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Conjoining Specifications

MART́IN ABADI and LESLIE LAMPORT

Digital Equipment Corporation

We show how to specify components of concurrent systems. The specification of a system is the
conjunction of its components’ specifications. Properties of the system are proved by reasoning
about its components. We consider both the decomposition of a given system into parts, and the
composition of given parts to form a system.

Categories and Subject Descriptors: D.2.4 [Software Engineering]: Program Verification—
correctness proofs; F.3.1 [Logics and Meanings of Programs]: Specifying and Verifying and
Reasoning about Programs—specification techniques

General Terms: Theory, Verification

Additional Key Words and Phrases: Composition, concurrent programming, decomposition, live-
ness properties, modular specification, safety properties, temporal logic

1. INTRODUCTION

Large systems are built from smaller parts. We present a method for deducing prop-
erties of a system by reasoning about its components. We show how to represent an
individual component Πi by a formula Si so that the parallel composition usually
denoted cobegin Π1 ‖ . . . ‖Πn coend is represented by the formula S1 ∧ . . .∧Sn.
Composition is conjunction.
We reduce composition to conjunction not for the sake of elegance, but because

it is the best way we know to prove properties of composite systems. Rigorous rea-
soning requires logic, and hence a language of logical formulas. It does not require
a conventional programming language for describing systems. We find it most con-
venient to regard programs and circuit descriptions as low-level specifications, and
to represent them in the same logic used for higher-level specifications. The logic
we use is TLA, the Temporal Logic of Actions [Lamport 1994]. We do not discuss
here the important problem of translating from a low-level TLA specification to an
implementation in a conventional language.
The idea of representing concurrent programs and their specifications as formulas

in a temporal logic was first proposed by Pnueli [1981]. It was later observed that, if
specifications allow “stuttering” steps that leave the state unchanged, then Sl ⇒ Sh

asserts that Sl implements Sh [Lamport 1983]. Hence, proving that a lower-level
specification implements a higher-level one was reduced to proving a formula in
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508 · Mart́ın Abadi and Leslie Lamport

the logic. Still later, it was noticed that the formula ∃∃∃∃∃∃x : S specifies the same
system as S except with the variable x hidden [Abadi and Lamport 1991; Lamport
1989], and variable hiding became logical quantification. The idea of composition
as conjunction has also been suggested [Abadi and Plotkin 1993; Abramsky and
Jagadeesan 1994; Zave and Jackson 1993], but our method for reducing composition
to conjunction is new.
To deduce useful properties of a component, we must specify its environment. No

component will exhibit its intended behavior in the presence of a sufficiently hostile
environment. For example, a combinational circuit will not produce an output in
the intended range if some input line, instead of having a 0 or a 1, has an improper
voltage level of 1/2. The specification of the circuit’s environment must rule out
such improper inputs.
How we reason about a composite system depends on how it was formed. Com-

posite specifications arise in two ways: by decomposing a given system into smaller
parts and by composing given parts to form a larger system. These two situa-
tions call for two methods of writing component specifications that differ in their
treatment of the environment. This difference leads in turn to different proof rules.
When decomposing a specification, the environment of each component is as-

sumed to be the other components, and is usually left implicit. To reason about a
component, we must state what we are assuming about its environment, and then
prove that this assumption is satisfied by the other components. The Decomposi-
tion Theorem of Section 4 provides the needed proof rule. It reduces the verification
of a complex, low-level system to proving properties of a higher-level specification
and properties of one low-level component at a time. Decomposing proofs in this
way allows us to apply decision procedures to verifications that hitherto required
completely hand-guided proofs [Kurshan and Lamport 1993].
When specifying a reusable component, without knowing precisely where it will

be used, we must make explicit what it assumes of its environment. We therefore
assert that the component satisfies a guarantee M only as long as its environment
satisfies an assumption E. This assumption/guarantee property [Jones 1983] is
denoted E +−� M . To show that a composition of reusable components satisfies a
specification S, we must prove a formula of the form (E1

+−� M1) ∧ . . . ∧ (En
+−�

Mn)⇒ S, where S may again be an assumption/guarantee property. We prove such
a formula with the Composition Theorem of Section 5. This theorem allows us to
reason about assumption/guarantee specifications using well-established, effective
methods for reasoning about specifications of complete systems.
In the following section, we examine the issues that arise in decomposition and

composition. Our discussion is informal, because we wish to show that these issues
are fundamental, not artifacts of a particular formalism. We treat these topics for-
mally in Sections 4 and 5. Section 3 covers the formal preliminaries. A comparison
with related work appears in the conclusion. Proofs are relegated to the appendix.

2. AN INFORMAL OVERVIEW

2.1 Decomposing Complete Systems

A complete system is one that is self-contained; it may be observed, but it does not
interact with the observer. A program is a complete system, provided we model
ACM Transactions on Programming Languages and Systems, Vol. 17, No. 3, May 1995.
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inputs as being generated nondeterministically by the program itself.
As a tiny example of a complete system, we consider a program for comput-

ing a GCD (greatest common divisor), for which we have devised an informal
programming-language notation. Statements within angle brackets are executed
atomically; loop-endloop keywords enclose an infinite loop; cobegin-coend key-
words enclose parallel statements, separated by ‖; and semicolon has its usual
meaning. When writing processes, we will also mark variables as output, input, or
internal; a process cannot change its input variables or access the internal variables
of another process.

Program GCD
var a initially 233344, b initially 233577899 ;
cobegin loop 〈 if a > b then a := a − b 〉 endloop

‖
loop 〈 if b > a then b := b − a 〉 endloop coend

Program GCD satisfies the correctness property that eventually a and b become
and remain equal to the gcd of 233344 and 233577899. We make no distinction
between programs and properties, writing them all as TLA formulas. If formula
Mgcd represents program GCD, and formula Pgcd represents the correctness prop-
erty, then the program implements the property iff (if and only if) Mgcd implies
Pgcd . Thus, correctness of program GCD is verified by proving Mgcd ⇒ Pgcd .
In hierarchical development, one decomposes the specification of a system into

specifications of its parts. As explained in Section 4, the specification Mgcd of
program GCD can be written as Ma ∧Mb, where Ma asserts that a initially equals
233344 and is repeatedly decremented by the value of b whenever a > b, and where
Mb is analogous. The formulas Ma and Mb are the specifications of two processes
Πa and Πb. We can write Πa and Πb as

Process Πa Process Πb

output var a initially 233344 ; output var b initially 233577899 ;
input var b ; input var a ;
loop 〈 if a > b then a := a − b 〉 loop 〈 if b > a then b := b − a 〉
endloop endloop

One decomposes a specification in order to refine the components separately. We
can refine the GCD program, to remove simultaneous atomic accesses to both a
and b, by refining process Πa to

Process Πl
a

output var a initially 233344 ;
internal var ai ;
input var b ;
loop 〈 ai := b 〉 ; if 〈a > ai 〉 then 〈 a := a − ai 〉 endloop

and refining Πb to the analogous process Πl
b.

The composition of processes Πl
a and Πl

b correctly implements program GCD.
This is expressed in TLA by the assertion that M l

a ∧M l
b implies Ma ∧Mb, where

M l
a and M l

b are the formulas representing Πl
a and Πl

b.
We would like to decompose the proof of M l

a ∧M l
b ⇒ Ma ∧Mb into proofs of

M l
a ⇒ Ma and M l

b ⇒ Mb. These proofs would show that Πl
a implements Πa and

that Πl
b implements Πb.

ACM Transactions on Programming Languages and Systems, Vol. 17, No. 3, May 1995.
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initial
state

37
sent

37
acked

4
sent

4
acked

19
sent

c.ack : 0 0 1 1 0 0 . . .
c.sig : 0 1 1 0 0 1 . . .
c.val : − 37 37 4 4 19 . . .

Fig. 1. The two-phase handshake protocol for a channel c.

Unfortunately, Πl
a does not implement Πa because, in the absence of assumptions

about when its input b can change, Πl
a can behave in ways that process Πa cannot.

Process Πa can decrement a only by the current value of b, but Πl
a can decrement

a by a previous value of b if b changes between the assignment to ai and the
assignment to a. Similarly, Πl

b does not implement Πb.
Process Πl

a does correctly implement process Πa in a context in which b does
not change when a > b. This is expressed in TLA by the formula Ea ∧M l

a ⇒Ma,
where Ea asserts that b does not change when a > b. Similarly, Eb ∧M l

b ⇒ Mb

holds, for the analogous Eb. The Decomposition Theorem of Section 4.3 allows us
to deduce M l

a ∧M l
b ⇒Ma ∧Mb from approximately the following hypotheses:

Ea ∧M l
a ⇒Ma

Eb ∧M l
b ⇒Mb

Ma ∧Mb ⇒ Ea ∧ Eb

(1)

The third hypothesis holds because the composition of processes Πa and Πb does
not allow a to change when b > a or b to change when a > b.
Observe that Ea asserts only the property of Πl

b needed to guarantee that Πl
a

implements Πa. In a more complicated example, Ea will be significantly simpler
than M l

b, the full specification of Πl
b. Verifying these hypotheses will therefore be

easier than provingM l
a∧M l

b ⇒Ma∧Mb directly, since this proof requires reasoning
about the specification M l

a ∧M l
b of the complete low-level program.

One cannot really deduce M l
a ∧M l

b ⇒ Ma ∧Mb from the hypotheses (1). For
example, (1) is trivially satisfied if Ea, Eb, Ma, andMb all equal false; but we cannot
deduce M l

a ∧M l
b ⇒ false for arbitrary M l

a and M l
b. The precise hypotheses of the

Decomposition Theorem are more complicated, and we must develop a number of
formal concepts in order to state them. We also develop results that allow us to
discharge these more complicated hypotheses by proving conditions essentially as
simple as (1).

2.2 Composing Open Systems

An open system is one that interacts with an environment it does not control. In
our examples, we consider systems that communicate by using a standard two-
phase handshake protocol [Mead and Conway 1980] to send values over channels.
The state of a channel c is described by three components: the value c.val that
is being sent, and two bits c.sig and c.ack used for synchronization. We let c.snd
denote the pair 〈c.sig , c.val〉. Figure 1 shows the sequence of states assumed in
sending the sequence of values 37, 4, 19, . . . . The channel is ready to send when
c.sig = c.ack . A value v is sent by setting c.val to v and complementing c.sig.
Receipt of the value is acknowledged by complementing c.ack .
We consider an N -element queue with input channel i and output channel o. It

ACM Transactions on Programming Languages and Systems, Vol. 17, No. 3, May 1995.
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✲

✛

i.snd

i.ack

✲

✛

o.snd

o.ack
Queue Fig. 2. A queue.

Process Queue

output var i.ack , o.sig initially 0,
o.val ;

internal var q initially 〈 〉;
input var i.sig , i.val , o.ack ;

cobegin
loop ✂✂

❇❇

if (i .ack �= i .sig) ∧ (|q| < N)
❇❇

✂✂
endloopthen q := q ◦ 〈i .val〉;

i .ack := 1 − i .ack
‖

loop ✂
✂✂

❇
❇❇

if (o.ack = o.sig) ∧ (|q| > 0)

❇
❇❇

✂
✂✂

endloop
then o.val := head(q);

q := tail(q);

o.sig := 1 − o.sig
coend

Fig. 3. A queue process.

is depicted in Figure 2. To describe the queue, we use the programming-language
constructs introduced in Section 2.1; in particular, we write large atomic actions
within angle brackets. We also introduce the following notation for finite sequences:
|ρ| denotes the length of sequence ρ, which equals 0 if ρ is empty; Head(ρ) and
Tail(ρ) as usual denote the head (first element) and the tail of sequence ρ, if ρ is
nonempty; and ρ ◦ τ denotes the concatenation of sequences ρ and τ . Moreover,
angle brackets are used to form sequences; so 〈 〉 denotes the empty sequence, and
〈e〉 denotes the sequence with e as its only element. With this notation, the queue
can be written as in Figure 3.
Let QM be the TLA formula that represents this queue process. It might seem

natural to take QM as the specification of the queue. However, this specification
would be difficult or impossible to implement because it states that the queue be-
haves properly even if the environment does not obey the communication protocol.
For example, in a lower-level implementation, reading the input o.ack and setting
the outputs o.sig and o.val would be separate actions. If the environment changed
o.ack between these actions, the implementation could violate the requirement that
it change o.val only when o.ack = o.sig . This problem is not an artifact of our
particular representation of the queue; actual hardware implementations of a queue
can enter metastable states, consequently producing bizarre, unpredictable behav-
ior, if their inputs are changed when they are not supposed to be [Mead and Conway
1980].
A specification of the queue should allow executions in which the queue per-

forms correctly; it should not rule out bad behavior of the queue caused by the
environment performing incorrectly. Such a specification can be written in the
assumption/guarantee style, a generalization of the traditional pre/postcondition
style for sequential programs. An assumption/guarantee specification asserts that
the system provides a guarantee M if its environment satisfies an assumption E.
For the queue, M is the formula QM , and E asserts that the environment obeys

ACM Transactions on Programming Languages and Systems, Vol. 17, No. 3, May 1995.
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Fig. 4. A simple example.

c ✲
System

C d

System
D

✛

the communication protocol.
It is not obvious how to reason about the composition of systems described by

assumption/guarantee specifications. The basic problem is illustrated by the simple
case of two systems, one guaranteeingMc assuming Md, and the other guaranteeing
Md assuming Mc. Since each system guarantees to satisfy the other’s environment
assumption, we would like to conclude that their composition implements the spec-
ification Mc ∧Md unconditionally, with no environment assumption. Can we? We
attempt to answer this question by considering two simple examples, based on
Figure 4.
In the first example:

—M0
c asserts that c always equals 0.

—M0
d asserts that d always equals 0.

We can implement these specifications with the following two processes.

Process Πc Process Πd

output var c initially 0 ; output var d initially 0 ;
input var d ; input var c ;
loop 〈 c := d 〉 endloop loop 〈 d := c 〉 endloop

Process Πc guarantees M0
c assuming M0

d , and process Πd guarantees M0
d assuming

M0
c . Clearly, their composition leaves c and d unchanged, so it implements M0

c∧M0
d .

In the second example:

—M1
c asserts that c eventually equals 1.

—M1
d asserts that d eventually equals 1.

The same processes Πc and Πd implement the specifications in this case too; process
Πc guarantees M1

c assuming M1
d , and process Πd guarantees M1

d assuming M1
c .

However, since their composition leaves c and d unchanged, it does not implement
M1

c ∧M1
d .

Our conclusion in the first example does not depend on the particular choice of
processes Πc and Πd. We can deduce directly from the assumption/guarantee spec-
ifications that the composition must implement M0

c ∧M0
d , because the first process

to change its output variable would violate its guarantee before its assumption had
been violated. This argument does not apply to the second example, because vio-
lating M1

c and M1
d are sins of omission that do not occur at any particular instant.

A property that can be made false only by being violated at some instant is called
a safety property [Alpern and Schneider 1985]. As the examples suggest, reason-
ing about the composition of assumption/guarantee specifications is easiest when
assumptions are safety properties.
The argument that the composition should implement M0

c ∧M0
d in the first ex-

ample rests on the requirement that a process maintains its guarantee until after
ACM Transactions on Programming Languages and Systems, Vol. 17, No. 3, May 1995.
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the environment violates its assumption. In other words, we interpret the assump-
tion/guarantee specification as an assertion that the guarantee M can become false
only after the assumption E becomes false. We write this assertion as the formula
E +−� M . Section 5 discusses this form of specification.
Our rules for reasoning about the composition of assumption/guarantee spec-

ifications are embodied in the Composition Theorem of Section 5.2. With the
Composition Theorem, we can prove that the conjunction of the assumption/guar-
antee specifications M0

c
+−� M0

d and M0
d

+−� M0
c implies M0

c ∧M0
d . We can also prove

more substantial results—for example, that the composition of queues implements
a larger queue. Verifying the hypotheses of the theorem requires reasoning only
about complete systems, so the theorem allows us to handle assumption/guarantee
specifications as easily as complete-system specifications.

