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Abstract

Implementing traditional forms of multiprocess synchronization requires a
hardware arbiter. Here, we consider what kind of synchronization is achiev-
able without arbitration. Several kinds of simple arbiter-free registers are
defined and shown to have equal power, and the class of synchronization
problems solvable with such registers is characterized. More powerful forms
of arbiter-free communication primitives are described. However, the prob-
lem of characterizing the most general form of arbiter-free synchronization
remains unsolved.
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1 Introduction

In classic multiprocess synchronization algorithms, processes communicate
by reading and writing shared registers. The most primitive interprocess
communication mechanism that has been considered seems to be the one-
reader safe one-bit register, introduced in [11]. This register can be written
by one process and read by one other process, a read obtaining the “correct”
value if it does not overlap a write. Such registers can be used to solve any
kind of synchronization problem, though not necessarily in a wait-free man-
ner [7]. However, implementing a read/write register requires an arbiter—a
device that makes a discrete decision based on a continuous range of inputs.
It is impossible to build an arbiter that always decides within a bounded
length of time [2]. Hence, synchronization using a shared register may take
an unbounded length of time. We study here what kind of synchronization
can be achieved in bounded time, which means without using an arbiter.

Without an arbiter, we can implement an interprocess communication
mechanism called a wait/signal register, in which one process waits for a
signal from another process. We describe five types of wait/signal registers
and show that they are all equivalent, in the sense that each can be used to
implement the others. We then present our main result, that the synchro-
nization achievable by finite-state deterministic processes communicating
with wait/signal registers is essentially that described by marked graphs [3],
a special class of Petri nets [18] that generalize producer/consumer synchro-
nization.

At least one special case of our result has been known for some time. It
is well-known among experts on self-timed circuits [16] that producer/con-
sumer synchronization can be implemented without an arbiter. (This is the
basic form of synchronization achieved by Sutherland’s micropipelines [19].)
We do not know if the full generalization to marked graphs was previously
known. While arbiter-free self-timed circuits have been considered [20, 21],
we know of no characterization of the interprocess synchronization that they
can effect.

Wait/signal registers are not the only synchronization mechanism im-
plementable without an arbiter. We can also implement a weak read/write
register, which is one that may not be accessed concurrently by different
processes. Adding weak read/write registers does not significantly alter the
class of solvable synchronization problems unless we also allow processes to
make nondeterministic choices. Implementing nondeterminism seems to re-
quire an arbiter. However, we can view a process’s nondeterministic choice
as representing input to an arbiter-free system from an environment that
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may contain arbiters. We briefly describe a class of synchronization prob-
lems that can be solved by nondeterministic processes with wait/signal and
weak read/write registers. However, we do not know if this is the most
general class of problems solvable with such a system.

We can enhance wait/signal registers without introducing arbitration by
allowing a process to wait for a signal from any of a set of processes. We give
an example to show that this enhancement extends the power of wait/signal
registers, but we do not know how to characterize the synchronization it
allows.

In the next section, we review some concepts for describing nonatomic
operations and define what we mean by multiprocess synchronization. Sec-
tion 3 discusses arbitration and shows that some classic synchronization
problems require an arbiter. Section 4 defines several types of wait/signal
register and proves their equivalence. It also shows how to implement al-
ternation with wait/signal registers. Section 5 reviews marked graphs and
defines a subclass we call process marked graphs. Section 6 shows that pro-
cess marked graphs essentially describe the synchronization achievable by
finite-state processes with wait/signal registers. Section 7 briefly discusses
other synchronization primitives, and we conclude with an overview of what
we have done and what remains undone.

The basic question that we ask is, what kind of multiprocess synchro-
nization can be achieved without arbitration? Our attempt to answer it is
far from satisfactory. We have found that just asking the question precisely
is difficult and requires a somewhat arcane formalism. We have only a par-
tial answer—namely, a characterization of what can be implemented with
wait/signal registers, which are just one class of arbiter-free synchronization
primitive. And even that answer is rather complicated. Much of our exposi-
tion is informal; we have been formal only where we feel that our formalism
is simple and compelling. Still, we feel that the question is an interesting
one, and we hope that our results will stimulate further progress towards
answering it. This work is still in the realm of pure theory; we know of no
practical application of arbiter-free multiprocess synchronization.

2 Systems and Synchronization

Before discussing arbiter-free multiprocess synchronization, we have to un-
derstand what multiprocess synchronization is. In this section, we define
what a multiprocess system is, what a synchronization problem is, and what
it means for a multiprocess system to solve a synchronization problem.
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The standard formalisms for describing systems, such as temporal logic [14]
and process algebra [17], describe atomic actions. The fundamental problem
of multiprocess synchronization is that operations are not inherently atomic
and can be executed concurrently by different processes. We therefore use a
formalism that was introduced for describing nonatomic operations [10, 12].
However, our exposition is rather informal.

2.1 System Executions

A system is described by a set of system executions, each one representing a
possible (legal) execution of the system. A system execution is a structure
consisting of a set H of operation executions and two relations - and -

on H . With each operation execution in H we associate an operation. If
O is the operation associated with an operation execution A, we say that
A is an execution of operation O . We usually write an operation execution
as O [i ], where O is its operation and i is an integer that distinguishes this
operation execution from other executions of O . Usually, O [i ] is the i th

execution of operation O .
For operation executions A and B in a system execution, we say that A

precedes B if A - B , that A can affect B if A - B , and that A and B are
concurrent if A 6- B and B 6- A.

To motivate the relations - and - and their properties, we can think of
an operation execution as comprising a set of events. These events might be
discrete atomic events in some lower-level model of the system, or they might
be the points in a continuous region of space-time at which the operation
execution is performed by some physical device. We assume an irreflexive
partial order on the set of all events, where a → b means that event a
happens before event b [8]. An operation execution A precedes an operation
execution B iff every event of A precedes every event of B :

A - B ≡ ∀ a ∈ A, b ∈ B : a → b(1)

Operation execution A can affect operation execution B iff A can influence
the result of B—for example, if A writes a value to a register and B reads
at least part of that value. For this to be the case, some event of A has to
precede some event of B :1

A - B implies ∃ a ∈ A, b ∈ B : a → b(2)
1In previous work [10, 12], (2) was taken to be an equivalence rather than an impli-

cation. Here, we are taking - to be an actual causality relation, not just a temporal
relation in which causality is possible.

3



The following rules are simple consequences of (1) and (2) and of the
assumption that → is an irreflexive partial order:

R1. - is an irreflexive partial order.

R2. A - B - C - D implies A - D , for all A,B ,C ,D ∈ H .

We have used (1) and (2) to motivate rules R1 and R2 in terms of events.
However, events are not part of the formalism, and we take R1 and R2 to be
axioms. A formal characterization of system executions requires additional
axioms, but we will not need them here.

A multiprocess system is one in which we assign one of a finite number of
processes to each operation. If A is an execution of operation O to which we
assign process p, we say that p performs A. We assume that an algorithm
can enforce precedence relations between operation executions performed by
the same process. However, we allow a process to execute some operations
concurrently, so we don’t assume that all the operation executions of a
process are totally ordered.

As we shall see, the purpose of a synchronization algorithm is to en-
force precedence relations among operation executions. We assume that a
process’s algorithm enforces intraprocess precedence relations. Interprocess
communication primitives guarantee only causality relations between oper-
ation executions of different processes. For example, if a read R obtains
the value written by a write W , we can conclude that W - R, not that
W - R. Interprocess precedence relations are obtained with rule R2 from
intraprocess precedence relations and interprocess causality relations.

An operation execution may or may not terminate. If A is a nontermi-
nating operation execution, then A 6- B holds for all operation executions
B . The converse is not necessarily true.

2.2 A Safe Read/Write Register

As an example of how system executions describe systems, we consider a sys-
tem containing a one-reader, one-writer one-bit safe register [13]. A writer
process performs a (finite or infinite) sequence W (w1)[1] - W (w2)[2] - · · ·
of operation executions, where W (w i)[i ] represents the writing of the value
w i , which is 0 or 1, to the register. A reader process likewise performs a
sequence R(r1)[1] - R(r2)[2] - · · · of operation executions, R(r i)[i ] repre-
senting a read that obtains the value r i . The relation W (w i)[i ] - R(r j )[j ]

means that the j th read can “see traces of” the i th write. The register is
specified by the requirement that, for every execution of the system, the
following conditions hold for all i and j .
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S1. If W (w i)[i ] - R(r j )[j ] and either R(r j )[j ] - W (w i+1)[i+1] or W (w i)[i ]

is the last write, then r j = w i ; and if R(r j )[j ] - W (w1)[1], then r j = 0.
(A read not concurrent with any write obtains the most recently written
value, where the initial value is assumed to be 0.)

