Preserving Liveness: Comments on “Safety and
Liveness from a Methodological Point of View”

Martin Abadif Bowen Alpern! Krzysztof R. Apt} Nissim Francez?
Shmuel Katz? Leslie Lamport* and Fred B. Schneider

January 9, 1991
revised June 26, 1991 and August 19, 1991

Dederichs and Weber [4] define what it means for a property to be a
liveness property with respect to a safety property. They argue that specifi-
cations should be written in the form P N @, where () is a liveness property
with respect to the safety property P. They also criticize Alpern and Schnei-
der’s general definitions of safety and liveness [2]:

Alpern and Schneider’s characterizations are problematic, since
they permit a certain kind of anomaly.

The anomaly is that a liveness property, which should constrain only infinite
behavior, can implicitly rule out some finite behaviors.

We agree that most reasonable specifications will be written in the form
recommended by Dederichs and Weber. As observed by Abadi and Lam-
port [1], who called specifications having this form machine closed, one tries
to write liveness properties that “[do] not rule out any finite behavior.” As
pointed out by Apt, Francez, and Katz [3], who defined a fairness condition
for a programming language to be feasible if it produces machine-closed
specifications for all programs, feasibility is necessary to “prevent a sched-

79

uler from ‘painting itself into a corner’”.

*Digital Equipment Corporation, Systems Research Center

TI.B.M., T. J. Watson Research Center

ICWIL

$Department of Computer Science, The Technion

YComputer Science Department, Cornell University (Supported by Office of Naval Re-
search contract N00014-86-K-0092, National Science Foundation Grant No. CCR-8701103,
and DARPA/NSF Grant No. CCR-9014363.)

We disagree with Dederichs and Weber’s contention that non-machine-
closed specifications should be avoided. We believe that it is neither desir-
able nor possible to do so.

Abadi and Lamport’s completeness result [1] requires that only the lower-
level implementation be machine closed, suggesting that there is no need for
high-level specifications to be machine closed. Indeed, the general specifi-
cation of serializability given by Lamport [5] achieves its simplicity by not
being machine closed.

Even if one tried to forbid non-machine-closed specifications, they would
arise in proofs that one specification implements another. A state-based
proof that a lower-level specification Z implements a higher-level specifica-
tion X is usually done in two steps. One first adds history and prophecy
variables to Z to obtain an equivalent specification Y [1], and then one
proves Y = X, where X is obtained from X by substituting concrete re-
alizations for abstract variables [5]. Surprisingly, it turns out that each of
these steps can destroy machine-closure, so Y and X need not be machine-
closed even if Z and X are. Although there are alternatives to using history
and prophecy variables, substitution of concrete entities for abstract ones
is fundamental, and it is likely that non-machine-closed specifications will
arise in any approach that handles liveness.

As Dederichs and Weber observe, arbitrary liveness properties are “prob-
lematic”. However, the problem lies in the nature of liveness, not in its
definition.

One cannot avoid complexity by definition.
Stephen Jay Gould

References

[1] Martin Abadi and Leslie Lamport. The existence of refinement map-
pings. Theoretical Computer Science, 82(2):253-284, May 1991. A pre-
liminary version appeared in Proceedings of the Third Annual Symposium
on Logic In Computer Science, pages 165-177, IEEE Computer Society,
Edinburgh, Scotland, July 1988.

[2] Bowen Alpern and Fred B. Schneider. Defining liveness. Information
Processing Letters, 21(4):181-185, October 1985.

[3]

Krzysztof R. Apt, Nissim Francez, and Shmuel Katz. Appraising fair-
ness in languages for distributed programming. Distributed Computing,
2:226-241, 1988.

Frank Dederichs and Rainer Weber. Safety and liveness from a method-
ological point of view. Information Processing Letters, 36(1):25-30, Oc-
tober 1990.

Leslie Lamport. A simple approach to specifying concurrent systems.
Communications of the ACM, 32(1):32-45, January 1989.