3. PRELIMINARIES

3.1 TLA

3.1.1 Review of the Syntax and Semantics. A state is an assignment of values
to variables. (Technically, our variables are the “flexible” variables of temporal
logic that correspond to the variables of programming languages; they are distinct
from the variables of first-order logic.) A behavior is an infinite sequence of states.
Semantically, a TLA formula F is true or false of a behavior; we say that F is valid,
and write |= F , iff it is true of every behavior. Syntactically, TLA formulas are
built up from state functions using Boolean operators (¬, ∧, ∨, ⇒ [implication],
and = [equivalence]) and the operators ′, ✷, and ∃∃∃∃∃∃, as described below.
A state function is like an expression in a programming language. Semantically,

it assigns a value to each state—for example 3+ x assigns to state s three plus the
value of the variable x in s. A state predicate is a Boolean-valued state function. An
action is a Boolean-valued expression containing primed and unprimed variables.
Semantically, an action is true or false of a pair of states, with primed variables
referring to the second state—for example, x+ 1 > y′ is true for 〈s, t〉 iff the value
of x + 1 in s is greater than the value of y in t. A pair of states satisfying action
A is called an A step. We say that A is enabled in state s iff there exists a state t
such that 〈s, t〉 is an A step—for example, (x > 0) ∧ (x + 1 > y′) is enabled only
in states where x > 0. The state predicate Enabled A is true for state s iff A is
enabled in s. We write v′ for the expression obtained by priming all the variables
of the state function v, and [A]v for A ∨ (v′ = v), so an [A]v step is either an A
step or a step that leaves v unchanged.
As usual in temporal logic, if F is a formula then ✷F is a formula that means that

F is always true, and ✸F , an abbreviation for ¬✷¬F , means that F is eventually
true. In addition, if A is an action and v is a state function then ✷[A]v is a
formula; ✸〈A〉v is an abbreviation for ¬✷[¬A]v . Using ✷ and “enabled” predicates,
we can define fairness operators WF and SF. The weak-fairness formula WFv(A)
asserts of a behavior that either there are infinitely many A steps that change v,
or there are infinitely many states in which such steps are not enabled. This can
be written (✷✸〈A〉v) ∨ (✷✸¬Enabled 〈A〉v). The strong-fairness formula SFv(A)
asserts that either there are infinitely many A steps that change v, or there are
only finitely many states in which such steps are enabled. This can be written

ACM Transactions on Programming Languages and Systems, Vol. 17, No. 3, May 1995.
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(✷✸〈A〉v) ∨ (✸✷¬Enabled 〈A〉v).
The formula ∃∃∃∃∃∃x : F means essentially that there is some way of choosing a

sequence of values for x such that the temporal formula F holds. We think of
∃∃∃∃∃∃x : F as “F with x hidden” and call x an internal variable of ∃∃∃∃∃∃x : F . Both x and
x′ are bound by ∃∃∃∃∃∃x in ∃∃∃∃∃∃x : F . If x is a tuple of variables 〈x1, . . . , xk〉, we write
∃∃∃∃∃∃x : F for ∃∃∃∃∃∃x1 : . . . ∃∃∃∃∃∃xk : F .
The standard way of specifying a system in TLA is with a formula in the “canon-

ical form” ∃∃∃∃∃∃x : Init ∧ ✷[N ]v ∧ L, where Init is a predicate and L a conjunction of
fairness conditions. This formula asserts that there exists a sequence of values for
x such that (1) Init is true for the initial state, (2) every step of the behavior is an
N step or leaves the state function v unchanged, and (3) L holds. For example, the
specification Mgcd of the complete high-level GCD program is written in canonical
form by taking1

Init ∆= (a = 233344)∧ (b = 233577899)
N ∆= ∨ (a > b) ∧ (a′ = a− b) ∧ (b′ = b)

∨ (b > a) ∧ (b′ = b− a) ∧ (a′ = a)
v

∆= 〈a, b〉
L

∆= WFv(N )

(2)

Intuitively, a variable represents some part of the universe, and a behavior rep-
resents a possible complete history of the universe. A system Π is represented by a
TLA formula M that is true for precisely those behaviors that represent histories
in which Π is running. We make no formal distinction between systems, specifica-
tions, and properties; they are all represented by TLA formulas, which we usually
call specifications.

3.1.2 Interleaving and Noninterleaving Representations. Let ξ and ψ be two ob-
jects, represented by the variables x and y, respectively. When representing a
history of the universe as a behavior, we can describe concurrent changes to ξ and
ψ either by a single simultaneous change to x and y, or by separate changes to x
and y in some order. If the changes to ξ and ψ are directly linked, then it is usually
most convenient to describe their concurrent change by a single change to both x
and y. However, if the changes are independent, then we are free to choose whether
or not to allow simultaneous changes to x and y. An interleaving representation is
one in which such simultaneous changes are disallowed.
When changes to ξ and ψ are directly linked, we often think of x and y as

output variables of a single component. An interleaving representation is then
one in which simultaneous changes to output variables of different processes are
disallowed. The absence of such simultaneous changes can be expressed as a TLA
formula. For a system with n components in which vi is the tuple of output variables
of component i, interleaving is expressed by the formula

Disjoint(v1, . . . , vn)
∆=

∧
i�=j

✷[(v′i = vi) ∨ (v′j = vj)]〈vi, vj〉

1We let a list of formulas bulleted with ∧ or ∨ denote the conjunction or disjunction of the
formulas, using indentation to eliminate parentheses. We also let ⇒ have lower precedence than
the other Boolean operators.
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Fig. 5. The complete system of
queue plus environment.

We have found that, in TLA, interleaving representations are usually easier to
write and to reason about. Moreover, an interleaving representation is adequate
for reasoning about a system if the system is modeled at a sufficiently fine grain
of atomicity. However, as discussed below, TLA also works for noninterleaving
representations. TLA does not mandate any particular method for represent-
ing systems. Indeed, one can write specifications that are intermediate between
interleaving and noninterleaving representations.

3.1.3 The Queue Example. We now give a TLA specification of the queue of
natural numbers of length N , which was described informally in Section 2.2 and
illustrated in Figure 2. As in Section 2.2, we write c.snd for the pair 〈c.sig , c.val 〉
for a channel c; we also write c for the triple 〈c.sig , c.ack , c.val〉.
A channel is initially ready for sending, so the initial condition on wire c is the

predicate CInit(c) defined by

CInit(c) ∆= (c.sig = c.ack = 0)

The operations of sending a value v and acknowledging receipt of a value on channel
c are represented by the following Send(v, c) and Ack(c) actions.

Send(v, c) ∆= ∧ c.sig = c.ack
∧ c.snd ′ = 〈1− c.sig, v〉
∧ c.ack ′ = c.ack

Ack(c) ∆= ∧ c.sig �= c.ack
∧ c.ack ′ = 1− c.ack
∧ c.snd ′ = c.snd

To represent the queue as a complete system, we add an environment that sends
arbitrary natural numbers over channel i and acknowledges receipt of values on
channel o. The resulting complete system is shown in Figure 5.
The TLA formula CQ specifying the queue is defined in Figure 6. It has the

canonical form ∃∃∃∃∃∃x : Init ∧ ✷[N ]v ∧ L, where:

—x is the internal variable q, which represents the sequence of values received on
the input channel i but not yet sent on the output channel o.

—Init is written as the conjunction InitE ∧ InitM of initial predicates for the
environment and component. (We arbitrarily consider the initial conditions on a
channel to be part of the sender’s initial predicate.)

—N is the disjunction of two actions: QM , describing the steps taken by the
component, and QE ∧(q′ = q), describing steps taken by the environment (which
leave q unchanged). Action QM is the disjunction of actions Enq and Deq. An
Enq step acknowledges receipt of a value on i and appends the value to q; it
is enabled only when q has fewer than N elements. A Deq step removes the
first element of q and sends it on o. Action QE is the disjunction of Put , which
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InitE
∆
= CInit(i) Environment

ActionsPut
∆
= (∃v ∈ Nat : Send(v, i)) ∧ (o′ = o)

Get
∆
= Ack(o) ∧ (i′ = i)

QE
∆
= Get ∨ Put

InitM
∆
= CInit(o) ∧ (q = 〈 〉) Component

ActionsEnq
∆
= ∧ |q| < N

∧ Ack(i) ∧ (q′ = q ◦ 〈i.val〉)
∧ o′ = o

Deq
∆
= ∧ |q| > 0

∧ Send(Head(q), o) ∧ (q′ = Tail(q))
∧ i′ = i

QM
∆
= Enq ∨ Deq

ICL
∆
= WF〈i, o, q〉(QM ) Complete-System

SpecificationICQ
∆
= ∧ InitE ∧ InitM

∧ ✷

[
∨ QE ∧ (q′ = q)
∨ QM

]
〈i, o, q〉

∧ ICL

CQ
∆
= ∃∃∃∃∃∃ q : ICQ

Fig. 6. The specification CQ of the complete queue. (Formulas CInit , Send , and Ack are defined
in the text.)

sends an arbitrary number on channel i, and Get , which acknowledges receipt of
a number on channel o.

—v is the tuple 〈i, o, q〉 of all relevant variables.2
—L is the weak-fairness condition ICL, which is defined to be WF〈i, o, q〉(QM ), and
asserts that a component step cannot remain forever possible without occurring.
It can be shown that a logically equivalent specification is obtained if this condi-
tion is replaced with WF〈i, o, q〉(Enq) ∧ WF〈i, o, q〉(Deq).

Formula CQ gives an interleaving representation of a queue; simultaneous steps by
the queue and its environment are not allowed. Moreover, simultaneous changes
to the two inputs i.snd and o.ack are disallowed, as are simultaneous changes
to the two outputs i.ack and o.snd . In Section 4, we describe a noninterleaving
representation of the queue.

3.2 Implementation

A specification M l implies a specification M iff every behavior that satisfies M l

also satisfies M ; hence proving M l ⇒ M shows that the system Πl represented
by M l implements the system or property Π represented by M . Note that if
M l is inconsistent (equivalent to false), then M l ⇒ M holds vacuously, but an
inconsistent M l does not represent any system Πl.
The formula M l ⇒M is proved by applying a handful of simple rules [Lamport

1994]. When M has the form ∃∃∃∃∃∃ x : M̂ , a key step in the proof is finding a refinement

2Informally, we write 〈i, o, q〉 for the concatenation of the tuples i, o, and 〈q〉.
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Fig. 7. A complete system containing two queues in series.

ICDQ
∆
= ∧ InitE ∧ Init

[1]
M ∧ Init

[2]
M

∧ ✷




∨ QE ∧ 〈q1, q2, z〉′ = 〈q1, q2, z〉
∨ Q[1]

M
∧ 〈q2, o〉′ = 〈q2, o〉

∨ Q[2]
M

∧ 〈q1, i〉′ = 〈q1, i〉




〈i, o, z, q1, q2〉
∧ ICL[1] ∧ ICL[2]

CDQ
∆
= ∃∃∃∃∃∃ q1, q2 : ICDQ

Fig. 8. Specification of the complete double-queue system of Figure 7.

mapping—a tuple of state functions x such that M l implies M̂ , where M̂ is the
formula obtained by substituting x for x (and therefore (x)′ for x′) in M̂ . Under
reasonable assumptions, such a refinement mapping exists when M l ⇒ ∃∃∃∃∃∃ x : M̂ is
valid [Abadi and Lamport 1991].
As an example, we show that the system composed of two queues in series,

shown in Figure 7, implements a single larger queue. We first specify the composite
queue. Let F [e1/v1, . . . , en/vn] denote the result of (simultaneously) substituting
each expression ei for vi in a formula F . For example, if Get is defined as in
Figure 6, then Get [z/i] equals Ack(o) ∧ (z′ = z). For any formula F , let

F [1] ∆= F [z/o, q1/q] F [2] ∆= F [z/i, q2/q]

In Figure 8, the specification CDQ of the complete system, consisting of the double
queue and its environment, is defined in terms of the formulas from Figure 6. We
think of the complete system as containing three components: the environment and
the two queues. The initial condition is the conjunction of the initial conditions
of each component. The next-state action consists of three disjuncts, representing
actions of each of the three components that leave other components’ variables
unchanged. Finally, we take as the liveness condition the conjunction of the fairness
conditions of the two queues.
We now show that the composite queue implements a (2N + 1)-element queue.

(The “+1” arises because the internal channel z acts as a buffer element.) The
correctness condition is CDQ ⇒ CQ[dbl], where F [dbl] denotes F [(2N + 1)/N ], for
any formula F . This is proved by showing ICDQ ⇒ ICQ[dbl], with the refinement
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mapping defined by

q
∆= if z .sig = z .ack then q1 ◦ q2

else q1 ◦ 〈z .val 〉 ◦ q2
The formula ICDQ ⇒ ICQ[dbl] can be proved by standard TLA reasoning of the
kind described by Lamport [1994].

3.3 Conditional Implementation

Instead of proving that a specification M l implements a specification M , we some-
times want to prove the weaker condition that M l implements M assuming a for-
mula G. In other words, we want to prove G⇒ (M l ⇒M), which is equivalent to
G ∧M l ⇒M . The formula G may express one or more of the following:

—A law of nature. For example, in a real-time specification, G might assert that
time increases monotonically. If the current time is represented by the vari-
able now , this assumption is expressed by the formula (now ∈ R) ∧ ✷[now ′ ∈
(now ,∞)]now , where R is the set of real numbers.

—An interface refinement, where G expresses the relation between a low-level tuple
l of variables and its high-level representation as a tuple h of variables. For ex-
ample, l might be a low-level interface representing the transmission of sequences
of bits over a wire, and h could be the high-level interface in which the send-
ing of seven successive bits is interpreted as the transmission of a single ASCII
character.

—An assumption about how reality is translated into the formalism of behaviors. In
particular, Gmay assert an interleaving assumption—for example, an assumption
of the form Disjoint(v1, . . . , vn).

Conditional implementation, with an explicit formula G, is needed only for open
systems. For a complete system, the properties expressed by G can easily be made
part of the system specification. For example, the system can include a component
that advances time. In contrast, it can be difficult to include G in the specification
of an open system.

3.4 Safety and Closure

3.4.1 Definition of Closure. A finite sequence of states is called a finite behavior.
For any formula F and finite behavior ρ, we say that ρ satisfies F iff ρ can be
extended to an infinite behavior that satisfies F . For convenience, we say that the
empty sequence 〈 〉 satisfies every formula (even false).
A safety property is a formula that is satisfied by an infinite behavior σ iff it

is satisfied by every prefix of σ [Alpern and Schneider 1985]. For any predicate
Init , action N , and state function v, the formula Init ∧✷[N ]v is a safety property.
It can be shown that, for any TLA formula F , there is a TLA formula C(F ),
called the closure of F , such that a behavior σ satisfies C(F ) iff every prefix of σ
satisfies F . Formula C(F ) is the strongest safety property such that |= F ⇒ C(F ).
Proposition 1 below implies that C(Init ∧ ✷[N ]v ∧ L) equals Init ∧ ✷[N ]v when L
is the conjunction of suitable fairness properties.
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3.4.2 Machine Closure. When writing a specification in the form Init∧✷[N ]v∧L,
we expect L to constrain infinite behaviors, not finite ones. Formally, this means
that the closure of Init ∧ ✷[N ]v ∧ L should be Init ∧ ✷[N ]v. A pair of properties
(P, L) is called machine closed iff C(P ∧ L) equals P [Abadi and Lamport 1991].
(We often say informally that P ∧ L is machine closed.)
Proposition 1 below, which we have already proved [Abadi and Lamport 1994],

shows that we can use fairness properties to write machine-closed specifications.
The proposition relies on the following definition: an action A is a subaction of a
safety property P iff for every finite behavior ρ = 〈r0, . . . , rn〉, if ρ satisfies P and
A is enabled in state rn, then there exists a state rn+1 such that 〈r0, . . . , rn+1〉
satisfies P and 〈rn, rn+1〉 is an A step. It follows from this definition of subaction
that, if A implies N , then A is a subaction of Init ∧ ✷[N ]v.