S2. r j equals 0 or 1. (Every read returns a legal value.)

S3. If W (w i)[i ] and R(r j )[j ] are concurrent, then W (w i)[i ] - R(r j )[j ]. (If a
read and a write execution occur and neither precedes the other, then
the read might see traces of the write.)

2.3 The Muller C-Element

As another example of a system description, we consider a system containing
a Muller C-element, a basic component of self-timed circuits [16]. An n-input
C-element is a device with n input lines and one output line that produces
an output signal after receiving an input signal on every input line. After a
signal appears on an input line, the next signal on that line must not occur
until after the C-element produces an output.

An execution of a system with a 2-input C-element contains the following
operation executions:2

Input 1 Operation Executions: I
[1]
1

- I
[2]
1

- I
[3]
1

- · · ·
? ZZ~ ? ZZ~ ? ZZ~

C-Element Operation Executions: O[1] - O[2] - O[3] - · · ·
6 ½½> 6 ½½> 6 ½½>

Input 2 Operation Executions: I
[1]
2

- I
[2]
2

- I
[3]
2

- · · ·
The solid arrows are assumed—the horizontal ones are the ordering of op-
eration executions within a process, the diagonal ones must be guaranteed
by the system. The dashed arrows and termination of the O [i ] operations
are ensured by the C-element.

In general, an n-input C-element system contains input operation execu-
tions I [i ]

j for each input j and output operation executions O [i ]. We assume
that (i) the output operation executions O [i ] are totally ordered, (ii) for each
input process j , the operation executions I [i ]

j are totally ordered, and (iii) for

each i , operation execution O [i+1] occurs only if I [i ]
j occurs, for every j , and

that I [i ]
j

- O [i+1]. The C-element then guarantees that (i) the operation

2The C-element is traditionally described in terms of circuit behavior, not operation
executions. We have translated that description into our formalism.
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executions I [i ]
j terminate, (ii) an operation execution O [i ] terminates iff I [i ]

j

occurs, for all inputs j , and (iii) I [i ]
j

- O [i ] for each j . The specification
should actually assert that these guarantees hold for a particular i if the
assumptions hold for all smaller values of i , but we won’t bother stating
this precisely.

2.4 Implementation

When implementing a higher-level system by a lower-level one, we must
explain how to interpret an execution of the lower-level one as an execution
of the higher-level one. This requires explaining how a set of operation
executions in an execution of the lower-level system is interpreted as a single
operation execution of the higher-level system. The - and - relations of
the higher-level interpretation are defined in terms of the - and - relations
of the lower-level system executions as follows. If A and B are sets of lower-
level operation executions that are considered to be individual operation
executions of the higher-level system, then:

A -B ∆= ∀A ∈ A, B ∈ B : A - B(3)

A -B ∆= ∃A ∈ A, B ∈ B : A - B(4)

It is easy to check that R1 and R2 are satisfied by the high-level interpreta-
tion if they are satisfied by the lower-level system execution.

A set A of operation executions of the lower-level system represents a
terminating operation of the higher-level system iff A is finite and all its
elements are terminating operation executions.

2.5 Synchronization Problems

We define a synchronization problem to be a requirement on the - relations
among a collection of operation executions. Solving the problem means
adding operation executions that perform the synchronization needed to
guarantee that every system execution satisfies the required - relations.

The best-known synchronization problem is mutual exclusion. In this
problem, each process executes a sequence of critical-section operations, and
we require that all critical-section executions be totally ordered by -. In
other words, no two processes may execute their critical sections concur-
rently.

Another important synchronization problem is the alternation problem.
In this problem a “producer” process performs a (possibly infinite) sequence
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P [1] - P [2] - · · · of operation executions and a “consumer” process per-
forms a sequence C [1] - C [2] - · · · of operation executions. We require
that the P and C operation executions alternate:

P [1] - C [1] - P [2] - C [2] - · · ·
More precisely, we require that the following two conditions hold, for any
i ≥ 1:

A1. If execution C [i ] occurs, then so does P [i ], and P [i ] - C [i ].

A2. If P [i+1] occurs, then so does C [i ], and C [i ] - P [i+1].

The restrictions on the - relations posed by a synchronization prob-
lem are safety requirements. Synchronization problems also have liveness
requirements. For example, we usually require a solution of the mutual ex-
clusion problem to be “deadlock-free”. This means that a process wanting
to execute a critical-section operation must eventually do so, if all other
processes stop executing critical-section operations. The “starvation-free”
version of the mutual exclusion problem strengthens this by requiring that
any process that wants to execute a critical-section operation must eventu-
ally do so, even if other processes keep executing critical-section operations.

The alternation problem’s safety requirement implies that of the mu-
tual exclusion problem, since it implies that all the P [i ] and C [i ] operations
are totally ordered. If we ignored liveness requirements, we could there-
fore consider a solution to the alternation problem to solve the two-process
mutual exclusion problem, with the P [i ] and C [i ] being the critical-section
operation executions. However, as we explain below, the two problems are
fundamentally very different.

To formalize the liveness part of a synchronization problem, we would
have to introduce request operations. For example, in the mutual exclu-
sion problem, deadlock freedom means that, in any execution containing
only a finite number of critical-section operation executions, each request
is followed by a critical-section operation. Starvation freedom means that
this condition holds for the operation executions of each process. For the
class of synchronization problems that primarily concern us, liveness poses
no serious problem, and little is gained by treating it formally. So, we will
content ourselves with an informal treatment of liveness.

2.6 Operation Execution Graphs

We now generalize the alternation problem to the n-buffer producer/con-
sumer problem, for any positive integer n. The alternation problem is the
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n = 1 case. As in the alternation problem, the producer and consumer
each perform an infinite sequence of operation executions P [i ] and C [i ],
respectively, for all positive integers i . We require that condition A1 above
and the following condition hold for all i ≥ 1:

A2′. If P [i+n] occurs, then so does C [i ], and C [i ] - P [i+n].

Think of the producer communicating a sequence of values to the consumer
using n buffers. Operation execution P [i ] writes the i th value in buffer
i mod n, and C [i ] reads that value from the buffer. We require that the i th

value be written before it can be read (P [i ] - C [i ]), and that it be read
before the next value is written into the same buffer (C [i ] - P [i+n]). Here
is an illustration for n = 3:

Producer: P [1] - P [2] - P [3] - P [4] - P [5] - · · ·
?

»»»»»»»»»»»:

?
»»»»»»»»»»»:

?
»»»»»»»»»»»:

?
»»»»»»»?

»»
Consumer: C [1] - C [2] - C [3] - C [4] - C [5] - · · ·

(5)

This diagram is an example of what we call an operation execution graph,
which is an acyclic directed graph whose nodes are operation executions
such that (i) each node has only a finite number of incoming and outgoing
edges, (ii) any path has a first node, and (iii) for each process, there is a path
whose nodes are the set of operation executions of that process. (Condition
(ii) means that there is no infinite sequence n1, n2, . . . of nodes such that
there is an edge from n i+1 to n i , for each i .)

An operation execution graph E defines a synchronization problem,
where each edge in the graph represents a required - relation. The safety
part of the problem requires that a system execution be a prefix of the
complete operation execution graph. More precisely, a set OE of operation
executions with a relation - satisfies the safety requirement defined by the
execution graph E iff (i) OE is a subset of the nodes of E and (ii) if there
is a path from node n to node p in E and the operation execution p is in
OE , then the operation execution n is in OE and n - p. Note that this
synchronization problem requires the operations of a single process to be
totally ordered. However, we allow concurrent executions of the operations
used to implement the required synchronization.

For an operation execution graph, there are three natural choices for the
liveness property that we require. If we assume that the operation executions
are generated by the system and are not issued in response to requests, then
these three liveness properties are:

8



None A system execution may be any “prefix” of the operation execution
graph.

Deadlock Freedom If the graph is infinite, then any system execution
must contain an infinite subset of the graph’s operation executions.

Process Fairness Any system execution must contain all of the graph’s
operation executions.

It is not hard to define the analogous conditions if operations are executed
in response to external requests.

In the n-buffer producer/consumer problem, the producer must perform
at least as many operation executions as the consumer, and it can perform
at most n more. Hence, deadlock freedom implies process fairness. A trivial
example in which the two liveness conditions are not equivalent is provided
by an operation execution graph in which each process executes an infinite
sequence of operations, but there are no interprocess edges.

