## | 9-13 (a) | \otimes | 13-13 (a) | | ::= | 5-5 | | 5-5 | \$ | 9-13 (a) | * | 13-13 (a) | | := | 5-5 | | 5-5 | \$\$ | 9-13 (a) | ** | 13-13 (a) | | < | 5-5 | \supseteq | 5-5 | ?? | 9-13 (a) | / | 13-13 | | = | 5-5 | \subset | 5-5 | П | 9-13 (a) | // | 13-13 | | = | 5-5 | \subseteq | 5-5 | \sqcup | 9-13 (a) | \bigcirc | 13-13 (a) | | > | 5-5 | \succ | 5-5 | \forall | 9-13 (a) | • | 13-13 (a) | | \approx | 5-5 | \succeq | 5-5 | ? | 9-14 | ÷ | 13-13 | | \asymp | 5-5 | \supset | 5-5 | \oplus | 10-10 (a) | 0 | 13-13 (a) | | \cong | 5-5 | \supseteq | 5-5 | + | 10-10 (a) | * | 13-13 (a) | | ÷ | 5-5 | \vdash | 5-5 | ++ | 10-10 (a) | ^ | 14 - 14 | | \geq | 5-5 | = | 5-5 | % | 10 – 11 | ^^ | 14 - 14 | | \gg | 5-5 | .(1) | 5-14 (a) | %% | 10-11 (a) | .(2) | 17-17 (a) | | \in | 5-5 | @@ | 6–6 (a) | | 10-11 (a) | | | | ∉ | 5-5 | :> | 7 - 7 | | 10-11 (a) | | | ### **Postfix Operators** ⁽¹⁾ Action composition (\cdot). ⁽²⁾ Record field (period). # Operators Defined in Standard Modules. Modules Naturals, Integers, Reals - (1) Only infix is defined in *Naturals*. - (2) Defined only in *Reals* module. - (3) Exponentiation. - (4) Not defined in Naturals module. ### Module Sequences ### Module FiniteSets IsFiniteSet Cardinality ### Module Bags ### Module RealTime $RTBound \qquad RTnow \qquad now ext{ (declared to be a variable)}$ ### Module TLC :> @@ Print Assert JavaTime Permutations SortSeq ## **ASCII** Representation of Typeset Symbols ``` / or \ land Λ ⇒ => <=> or \equiv ~ or \lnot or \neg \neg == \in \in \notin \neq # or /= << >> Π < > < > <> \leq or =< or <= \geq or >= \11 >> \gg ⁺⊳ -+-> \prec \succ \preceq \preceq \succeq \div \supseteq \subseteq \cdot \subset \subset \supset \o or \circ \sqsubset \sqsupset \bullet \sqsubseteq \sqsupseteq \star -1 1- \bigcirc \models |= = | \sim -> <- \rightarrow \leftarrow \simeq \cap or \intersect \cup or \union \asymp \asymp Ш \sqcup П \sqcap ≈ \approx (+) or \oplus \uplus \oplus \cong (-) or \ominus \X or \times \ominus X \doteq (.) or \odot \wr (•) x^v (2) (\X) or \otimes \propto "s" (1) (/) or \oslash \bigcirc \exists \E \A x^# (2) Ξ \AA \EE]_v >>_v WF_v WF_v SF_v SF_v ======= (3) ``` ⁽¹⁾ s is a sequence of characters. ⁽²⁾ x and y are any expressions. ⁽³⁾ a sequence of four or more – or = characters.