Proposition 1. If P is a safety property and L is the conjunction of a countable
number of formulas of the form WFw(A) and/or SFw(A) such that A∧ (w′ �= w)
is a subaction of P , then (P,L) is machine closed.

3.4.3 Closure and Hiding. Several of our results have hypotheses of the form
C(M1) ∧ . . . ∧ C(Mn)⇒ C(M). The obvious first step in proving such a formula is
to compute the closures C(M1), . . . , C(Mn), and C(M). We can use Proposition 1 to
compute the closure of a formula with no internal variables. When there are internal
variables, the following proposition allows us to reduce the proof of C(M1) ∧ . . . ∧
C(Mn) ⇒ C(M) to the proof of a formula in which the closures can be computed
with Proposition 1.

Proposition 2. Let x, x1, . . . , xn be tuples of variables such that for each i,
no variable in xi occurs in M or in any Mj with i �= j.

If |=
n∧

i=1

C(Mi) ⇒ ∃∃∃∃∃∃x : C(M), then |=
n∧

i=1

C(∃∃∃∃∃∃xi : Mi) ⇒ C(∃∃∃∃∃∃x : M).

Proofs are in the appendix.
Some of our results also have hypotheses of the form C(M1) ∧ . . . ∧ C(Mn)⇒ E,

where we expect E to be a safety property. If we can verify that E is a safety
property, so |= E = C(E), then we can apply Proposition 2. When E has internal
variables, we can often use Proposition 2 of [Abadi and Lamport 1991] to verify
that E is a safety property.

3.5 Additional Temporal Operators

We now define some additional temporal operators. Although they can be expressed
in terms of the primitive TLA operations ′, ✷, and ∃∃∃∃∃∃, we define them semantically.

3.5.1 The + Operator. The formula E+v asserts that, if the temporal formula
E ever becomes false, then the state function v stops changing. More precisely, a
behavior σ satisfies E+v iff either σ satisfies E, or there is some n such that (1) E
holds for the first n states of σ and (2) v never changes from the (n+1)st state on.
When E is a safety property in canonical form, it is easy to write E+v explicitly:
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Proposition 3. If x is a tuple of variables none of which occurs in v, and s is
a variable that does not occur in Init , N , w, v, or x, and

Înit ∆= (Init ∧ (s = 0)) ∨ (¬Init ∧ (s = 1))

N̂ ∆= ∨ (s = 0) ∧ ∨ (s′ = 0) ∧ (N ∨ (w′ = w))
∨ (s′ = 1) ∧ ¬(N ∨ (w′ = w))

∨ (s = 1) ∧ (s′ = 1) ∧ (v′ = v)

then |= (∃∃∃∃∃∃ x : Init ∧✷[N ]w)+v = ∃∃∃∃∃∃ x, s : Înit ∧ ✷[N̂ ]〈w, v, s〉.

We need to reason about + only to verify hypotheses of the form |= C(E)+v ∧
C(M l) ⇒ C(M) in our Decomposition and Composition Theorems. We can verify
such a hypothesis by first applying the observation that C(E)+v equals C(E+v) and
using Proposition 3 to calculate E+v. However, this approach is necessary only for
noninterleaving specifications. Proposition 4 below provides a way of proving these
hypotheses for interleaving specifications without having to calculate E+v.

3.5.2 The −� Operator. For temporal formulas E and M , the formula E −� M
asserts that M holds at least as long as E does [Abadi and Plotkin 1993]. More
precisely E −� M is true of a behavior σ iff E ⇒M is true of σ and, for every finite
prefix ρ of σ, if E is true of ρ then M is true of ρ. It follows from this definition
of −� that E −� M equals (C(E) −� C(M)) ∧ (E ⇒ M). The operator −� acts
much like ordinary implication. In fact, |= E −� M is equivalent to |= E ⇒M . Of
course, it is not in general true that |= (E −� M) = (E ⇒M).

3.5.3 The +−� Operator. As we observed in the introduction, we interpret the
specification that M is guaranteed under assumption E as the formula E +−� M ,
which means that M holds at least one step longer than E does. More precisely,
E +−� M is true of a behavior σ iff E ⇒ M is true of σ and, for every n ≥ 0, if
E holds for the first n states of σ, then M holds for the first n+1 states of σ. It
follows from this definition of +−� that E +−� M equals (C(E) +−� C(M))∧ (E ⇒M).
The formula E +−� M is stronger than E −� M , which asserts that M holds as

long as E does. It can be shown that, if E is a safety property, then E +−� M
equals (M −� E) −� M . We prove in the appendix that, if E and M are both
safety properties and v is a tuple of variables containing all free variables of M ,
then E +−� M equals E+v −� M .

3.5.4 The ⊥ Operator. The specification M of a component can be made false
only by a step that changes the component’s output variables. In an interleaving
representation, we do not allow a single step to change output variables of two
different components. Hence, if E and M are specifications of separate components,
we expect that no step will make both E and M false. More precisely, we expect
E and M to be orthogonal (⊥), where E ⊥M is true of a behavior σ iff there is no
n ≥ 0 such that E and M are both true for the first n states of σ and both false for
the first n+1 states of σ. It can be shown that E ⊥ M equals C(E) ⊥ C(M), and
that, if E and M are safety properties, then E ⊥M equals (E ∧M) +−� (E ∨M).
If no step falsifies both E and M , and M remains true as long as E does, then

M must remain true at least one step longer than E does. Hence, E ⊥ M implies
the equivalence of E −� M and E +−� M . In fact, we prove in the appendix that
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(E +−� M) = (E −� M)∧ (E ⊥M) is valid. From this and the relation between +−�
and +, we can derive:

Proposition 4. If E, M , and R are safety properties, and v is a tuple of vari-
ables containing all variables that occur free in M , then |= E ∧ R ⇒ M and
|= R⇒ E ⊥M imply |= E+v ∧R⇒M .

This proposition enables us to use orthogonality to remove + from proof obliga-
tions. To apply the proposition, we must prove the orthogonality of component
specifications. We do this for interleaving specifications with the following result.

Proposition 5. If
|= C(E) = InitE ∧ ✷[NE ]〈x, e〉
|= C(M) = InitM ∧ ✷[NM ]〈y, m〉

then
|= (∃x : InitE ∨ ∃y : InitM ) ∧ Disjoint(e, m) ⇒ C(∃∃∃∃∃∃x : E) ⊥ C(∃∃∃∃∃∃y : M)

4. DECOMPOSING A COMPLETE SPECIFICATION

4.1 Specifying a Component

Let us consider how to write the specification M of one component of a larger
system. We assume that the free variables of the specification can be partitioned
into tuples m of output variables and e of input variables; the component changes
the values of the variables of m only. (A more general situation is discussed below.)
The specification of a component has the same form ∃∃∃∃∃∃x : Init ∧ ✷[N ]v ∧ L as that
of a complete system. For a component specification:

—v is the tuple 〈x, m, e〉.
—Init describes the initial values of the component’s output variables m and inter-
nal variables x.

—N should allow two kinds of steps—ones that the component performs and ones
that its environment performs. Steps performed by the component, which change
its output variables m, are described by an action Nm. In an interleaving rep-
resentation, the component’s inputs and outputs cannot change simultaneously,
so Nm implies e′ = e. In a noninterleaving representation, Nm does not con-
strain the value of e′, so the variables of e do not appear primed in Nm. In
either case, we are specifying the component but not its environment, so we let
the environment do anything except change the component’s output variables or
internal variables. In other words, the environment is allowed to perform any
step in which 〈m, x〉′ equals 〈m, x〉. (Below, we describe more general specifica-
tions in which an environment action can change x.) Therefore, N should equal
Nm ∨ (〈m, x〉′ = 〈m, x〉).

—L is the conjunction of fairness conditions, each of the form WF〈m, x〉(A) or
SF〈m, x〉(A). For an interleaving representation, which by definition does not
allow steps that change both e and m, the subscripts 〈m, x〉 and 〈e, m, x〉 yield
equivalent fairness conditions.
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This leads us to write M in the form

M
∆= ∃∃∃∃∃∃x : Init ∧ ✷[Nm ∨ (〈m, x〉′ = 〈m, x〉)]〈e, m, x〉 ∧ L (3)

By simple logic, (3) is equivalent to

M
∆= ∃∃∃∃∃∃ x : Init ∧ ✷[Nm]〈m, x〉 ∧ L (4)

For the specification Ma of process Πa in the GCD example, x is the empty tuple
(there is no internal variable), the input variable e is b, the output variable m is a,
and

Inita
∆= a = 233344

Na
∆= (a > b) ∧ (a′ = a− b) ∧ (b′ = b)

Ma
∆= Inita ∧ ✷[Na]a ∧ WFa(Na)

(5)

For the specification M l
a of the low-level process Πl

a, the tuple x is 〈ai , pca〉, where
pca is an internal variable that tells whether control is at the beginning of the loop
or after the assignment to ai . The specification has the form

M l
a

∆= ∃∃∃∃∃∃ ai , pca : Init l
a ∧ ✷[N l

a]〈a, ai, pca〉 ∧ WF〈a, ai, pca〉(N l
a) (6)

for appropriate initial condition Init l
a and next-state action N l

a. The specifications
Mb and M l

b are similar.
In our queue example, we can write the specifications of both the queue and its

environment as separate components in the form (4). For the queue component,
the tuple m of output variables is 〈i .ack , o.snd〉, the tuple e of input variables is
〈i .snd , o.ack 〉, and the specification is

IQM ∆= InitM ∧ ✷[QM ]〈i.ack , o.snd , q〉 ∧ ICL

QM ∆= ∃∃∃∃∃∃ q : IQM
(7)

The specification of the environment as a separate component is

QE ∆= InitE ∧ ✷ [QE ]〈i.snd , o.ack〉 (8)

We have provided specifications of the queue and its environment in an interleaving
representation. A noninterleaving representation of the queue can be obtained by
modifying its specification as follows.

—Change the Enq and Deq actions so they do not constrain the values of i .snd ′ or
o.ack ′.

—Define an action DeqEnq that simultaneously enqueues an input value and de-
queues an output value, and change the definition of QM to have DeqEnq as an
additional disjunct.

The resulting specification QM ni is given in Figure 9. It is a noninterleaving spec-
ification because it allows a step that changes i and o simultaneously. A nonin-
terleaving representation of the queue’s environment can be obtained in a similar
fashion.
In describing the component’s next-state action N , we required that an environ-

ment action not change the component’s internal variables. One can also write a
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InitM
∆
= CInit(o) ∧ (q = 〈 〉)

Enqni ∆
= ∧ |q| < N

∧ Ack(i) ∧ (q′ = q ◦ 〈i.val〉)
∧ o.snd ′ = o.snd

Deqni ∆
= ∧ |q| > 0

∧ Send(Head(q), o) ∧ (q′ = Tail(q))
∧ i .ack ′ = i .ack

DeqEnqni ∆
= ∧ (|q| > 0) ∧ Send(Head(q), o)

∧ Ack(i)
∧ q′ = Tail(q) ◦ 〈i.val〉

Qni
M

∆
= Enqni ∨ Deqni ∨ DeqEnqni

IQMni ∆
= InitM ∧ ✷[Qni

M ]〈i.ack , o.snd , q〉 ∧ WF〈i.ack , o.snd , q〉(Qni
M )

QMni ∆
= ∃∃∃∃∃∃ q : IQMni

Fig. 9. A noninterleaving representation of the queue component.

specification in which the component records environment actions by changing its
own internal variables. In this case, N will not equal Nm ∨ (〈m, x〉′ = 〈m, x〉),
but may just imply (e′ = e) ∨ (m′ = m). The resulting formula will not be a pure
interleaving specification because environment actions can change the component’s
variables, but no action can change both the component’s and the environment’s
output variables. We have not explored this style of specification.
We have been assuming that the visible variables of the component’s specification

can be partitioned into tuples m of output variables and e of input variables. To
see how to handle a more general case, let µM be the action m′ �= m, let v equal
〈e, m〉, and observe that [NM ]〈m, x〉 equals [NM ∨ (¬µM ∧ (x′ = x))]〈v, x〉. A µM

step is one that is attributed to the component, since it changes the component’s
output variables. When the tuple v of variables is not partitioned into input and
output variables, we define an action µM that specifies what steps are attributed
to the component, and we write the component’s next-state action in the form
NM ∨ (¬µM ∧ (x′ = x)). All our results for separate input and output variables can
be generalized by writing the next-state action in this form. However, for simplicity,
we consider only the special case.

4.2 Conjoining Components to Form a Complete System

In Section 3.1, we describe how to specify a complete system. In Section 4.1, we
describe how to specify an individual component of a system. A complete system is
the composition of its components. Composing two systems means constructing a
universe in which they are both running. If formulas M1 and M2 represent the two
systems, then M1 ∧M2 represents their composition, since a behavior represents a
possible history of a universe containing both systems iff it satisfies both M1 and
M2. Thus, in principle, composition is conjunction. We now show that composition
is conjunction in practice as well.
For composition to be conjunction, the conjunction of the specifications of all

components should be equivalent to the specification of the complete system. For
example, the conjunction of the specifications QM of the queue and QE of its
environment should be equivalent to the specification CQ of the complete system
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shown in Figure 5. Recall that

QE = InitE ∧ ✷ [QE ]〈i.snd , o.ack〉
QM = ∃∃∃∃∃∃ q : InitM ∧ ✷[QM ]〈i.ack , o.snd , q〉 ∧ ICL
CQ = ∃∃∃∃∃∃ q : ∧ InitE ∧ InitM

∧ ✷

[∨ QE ∧ (q′ = q)
∨ QM

]
〈i, o, q〉

∧ ICL

We deduce the equivalence of QE ∧ QM and CQ from the following result, by
substituting QE for M1 and QM for M2. (In this case, x1 is the empty tuple 〈 〉,
so x̂2 equals 〈 〉 and x̂′

2 = x̂2 equals true.)

Proposition 6. Let m1, . . . ,mn, x1, . . . , xn be tuples of variables, and let

m
∆= 〈m1, . . . ,mn〉 x

∆= 〈x1, . . . , xn〉
x̂i

∆= 〈x1, . . . , xi−1, xi+1, . . . , xn〉
Mi

∆= ∃∃∃∃∃∃xi : Init i ∧ ✷[Ni]〈mi, xi〉 ∧ Li

If, for all i, j = 1, . . . , n with i �= j:

(1) no variable of xj occurs free in xi or Mi,
(2) m includes all free variables of Mi, and
(3) |= Ni ⇒ (m′

j = mj)

then

|=
n∧

i=1

Mi = ∃∃∃∃∃∃ x :
n∧

i=1

Init i ∧ ✷[
n∨

i=1

Ni ∧ (x̂′
i = x̂i)]〈m, x〉 ∧

n∧
i=1

Li

In this proposition, the third hypothesis asserts that component i leaves the vari-
ables of other components unchanged, so Mi is an interleaving representation of
component i. Hence, Mi implies Disjoint(mi,mj), for each j �= i, and

∧n
i=1 Mi

implies Disjoint(m1, . . . ,mn), as expected for an interleaving representation of the
complete system.
In the GCD example, we apply this proposition to the formula Ma of (5) and the

analogous formula Mb. We immediately get that Ma∧Mb is equivalent to a formula
that is the same as Mgcd , defined by (2), except with WF〈a, b〉(Na) ∧WF〈a, b〉(Nb)
instead of WF〈a, b〉(N ). It can be shown that these two fairness conditions are
equivalent; hence Ma ∧Mb is equivalent to Mgcd.
For another example of decomposition, we consider the system of Figure 7, which

consists of two queues in series together with an environment. This system can be
decomposed into three components with the following specifications.