Since the - relation on a system execution is transitive, the synchro-
nization problem defined by an operation execution graph depends only on
the connectivity properties of the graph. Adding an edge from node n to
node p does not change the problem if there is already a path from n to p
in the graph. We define a 1-1 function κ from the nodes of an operation
execution graph E to those of an operation execution graph E ′ to be an
equivalence iff (i) every node n of E has the same associated operation as
κ(n) and (ii) for every pair of nodes n and p in E , there is a path from n to
p iff there is a path from κ(n) to κ(p) in E ′. If there is an equivalence from
E to E ′, then E and E ′ define the same synchronization problem.

3 Arbitration

We now explain what we mean by an arbiter and give some examples of syn-
chronization that requires arbitration. We do not know any reasonable way
to prove formally that a synchronization mechanism such as the wait/signal
register does not require an arbiter. So, we will not attempt define to arbi-
tration formally, and the definitions in this section are quite informal.

To simplify the exposition, we assume in this section a traditional totally-
ordered (Newtonian) model of time in which all events are ordered by the
time at which they occur. The time at which an operation execution begins
or ends is the time of its earliest or latest event. Operation execution A
precedes operation execution B iff A ends before B begins, and A - B
implies that A begins before B ends.
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3.1 Arbiters

An arbiter is a device that makes a discrete decision based on a continuous
range of values. For our purposes, it suffices to consider the special case of
an arbiter that makes a binary decision based on when some event occurs.
So, we define an arbiter to be any device that produces an output value
equal to 0 or 1, and for which there are two times T 0 and T 1 such that, if
some particular event occurs at time T i , then the arbiter’s output value is
i , for i = 0, 1. This is a looser definition of an arbiter than is customarily
used by hardware designers.

Although we think of computer circuits as producing discrete outputs,
they are actually continuous devices. A binary value is represented by the
value of some physical quantity (usually a voltage) lying in one of two non-
adjacent intervals. A simple argument shows that, if the arbiter’s output
is a continuous function of its input, then it can take an unbounded length
of time to make its decision [9, 15]. This means that, for every ∆, there is
a time T , lying between T 0 and T 1, and an ε > 0 such that, if the event
occurs between times T −ε and T +ε, then the arbiter will not have decided
by time T + ∆.

The impossibility of building a bounded-time arbiter seems to be a funda-
mental law of physics, not a mathematical theorem. For example, Anderson
and Gouda [1] proved that a bounded-time arbiter cannot be constructed
from certain kinds of components, but their proof offers no insight into why
the quantum-mechanical arbiter described in [9] doesn’t work. We take the
nonexistence of a bounded-time arbiter as an axiom.

As a corollary, we conclude that, if an arbiter is forced to decide within
a bounded length of time, then it may produce an incorrect output—that
is, a value other than 0 or 1. If the arbiter is a circuit, this could mean
that it produces an output voltage that does not represent either a 0 or
a 1. Another digital circuit receiving such a voltage as an input value could
behave strangely. (One can design arbiter circuits for which the probability
of not having decided within ∆ seconds varies as e−∆, so the probability of
producing an incorrect output can be made vanishingly small by allowing
enough time for the decision.)

A perfectly reliable arbiter can be implemented only with operations that
may take an unbounded length of time to complete. We believe that any
form of synchronization that cannot be implemented with bounded-time op-
erations is equivalent to implementing an arbiter, but we know of no rigorous
statement and proof of this. We will take arbitration-free synchronization
to mean synchronization performed using bounded-time operations. The
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question we are addressing is, what synchronization problems can be solved
by arbitration-free synchronization mechanisms?

3.2 A Safe Register Requires an Arbiter

A one-reader, one-writer one-bit safe register requires an arbiter. That is,
it is impossible to implement it so that each operation takes a bounded
length of time. To show this, we assume a one-reader, one-writer one-bit
safe register in which all operations take at most δ time units, and we obtain
a contradiction.

Suppose the writer performs just two writes: a write W (0)[1] of 0 that
starts at time Tw and a write W (1)[2] of 1 that starts at time Tw + 4δ.
Suppose the reader performs a read operation R whose starting event occurs
at time T . If T = Tw + 2δ, then the assumption that each operation lasts
at most δ time units implies that W (0)[1] - R - W (1)[2], which by S1
(of Section 2.2) implies that R obtains the value 0. If T = Tw + 5δ, then
W (1)[2] - R and S1 implies that R obtains the value 1. By S2, the read must
obtain either a 0 or a 1. Hence, the reader is an arbiter. Our assumption
that an arbiter cannot always decide within a bounded length of time then
contradicts the assumption that each read operation lasts at most δ time
units.

3.3 Mutual Exclusion Requires an Arbiter

Although one can show directly that mutual exclusion requires arbitration,
it is a little easier to use weak read/write registers mentioned in the introduc-
tion and described in detail in Section 7 below. A weak read/write register
works correctly if there is mutually exclusive access to the register by the
reading and writing processes. Thus, we can implement a safe read/write
register that allows concurrent accesses by combining a weak read/write reg-
ister with a mutual exclusion algorithm. A weak read/write register can be
implemented without an arbiter, so an arbiter-free implementation of mu-
tual exclusion would yield an arbiter-free implementation of a safe register.
We have seen above that this is impossible, so we can conclude that there
is no arbiter-free implementation of mutual exclusion.

3.4 Other Problems Requiring an Arbiter

There are a number of other classical synchronization problems that imply
some form of mutual exclusion, including the readers-writers problem [4]
and the dining philosophers problem [5]. They all require arbitration.
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One synchronization problem that does not involve mutual exclusion but
does require arbitration is concurrent garbage collection [6]. If an item be-
comes garbage before a collection phase begins, then it must be collected; if
it becomes garbage after the collection phase ends, then it must not be col-
lected. Since the item could become garbage at any time, deciding whether
or not to collect it requires arbitration. However, there is also an important
aspect of the problem that involves producer/consumer synchronization—
namely, the collector consumes garbage and produces free items, while the
mutator does the inverse. We show in Section 6 that producer/consumer
synchronization does not require an arbiter. This implies that, although an
arbiter is required to determine which items are garbage, concurrent access
to the list of free items does not require arbitration.

3.5 Nondeterminism Requires an Arbiter

It seems that, even within a single process, implementing a truly nonde-
terministic choice (one that cannot in principle be predicted by executing
a deterministic algorithm) requires an arbiter. However, we do not know
how to prove this. Nondeterminism does not appear to be equivalent to
arbitration, since allowing nondeterministic choice still does not permit a
bounded-time arbiter. Nevertheless, all physical mechanisms we know of
that make a nondeterministic choice require an arbiter, and hence cannot
make the choice within a bounded length of time. For example, one way to
choose a random bit is by determining if any nucleus in a piece of radioac-
tive material decays within a fixed length of time—a procedure that is easily
seen to require arbitration.

4 Wait/Signal Registers

A weak read/write register requires that different accesses to it not be con-
current. Preventing concurrent access by different processes requires syn-
chronization. Hence, weak read/write registers cannot, by themselves, be
used to synchronize processes. We now describe a general class of register,
called a wait/signal register, that has an arbiter-free implementation and
can be used to synchronize two independent processes. In such a register, a
receiver process waits until a sender process has sent a signal.

We first define a use-once wait/signal register and characterize the syn-
chronization problems that it can solve. We then define several types of
reusable wait/signal registers that are all equivalent, in the sense that each
can be used to implement the others. We also describe two arbiter-free
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implementations of wait/signal registers—one mechanical and another that
uses the C-element defined in Section 2.3. The section concludes with an
implementation of alternation synchronization with wait/signal registers.
This implementation is the basic building block that we use in Section 6.1
to implement arbitrary marked-graph synchronization.

4.1 A One-Shot Wait/Signal Register

The simplest form of wait/signal register is one that can be used only once,
which we call a one-shot wait/signal register. For such a register x , the
sender can execute at most one Signal(x ) operation, and the receiver can
execute at most one Wait(x ). The Signal(x ) operation execution always
terminates in a bounded length of time. The Wait(x ) operation execution
terminates only after a Signal(x ) operation execution has begun. More
precisely, the Wait(x ) operation execution terminates iff there is a Signal(x )
operation execution, in which case Signal(x ) - Wait(x ) holds. Moreover,
the Wait(x ) terminates within a bounded length of time after both it and
the Signal(x ) have begun.