1st queue: ∃∃∃∃∃∃ q1 : Init [1]M ∧ ✷[Q[1]
M ∧ (o′ = o)]〈i.ack , z .snd , q1〉 ∧ ICL[1]

2nd queue: ∃∃∃∃∃∃ q2 : Init [2]M ∧ ✷[Q[2]
M ∧ (i′ = i)]〈z .ack , o.snd , q2〉 ∧ ICL[2]

environment: InitE ∧ ✷[QE ∧ (z′ = z)]〈i.snd , o.ack〉

To obtain an interleaving representation, we have conjoined o′ = o to Q[1]
M in the
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first queue’s next-state action, because Q[1]
M does not mention o. Similarly, we

have conjoined i′ = i to the second queue’s next-state action, and z′ = z to the
environment’s. It follows from Proposition 6 that the conjunction of these three
specifications equals the specification CDQ of the complete system, defined in Fig-
ure 8.
The third hypothesis of Proposition 6 is satisfied only by interleaving represen-

tations. For arbitrary representations, a straightforward calculation shows

|=
n∧

i=1

Mi = ∃∃∃∃∃∃ x : ∧ ∧n
i=1 Init i

∧ ✷[
∧n

i=1(Ni ∨ 〈mi, xi〉′ = 〈mi, xi〉)]〈m, x〉
∧ ∧n

i=1 Li

(9)

assuming only the first hypothesis of the proposition. The right-hand side has the
expected form for a noninterleaving specification, since it allows Ni ∧ Nj steps for
i �= j. Hence, composition is conjunction for noninterleaving representations too.

4.3 The Decomposition Theorem

4.3.1 The Basic Theorem. Consider a complete system decomposed into compo-
nents Πi. We would like to prove that this system is implemented by a lower-level
one, consisting of components Πl

i, by proving that each Πl
i implements Πi. Let Mi

be the specification of Πi and M l
i be the specification of Πl

i. We must prove that∧n
i=1 M

l
i implies

∧n
i=1 Mi. This implication is trivially true if M l

i implies Mi, for
all i. However, as we saw in the GCD example, M l

i need not imply Mi.
Even when M l

i ⇒Mi does not hold, we need not reason about all the lower-level
components together. Instead, we prove Ei ∧M l

i ⇒ Mi, where Ei includes just
the properties of the other components assumed by component i, and is usually
much simpler than

∧
k �=i M

l
k. Proving Ei∧M l

i ⇒Mi involves reasoning only about
component i, not about the entire lower-level system.
In propositional logic, to deduce that

∧n
i=1 M

l
i implies

∧n
i=1 Mi from

∧n
i=1(Ei ∧

M l
i ⇒Mi), we may prove that

∧n
k=1 M

l
k implies Ei for each i. However, proving this

still requires reasoning about
∧n

k=1 M
l
k, the specification of the entire lower-level

system. The following theorem shows that we need only prove that Ei is implied
by

∧n
k=1 Mk, the specification of the higher-level system—a formula usually much

simpler than
∧n

k=1 M
l
k.

ProvingEi∧M l
i ⇒Mi and (

∧n
k=1 Mk)⇒ Ei for each i and deducing (

∧n
i=1 M

l
i )⇒

(
∧n

i=1 Mi) is circular reasoning, and is not sound in general. Such reasoning would
allow us to deduce (

∧n
i=1 M

l
i ) ⇒ (

∧n
i=1 Mi) for any M l

i and Mi—simply let Ei

equal Mi. To break the circularity, we need to add some C’s and one hypothesis:
if Ei is ever violated then, for at least one additional step, M l

i implies Mi. This
hypothesis is expressed formally as |= C(Ei)+v ∧ C(M l

i ) ⇒ C(Mi), for some v; the
hypothesis is weakest when v is taken to be the tuple of all relevant variables. Our
proof rule is:

Theorem 1 (Decomposition Theorem). If, for i = 1, . . . , n,

(1) |=
n∧

j=1

C(Mj) ⇒ Ei

(2) (a) |= C(Ei)+v ∧ C(M l
i ) ⇒ C(Mi)
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(b) |= Ei ∧M l
i ⇒ Mi

then |=
n∧

i=1

M l
i ⇒

n∧
i=1

Mi.

This theorem is a corollary of the Composition Theorem of Section 5.2 below.
In the GCD example, we want to use the theorem to prove M l

a ∧M l
b ⇒ Ma ∧

Mb. (The component specifications are described in Section 4.1.) The abstract
environment specification Ea asserts that b can change only when a < b, and that
a is not changed by steps that change b. Thus,

Ea
∆= ✷[(a < b) ∧ (a′ = a)]b

The definition of Eb is analogous. We let v be 〈a, b〉.
In general, the environment and component specifications can have internal vari-

ables. The theorem also allows them to contain fairness conditions. However, the
first hypothesis asserts that the Ei are implied by safety properties. In practice,
this means that the theorem can be applied only when the Ei are safety proper-
ties. The examples of Section 2.2 lead us to expect such a restriction. Moreover,
if the Ei have internal variables, we expect them to be simple history-determined
variables [Abadi and Lamport 1994], so Proposition 2 of [Abadi and Lamport 1991]
can be used to prove that the Ei are safety properties.

4.3.2 Verifying the Hypotheses. We now discuss how one verifies the hypotheses
of the Decomposition Theorem, illustrating the method with the GCD example.
To prove the first hypothesis, one first eliminates the closure operators and exis-

tential quantifiers by using Propositions 1 and 2 and Proposition 2 of [Abadi and
Lamport 1991]. This reduces the hypothesis to a condition of the form

|=
n∧

i=1

(Init i ∧ ✷[Ni]vi)⇒ Ei (10)

For interleaving representations, we can then use Proposition 6 to write
∧n

i=1(Init i∧
✷[Ni]vi) in canonical form. For noninterleaving representations, we apply (9). In
either case, the proof of (10) is an implementation proof of the kind discussed in
Section 3.2.
For the GCD example, the first hypothesis asserts that C(Ma) ∧ C(Mb) implies

Ea and Eb. This differs from the third hypothesis of (1) in Section 2.1 because of
the C’s. To verify the hypothesis, we can apply Proposition 1 to show that C(Ma)
and C(Mb) are obtained by simply deleting the fairness conditions from Ma and
Mb. Since Nb implies (a < b) ∧ (a′ = a), it is easy to see that C(Mb) implies Ea. It
is equally easy to see that C(Ma) implies Eb. (In more complicated examples, Ei

will not follow from C(Mj) for any single j.)
To prove part (a) of the second hypothesis, we first eliminate the +. For non-

interleaving representations, this must be done with Proposition 3, as described in
Section 3.5.1. For interleaving representations, we can apply Propositions 4 and 5,
as described in Section 3.5.4. In either case, we can prove the resulting formula by
first using Proposition 2 to eliminate quantifiers, using Proposition 1 to compute
closures, and then performing a standard implementation proof with a refinement
mapping.
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Part (b) of the hypothesis also calls for a standard implementation proof, for
which we use the same refinement mapping as in the proof of (a). Since Ei implies
C(Ei)+v and M l

i implies C(M l
i ), we can infer from part (a) that Ei ∧M l

i implies
C(Mi). Thus proving part (b) requires verifying only the liveness part of Mi.
For the GCD example, we verify the two parts of the second hypothesis by proving
C(Ea)+〈a, b〉∧C(M l

a)⇒ C(Ma) and Ea∧M l
a ⇒Ma; the proofs of the corresponding

conditions forMb are similar. We first observe that the initial condition ofEa is true,
and that, since M l

a is an interleaving representation, its next-state actionN l
a implies

that no step changes both a and b, so C(M l
a) implies Disjoint(a, b). Hence, applying

Propositions 4 and 5, we reduce our task to proving C(Ea) ∧ C(M l
a)⇒ C(Ma) and

Ea ∧M l
a ⇒Ma. Applying Proposition 2 to remove the quantifier from C(M l

a) and
Proposition 1 to remove the C’s, we reduce proving C(Ea) ∧ C(M l

a) ⇒ C(Ma) to
proving

Ea ∧ Init l
a ∧✷[N l

a]〈a, ai, pca〉 ⇒ Inita ∧ ✷[Na]a (11)

Using simple logic and (11), we reduce proving Ea ∧M l
a ⇒ Ma to proving

Ea ∧ Init l
a ∧✷[N l

a]〈a, ai, pca〉 ∧WF〈a, ai, pca〉(N l
a) ⇒ WFa(Na) (12)

We can use Proposition 6 to rewrite the left-hand sides of (11) and (12) in canonical
form. The resulting conditions are in the usual form for a TLA implementation
proof.
In summary, by applying our propositions in a standard sequence, we can use

the Decomposition Theorem to reduce decompositional reasoning to ordinary TLA
reasoning. This reduction may seem complicated for so trivial an example as the
GCD program. However, it will be insignificant compared to the complexity of the
complete proof in any realistic example, such as the one by Kurshan and Lamport
[1993], discussed below.

4.3.3 The General Theorem. We sometimes need to prove the correctness of sys-
tems defined inductively. At induction stage N+1, the low- and high-level specifica-
tions are defined as the conjunctions of k copies of low- and high-level specifications
of stage N , respectively. For example, a 2N+1-bit multiplier is sometimes imple-
mented by combining four 2N -bit multipliers. We want to prove by induction on
N that the stage N low-level specification implements the stage N high-level spec-
ification. For such a proof, we need a more general decomposition theorem whose
conclusion at stage N can be used in proving the hypotheses at stage N+1. The
appropriate theorem is:

Theorem 2 (General Decomposition Theorem). If, for i = 1, . . . , n,

(1) |= C(E) ∧
n∧

j=1

C(Mj) ⇒ Ei

(2) (a) |= C(Ei)+v ∧ C(M l
i ) ⇒ C(Mi)

(b) |= Ei ∧M l
i ⇒ Mi

(3) v is a tuple of variables including all the free variables of Mi
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then

(a) |= C(E)+v ∧
n∧

j=1

C(M l
j) ⇒

n∧
j=1

C(Mj) and

(b) |= E ∧
n∧

j=1

M l
j ⇒

n∧
j=1

Mj.

Conclusion (b) of this theorem has the same form as hypothesis 2(b), with M l
i

and Mi replaced with conjunctions. To make the corresponding hypothesis 2(a)
follow from conclusion (a), it suffices to prove

∧n
j=1 C(Mj) ⇒ C(

∧n
j=1 Mj), since

C(∧n
j=1 M

l
j)⇒

∧n
j=1 C(M l

j) is always true.
The General Decomposition Theorem has been applied to the verification of an

inductively defined multiplier circuit [Kurshan and Lamport 1993].
It can be shown that both versions of our decomposition theorem provide com-

plete rules for verifying that one composition implies another. However, this result
is of no significance. Decomposition can simplify a proof only if the proof can be
decomposed, in the sense that each M l

i implements the corresponding Mi under
a simple environment assumption Ei. Our theorems are designed to handle those
proofs that can be decomposed.

5. COMPOSING ASSUMPTION/GUARANTEE SPECIFICATIONS

5.1 The Form of an Assumption/Guarantee Specification

An assumption/guarantee specification asserts that a system guarantees M under
the assumption that its environment satisfies E. As we saw in Section 2.2, this
specification is expressed by the formula E +−� M , which means that, for any n,
if the environment satisfies E through “time” n, then the system must satisfy M
through “time” n+1.
Perhaps the most obvious form for an assumption/guarantee specification is

E ⇒ M . The formula E ⇒ M is weaker than E +−� M , since it allows behav-
iors in which M is violated before E. However, an implementation could exploit
this extra freedom only by predicting in advance that the environment will violate
E. A system does not control its environment, so it cannot predict what the en-
vironment will do. The specifications E ⇒ M and E +−� M therefore allow the
same implementations. We take E +−� M to be the form of assumption/guarantee
specifications because this form leads to the simpler rules for composition.
As discussed in Section 2.2, composition works best when environment assump-

tions are safety properties. It can be shown that E +−� M is equivalent to C(E) +−�
(C(M) ∧ (E ⇒ M)), so we can in principle convert any assumption/guarantee
specification to one whose assumption is a safety property. (A similar observation
appears in our earlier work [Abadi and Lamport 1993, Theorem 1].) However, this
equivalence is of intellectual interest only. In practice, we write the environment
assumption as a safety property and the system’s fairness guarantee as the conjunc-
tion of properties EL ⇒WFv(A) and EL ⇒ SFv(A), where EL is an environment
fairness assumption. We can apply Proposition 1 to show that the resulting specifi-
cation is machine closed because, if (P, L) is machine closed and L implies R, then
(P, R) is also machine closed [Abadi and Lamport 1994, Proposition 3].
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5.2 The Composition Theorem

Suppose we are given n devices, each with an assumption/guarantee specification
Ej

+−� Mj. To verify that the composition of these devices implements a higher-level
assumption/guarantee specification E +−� M , we must prove

∧n
j=1(Ej

+−� Mj) ⇒
(E +−� M). We use the following theorem:

Theorem 3 (Composition Theorem). If, for i = 1, . . . , n,

(1) |= C(E) ∧
n∧

j=1

C(Mj) ⇒ Ei

(2) (a) |= C(E)+v ∧
n∧

j=1

C(Mj) ⇒ C(M)

(b) |= E ∧
n∧

j=1

Mj ⇒ M

then |=
n∧

j=1

(Ej
+−� Mj) ⇒ (E +−� M).

This theorem also allows us to prove conditional implementation results of the form
G∧∧n

j=1(Ej
+−� Mj)⇒ (E +−� M); we just let M1 equal G and E1 equal true, since

true +−� G equals G. For interleaving specifications, we can in general prove only
conditional implementation, where G includes disjointness conditions asserting that
the outputs of different components do not change simultaneously.
The hypotheses of the Composition Theorem are similar to those of the Decompo-

sition Theorem, and they are proved in much the same way. The major difference
is that, for interleaving specifications, the orthogonality condition C(E) ⊥ C(M)
does not follow from the form of the component specifications, but requires explicit
disjointness assumptions.
Observe that the hypotheses have the form |= P ∧ ∧n

j=1 Qj ⇒ R. Each for-
mula P ∧ ∧n

j=1 Qj has the form of the specification of a complete system, with
component specifications P , Q1, . . . , Qn. Thus, each hypothesis asserts that a
complete system satisfies a property R. In other words, the theorem reduces rea-
soning about assumption/guarantee specifications to the kind of reasoning used for
complete-system specifications.
Among the corollaries of the Composition Theorem are ones that allow us to prove

that a lower-level specification implies a higher-level one. The simplest such result
has, as its conclusion, |= (E +−� M l) ⇒ (E +−� M). This condition expresses the
correctness of the refinement of a component with a fixed environment assumption.

Corollary 1. If E is a safety property and

(a) |= E+v ∧ C(M l)⇒ C(M)

(b) |= E ∧M l ⇒M

then |= (E +−� M l)⇒ (E +−� M).
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5.3 The Queue Example

The assumption/guarantee specification of the queue of Figure 2 is QE +−� QM ,
where QM and QE are defined in (7) and (8) of Section 4.1. We now compose
two queues, as shown in Figure 7. The specifications of these queues are obtained
from QE +−� QM by substitution; they are QE [1] +−� QM [1] and QE [2] +−� QM [2].
We want to show that their composition implements the (2N+1)-element queue
specified by QE [dbl] +−� QM [dbl]. The obvious thing to try to prove is

(QE [1] +−� QM [1]) ∧ (QE [2] +−� QM [2]) ⇒ (QE [dbl] +−� QM [dbl]) (13)

We could prove this had we used a noninterleaving representation of the queue.
However, (13) is not valid for an interleaving representation, for the following rea-
son. The specification of the first queue does not mention o, and that of the second
queue does not mention i. The conjunction of the two specifications allows an en-
queue action of the first queue and a dequeue action of the second queue to happen
simultaneously, a step that changes i.ack and o.snd simultaneously. But, in an
interleaving representation, the (2N+1)-element queue’s guarantee does not allow
such a step, so (13) must be invalid. Another problem with (13) is that the con-
junction of the component queues’ specifications allows a step that changes z.snd
and o.ack simultaneously. Such a step satisfies the (2N+1)-element queue’s envi-
ronment assumption QE [dbl], which does not mention z , so (13) asserts that the
next step must satisfy its guarantee QM [dbl]. However, a step that changes both
z.snd and o.ack violates the second component queue’s environment assumption
QE [2], permitting the component queue to make arbitrary changes to o.snd in the
next step. A similar problem is caused by simultaneous changes to i.snd and z.ack .
We already faced the problem of disallowing simultaneous changes to different

components’ outputs in Section 4.2, where we decomposed an interleaving speci-
fication of a (2N+1)-element queue. There, the solution was to strengthen the
next-state actions of the component queues and of the environment. This solution
cannot be used if we want to compose preexisting specifications without modifying
them. In this case, we prove that the composition implements the larger queue
under the assumption that the outputs of two different components do not change
simultaneously. Thus, we prove

G ∧ (QE [1] +−� QM [1]) ∧ (QE [2] +−� QM [2]) ⇒ (QE [dbl] +−� QM [dbl]) (14)

where G is the formula

G
∆= Disjoint(〈i .snd , o.ack 〉, 〈z .snd , i .ack 〉, 〈o.snd , z .ack 〉)

The proof is outlined in Figure 10.

6. CONCLUSION

We have developed a method for describing components of concurrent systems as
TLA formulas. We have shown how to describe a complete system as the conjunc-
tion of component specifications and how to describe an open system as a formula
E +−� M , where E and M are specifications of an environment component and a
system component, respectively. Although the idea of reducing programming con-
cepts to logic is old, our approach is new. Our style of writing specifications is
direct and, we believe, practical.
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1. C(QE [dbl]) ∧ C(G) ∧ C(QM [1]) ∧ C(QM [2]) ⇒ QE [1] ∧QE [2]

Proof: We use Propositions 2 and 1 to remove the quantifiers and closure opera-
tors from the left-hand side of the implication. The resulting formula then asserts
that a complete system, consisting of the safety parts of the two queues (with
their internal state visible) together with the environment, implements QE [1] and
QE [2]. The proof of this formula is straightforward.

2. C(QE [dbl])+〈i, o, z〉 ∧ C(QM [1]) ∧ C(G) ∧ C(QM [2]) ⇒ C(QM [dbl])
2.1. C(G) ∧ C(QM [1]) ∧ C(QM [2]) ⇒ C(QE [dbl]) ⊥ C(QM [dbl])
2.1.1. C(IQM [1]) ∧ C(IQM [2]) ⇒ ∃ q1, q2 : Init [1]M ∧ Init [2]

M

Proof: Follows easily from Proposition 1 and the definitions.
2.1.2. C(QM [1]) ∧ C(QM [2]) ⇒ ∃ q1, q2 : Init [1]M ∧ Init [2]

M

Proof: 2.1.1 and Proposition 2 (since any predicate is a safety property).
2.1.3. Q.E.D.

Proof: 2.1.2, the definition of G, and Proposition 5 (since disjointness is a
safety property).

2.2. C(QE [dbl]) ∧ C(G) ∧ C(QM [1]) ∧ C(QM [2]) ⇒ C(QM [dbl])
Proof: We use Propositions 2 and 1 to remove the quantifiers and closures
from the formula. The resulting formula is proved when proving the safety
part of step 3.

2.3. Q.E.D.
Proof: 2.1, 2.2, and Proposition 4.

3. QE [dbl] ∧G ∧QM [1] ∧QM [2] ⇒ QM [dbl]

Proof: A direct calculation shows that the left-hand side of the implication
implies CDQ , the complete-system specification of the double queue. We already
observed in Section 3.2 that CDQ implements CQ [dbl], which equals QE [dbl] ∧
QM [dbl].

4. Q.E.D.
Proof: 1–3 and the Composition Theorem, substituting

M1 ← G M2 ← QM [1] M3 ← QM [2] M ← QM [dbl]

E1 ← true E2 ← QE [1] E3 ← QE [2] E ← QE [dbl]

Fig. 10. Proof sketch of (14).
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We have also provided rules for proving properties of large systems by reasoning
about their components. The Composition and Decomposition Theorems are rather
simple, yet they allow fairness properties and hiding. They were preceded by results
in a long list of publications, described next.
Like ours, most previous composition theorems were strong, in the sense that

they could handle circularities for safety properties. Our approach differs from
earlier ones in its general treatment of fairness and hiding. The first strong compo-
sition theorem we know is that of Misra and Chandy [1981], who considered safety
properties of processes communicating by means of CSP primitives. They wrote
assumption/guarantee specifications as Hoare triples containing assertions about
history variables. Pandya and Joseph [1991] extended this approach to handle some
liveness properties. Pnueli [1984] was the first to use temporal logic to write as-
sumption/guarantee specifications. He had a strong composition theorem for safety
properties with no hiding. To handle liveness, he wrote assumption/guarantee spec-
ifications with implication instead of +−�, so he did not obtain a strong composition
theorem. Stark [1985] also wrote assumption/guarantee specifications as implica-
tions of temporal formulas and required that circularity be avoided. Our earlier
work [Abadi and Lamport 1993] was semantic, in a more complicated model with
agents. It lacked practical proof rules for handling fairness and hiding. Collette
[1993] adapted this work to Unity. Abadi and Plotkin [1993] used a propositional
logic with agents, and considered only safety properties.
Most previous papers were concerned only with composition of assumption/guar-

antee specifications, and lacked an analog of our Decomposition Theorem. An
exception is the work of Berthet and Cerny [1988], who used decomposition in
proving safety properties for finite-state automata.
So far, we have applied our Composition Theorem only to toy examples. Formal

reasoning about systems is still rare, and it generally occurs on a case-by-case
basis. When the specification of a component is used only to verify a specific
system, there is no need for a general assumption/guarantee specification. For
most practical applications, decomposition suffices. When decomposition does not
suffice, the Composition Theorem makes reasoning about open systems almost as
easy as reasoning about complete ones.
We have used our Decomposition Theorem with no difficulty on a few toy ex-

amples. However, we believe that its biggest payoff will be for systems that are
too complex to verify easily by hand. The theorem makes it possible for decision
procedures to do most of the work in verifying a system, even when these proce-
dures cannot be applied to the whole system because its state space is very large
or unbounded. This approach is currently being pursued in one substantial ex-
ample: the mechanical verification of a multiplier circuit using a combination of
TLA reasoning and mechanical verification with COSPAN [Kurshan and Lamport
1993]. Because it eliminates reasoning about the complete low-level system, the
Decomposition Theorem is the key to this division of labor.
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APPENDIX

An appendix to this article is available in electronic form (PostScriptTM). Any of
the following methods may be used to obtain it; or see the inside back cover of a
current issue for up-to-date instructions.

—By anonymous ftp from acm.org, file [pubs.journals.toplas.append]p1532.ps

—Send electronic mail to mailserve@acm.org containing the line
send [anonymous.pubs.journals.toplas.append]p1532.ps

—By Gopher from acm.org

—By anonymous ftp from ftp.cs.princeton.edu, file pub/toplas/append/p1532.ps

—Hardcopy from Article Express, for a fee: phone 800-238-3458, fax 201-216-8526,
or write P.O. Box 1801, Hoboken NJ 07030; and request acm-toplas-appendix-

1532.
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We now prove our propositions and theorems. Section A introduces some def-
initions and notation required for the proofs, and explains our structured proof
notation. The proofs are in Section B.

APPENDIX A. DEFINITIONS

A1 Additional Semantic Notions

As before, ◦ denotes concatenation of sequences, and angle brackets 〈 〉 are used to
form sequences. We write σ|n for the finite behavior consisting of the first n states
of a behavior σ. In particular, σ|0 is the empty sequence 〈 〉, which satisfies every
formula. We write σn for the nth state of behavior σ, so σ equals 〈σ1, σ2, . . . 〉.
When σ is finite, we write last(σ) for its last state, and |σ| for its length.
We let [[e]] denote the meaning of an expression e. When e is a state function, [[e]]

is a mapping from states to values; in the special case when e is a state predicate,
[[e]] is a mapping from states to truth values. When e is an action, [[e]] is a mapping
from pairs of states to truth values. When e is a temporal formula, [[e]] is a mapping
from behaviors to truth values. We extended this mapping to finite behaviors by
letting [[e]](ρ) = true iff [[e]](σ) = true for some σ that extends ρ. In all cases, we
let u |= e mean [[e]](u) = true. If F is a temporal formula and σ a behavior, then
σ |= C(F ) iff σ|n |= F for all n. Hence, [[C(F )]](ρ) = [[F ]](ρ) for any finite behavior ρ.
If s and t are states and x is a tuple of variables, we write s =x t when s and

t are identical except possibly for the value they assign to the tuple x. In other
words, s =x t iff [[y]](s) = [[y]](t) for every variable y not in the tuple x. We extend
this notion to behaviors, and write σ =x τ iff σn =x τn for all n > 0.
The stutter-free version of a behavior is the behavior obtained by removing from

it all finite repetitions of states; thus, the stutter-free version of σ ◦ 〈s, s〉 ◦ τ equals
the stutter-free version of σ ◦ 〈s〉 ◦ τ . Two behaviors are stuttering equivalent iff
they have the same stutter-free version. Every TLA formula F is invariant under
stuttering, in the sense that [[F ]](σ) = [[F ]](τ) for any two stuttering-equivalent
behaviors σ and τ . More generally, [[F ]](σ) = [[F ]](τ) if there is a behavior τ̂
stuttering equivalent to σ such that [[y]](τ̂n) = [[y]](τn) for all n > 0 and all variables

Permission to copy without fee all or part of this material is granted provided that the copies are
not made or distributed for direct commercial advantage, the ACM copyright notice and the title
of the publication and its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or
specific permission.
c©1995 ACM
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y occurring free in F .
We write σ �x τ when σ̂ =x τ̂ for some σ̂ and τ̂ stuttering equivalent to σ and τ ,

respectively. If F is a TLA formula and σ a behavior, we let [[∃∃∃∃∃∃ x : F ]](σ) = true iff
there exists a behavior τ such that σ �x τ and [[F ]](τ) = true. Equivalently, since
F is invariant under stuttering, [[∃∃∃∃∃∃ x : F ]](σ) = true iff there exist behaviors σ̂ and
τ̂ such that σ̂ is stuttering equivalent to σ, σ̂ =x τ̂ , and [[F ]](τ̂ ) = true.
An operator H on formulas is superdiagonal iff |= A ⇒ H(A) for all A in its

domain. For example, C is superdiagonal. As usual, an operator H is monotonic iff
|= A ⇒ B implies |= H(A) ⇒ H(B) for all A and B. Antimonotonicity is defined
similarly, with the second implication reversed.

A2 Proof Notation

Reliable reasoning about specifications depends on the correctness of the underlying
logical proofs. Even a minor error, such as the omission of a hypothesis in a propo-
sition, could allow one to “prove” the correctness of an incorrect implementation.
To avoid such errors, we provide detailed, hierarchically structured proofs.
In our proof notation, the theorem to be proved is statement 〈0〉1. The proof of

statement 〈i〉j is either an ordinary paragraph-style proof or the sequence of state-
ments 〈i+1〉1, 〈i+1〉2, . . . and their proofs. (The absence of a proof means that the
statement follows easily from definitions, previous statements, and assumptions.)
Within a proof, 〈k〉l denotes the most recent statement with that number. A state-
ment has the form

Assume: Assump Prove: Goal
which is abbreviated to Goal if there is no assumption. The assertion Q.E.D. in
statement number 〈i+1〉k of the proof of statement 〈i〉j denotes the goal of state-
ment 〈i〉j. The statement

Case: Assump
is an abbreviation for

Assume: Assump Prove: Q.E.D.
Within the proof of statement 〈i〉j, assumption 〈i〉 denotes that statement’s as-
sumption, and 〈i〉:k denotes the assumption’s kth item.

We recommend that proofs be read hierarchically, from the top level down. To
read the proof of a long level-k step: (i) read the level-(k+1) statements that
comprise its proof, together with the proof of the final Q.E.D. step (which is usually
a short paragraph), and (ii) read the proof of each level-(k+1) step, in any desired
order.

APPENDIX B. PROOFS

Results are organized in groups that roughly correspond to their subject and to the
position of the corresponding discussion in the text.
Our proofs employ many lemmas. We omit the proofs of some of the simpler ones.

We also omit the proof of Proposition 1, which is given in [Abadi and Lamport 1994].

B1 Properties of −� and +−�
The proofs of most of these properties are straightforward and are omitted. Some
of the basic arguments about −� can be found in [Abadi and Plotkin 1993].
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Lemma 1. If P , Q, and R are safety properties, then
1. P −� Q and P +−� Q are safety properties.
2. |= P ⇒ (Q −� R) if and only if |= P ∧Q⇒ R.

Lemma 2. For any properties P and Q,
1. |= (P −� Q) = (C(P ) −� C(Q)) ∧ (P ⇒ Q)
2. |= (P +−� Q) = (C(P ) +−� C(Q)) ∧ (P ⇒ Q)

Lemma 3. For any properties P and Q,
1. |= P ∧ (P −� Q)⇒ Q
2. |= P ∧ (P +−� Q)⇒ Q

Lemma 4. If P and Q are safety properties, then
|= (P −� Q) ∧ (Q −� P ) ⇒ ((P ∨Q) −� (P ∧Q))

Lemma 5. If Pi and Qi are safety properties, for i = 1, . . . , n, then

|=
n∧

i=1

(Pi
+−� Qi) ⇒ ((

n∧
i=1

Pi)
+−� (

n∧
i=1

Qi))

Lemma 6. If P is a safety property and Q is any property, then

|= (P +−� Q) = ((Q −� P ) −� Q)

Lemma 7.

Assume: 1. P , Q, and R are safety properties.
2. |= Q ∧R⇒ P

Prove: |= (P +−� Q)⇒ (R +−� Q)

〈1〉1. |= (Q −� R)⇒ (Q −� P )
〈2〉1. |= Q ∧ (Q −� R)⇒ R

Proof: Lemma 3(1).
〈2〉2. |= Q ∧ (Q −� R)⇒ (Q ∧R)

Proof: 〈2〉1 and propositional logic.
〈2〉3. |= Q ∧ (Q −� R)⇒ P

Proof: 〈2〉2 and assumption 〈0〉:2.
〈2〉4. Q.E.D.

Proof: 〈2〉3, assumption 〈0〉:1, and Lemma 1(2).
〈1〉2. |= (P +−� Q) ∧ (Q −� P )⇒ Q

Proof: Assumption 〈0〉:1, Lemma 6, and Lemma 3(1).
〈1〉3. |= (P +−� Q) ∧ (Q −� R)⇒ Q

Proof: 〈1〉2 and 〈1〉1.
〈1〉4. |= (P +−� Q)⇒ ((Q −� R) −� Q)

Proof: 〈1〉3, assumption 〈0〉:1, and Lemma 1.
〈1〉5. Q.E.D.

Proof: 〈1〉4, assumption 〈0〉:1, and Lemma 6.

B2 Closure and Existential Quantification

These results are useful for reasoning about the closure of a quantified formula.
This reasoning can be difficult because C and ∃∃∃∃∃∃ do not commute.