4.2 Implementing Systems with One-Shot Registers

A one-shot wait/signal register can be used to implement a single interpro-
cess edge in an operation execution graph. (An interprocess edge is an edge
that joins operation executions of different processes.) We implement the
synchronization requirement implied by an edge from operation execution
A of process p to operation execution B of process q as follows, using a
one-shot wait/signal register x . Process p executes A followed by Signal(x ),
and process q executes Wait(x ) followed by B . We then have

A - Signal(x ) - Wait(x ) - B

where the - relations are guaranteed by the processes’ algorithms and the
- relation is guaranteed by the register x . Rule R2 then implies the relation
A - B required by the edge.

With this simple procedure, we can implement any operation execution
graph by using a separate one-shot wait/signal register for each interprocess
edge. Conversely, we now show that a system in which deterministic pro-
cesses communicate only with one-shot wait/signal registers implements a
system described by an operation execution graph.

Proposition 1 Let S be a multiprocess system consisting of deterministic
processes communicating by one-shot wait/signal registers, and let Ŝ be the
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system whose executions are obtained from those of S by removing Wait and
Signal operation executions. Then Ŝ consists of the set of system executions
allowed by an operation execution graph.

Proof: Since each process is deterministic, it performs the same sequence
of operation executions in any system execution. (A simple induction proof
shows that a Wait terminates in one system execution iff it terminates in
every system execution.) There can be only a single pair of Wait(x ) and
Signal(x ) operation executions for each one-shot register x , and Signal(x ) -

Wait(x ) if both operation executions occur. The possible executions of S are
ones satisfying these - relations between corresponding Signal and Wait
operation executions, together with the intra-process - relations and all
interprocess - relations required by rules R1 and R2.

Let us call Wait and Signal operation executions the synchronizing op-
eration executions. For each operation execution Op, let Prec(Op) be the
last non-synchronizing operation execution before Op by the same process,
and let Next(Op) be the next non-synchronizing operation execution af-
ter Op by the same process. (These operation executions need not exist.)
All the - relations implied by intra-process - relations and the - rela-
tions are obtained by transitivity from the intra-process - relations and
all relations Prec(Signal(x )) - Next(Wait(x )) where the Signal(x ) and
Wait(x ) operation executions both occur. We construct an operation exe-
cution graph whose nodes are the non-synchronizing operations and whose
edges are determined by the intra-process - relations and the relations
Prec(Signal(x )) - Next(Wait(x )). The executions of Ŝ are precisely the
ones allowed by this operation execution graph.

If we restrict ourselves to a finite number of registers, then we can im-
plement any finite operation execution graph. More generally, we can im-
plement any operation execution graph that has only a finite number of
interprocess edges. These are the only operation execution graphs that can
be implemented using a finite number of one-shot wait/signal registers for
interprocess communication. If we further restrict ourselves to finite-state
processes, then the implementable synchronization problems are the ones
described by an operation graph with a finite number of interprocess edges
such that the sequence of operations executed by each process is either finite
or repeating.
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4.3 Resettable Wait/Signal Registers

Finite systems using one-shot wait/signal registers can implement synchro-
nization problems with only a bounded number of operation executions,
which are of little interest. To solve more interesting synchronization prob-
lems, we need a wait/signal register with which the sender and receiver can
execute a (finite or infinite) sequence of matching Signal and Wait opera-
tions. A resettable wait/signal register permits this through the use of an
additional Reset operation. The Reset operation must come between each
successive pair of Wait and Signal operation executions. That is, suppose
W [i ]

x and S [i ]
x are the i th executions of the Wait and Signal operations, re-

spectively, and R[i ]
x is the i th execution of the Reset operation. Then we

require the following precedence relations:

S
[1]
x S

[2]
x S

[3]
x

ZZ~ ½½> ZZ~ ½½> ZZ~
R

[1]
x R

[2]
x · · ·

½½> ZZ~ ½½> ZZ~ ½½>
W

[1]
x W

[2]
x W

[3]
x

(6)

These precedence relations must be guaranteed by the processes, in which
case the register guarantees S [i ]

x - W [i ]
x for each i .

We define two types of resettable wait/signal registers, sender-resettable
and receiver-resettable, depending on which process executes the Reset. For
a sender-resettable register, (6) becomes:

Sender: S
[1]
x - R

[1]
x - S

[2]
x - R

[2]
x - S

[3]
x - · · ·

½½> ZZ~ ½½> ZZ~ ½½>
Receiver: W

[1]
x - W

[2]
x - W

[3]
x · · ·

(7)

For a receiver-resettable register, (6) becomes:

Sender: S
[1]
x - S

[2]
x - S

[3]
x · · ·

ZZ~ ½½> ZZ~ ½½> ZZ~
Receiver: W

[1]
x - R

[1]
x - W

[2]
x - R

[2]
x - W

[3]
x - · · ·

(8)

For both types of register, the horizontal - relations are achieved by having
the processes execute the operations in the appropriate order; the diagonal
- relations must be ensured by interprocess synchronization.

We now state the precise correctness condition SR for a sender-resettable
wait/signal register. The definition is somewhat subtle. The precedence
relations (7) are necessary for the register to be implementable. However, we
can’t simply require all these precedence relations to hold as a precondition
for the register to work properly, because we must use these registers to
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implement the diagonal - relations on which they depend. Instead, we need
an inductive definition saying that if the operation executions are properly
synchronized through the first k − 1 Wait and Signal executions, then the
k th Wait, Signal, and Reset executions are correct. This condition is vacuous
for k = 1, so the first Wait, Signal, and Reset executions are guaranteed to
work properly. For each k > 1, we can use the correctness of the (k − 1)st

Wait, Signal, and Reset executions to prove the - relations necessary for
the correctness of the k th executions. The correctness condition is:

SR. Assume that a sender and a receiver process execute the (finite or infi-
nite) sequences of operation executions

Sender: S
[1]
x - R

[1]
x - S

[2]
x - R

[2]
x - · · ·

Receiver: W
[1]
x - W

[2]
x - · · ·

For any k ≥ 1, if W [i ]
x - R[i ]

x - W [i+1]
x for all i with 1≤i < k − 1,

then:

1. If there is an S [k ]
x operation execution, then it terminates.

2. If there is a W [k ]
x operation execution, then it terminates iff there

is an S [k ]
x operation execution, in which case S [k ]

x - W [k ]
x holds.

3. If there is an R[k ]
x operation execution, then it terminates.

The correctness condition RR for the receiver-resettable wait/signal register
is analogous. It is obtained from SR by interchanging sender with receiver
and W with R. We will not bother to write it out.

4.4 Implementing A Resettable Wait/Signal Register

We now show that a receiver-resettable wait/signal register can be imple-
mented so the Wait and Signal operations take a bounded length of time.
That is, condition RR holds with “terminating” strengthened to “completing
within a bounded length of time”. (For a Wait, this means within a bounded
length of time of the beginning of the Wait or of the corresponding Signal,
whichever occurs last.)

The signaling paradigm embodied in the wait/signal register is funda-
mental to the design of self-timed circuits [16], and it is well known that
it can be implemented in silicon without an arbiter. An arbiter-free im-
plementation with a C-element is described in Section 4.6 below. Here, we
use a mechanical device to show that a bounded-time receiver-resettable
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Figure 1: A mechanical device used to implement a wait/signal register.

wait/signal register can, in principle, be implemented. However, we do not
analyze the design in enough detail actually to prove that it is a bounded-
time device.

The heart of the device is shown in Figure 1. It consists of two platforms
and a tube. The tube has a trap door that can be opened as indicated by
the arrow. Initially there is a ball on the top platform and the trap door
is shut. The Signal operation removes the ball from the top platform and
drops it into the tube from the top. The Wait operation opens the trap
door and waits for the ball to drop out the bottom of the tube and reach
the bottom platform. The Reset operation moves the ball from the bottom
platform to the top platform and shuts the trap door. The Reset operation
is considered to be completed only after the trap door is closed and the ball
is back on the top platform.

The assumption that the previous Reset is finished before a Signal is
begun means that the Signal does not try to move the ball until after it
has been placed on the platform. Hence, the Signal operation can easily be
completed in a bounded length of time. Because the Wait operation starts

17



only after the preceding Reset, it opens the trap door only when the ball is
above the door—either on the platform, falling towards the door, resting on
the door, or perhaps rising above the trap door after bouncing off the closed
door. In any case, there is no resistance to opening the trap door, so that
can be done in a bounded length of time. Once the trap door is open and the
ball is in the tube, the ball will fall out the bottom of the tube in a bounded
length of time. Moreover, it will hit the bottom platform with at least
the velocity it would achieve by simply falling from the height of the trap
door. Hence, the ball will have enough momentum to trigger a device that
signals the receiver process that the Wait has completed and the Reset can
begin. The entire Wait operation therefore completes in a bounded length
of time after either it begins or the corresponding Signal begins. Because a
Reset is not begun until the preceding Wait is completed, it does not try to
close the trap door or move the ball until the ball is resting on the bottom
platform. (We can assume that the bottom platform is made of a material
that prevents the ball from bouncing.) Hence, the Reset can easily close
the trap door and move the ball from the bottom to the top platform in a
bounded length of time.