ACM Transactions on Programming Languages and Systems, Vol. 17, No. 3, May 1995.
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Lemma 8. For any property M and tuple of variables x,

|= C(∃∃∃∃∃∃x : C(M)) = C(∃∃∃∃∃∃x : M)

〈1〉1. |= C(∃∃∃∃∃∃x : M)⇒ C(∃∃∃∃∃∃x : C(M))
Proof: C is superdiagonal and both C and ∃∃∃∃∃∃x are monotonic.
〈1〉2. |= C(∃∃∃∃∃∃x : C(M))⇒ C(∃∃∃∃∃∃x : M)
〈2〉1. |= M ⇒ ∃∃∃∃∃∃x : M

Proof: ∃∃∃∃∃∃ is superdiagonal.
〈2〉2. |= C(M)⇒ C(∃∃∃∃∃∃x : M)

Proof: 〈2〉1 and the monotonicity of C.
〈2〉3. |= (∃∃∃∃∃∃ x : C(M))⇒ C(∃∃∃∃∃∃ x : M)

Proof: 〈2〉2, since x does not occur free in C(∃∃∃∃∃∃ x : M).
〈2〉4. Q.E.D.

Proof:〈2〉3 and the monotonicity and idempotence of C.
〈1〉3. Q.E.D.

Lemma 9.

Assume: xi is a tuple of variables, and no variable in xi occurs free in Mj, for all
i, j ∈ {1, . . . , n} with i �= j.

Prove: |= ∧
i C(∃∃∃∃∃∃ xi : Mi)⇒ C(∃∃∃∃∃∃ x1, . . . , xn :

∧
i C(Mi))

The proof is by induction on n, setting apart the cases for n = 1 and n = 2.
〈1〉1. Case: n = 1

Proof: Immediate from Lemma 8.
〈1〉2. Case: n=2

Let: A
∆= C(∃∃∃∃∃∃x1, x2 : C(M1) ∧ C(M2))

〈2〉1. |= C(M1) ∧ C(M2)⇒ A
Proof: Predicate logic, since C is superdiagonal.
〈2〉2. |= C(M1)⇒ (C(M2) −� A)

Proof: 〈2〉1 and Lemma 1(2).
〈2〉3. |= M1 ⇒ (C(M2) −� A)

Proof: 〈2〉2, since C is superdiagonal.
〈2〉4. |= (∃∃∃∃∃∃ x1 : M1)⇒ (C(M2) −� A)

Proof: 〈2〉3 and the hypothesis that no variable of x1 occurs free in M2.
〈2〉5. |= C(∃∃∃∃∃∃x1 : M1)⇒ (C(M2) −� A)

Proof: 〈2〉4 and the monotonicity and idempotence of C, since A is closed by
definition and C(M2) −� A is closed by Lemma 1(1).
〈2〉6. |= C(M2)⇒ (C(∃∃∃∃∃∃ x1 : M1) −� A)

Proof: 〈2〉5 and two applications of Lemma 1(2)
〈2〉7. |= M2 ⇒ (C(∃∃∃∃∃∃x1 : M1) −� A)

Proof: 〈2〉6, since C is superdiagonal.
〈2〉8. |= (∃∃∃∃∃∃ x2 : M2)⇒ (C(∃∃∃∃∃∃x1 : M1) −� A)

Proof: 〈2〉7 and predicate logic.
〈2〉9. |= C(∃∃∃∃∃∃x2 : M2)⇒ (C(∃∃∃∃∃∃ x1 : M1) −� A)

Proof: 〈2〉8, Lemma 1(1), and the monotonicity and idempotence of C.
〈2〉10. Q.E.D.

Proof: 〈2〉9 and Lemma 1(2).
〈1〉3. Case: n > 2

ACM Transactions on Programming Languages and Systems, Vol. 17, No. 3, May 1995.
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Assume: |= ∧n−1
i=1 C(∃∃∃∃∃∃ xi : Mi)⇒ C(∃∃∃∃∃∃x1 . . . xn−1 :

∧n−1
i=1 C(Mi))

Prove: |= ∧n
i=1 C(∃∃∃∃∃∃xi : Mi)⇒ C(∃∃∃∃∃∃x1 . . . xn :

∧n
i=1 C(Mi))

Proof:
∧n

i=1 C(∃∃∃∃∃∃xi : Mi)
⇒ C(∃∃∃∃∃∃x1 . . . xn−1 :

∧n−1
i=1 C(Mi)) ∧ C(∃∃∃∃∃∃xn : Mn)

by assumption 〈1〉
= C(∃∃∃∃∃∃x1 . . . xn−1 : C(∧n−1

i=1 C(Mi))) ∧ C(∃∃∃∃∃∃xn : Mn)
a conjunction of safety properties is a safety property

⇒ C(∃∃∃∃∃∃x1 . . . xn : C(∧n−1
i=1 C(Mi)) ∧ C(Mn))

by 〈1〉2
= C(∃∃∃∃∃∃x1 . . . xn :

∧n
i=1 C(Mi))

a conjunction of safety properties is a safety property
〈1〉4. Q.E.D.

Proposition 2.

Assume: 1. xi is a tuple of variables, and no variable in xi occurs free in M or
Mj, for all i, j ∈ {1, . . . , n} with i �= j

2. |= ∧n
i=1 C(Mi)⇒ ∃∃∃∃∃∃x : C(M)

Prove: |= ∧n
i=1 C(∃∃∃∃∃∃ xi : Mi)⇒ C(∃∃∃∃∃∃x : M)

Proof:
∧n

i=1 C(∃∃∃∃∃∃xi : Mi)
⇒ C(∃∃∃∃∃∃x1 . . . xn :

∧n
i=1 C(Mi))

by Lemma 9 and assumption 〈0〉:1
⇒ C(∃∃∃∃∃∃x1 . . . xn : ∃∃∃∃∃∃x : C(M))

by assumption 〈0〉:2 and the monotonicity of ∃∃∃∃∃∃ and C
= C(∃∃∃∃∃∃x : C(M))

by assumption 〈0〉:1
= C(∃∃∃∃∃∃x : M)

by Lemma 8.

B3 Properties of +

Lemma 10. For any state function f , if P is a safety property, then P+f is a safety
property.

Proof: By the definition of safety properties, it suffices to:
Assume: 1. P a safety property.

2. ∀n : σ|n |= P+f

Prove: σ |= P+f

〈1〉1. Case: ∀n : σ|n |= P
Proof: Assumption 〈0〉:1.
〈1〉2. Case: ∃∃∃∃∃∃n : ¬(σ|n |= P )
〈2〉1. Choose the largest m such that σ|m |= P .

Proof: m exists since σ|0 |= P is true for any σ and P .
〈2〉2. ∀n > m : [[f ]](σn) = [[f ]](σm+1)

Proof: 〈2〉1, assumption 〈0〉:2, and the definition of P+f .
〈2〉3. Q.E.D.

Proof: 〈2〉1, 〈2〉2, and the definition of P+f .
〈1〉3. Q.E.D.
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Lemma 11.

Assume: 1. P and Q are safety properties.
2. the tuple x includes all the free variables of Q.

Prove: |= (P+x −� Q) = (P +−� Q)

〈1〉1. |= (P+x −� Q) ⇒ (P +−� Q)
By assumption 〈0〉:1, Lemma 1(1), and the definition of +−�, it suffices to:
Assume: 1. For all n, σ|n |= (P+x −� Q)

2. σ|n−1 |= P
Prove: σ|n |= Q

〈2〉1. σ|n |= P+x

Proof: By assumption 〈1〉:2 and the definition of P+x.
〈2〉2. Q.E.D.

Proof: 〈2〉1 and assumption 〈1〉:1.
〈1〉2. |= (P +−� Q) ⇒ (P+x −� Q)
By assumption 〈0〉:1, Lemmas 10 and 1(1), and the definition of −�, it suffices
to:
Assume: 1. For all n, σ|n |= (P +−� Q)

2. σ|n |= P+x

Prove: σ|n |= Q

〈2〉1. Choose m ≤ n such that
1. σ|m |= P
2. ∀p : m < p ≤ n⇒ [[x]](σp) = [[x]](σm+1)

Proof: Assumption 〈1〉:2.
〈2〉2. σ|m+1 |= Q

Proof: 〈2〉1.1 and assumption 〈1〉:1.
〈2〉3. Q.E.D.

Proof: 〈2〉2, 〈2〉1.2, and assumption 〈0〉:2, since Q is invariant under stutter-
ing.

〈1〉3. Q.E.D.

Lemma 12.

Assume: 1. P , Q, and R are safety properties.
2. |= R+f ∧ P ⇒ Q

Prove: |= (R +−� P )⇒ (R +−� Q)

〈1〉1. |= R +−� R+f

By assumption 〈0〉:1 and Lemmas 10 and 1, it suffices to:
Assume: σ|n |= R
Prove: σ|n+1 |= R+f

〈2〉1. σ|n+1 ◦ 〈σn+1, σn+1, . . .〉 |= R+f

Proof: The definition of R+f .
〈2〉2. Q.E.D.
〈1〉2. Q.E.D.
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Proof: (R +−� P ) ⇒ (R +−� P ) ∧ (R +−� R+f )
by 〈1〉1

⇒ (R +−� (P ∧R+f ))
by assumption 〈0〉:1 and Lemmas 5 and 10

⇒ (R +−� Q)
by assumption 〈0〉:2 and monotonicity of +−� in
its second argument.

Lemma 13.

Assume: No variable of the tuple x occurs free in v.
Prove: |= (∃∃∃∃∃∃x : P+v) = (∃∃∃∃∃∃x : P )+v

〈1〉1. |= (∃∃∃∃∃∃x : P+v)⇒ (∃∃∃∃∃∃x : P )+v

Assume: σ |= (∃∃∃∃∃∃x : P+v)
Prove: σ |= (∃∃∃∃∃∃x : P )+v

〈2〉1. Choose σ̂ such that σ̂ �x σ and σ̂ |= P+v.
Proof: Assumption 〈1〉 and the definition of ∃∃∃∃∃∃.

〈2〉2. Case: σ̂ |= P
〈3〉1. σ |= (∃∃∃∃∃∃x : P )

Proof: 〈2〉1 and case assumption 〈2〉.
〈3〉2. Q.E.D.

Proof: 〈3〉1 and the definition of (. . .)+v.
〈2〉3. Case: There exists ρ̂ and τ̂ such that σ̂ = ρ̂ ◦ τ̂ , ρ̂ |= P , and τ̂ |= ✷ [false]v.
〈3〉1. Choose ρ and τ such that σ = ρ ◦ τ , ρ �x ρ̂, and τ �x τ̂ .

Proof: 〈2〉1 and case assumption 〈2〉.
〈3〉2. ρ |= ∃∃∃∃∃∃x : P

Proof: 〈3〉1 (which asserts ρ �x ρ̂) and case assumption 〈2〉 (which asserts
ρ̂ |= P ).
〈3〉3. τ |= ✷ [false]v

Proof: 〈3〉1 (which asserts τ �x τ̂), case assumption 〈2〉 (which asserts
τ̂ |= ✷ [false]v), and assumption 〈0〉.
〈3〉4. Q.E.D.

Proof: 〈3〉1 (which asserts σ = ρ ◦ τ), 〈3〉2, 〈3〉3, and the definition of
(. . .)+v.

〈2〉4. Q.E.D.
Proof: 〈2〉1, 〈2〉2, 〈2〉3, and the definition of (. . .)+v.

〈1〉2. |= (∃∃∃∃∃∃x : P )+v ⇒ (∃∃∃∃∃∃x : P+v)
Assume: σ |= (∃∃∃∃∃∃x : P )+v

Prove: σ |= (∃∃∃∃∃∃x : P+v)
〈2〉1. Case: σ |= (∃∃∃∃∃∃x : P )

Proof: Immediate, since |= P ⇒ P+v and ∃∃∃∃∃∃ is monotonic.
〈2〉2. Case: There exist ρ and τ such that σ = ρ ◦ τ , ρ |= ∃∃∃∃∃∃x : P , and τ |=

✷ [false]v.
〈3〉1. Choose ρ̂ such that ρ̂ �x ρ and ρ̂ |= P .

Proof: Case assumption 〈2〉 and the definition of ∃∃∃∃∃∃.
〈3〉2. ρ̂ ◦ τ |= P+v

Proof: 〈3〉1, case assumption 〈2〉 (which asserts τ |= ✷ [false]v), and the
definition of (. . .)+v.

ACM Transactions on Programming Languages and Systems, Vol. 17, No. 3, May 1995.



A–8 · Mart́ın Abadi and Leslie Lamport

〈3〉3. Q.E.D.
Proof: 〈3〉1, 〈3〉2, and case assumption 〈2〉, which imply ρ̂ ◦ τ �x σ.

〈2〉3. Q.E.D.
Proof: 〈2〉1, 〈2〉2, and the definition of (. . .)+v.

〈1〉3. Q.E.D.

Lemma 14. If s is a variable that does not occur in Init , N , w, or v, and

Înit ∆= (Init ∧ (s = 0)) ∨ (¬Init ∧ (s = 1))

N̂ ∆= ∨ (s = 0) ∧ ∨ (s′ = 0) ∧ (N ∨ (w′ = w))
∨ (s′ = 1) ∧ ¬(N ∨ (w′ = w))

∨ (s = 1) ∧ (s′ = 1) ∧ (v′ = v)

then |= (Init ∧ ✷[N ]w)+v = ∃∃∃∃∃∃s : Înit ∧ ✷[N̂ ]〈w, v, s〉.

〈1〉1. |= (Init ∧ ✷[N ]w)+v ⇒ ∃∃∃∃∃∃s : Înit ∧ ✷[N̂ ]〈w, v, s〉
Assume: σ |= (Init ∧ ✷[N ]w)+v

Prove: σ |= ∃∃∃∃∃∃s : Înit ∧ ✷[N̂ ]〈w, v, s〉
Let: σ̂ be the behavior such that σ̂ =s σ and, for all n > 0:

[[s]](σ̂n)
∆= if σ|n |= (Init ∧ ✷[N ]w) then 0 else 1

〈2〉1. σ̂ |= Înit ∧✷[N̂ ]〈w, v, s〉
〈3〉1. σ̂ |= Înit

Proof: The definitions of σ̂ and Înit , assumption 〈1〉, and the hypothesis
that s does not occur in Init .
〈3〉2. σ̂ |= ✷[N̂ ]〈w, v, s〉
〈4〉1. Case: σ |= Init ∧✷[N ]w
〈5〉1. σ̂ |= ✷[(s = 0) ∧ (s′ = 0) ∧ (N ∨ (w′ = w))]〈w, v, s〉

Proof: The definition of σ̂, case assumption 〈4〉, and the hypothesis
that s does not occur in N or w.
〈5〉2. Q.E.D.

Proof: 〈5〉1 and the definition of N̂ .
〈4〉2. Case: σ �|= Init
〈5〉1. σ |= ✷ [false]v

Proof: Case assumption 〈4〉, assumption 〈1〉, and the definition of
(. . .)+v.
〈5〉2. σ̂ |= ✷ (s = 1) ∧✷ [false]v.

Proof: 〈5〉1 and the definition of σ̂.
〈5〉3. Q.E.D.

Proof: 〈5〉2 and the definition of N̂ .
〈4〉3. Case: σ |= Init and σ �|= Init ∧ ✷[N ]w.
〈5〉1. Choose ρ and τ with |ρ| > 0 such that

1. σ = ρ ◦ τ ,
2. ρ |= Init ∧✷[N ]w
3. ρ ◦ 〈τ1〉 �|= ✷[N ]w
4. τ |= ✷ [false]v

Proof: Case assumption 〈4〉, assumption 〈1〉, and the definition of
(. . .)+v.
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〈5〉2. Choose ρ̂ and τ̂ such that σ̂ = ρ̂ ◦ τ̂ , ρ̂ =s ρ, and τ̂ =s τ .
Proof: The definition of σ̂ and 〈5〉1.1.
〈5〉3. ρ̂ |= ✷[(s = 0) ∧ (s′ = 0) ∧ (N ∨ (w′ = w))]〈w, v, s〉

Proof: The definition of σ̂, 〈5〉1.2, 〈5〉2, and the hypothesis that s does
not occur in N or w.
〈5〉4. 〈last(ρ̂), τ̂1〉 |= (s = 0) ∧ (s′ = 1) ∧ ¬N ∧ (w′ �= w)

Proof: The definition of σ̂, 〈5〉1.3, 〈5〉2, and the hypothesis that s does
not occur in N or w.
〈5〉5. τ̂ |= ✷ (s = 1) ∧ ✷ [false]v

Proof: The definition of σ̂,, 〈5〉1.4, 〈5〉2, and the hypothesis that s
does not occur in v.
〈5〉6. Q.E.D.

Proof: 〈5〉2, 〈5〉3, 〈5〉4, and 〈5〉5, and the definition of N̂ .
〈4〉4. Q.E.D.

Proof: 〈4〉1, 〈4〉2, 〈4〉3, assumption 〈1〉, and the definition of (. . .)+v.
〈3〉3. Q.E.D.
〈2〉2. Q.E.D.

Proof: The definition of σ̂, 〈2〉1, and the definition of ∃∃∃∃∃∃.
〈1〉2. |= ∃∃∃∃∃∃s : Înit ∧ ✷[N̂ ]〈w, v, s〉 ⇒ (Init ∧ ✷[N ]w)+v

Assume: σ |= ∃∃∃∃∃∃s : Înit ∧ ✷[N̂ ]〈w, v, s〉
Prove: σ |= (Init ∧ ✷[N ]w)+v

〈2〉1. Choose σ̂ such that σ̂ �s σ and σ̂ |= Înit ∧✷[N̂ ]〈w, v, s〉.
Proof: Assumption 〈1〉 and the definition of ∃∃∃∃∃∃.

〈2〉2. σ̂ |= (Init ∧ ✷[N ]w)+v

〈3〉1. Case: σ̂ |= ✷ (s = 0)
〈4〉1. σ̂ |= (Init ∧ ✷[N ]w)

Proof: 〈2〉1, case assumption 〈3〉, and the definitions of Înit and N̂ .
〈4〉2. Q.E.D.

Proof: 〈4〉1, since the operator (. . .)+v is superdiagonal.
〈3〉2. Case: σ̂ |= ✷ (s = 1)
〈4〉1. σ̂ |= ✷ [false]v

Proof: 〈2〉1, the definition of N̂ , and case assumption 〈3〉.
〈4〉2. Q.E.D.

Proof: 〈4〉1 and the definition of (. . .)+v.
〈3〉3. Case: σ̂ �|= ✷ (s = 0) and σ̂ �|= ✷ (s = 1)
〈4〉1. Choose ρ̂ and τ̂ with |ρ̂| > 0 such that

1. σ̂ = ρ̂ ◦ τ̂
2. ρ̂ |= ✷ (s = 0)
3. τ̂ |= ✷ (s = 1),

Proof: Case assumption 〈3〉, 〈2〉1, and the definitions of Înit and N̂ .
〈4〉2. ρ̂ |= (Init ∧ ✷[N ]w)

Proof: 〈2〉1, 〈4〉1.2, and the definitions of Înit and N̂ .
〈4〉3. τ̂ |= ✷ [false]v

Proof: 〈2〉1, 〈4〉1.3, and the definition of N̂ .
〈4〉4. Q.E.D.
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Proof: 〈4〉1.1, 〈4〉2, 〈4〉3, 〈3〉, and the definition of (. . .)+v.
〈3〉4. Q.E.D.
〈2〉3. Q.E.D.

Proof: 〈2〉1, 〈2〉2, and the hypothesis that s does not occur in Init , N , w,
or v.

〈1〉3. Q.E.D.

Proposition 3. If x is a tuple of variables none of which occurs in v, and s is a
variable that does not occur in Init , N , w, v, or x, and

Înit ∆= (Init ∧ (s = 0)) ∨ (¬Init ∧ (s = 1))

N̂ ∆= ∨ (s = 0) ∧ ∨ (s′ = 0) ∧ (N ∨ (w′ = w))
∨ (s′ = 1) ∧ ¬(N ∨ (w′ = w))

∨ (s = 1) ∧ (s′ = 1) ∧ (v′ = v)

then |= (∃∃∃∃∃∃ x : Init ∧✷[N ]w)+v = ∃∃∃∃∃∃ x, s : Înit ∧ ✷[N̂ ]〈w, v, s〉.

Proof: Follows immediately from Lemmas 13 and 14.

B4 Properties of ⊥
Lemma 15.

1. For any properties P and Q, |= P ⊥ Q = C(P ) ⊥ C(Q).
2. If P and Q are safety properties, then |= P ⊥ Q = (P ∧Q) +−� (P ∨Q).

Lemma 16. For any properties P and Q,
|= (P +−� Q) = (P −� Q) ∧ (P ⊥ Q)

〈1〉1. Case: P and Q safety properties
〈2〉1. |= (P +−� Q)⇒ (P −� Q) ∧ (P ⊥ Q)
〈3〉1. |= (P +−� Q)⇒ (P −� Q)

Proof: Obvious from the definitions of −� and +−�.
〈3〉2. |= (P +−� Q)⇒ (P ⊥ Q)

Proof: Lemma 15(2), since +−� is monotonic in its second argument and
antimonotonic in its first.
〈3〉3. Q.E.D.
〈2〉2. |= (P −� Q) ∧ (P ⊥ Q) ⇒ (P +−� Q)
〈3〉1. |= (P −� Q) ∧ (P ⊥ Q) ∧ (Q −� P ) ⇒ Q

Proof:
(P ⊥ Q) ∧ (P −� Q) ∧ (Q −� P )
= (((P ∨Q) −� (P ∧Q)) −� (P ∨Q)) ∧ (P −� Q) ∧ (Q −� P )

case assumption 〈1〉, Lemma 15(2), and Lemma 6
⇒ (((P ∨Q) −� (P ∧Q)) −� (P ∨Q)) ∧ ((P ∨Q) −� (P ∧Q))

by Lemma 4
⇒ (P ∨Q) ∧ ((P ∨Q) −� (P ∧Q))

by Lemma 3(1)
⇒ Q

by Lemma 3(1).
〈3〉2. |= (P −� Q) ∧ (P ⊥ Q) ⇒ ((Q −� P ) −� Q)

Proof: 〈3〉1 and Lemma 1(2).
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〈3〉3. Q.E.D.
Proof: 〈3〉2, case assumption 〈1〉, and Lemma 6.

〈1〉2. Q.E.D.
Proof: P +−� Q = (P ⇒ Q) ∧ (C(P ) +−� C(Q))

by Lemma 2(2)
= (P ⇒ Q) ∧ (C(P ) −� C(Q)) ∧ (C(P ) ⊥ C(Q))

by 〈1〉1
= (P ⇒ Q) ∧ (C(P ) −� C(Q)) ∧ (P ⊥ Q)

by Lemma 15(1)
= (P −� Q) ∧ (P ⊥ Q)

by Lemma 2(1).

Proposition 4.

Assume: 1. P , Q, and R are safety properties.
2. |= P ∧Q⇒ R
3. |= Q⇒ P⊥R
4. the tuple x contains all the free variables of R.

Prove: |= P+x ∧Q⇒ R

〈1〉1. |= Q⇒ (P −� R)
Proof: Assumptions 〈0〉:1 and 〈0〉:2, and Lemma 1(2).
〈1〉2. |= Q⇒ (P +−� R)

Proof: 〈1〉1, assumption 〈0〉:3, and Lemma 16.
〈1〉3. |= Q⇒ (P+x −� R)

Proof: 〈1〉2, assumptions 〈0〉:1 and 〈0〉:4, and Lemma 11.
〈1〉4. Q.E.D.

Proof: 〈1〉3 and Lemma 1(2).

Lemma 17.

Let: E
∆= InitE ∧ ✷ [NE ]〈x, e〉

M
∆= InitM ∧ ✷ [NM ]〈y, m〉

Prove: |= ((∃∃∃∃∃∃ x : InitE) ∨ (∃∃∃∃∃∃ y : InitM )) ∧Disjoint(e,m)⇒
C(∃∃∃∃∃∃x : E) ⊥ C(∃∃∃∃∃∃ y : M)

Proof: By definition of ⊥, it suffices to prove the following, for all n ≥ 0:
Assume: 1. σ |= ((∃x : InitE) ∨ (∃ y : InitM ))

2. σ |= Disjoint(e,m)
3. σ|n |= C(∃∃∃∃∃∃ x : E) ∧ C(∃∃∃∃∃∃ y : M)

Prove: σ|n+1 |= C(∃∃∃∃∃∃x : E) ∨ C(∃∃∃∃∃∃ y : M)
〈1〉1. Case: n = 0
〈2〉1. Case: σ |= (∃x : InitE)
〈3〉1. Choose a state s such that s =x σ1 and s |= InitE .

Proof: Case assumption 〈2〉.
〈3〉2. 〈s, s, s, . . . 〉 |= E

Proof: 〈3〉1 and the definition of E.
〈3〉3. 〈σ1, s, s, s, . . . 〉 |= ∃∃∃∃∃∃ x : E

Proof: 〈3〉1, 〈3〉2, and the definition of ∃∃∃∃∃∃.
〈3〉4. σ|1 |= ∃∃∃∃∃∃x : E

Proof: 〈3〉3.
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〈3〉5. Q.E.D.
〈2〉2. Case: σ |= (∃x : InitM )

Proof: The proof is the same as the proof of 〈2〉1, with M substituted for E
and y substituted for x.
〈2〉3. Q.E.D.

Proof: 〈2〉1, 〈2〉2, and assumption 〈0〉:1.
〈1〉2. Case: n > 0
〈2〉1. ([[e]](σn) = [[e]](σn+1)) ∨ ([[m]](σn) = [[m]](σn+1))

Proof: Assumption 〈0〉:2.
〈2〉2. Case: [[e]](σn) = [[e]](σn+1)
〈3〉1. Choose ρ such that:

1. ρ �x σ|n
2. ρ |= E

Proof: Assumption 〈0〉:3, since η |= C(P ) iff η |= P , for any property P
and finite behavior η.

Let: t be the state such that t =x σn+1 and [[x]](t) = [[x]](last (ρ)).
〈3〉2. ρ ◦ 〈t〉 |= E

Proof: 〈3〉1.2, case assumption 〈2〉, and the definitions of t and E.
〈3〉3. σ|n+1 �x ρ ◦ 〈t〉

Proof: 〈3〉1.1 and the definition of t.
〈3〉4. σ|n+1 |= ∃∃∃∃∃∃x : E

Proof: 〈3〉2 and 〈3〉3.
〈3〉5. Q.E.D.

Proof: 〈3〉4.
〈2〉3. Case: [[m]](σn) = [[m]](σn+1)

Proof: The proof is the same as the proof of 〈2〉2, with m, M , and y substi-
tuted for e, E, and x, respectively.
〈2〉4. Q.E.D.

Proof: 〈2〉1, 〈2〉2, and 〈2〉3.
〈1〉3. Q.E.D.

Proposition 5.

Assume: 1. |= C(E) = InitE ∧ ✷ [NE ]〈x, e〉
2. |= C(M) = InitM ∧✷ [NM ]〈y, m〉

Prove: |= ((∃∃∃∃∃∃ x : InitE) ∨ (∃∃∃∃∃∃ y : InitM )) ∧Disjoint(e,m)⇒
C(∃∃∃∃∃∃x : E) ⊥ C(∃∃∃∃∃∃ y : M)

Proof: Follows from Lemma 17, with C(E) substituted for E and C(M) substituted
for M , and Lemma 8.

B5 Composition as Conjunction

Proposition 6. Let m1, . . . ,mn, x1, . . . , xn be tuples of variables, and let
m

∆= 〈m1, . . . ,mn〉 x
∆= 〈x1, . . . , xn〉

x̂i
∆= 〈x1, . . . , xi−1, xi+1, . . . , xn〉

Mi
∆= ∃∃∃∃∃∃xi : Init i ∧ ✷[Ni]〈mi, xi〉 ∧ Li

Assume: For all i, j with i �= j:
1. no variable of xj occurs free in xi or Mi.
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2. m includes all free variables of Mi.
3. |= Ni ⇒ (m′

j = mj)
Prove: |= ∧n

i=1 Mi =
∃∃∃∃∃∃x :

∧n
i=1 Init i ∧ ✷[

∨n
i=1Ni ∧ (x̂′

i = x̂i)]〈m, x〉 ∧
∧n

i=1 Li

Proof: The hypotheses remain true and the conclusion is unchanged if we remove
from mj any variable that appears in xj . (Assumption 2 remains true because, by
assumption 1, the variable removed cannot occur free in Mi.) Therefore, without
loss of generality, we can strengthen assumption 1 to:
Assume: 1(a). The variables in xj do not occur free in Mi, and are distinct from

the variables in xi and mj .
The proof is by induction on n, with the cases for n = 1 and n = 2 proved separately.
〈1〉1. Case: n = 1

Proof: This case follows immediately from the definition of Mi.
〈1〉2. Case: n = 2

Let: NH
∆=

[∨ N1 ∧ (x′
2 = x2)

∨ N2 ∧ (x′
1 = x1)

]
〈m, x〉

NU
∆=


∨ N1 ∧ (x′

2 = x2)
∨ N2 ∧ (x′

1 = x1)
∨ N1 ∧ N2



〈m, x〉

H
∆= ∃∃∃∃∃∃x1, x2 : Init1 ∧ Init2 ∧ ✷NH ∧ L1 ∧ L2

U
∆= Init1 ∧ Init2 ∧ ✷NU ∧ L1 ∧ L2

Prove: |= M1 ∧M2 = H
〈2〉1. |= M1 ∧M2 = ∃∃∃∃∃∃x1, x2 : U

Let: NV
∆=

[∧ N1 ∨ (〈m1, x1〉′ = 〈m1, x1〉)
∧ N2 ∨ (〈m2, x2〉′ = 〈m2, x2〉)

]
〈m, x〉

V
∆= Init1 ∧ Init2 ∧ ✷NV ∧ L1 ∧ L2

〈3〉1. |= NV = NU

Proof: Assumption 〈0〉:3, which implies
|= N2 ∧ (〈m1, x1〉′ = 〈m1, x1〉) = N2 ∧ (x′

1 = x1)
|= N1 ∧ (〈m2, x2〉′ = 〈m2, x2〉) = N1 ∧ (x′

2 = x2)
〈3〉2. |= V = U

Proof: 〈3〉1 and the definitions of V and U .
〈3〉3. |= [N1]〈m1, x1〉 ∧ [N2]〈m2, x2〉 = NV

Proof: The definition of m and x.
〈3〉4. |= M1 ∧M2 = ∃∃∃∃∃∃x1, x2 : V

Proof: 〈3〉3 and assumption 〈0〉:1(a), since ✷ distributes over ∧.
〈3〉5. Q.E.D.

Proof: 〈3〉2 and 〈3〉4.
〈2〉2. |= H ⇒M1 ∧M2

Proof: 〈2〉1, since |= NH ⇒ NU .
〈2〉3. |= M1 ∧M2 ⇒ H

Assume: σ |= M1 ∧M2

Prove: σ |= H
〈3〉1. Choose τ such that τ �〈x1, x2〉 σ and τ |= U .

Proof: τ exists by assumption 〈2〉, 〈2〉1, and the definition of ∃∃∃∃∃∃.
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Let: η be the behavior such that, for all n > 0:
η2n−1

∆= τn

η2n
∆= if [[x1]](τn) = [[x1]](τn+1) or [[x2]](τn) = [[x2]](τn+1)

then τn

else the state such that [[x1]](η2n) = [[x1]](τn+1)
and η2n =x1 τn.

(η is the same as τ except that each step is split in two. A step that
changes both x1 and x2 is split into a step that changes only x1 fol-
lowed by one that leaves x1 unchanged. For a step that leaves x1 or x2

unchanged, a stuttering step is added.)
〈3〉2. For all n > 0, if [[x1]](τn) �= [[x1]](τn+1) and [[x2]](τn) �= [[x2]](τn+1) then

〈τn, τn+1〉 is an N1 ∧ N2 ∧ (m′ = m) step.
Assume: [[x1]](τn) �= [[x1]](τn+1) and [[x2]](τn) �= [[x2]](τn+1).
Prove: 〈τn, τn+1〉 is an N1 ∧ N2 ∧ (m′ = m) step.
〈4〉1. 〈τn, τn+1〉 is an NU step.