This implementation of a receiver-resettable wait/signal register without
an arbiter depends on the assumption that the Signal and Reset operations
are not concurrent. Otherwise, the two processes could concurrently be
handling the ball on the top platform, and arbitration would be required to
ensure that they didn’t interfere with one another.

4.5 No-Reset Wait/Signal Registers

We can eliminate the Reset operations from a wait/signal register, as long
as we keep the precedence relations between the Signal and Wait executions
that they imply. This replaces (7) and (8) with

Sender: S
[1]
x - S

[2]
x - S

[3]
x - · · ·

ZZ~½½> ZZ~½½> ZZ~½½>
Receiver: W

[1]
x - W

[2]
x - W

[3]
x - · · ·

(9)

We define an NR wait/signal register to be one satisfying the following
obvious analog of condition SR.

NR. Assume that a sender and a receiver process execute the sequences
of operation executions S [1]

x - S [2]
x - · · · and W [1]

x - W [2]
x - · · ·,

respectively. (The name indicates the direction of the diagonal arrows.)
For any k ≥ 1, if W [i ]

x - S [i+1]
x and S [i ]

x - W [i+1]
x hold for all i with

1≤i < k − 1, then
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1. If there is an S [k ]
x operation execution, then it terminates.

2. If there is a W [k ]
x operation execution, then it terminates iff there

is an S [k ]
x operation execution, in which case S [k ]

x - W [k ]
x holds.

We can weaken the synchronization requirements for such a register by elim-
inating either the upwards or downwards pointing - relations from (9),
getting:

Sender: S
[1]
x - S

[2]
x - S

[3]
x - · · ·

ZZ~ ZZ~ ZZ~
Receiver: W

[1]
x - W

[2]
x - W

[3]
x - · · ·

(10)

Sender: S
[1]
x - S

[2]
x - S

[3]
x - · · ·

½½> ½½> ½½>
Receiver: W

[1]
x - W

[2]
x - W

[3]
x - · · ·

(11)

Each of these possibilities yields a new type of register, which we call an
SW wait/signal register and a WS wait/signal register, respectively. Their
correctness properties SW and WS are obtained from NR by eliminating
W [i ]

x - S [i+1]
x (for SW) or S [i ]

x - W [i+1]
x (for WS) from the hypothesis.

Conditions SW and WS each imply condition NR, since they have the
same conclusion but weaker hypotheses. Hence SW and WS wait/signal
registers are also NR wait/signal registers.

We have defined five classes of wait/signal register: sender-resettable,
receiver-resettable, NR, SW, and WS. Section A.1 of the appendix shows
that these classes are all equivalent in the sense that a register of any class
can be implemented with registers of any other class.

4.6 Implementing a WS Wait/Signal Register

We now describe a simple implementation of a WS wait/signal register with
a 2-input Muller C-element, described in Section 2.3. We let the sender
be one input process, and we let the receiver be both the second input
process and the C-element process. The sender’s S [i ]

x operation execution is
implemented by the input process’s I [i ]

1 operation execution. The receiver’s
W [i ]

x operation execution is implemented by the sequence I [i ]
2

- O [i ] of
operation executions. The ordering assumptions O [i ] - I [i+1]

j of the C-
element are implied by the intraprocess order (for j = 2) and the assumption
W [i ]

x - S [i+1]
x of the wait/signal register (for j = 1). The requirements that
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W [i ]
x terminates only if S [i ]

x occurs and that S x
- W [i ]

x follow from the C-
element’s guarantees that O [i ] occurs only if I [i ]

2 does and that I [i ]
2

- O [i ].
It is well-known in the self-timed circuit community that a C-element

does not require an arbiter [19], so this is an arbiter-free implementation
of the WS wait/signal register. The equivalence of all the different types
of wait/signal registers, proved in the appendix, shows that any type of
wait/signal register has an arbiter-free implementation.

4.7 Implementing Alternation

We now show how to implement alternation synchronization using wait/signal
registers. We use two WS wait/signal registers, x and y , where the producer
is the sender for x and the receiver for y , and the consumer sends with y
and receives with x . The algorithm for the two processes is:

Producer: while (true) {P ; Signal(x ); Wait(y)}
Consumer: while (true) {Wait(x ); C ; Signal(y); }

(12)

The proof of correctness of the algorithm is illustrated by the following
diagram:

· · · S
[i−1]
x - W

[i−1]
y - P [i] - S

[i]
x - W

[i]
y · · ·

? 6 ? 6

· · · W
[i−1]
x - C [i−1] - S

[i−1]
y - W

[i]
x - C [i] - S

[i]
y · · ·

(13)

The horizontal solid arrows are implied by the algorithm. The vertical
dashed arrows are obtained from the properties of the WS registers x and
y . We first assume those dashed arrows and show that they imply that the
P and C operation executions alternate as they are supposed to. We next
prove that those dashed arrows are implied by condition WS.

To verify the safety property of alternation synchronization, we have to
prove P [k ] - C [k ] - P [k+1] for all k ≥ 1. The proof follows. (Refer to
diagram (13) to help follow the proof.)

1. P [k ] - C [k ]

1.1. P [k ] - S [k ]
x and W [k ]

x - C [k ]

Proof: By the algorithm.
1.2. S [k ]

x - W [k ]
x

Proof: Proved below.
1.3. Q.E.D.

Proof: Steps 1.1 and 1.2 and rule R2 of Section 2.1 imply P [k ] -

C [k ].
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2. C [k ] - P [k+1]

2.1. C [k ] - S [k ]
y and W [k ]

y - P [k+1]

Proof: By the algorithm.
2.2. S [k ]

y - W [k ]
y

Proof: Proved below.
2.3. Q.E.D.

Proof: Steps 2.1 and 2.2 and rule R2 imply P [k ] - C [k ].

To complete the proof of safety, we must prove 1.2 and 2.2. These
properties follow from the conclusion of condition WS for registers x and y .
To prove them, we must prove the hypothesis of WS, which states that the
following two conditions hold for all i with 1≤i < k − 1:

W [i ]
x

- S [i+1]
x W [i ]

y
- S [i+1]

y(14)

The proof is by induction. We assume that (14) holds for 1≤i < k − 2 and
prove it as follows for 1 ≤ i = k − 2.

1. W [k−2]
x - S [k−1]

x

1.1. W [k−2]
x - S [k−2]

y and W [k−2]
y - S [k−1]

x .
Proof: By the algorithm and the transitivity of - (rule R1).

1.2. S [k−2]
y - W [k−2]

y

Proof: This follows from condition WS for register y and the in-
duction assumption, which asserts that (14) holds for 1 ≤ i < k − 2.

1.3. Q.E.D.
Proof: Steps 1.1 and 1.2 and rule R2 imply W [k−1]

x - S [k ]
x .

2. W [k−2]
y - S [k−1]

y

2.1. W [k−2]
y - S [k−1]

x and W [k−1]
x - S [k−1]

y .
Proof: By the algorithm and the transitivity of - (rule R1).

2.2. S [k−1]
x - W [k−1]

y

Proof: The induction assumption asserts that W [i ]
x - S [i ]

x for 1 ≤
i < k − 2. By step 1, this also holds for i = k − 2, so it holds for
1 ≤ i < k − 1. Condition WS for register x then implies S [k−1]

x -

W [k−1]
y .

2.3. Q.E.D.
Proof: Steps 2.1 and 2.2 and rule R2 imply W [k−2]

y - S [k−1]
y .

Thus far, we have ignored liveness. For alternation, there are two possible
liveness properties: none or deadlock freedom, which is equivalent to process
fairness. Whether or not our implementation satisfies deadlock freedom
depends on the liveness assumption for the concurrent execution in the two-
process algorithm (12). We obtain deadlock freedom if we assume deadlock
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freedom for the concurrent execution—namely, if no process is executing an
operation and some process is ready to execute an operation, then some
operation is eventually executed. To prove this, we must prove that each
Signal and Wait execution that is begun eventually terminates. We have
proved (14) for all i such that the operation executions in the formulas occur.
A simple induction using condition WS for registers x and y then shows that
all the Signal and Wait executions terminate, completing the proof.