Proof: 〈3〉1 (which asserts τ |= U) and the definition of U .
〈4〉2. 〈τn, τn+1〉 is an N1 ∧ N2 step.

Proof: Assumption 〈3〉, 〈4〉1, and the definition of NU .
〈4〉3. Q.E.D.

Proof: 〈4〉2 and assumption 〈0〉:3.
〈3〉3. For all n > 0, 〈ηn, ηn+1〉 is an NH step.

Let: k
∆= (n+ 1) div 2

〈4〉1. Case: [[x1]](τk) = [[x1]](τk+1) or [[x2]](τk) = [[x2]](τk+1)
(In this case, 〈ηn, ηn+1〉 is a step of τ or a stutter.)

〈5〉1. 〈ηn, ηn+1〉 = 〈τk, τk+1〉 or ηn = ηn+1.
Proof: The definition of η and case assumption 〈4〉.
〈5〉2. [[x1]](ηn) = [[x1]](ηn+1) or [[x2]](ηn) = [[x2]](ηn+1).

Proof: 〈5〉1 and case assumption 〈4〉.
〈5〉3. 〈ηn, ηn+1〉 is an NU step.

Proof: 〈5〉1, 〈3〉1 (which asserts τ |= U), and the definition of U .
〈5〉4. Q.E.D.

Proof: 〈5〉2 and 〈5〉3, since |= NU ∧ ((x′
1 = x1) ∨ (x′

2 = x2))⇒ NH .
〈4〉2. Case: n = 2k − 1, [[x1]](τk) �= [[x1]](τk+1), and

[[x2]](τk) �= [[x2]](τk+1).
(In this case, 〈ηn, ηn+1〉 is a step that changes only x1.)

〈5〉1. ηn = τk, [[x1]](ηn+1) = [[x1]](τk+1), and ηn+1 =x1 τk

Proof: The definition of η and case assumption 〈4〉.
〈5〉2. 〈τk, τk+1〉 is an N1 ∧ N2 ∧ (m′ = m) step.

Proof: 〈3〉2 and case assumption 〈4〉.
〈5〉3. [[m]](ηn) = [[m]](τk) and [[m]](ηn+1) = [[m]](τk+1)

Proof: 〈5〉1 implies [[m]](ηn) = [[m]](τk), 〈5〉1 and assumption 〈0〉:1(a)
(which implies that no variable in x1 occurs in m1 or m2) imply
[[m]](ηn+1) = [[m]](τk), and 〈5〉2 implies [[m]](τk) = [[m]](τk+1).
〈5〉4. [[x1]](ηn) = [[x1]](τk) and [[x1]](ηn+1) = [[x1]](τk+1)

Proof: 〈5〉1.
〈5〉5. 〈m, x1〉 contains all variables free in N1.
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Proof: Assumption 〈0〉:2 and the definition of M1.
〈5〉6. 〈ηn, ηn+1〉 is an N1 step

Proof: 〈5〉2, 〈5〉3, 〈5〉4, and 〈5〉5.
〈5〉7. 〈ηn, ηn+1〉 is an x′

2 = x2 step.
Proof: 〈5〉1 and 〈0〉:1(a), which implies that x1 and x2 have no variable
in common.
〈5〉8. Q.E.D.

Proof: 〈5〉6 and 〈5〉7, since |= N1 ∧ (x′
2 = x2)⇒ NH .

〈4〉3. Case: n = 2k, [[x1]](τk) �= [[x1]](τk+1), and
[[x2]](τk) �= [[x2]](τk+1).
(In this case, 〈ηn, ηn+1〉 is a step that leaves x1 unchanged.)

〈5〉1. ηn+1 = τk+1, [[x1]](ηn) = [[x1]](τk+1), and ηn =x1 τk.
Proof: The definition of η and case assumption 〈4〉.
〈5〉2. 〈τk, τk+1〉 is an N2 step.

Proof: 〈3〉2 and case assumption 〈4〉.
〈5〉3. [[〈m, x2〉]](ηn) = [[〈m, x2〉]](τk) and

[[〈m, x2〉]](ηn+1) = [[〈m, x2〉]](τk+1).
Proof: 〈5〉1 and assumption 〈0〉:1(a), which implies that x1 has no
variable in common with x2 or m.
〈5〉4. 〈m, x2〉 contains all variables free in N2.

Proof: Assumption 〈0〉:2 and the definition of M2.
〈5〉5. 〈ηn, ηn+1〉 is an N2 step

Proof:〈5〉2, 〈5〉3, and 〈5〉4.
〈5〉6. 〈ηn, ηn+1〉 is an x′

1 = x1 step.
Proof: 〈5〉1.
〈5〉7. Q.E.D.

Proof:〈5〉5 and 〈5〉6, since |= N2 ∧ (x′
1 = x1)⇒ NH .

〈4〉4. Q.E.D.
Proof: 〈4〉1, 〈4〉2, and 〈4〉3.

〈3〉4. η |= Init1 ∧ Init2

〈4〉1. τ |= Init1 ∧ Init2

Proof: The definition of U and 〈3〉1 (which asserts τ |= U).
〈4〉2. η1 = τ1

Proof: The definition of η.
〈4〉3. Q.E.D.

Proof: 〈4〉1 and 〈4〉2, since [[P ]](ρ) = [[P ]](ρ1) for any predicate P and
behavior ρ.

〈3〉5. η |= L1 ∧ L2

〈4〉1. η |= L1

〈5〉1. τ |= L1

Proof: 〈3〉1 and the definition of U .
〈5〉2. For all n > 0:

1. η2n−1 = τn

2. [[〈m, x1〉]](η2n) = [[〈m, x1〉]](τn) or
[[〈m, x1〉]](η2n) = [[〈m, x1〉]](τn+1)
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Proof: Part 1 follows from the definition of η. Part 2 follows from the
definition of η and 〈3〉2, which implies [[m]](τn) = [[m]](τn+1) when the
if condition in the definition is false.
〈5〉3. Choose η̂ such that η̂2n−1 = τn and

η̂2n = if [[〈m, x1〉]](η2n) = [[〈m, x1〉]](τn) then τn

else τn+1

for all n. Then η̂ is stuttering equivalent to τ , and, for all n,
[[〈m, x1〉]](η̂n) = [[〈m, x1〉]](ηn).

Proof: 〈5〉2.
〈5〉4. η̂ |= L1

Proof: 〈5〉1 and 〈5〉3, since TLA formulas are invariant under stutter-
ing.
〈5〉5. [[L1]](η̂) = [[L1]](η)

Proof: 〈5〉3, since 〈m, x1〉 contains all variables occurring free in L1,
by assumption 〈0〉:2 and the definition of M1.
〈5〉6. Q.E.D.

Proof: 〈5〉4 and 〈5〉5.
〈4〉2. η |= L2

〈5〉1. τ |= L2

Proof: 〈3〉1 and the definition of U .
〈5〉2. η �x1 τ

Proof: The definition of η.
〈5〉3. Q.E.D.

Proof: 〈5〉1, 〈5〉2, and assumption 〈0〉:1(a), which implies that x1 does
not occur free in L2.

〈4〉3. Q.E.D.
〈3〉6. η |= H

Proof: 〈3〉3, 〈3〉4, and 〈3〉5, and the definition of H .
〈3〉7. η �〈x1, x2〉 σ

Proof: 〈3〉1, which asserts τ �〈x1, x2〉 σ, and the definition of η, which
implies η �x1 τ .
〈3〉8. Q.E.D.

Proof: 〈3〉6, 〈3〉7, and the definition of H .
〈2〉4. Q.E.D.
〈1〉3. Case: n > 2, and the theorem holds with p substituted for n, for all p < n.

Let: mm
∆= 〈m1, . . . ,mn−1〉

xx
∆= 〈x1, . . . , xn−1〉

x̂xi
∆= 〈x1, . . . xi−1, , xi+1, . . . , xn−1〉

Proof:∧
i≤n Mi = (

∧
i≤n−1 Mi) ∧Mn

by propositional logic

= ∧ ∃∃∃∃∃∃xx : ∧ ∧
i≤n−1 Init i

∧ ✷ [
∨

i≤n−1Ni ∧ (x̂x′
i = x̂xi)]〈mm, xx〉

∧ ∧
n−1 Li

∧Mn

by case assumption 〈1〉, with n− 1 substituted for p
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= ∃∃∃∃∃∃xx, xn : ∧ ∧
Init i

∧ ✷


∨ ∧

∨
i≤n−1Ni ∧ (x̂x′

i = x̂xi)
∧ (x′

n = xn)
∨ Nn ∧ (x̂′

n = x̂n)



〈mm, xx, mn, xn〉

∧ ∧
Li

by case assumption 〈1〉, with 2 substituted for p

= ∃∃∃∃∃∃x :
∧n

i=1 Init i ∧ ✷[
∨n

i=1Ni ∧ (x̂′
i = x̂i)]〈m, x〉 ∧

∧n
i=1 Li

〈1〉4. Q.E.D.
Proof: 〈1〉1, 〈1〉2, 〈1〉3, and mathematical induction.

B6 Decomposition and Composition

Theorem 1 is an immediate consequence of Theorem 2. The proof of Theorem 2
assumes Theorem 3, but Theorem 2 is not used in the proof of Theorem 3 or of any
lemma, so there is no circularity.
Theorem 2.

Assume: For i = 1, . . . , n:

1. |= C(E) ∧
n∧

j=1

C(Mj) ⇒ Ei

2. a. |= C(Ei)+v ∧ C(M l
i ) ⇒ C(Mi)

b. |= Ei ∧M l
i ⇒ Mi

3. v is a tuple of variables including all the free variables of Mi.

Prove: a. |= C(E)+v ∧
n∧

j=1

C(M l
j) ⇒

n∧
j=1

C(Mj)

b. |= E ∧
n∧

j=1

M l
j ⇒

n∧
j=1

Mj

〈1〉1. For any E, Ei, M l
i , and Mi satisfying assumptions 〈0〉:1–3, and all i =

1, . . . , n: |= (
n∧

j=1

M l
j)⇒ (E +−� Mi)

〈2〉1. For j = 1, . . . , n: |= M l
j ⇒ (Ei

+−� Mj)
〈3〉1. For i = 1, . . . , n: |= C(M l

i )⇒ (C(Ei)
+−� C(Mi))

Proof: Assumption 〈0〉:2(a), Lemma 1(2), assumption 〈0〉:3, and Lemma 11.
〈3〉2. For i = 1, . . . , n: |= M l

i ⇒ (Ei ⇒Mi)
Proof: Assumption 〈0〉:2(b).
〈3〉3. Q.E.D.

Proof: 〈3〉1, 〈3〉2, and Lemma 2(2).

〈2〉2. For i = 1, . . . , n: |= (
n∧

j=1

(Ej
+−� Mj))⇒ (E +−� Mi)

Proof: The Composition Theorem (Theorem 3), with Mi substituted for M ,
where hypothesis 1 of the Composition Theorem follows from assumption 〈0〉:1,
and hypotheses 2(a) and 2(b) are vacuous when Mi is substituted for M .
〈2〉3. Q.E.D.

Proof: 〈2〉1, 〈2〉2, and propositional reasoning.
〈1〉2. Conclusion (a) holds.
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〈2〉1. For i = 1, . . . , n: |= (
n∧

j=1

C(M l
j))⇒ (C(E) +−� C(Mi))

Proof: 〈1〉1, substituting C(E) for E, C(M l
j) for M

l
j , and C(Mi) for Mi. Since

C is idempotent, this instantiation changes only assumption 2(b), which be-
comes |= C(Ei) ∧ C(M l

i ) ⇒ C(Mi). This assumption follows from 2(a), since
|= P ⇒ P+v, for any P .

〈2〉2. For i = 1, . . . , n: |= (
n∧

j=1

C(M l
j))⇒ (C(E)+v −� C(Mi))

Proof: 〈2〉1, assumption 〈0〉:3, and Lemma 11.
〈2〉3. Q.E.D.

Proof: 〈2〉2 and Lemma 1(2) (conjoining over all i).
〈1〉3. Conclusion (b) holds.

〈2〉1. |= E ∧ (
n∧

j=1

M l
j)⇒Mi

Proof: 〈1〉1 and Lemma 2(2).
〈2〉2. Q.E.D.

Proof: 〈2〉1 (conjoining over all i).
〈1〉4. Q.E.D.

Lemma 18.

Assume: For i = 1, . . . , n:
0. Mi is a safety property.
1. E and Ei are safety properties.

2. |= (E ∧
n∧

j=1

Mj) ⇒ Ei

Prove: |= (
n∧

j=1

(Ej
+−� Mj)) ⇒ (E +−� (

n∧
j=1

Mj))

Proof:
∧n

j=1(Ej
+−� Mj))

⇒ (
∧n

j=1 Ej)
+−� (

∧n
j=1 Mj)

Lemma 5 and assumptions 〈0〉:0 and 〈0〉:1
⇒ E +−� (

∧n
j=1 Mj)

assumption 〈0〉:2 and Lemma 7, substituting E for R,∧n
j=1 Ej for P , and

∧n
j=1 Mj for Q.

Theorem 3.

Assume: For i = 1, . . . , n:

1. |= C(E) ∧
n∧

j=1

C(Mj) ⇒ Ei

2. a. |= C(E)+v ∧
n∧

j=1

C(Mj) ⇒ C(M)

b. |= E ∧
n∧

j=1

Mj ⇒ M
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Prove: |=
n∧

j=1

(Ej
+−� Mj) ⇒ (E +−� M)

〈1〉1. |= (
∧n

j=1(C(Ej)
+−� C(Mj))) ⇒ (C(E) +−� (

∧n
j=1 C(Mj)))

Proof: Assumption 〈0〉:1 and Lemma 18, since |= Ei ⇒ C(Ei) (because C is
superdiagonal).
〈1〉2. |= (C(E) +−� (

∧n
j=1 C(Mj))) ⇒ (C(E) +−� C(M))

Proof: Assumption 〈0〉:2(a) and Lemma 12.
〈1〉3. |= (

∧n
j=1(Ej

+−� Mj)) ⇒ (E ⇒M)
〈2〉1. |= C(E) ∧ (

∧n
j=1(C(Ej)

+−� C(Mj))) ⇒
∧n

j=1 C(Mj)
Proof: 〈1〉1 and Lemma 3(2).
〈2〉2. |= E ∧ (

∧n
j=1(Ej

+−� Mj)) ⇒
∧n

j=1 C(Mj)
Proof: 〈2〉1, since |= E ⇒ C(E) (because C is superdiagonal) and |= (Ej

+−�
Mj)⇒ (C(Ej)

+−� C(Mj)) by Lemma 2.
〈2〉3. |= E ∧ (

∧n
j=1(Ej

+−� Mj)) ⇒
∧n

j=1 Ej

Proof: 〈2〉2 and assumption 〈0〉:1, since C is superdiagonal.
〈2〉4. |= E ∧ (

∧n
j=1(Ej

+−� Mj)) ⇒
∧n

j=1 Mj

Proof: 〈2〉3 and Lemma 3(2).
〈2〉5. |= E ∧ (

∧n
j=1(Ej

+−� Mj)) ⇒ M
Proof: 〈2〉4 and assumption 〈0〉:2(b).
〈2〉6. Q.E.D.

Proof: 〈2〉5.
〈1〉4. Q.E.D.

Proof: 〈1〉1 and 〈1〉2, which imply

|=
n∧

j=1

(C(Ej)
+−� C(Mj)) ⇒ (C(E) +−� C(M))

〈1〉3, and Lemma 2(2).
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