5 Marked Graphs

Our main result is that the synchronization achievable by deterministic pro-
cesses communicating with wait/signal registers is essentially described by
marked graphs. This section provides the definitions and results about
marked graphs needed to state and prove that result. It reviews the def-
inition of a marked graph [3], defines its execution graph, and gives some
properties of marked graphs and their execution graphs. We don’t know if
all these properties have already been published, but most of them would
have been obvious to researchers working on marked graphs in the early
1970s. We also define process marked graphs to be a subclass of marked
graphs that represent multiprocess systems.

5.1 Definitions and Simple Properties

A marking m of a directed graph G is a function that assigns a non-negative
integer m(α) to each arc3 α of G . We describe a marking m by saying that
it places m(α) “tokens” on each arc α of G . We define the number of tokens
on a path in a marking of G to the be sum of the number of tokens on
each arc of the path. A marked graph is a pair 〈G ,m 〉 where G is a finite
directed graph and m is a marking of G . Here is an example of a marked
graph with two nodes, P and C .

P Cn nj

Y k

s

w ww

ww(15)

The path whose sequence of nodes is C ,P ,P ,C ,P contains 7 tokens.
For markings m and m ′ and node n of G , we write m n→ m ′ iff m ′

is obtained from m by removing one token from each input arc of n and
3To help avoid confusion, we use the term arc for an edge of a marked graph and

reserve the term edge for execution graphs.
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adding one token to each output arc of n. We usually describe m n→ m ′ as
the assertion that firing n in marking m produces marking m ′. A node n
can be fired in marking m iff m puts at least one token on each input arc
of n. In the marking (15), only node P can be fired. Firing it produces the
marking obtained by removing one token from the bottom arc and putting
one token on the top arc. (The token on the arc from P to itself is removed
from the arc and then put back on it by firing P .)

A (finite or infinite) sequence 〈n1, n2, . . .〉 of nodes is a firing sequence of
a marked graph 〈G ,m 〉 iff there is a sequence of markings 〈m, m1, m2, . . .〉
of G such that m n1→ m1

n2→ m2 . . . . We call 〈m, m1, m2, . . .〉 the sequence of
markings of the firing sequence. A marked graph 〈G ,m 〉 is said to be live iff,
for every node n of G , there is a firing sequence of 〈G ,m 〉 in which n appears
infinitely often. The sequence 〈P , P , C , P , C 〉 is a firing sequence of the
marked graph (15). In general, a sequence of P ’s and C ’s is a firing sequence
for this marked graph iff, in every prefix of the sequence, the number of P ’s
minus the number of C ’s is between 0 and 3.

Perhaps the most important property of marked graphs is:

MG1. For any marked graph 〈G ,m 〉 and any cycle of G , the number of
tokens on the cycle is the same in all the markings of any firing
sequence of 〈G ,m 〉.

This property follows immediately from the observation that firing a node
leaves the number of tokens on any cycle unchanged.

To help understand the possible firing sequences of a marked graph
〈G ,m 〉, we number the tokens and modify the firing rules as follows:

• The tokens on an arc form a queue, with the tokens initially on arc
α numbered successively from 1 − m(α) (at the head of the queue)
through 0 (at the tail).

• The k th firing of a node removes the token from the head of the queue
on each of its input arcs and adds to the tail of the queue on each of
its output arcs a token numbered k .

It is then easy to check the following property, where we let Src(α) and
Dest(α) be the source and destination nodes, respectively, of an arc α.

MG2. For any arc α and k ≥ 1, the k th firing of Dest(α) removes token
number k −m(α) from α.
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5.2 Execution Graphs

The marked graph (15) describes the 3-buffer producer/consumer problem
defined in Section 2.6. A sequence of P ’s and C ’s is a firing sequence for
the marked graph iff the corresponding sequence of operation executions is
a system execution (totally ordered by -) that is allowed by the 3-buffer
problem. The operation execution graph (5) and the marked graph are
related as follows: there is an edge from n [i ] to p[j ] in (5) iff there is an arc
from node n to node p in the marked graph that contains j − i tokens. For
example, the edge from C [2] to P [5] in (5) corresponds to the arc from C to
P in (15) containing three tokens.

We now generalize the construction of (5) from (15). For any marked
graph 〈G ,m 〉, we define the execution graph E (G ,m) of 〈G ,m 〉 as follows:

• The nodes of E (G ,m) are all the elements of the form n [i ] where n is
a node of G and i is a positive integer.

• For each arc α of G and every i ≥ 1, there is an edge from Src(α)[i ]

to Dest(α)[i+m(α)].

Here are two properties relating a marked graph and its execution graph.

MG3. A marked graph 〈G ,m 〉 is live iff E (G ,m) is acyclic.

MG4. A sequence σ of nodes of G is a firing sequence of a marked graph
〈G ,m 〉 iff it satisfies the following condition for every arc α and all
k ≥ 1 + m(α): if there are k occurrences of Dest(α) in σ, then the
(k − m(α))th occurrence of Src(α) precedes the k th occurrence of
Dest(α) in σ.

Property MG4 follows from MG2. Property MG3 is proved by a simple
induction argument using the following two properties, which are easy con-
sequences of the definition of E (G ,m).

• Node n can be fired in 〈G ,m 〉 iff n [1] has no incoming edges in
E (G ,m).

• m n→ m ′ implies that E (G ,m ′) is obtained from E (G ,m) by removing
node n [1] (and its outgoing edges) and renaming node n [i ] to n [i−1],
for all i > 1.
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5.3 Process Marked Graphs

Marked graphs describe synchronization among the firings of nodes. We
can relate that to synchronization among operation executions by labeling
each node with an operation, where firing a node corresponds to execut-
ing its operation. For a marked graph 〈G ,m 〉 to describe a multiprocess
synchronization problem, the executions of operations belonging to an indi-
vidual process must be totally ordered. This is guaranteed by the following
condition:

PG. For every process p, the set of nodes labeled with an operation of p is
the set of nodes of a cycle in G containing a single token.

We define a process marked graph to be a live marked graph 〈G ,m 〉 in which
each node is labeled by an operation, and each operation is associated with
one of a finite set of processes, such that PG holds. Requiring a process
marked graph to be live allows us to prove the following result.

Proposition 2 If 〈G ,m 〉 is a process marked graph, then E(G ,m) is an
operation execution graph, where we associate with each node n [i ] of E (G ,m)
the operation labeling n.

Proof: To show that E (G ,m) is an operation execution graph, we must
verify four conditions:
1. E (G ,m) is acyclic.

Proof: By MG3 and the assumption that 〈G ,m 〉 is live.
2. Each node in E (G ,m) has only a finite number of incoming and outgoing

edges.
Proof: By the definition of E (G ,m).

3. Any infinite path has a first node.
Proof: By the definition of E (G ,m).

4. The nodes labeled with the operations performed by a process p form a
path.
Proof: By PG and the definition of E (G ,m).

We next prove a necessary and sufficient condition for an operation exe-
cution graph to be generated by a process marked graph. But first, we need
some definitions.

An isomorphism of operation execution graphs is defined in the obvious
way to be a graph isomorphism that maps each node to a node with the same
associated operation. An isomorphism is an equivalence, but the converse
is not true in general. (Equivalence of operation execution graphs is defined
in Section 2.6.) For ι to be an isomorphism, there must be an edge from n
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to p iff there is one from ι(n) to ι(p); for it to be an equivalence, there must
be a path from n to p iff there is one from ι(n) to ι(p).

For any function ι and any natural number k , we define ιk to be the
composition of ι with itself k times, where ι0 is the identity function.

Let a node subgraph of a graph G be a subgraph consisting of some subset
S of the nodes of G and all the edges in G whose source and destination are
nodes in S . We define a repeating isomorphism on an operation execution
graph E to be a graph isomorphism ι from E onto a node subgraph of E
such that (i) there is no edge in E from a node in ι(E ) to a node not in ι(E )
and (ii) n and ι(n) have the same labels, for every node n of E .

Proposition 3 If ι is a repeating isomorphism of an operation execution
graph E, then there is a process marked graph 〈G ,m 〉 and an isomorphism
κ from E (G ,m) to E such that ιk (κ(n [i ])) = κ(n [i+k ]) for every node n of
G and all i ≥ 1 and k ≥ 0.

Proof: Let 〈G ,m 〉 be the operator marked graph such that (i) the set of
nodes of G is the set of the nodes in E that are not in ι(E ), (ii) for any
nodes n and p of G and any k ≥ 0, there is an arc from n to p containing
k tokens iff there is an edge in E from n to ιk (p), and (iii) the nodes of G
are labeled with the operations of the corresponding nodes of E .

In an operation execution graph, the nodes associated with operations
of each individual process form a path with a first node. It therefore follows
from the definition of a repeating isomorphism that every node of E equals
ιk (n) for a unique node n in G and k ≥ 1. We can therefore define a 1-1
correspondence κ from the nodes of E (G ,m) to the nodes of E such that
κ(ιk (n)) = n [k+1] for all modes n of G and all k ≥ 0. It is easy to check
that κ is the required isomorphism.

For any marked graph 〈G ,m 〉, the function ι defined by ι(n [k ]) = n [k+1],
for all nodes n of G and all k ≥ 1, is a repeating isomorphism of E (G ,m).
Proposition 3 therefore implies that an operation execution graph has a re-
peating isomorphism iff it is isomorphic to E (G ,m) for some process marked
graph 〈G ,m 〉.

The following result will be used to reduce the problem of implement-
ing an arbitrary process marked graph to that of implementing alternation.
It asserts that, for any process marked graph, there is an equivalent one
in which no arc ever has more than one token, and in which arcs come
in oppositely-pointing pairs. This result is proved in Section A.2 of the
appendix.
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Proposition 4 For any process marked graph 〈G ,m 〉, there is a process
marked graph 〈G ′,m ′ 〉 such that (i) for each arc α in G ′ there is an oppositely-
pointing arc α̂ such that m ′ assigns exactly one token to the cycle formed by
α and α̂, and (ii) E (G ′,m ′) is equivalent to E (G ,m).

5.4 Process Marked Graphs as Systems

We have described the firing of a node in a marked graph as an atomic action.
However, we are interested in systems in which executing an operation is not
necessarily an atomic action. We now show how to describe a process marked
graph as a system, where firing a node consists of executing nonatomic
operations that remove the tokens from the input arcs, perform the operation
labeling the node, then add the tokens to the output arcs. Removing or
adding a single token is a separate operation. The system executions of a
process marked graph 〈G ,m 〉 are defined as follows.

Let O be the set of all operation executions of the form n [k ], RemT (α)[k ],
or AddT (α)[k ], where k is a positive integer, α is an arc of G and n is a
node of G . (RemT stands for remove token and AddT for add token.)
Let n [k ] be an execution of the operation labeling n, let RemT (α) be an
operation performed by the process associated with the destination node of
α, and let AddT (α) be an operation performed by the process associated
with the source node of α. We define a system execution of 〈G ,m 〉 to be
any system execution whose operation executions are a subset of O such
that the following constraints are satisfied, for every arc α and all k ≥ 1:

• If there is a Dest(α)[k ] operation execution, then there is a RemT (α)[k ]

operation execution and RemT (α)[k ] - Dest(α)[k ] holds. (Tokens are
removed from the input arcs before the node’s operation is executed.)

• If there is an AddT (α)[k ] operation execution, then there is a Src(α)[k ]

operation execution and Src(α)[k ] - AddT (α)[k ] holds. (The node’s
operation is executed before tokens are added to the output arcs.)

• If there is a RemT (α)[k ] operation execution and k − m(α) ≥
1, then there is an AddT (α)[k−m(α)] operation execution and
AddT (α)[k−m(α)] - RemT (α)[k ] holds. (By MG2, this means the
operation execution that removes a token must observe the operation
execution that adds the token.)

Observe that applying R2 to the - and - relations implied by these con-
straints yields a relation n [i ] - p[j ] iff there is an edge from n [i ] to p[j ] in
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E (G ,m). This observation leads to the following result, where the synchro-
nizing operations are the RemT and AddT operations.

Proposition 5 For any process marked graph 〈G ,m 〉, a set of executions
of the operations labeling the nodes of G together with a - relation satisfies
the safety problem defined by the operation execution graph E(G ,m) iff it
is the restriction to the non-synchronizing operation executions of a system
execution of 〈G ,m 〉.

6 Implementation with Wait/Signal Registers

We now prove our main results, which describe the relation between wait/sig-
nal synchronization and process marked graphs. We first show that the syn-
chronization problem defined by a process marked graph can be solved using
wait/signal registers. We then show that a system composed of deterministic
finite-state processes communicating with wait/signal registers implements
the synchronization described by prefixing a finite operation execution graph
to the execution graph of a process marked graph.

6.1 Implementing Marked-Graph Synchronization

By Proposition 3, an operation execution graph has a repeating isomor-
phism iff it is equivalent to the execution graph of a process marked graph
〈G ,m 〉. We now show how to solve the synchronization problem described
by such an operation execution graph. By Proposition 5, we can solve the
synchronization problem by implementing the corresponding marked graph
system. By Proposition 4, we may assume that 〈G ,m 〉 is such that any arc
α has an opposite-pointing arc α̂, and the cycle formed by α and α̂ has one
token. (This additional constraint is not required by our construction, but
it simplifies the proof.) We now solve the problem of implementing such a
marked graph.

The alternation implementation (12) of Section 4.7 implements the fol-
lowing “two-cycle” marked graph:

P Cn nj

Y

w
Register x controls the token passing on the bottom arc and register y
controls the token passing on the top arc. A Wait implements a RemT
operation, and a Signal implements an AddT operation.
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The marked graph that we must implement is a superposition of such
two-cycles. We implement it by combining the implementations of all the
two-cycles. We first rewrite the alternation implementation (12) as follows
by unwinding the while loops a bit.

Producer: P ; Signal(x );
while (true) {Wait(y); P ; Signal(x ); }

Consumer: Wait(x ); C ; Signal(y);
while (true) {Wait(x ); C ; Signal(y); }

(16)

We now give an implementation of the synchronization constraints in which
each node is a separate process. We use a separate wait/signal register for
each arc. The program for a node n consists of a prefix followed by a while
loop. The body of the while loop contains a Wait(x ) for each register x
associated with an input arc of n, followed by the operation labeling node
n, followed by a Signal(y) for each register y associated with an output arc
of n. The Wait operations may all be performed concurrently, as may the
Signal operations. The prefix consists of the loop body, except with the
Wait removed for each input arc containing a token in marking m.

If we ignore all operations other than the ones relevant to an individ-
ual two-cycle, we have the protocol (16), which we proved in Section 4.7
implements the required alternation synchronization. Hence, the implemen-
tation satisfies all the requirements of the original synchronization problem.
However, we have implemented each node as a separate process. We now
combine the algorithms of the individual nodes into an algorithm for each
process.

By definition of a process marked graph, the nodes of a single process
form a cycle containing a single token. Let n1, . . . , nk be the nodes of the
cycle for a process p, where m places the token of the cycle on the input arc
of n1. In every firing sequence, the nodes of the process must fire in order,
starting with n1. So, we can combine the algorithms for these k nodes into
a single algorithm with a prefix and a while loop, where the prefix and the
loop body are the sequential compositions of the prefixes and loop bodies
of all the nodes in order. Doing this for each process provides the desired
implementation of the marked graph 〈G ,m 〉. (We can remove the operations
for all registers corresponding to arcs that connect nodes of the same process;
since the marked graph is live by definition, the synchronization implied by
those arcs is subsumed by the sequential firing of the process’s nodes.)

Our implementation of a process marked-graph 〈G ,m 〉 solves the safety
part of the synchronization problem described by E (G ,m). To implement
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liveness properties, we have to assume fairness properties of our multiprocess
algorithm. Define weak fairness for a set of processes to mean that, if some
operation of one of the processes is enabled, then some operation from one
of those processes must eventually be executed. We obtain a deadlock-free
solution by assuming weak fairness for the entire set of processes. We obtain
a process-fair solution by assuming weak fairness for each set of processes
whose nodes all lie in the same connected component of G .

6.2 What is Implementable with Wait/Signal Registers

In any system, we can replace a reusable wait/signal register with an infinite
sequence of one-shot wait/signal registers, replacing the k th Wait or Signal
operation with a Wait or Signal to the k th one-shot register. We observed
in Section 4.2 that the synchronization problems solvable with an arbitrary
number of one-shot wait/signal registers are precisely those described by an
operation execution graph. So, this is also the class that is solvable with
an arbitrary number of reusable wait/signal registers. There remains the
question of what class of operation execution graphs can be implemented
with a finite number of reusable wait/signal registers.

In Section 4.2, we showed how to implement a finite operation execution
graph with a finite number of wait/signal registers. (We can trivially sub-
stitute reusable registers for the one-shot registers used in that algorithm.)
We just showed in Section 6.1 how to implement the execution graph of a
process marked graph. We now show that, for finite-state processes, we can
implement the class of synchronization problems obtained by combining a
finite operation execution graph with a process marked graph.

Proposition 6 A synchronization problem is solvable by a system of deter-
ministic, finite-state processes using wait/signal registers iff it is described
by an operation execution graph E with the following property: there is a
finite set P of nodes of E such that (i) there is no edge from a node not in
P to a node in P, and (ii) the node subgraph formed by the nodes not in P
has a repeating isomorphism.

Proof: We first sketch the proof of the “if” part. Let Em be the node sub-
graph formed by the nodes not in P , and let ι be its repeating isomorphism.
Choose a set N of nodes of Em such that each node of Em equals ιk (n) for
a unique n in N and a unique k . Choose r large enough so that there is no
edge in E from a node in P to any node ιk (n) for k ≥ r .

Implement Em with the algorithm described in Section 6.1 above. Next,
unwind the first r iterations of each while loop, appending r copies of the
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body to the prefix code that precedes the loop. (If a process contains no
nodes in Em , that process is implemented with a halt operation, and there
is no loop unrolling.) We then prepend to each process’s algorithm the
operations implementing the nodes of P and the Wait and Signal operations
implementing the edges from nodes in P , as described in Section 4.2. (The
Wait that implements an edge from a node in P to a node not in P is
inserted in the appropriate place among the operations implementing Em .)
The resulting algorithm implements the synchronization problem described
by E .

We now sketch the proof of the “only if” part. Let S be a system of deter-
ministic, finite-state processes synchronizing only with reusable wait/signal
registers. We use the same construction of an operation execution graph
E as in the proof of Proposition 1, except using - relations only of the
form Signal(x )[k ] - Wait(x )[k ] between the k th executions of corresponding
Signal and Wait operations. As in that proof, E describes all possible exe-
cutions of the system Ŝ whose operation executions consist of the executions
of non-synchronization operations of S . Thus, E describes the synchroniza-
tion problem solved by S . We must only show that E satisfies the required
property.

Because S consists of a finite number of finite-state processes, the oper-
ation execution sequences of the processes, and their pattern of interaction
(which Wait operation execution corresponds to which Signal operation ex-
ecution) must eventually repeat. That is, by removing a finite prefix of E ,
we can obtain a node subgraph of E that has a repeating isomorphism. The
omitted nodes form the required set P .

We can generalize process marked graphs to a class of automata that
correspond precisely to the class of synchronization problems solvable by
a system of deterministic, finite-state processes using wait/signal registers.
We add to an ordinary process marked graph an acyclic graph of prefix
nodes, where the prefix nodes of a process must fire before the non-prefix
nodes. To connect the last non-prefix node of a process to the first non-prefix
node of the process, we use a special two-source arc whose other source is
the last non-prefix node of the process. (The order of a process’s nodes in
an ordinary marked graph is the order in which they can fire.) Firing either
of its source nodes places a token on the arc. We also allow arcs with no
source, so we can begin the execution of the prefix nodes of a process. Here is
an example consisting of the two-process producer/consumer marked graph
with an additional producer prefix node O and two additional consumer
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prefix nodes A and B .
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Node O must fire before the first firing of node P ; nodes A and B must fire
before the first firing of node C . Node B cannot fire until nodes A and O
have fired. Once the three prefix nodes have fired, this generalized marked
graph acts like the ordinary marked graph (15).

In general, we require that the marked graph have a firing sequence
in which each prefix node appears once and each non-prefix node appears
infinitely often. We can then define the execution graph of a generalized pro-
cess marked graph and restate Proposition 6 to assert that a synchronization
problem is solvable by a system of deterministic, finite-state processes using
wait/signal registers iff it is described by the execution graph of a generalized
process marked graph. The interested reader can fill in the details.

7 Other Arbiter-Free Devices

We have characterized the synchronization achievable by deterministic pro-
cesses communicating with wait/signal registers. This raises two questions:
what extra power does nondeterminism add, and are there synchronization
devices other than the wait/signal register that do not require arbitration?

Nondeterminism appears to be closely tied to the ability to communicate
values. We do not know how to make any interesting use of nondeterministic
choice unless one process can communicate the result of its choice to another
process. Conversely, there is no need for a process to communicate a value
unless that value arises from a nondeterministic choice. We introduce a
weak read/write register, which allows processes to communicate values to
one another. We start with a one-reader, one-writer one-bit register and
use it to construct a multi-reader, multi-writer multi-valued register. We
show that nondeterministic processes communicating with weak read/write
registers and wait/signal registers can implement a simple generalization of
process marked graphs. We conjecture that this is essentially all they can
implement.
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Finally, we introduce or-waiting, which is an arbitration-fee mechanism
that also enlarges the class of synchronization problems that can be solved
with wait/signal registers. We do not know any characterization of the class
of synchronization problems that can be solved with them.

7.1 A Weak One-Reader, One-Writer One-Bit Register

We showed in Section 3.2 that a one-bit read/write register cannot be im-
plemented with bounded-time operations. However, a computer depends on
reading or writing one-bit registers (flip-flops) within a single clock cycle.
There is no contradiction because those registers are not read and writ-
ten concurrently. It is easy to implement registers if no two operations are
concurrent.

We define a weak one-reader, one-writer one-bit register to be one sat-
isfying condition S1 of the safe register defined in Section 2.2, except under
the assumption that no read can be concurrent with a write. (This as-
sumption makes S3 vacuous and, together with S1, it implies S2.) More
precisely, the register allows the writer to perform a (finite or infinite) se-
quence W (w1)[1] - W (w2)[2] - · · · of terminating operation executions,
where each w i equals 0 or 1. For any j , if the reader performs a sequence of
operation executions R(r1)[1] - · · · - R(r j )[j ], none of which are concur-
rent with any of the W (wk )[k ], then R(r j )[j ] terminates and S1 holds.

A weak one-reader, one-writer one-bit register can be implemented with
bounded-time operations. More precisely, the write operations can be exe-
cuted in a bounded length of time, regardless of what the reader does. If
none of the first j reads are concurrent with any writes, then each of those
reads can also be executed in a bounded length of time.

7.2 General Weak Read/Write Registers

We can generalize the weak one-reader, one-writer one-bit register to a p-
reader, q-writer n-bit register, for any p, q , and n. We assume that all the
writes are totally ordered by -, so they form a (finite or infinite) sequence
W (w1)[1] - W (w2)[2] - · · · where each w i is a number from 0 to 2n − 1.
Here, the W (w i)[i ] are all the writes by all the p writer processes. For any
reader process and any j , if the process performs a sequence of operation
executions R(r1)[1] - · · · - R(r j )[j ], none of which are concurrent with any
of the W (wk )[k ], then S1 holds.

We now show how to implement a p-reader, q-writer n-bit register with
a collection of one-reader, one-writer one-bit registers. Unlike the com-
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parable construction for general read/write registers, the construction for
weak registers is quite simple and proceeds in three steps: constructing an
n-bit register from one-bit registers, constructing a p-reader register from
one-reader registers, and constructing a q-writer register from one-writer
registers. These constructions can be applied in any order to implement a
p-reader, q-writer n-bit register with a collection of one-reader, one-writer
one-bit registers. The three constructions are:

• An n-bit register x is built from n one-bit registers y [1], . . . , y [n],
where y [i ] holds the i th bit of x .

• A p-reader register x is built from p one-reader registers y [1], . . . , y [p],
where reader i reads y [i ], and a value v is written to x by writing it
to each y [i ].

• A q-writer register x is built from q one-writer registers y [1], . . . , y [q ],
where y [i ] is written only by writer i . The value of x is y [1]⊕ y [2]⊕
· · ·⊕y [q ], where ⊕ denotes bit-wise exclusive-or. The value of x is read
by reading all the y [i ] and taking the exclusive-or. Writer i writes x by
reading the values of y [j ] for all j 6= i and then writing the appropriate
value to y [i ].

If each writer is also a reader (so p ≤ q), then this process implements a
p-reader, q-writer n-bit register with p ∗ q ∗n one-reader, one-writer one-bit
registers.

The correctness of these constructions follows easily from the definition
(3) of - for a high-level operation execution in terms of its component oper-
ation executions. This definition implies that, for each of the constructions,
if A and B are executions of two operations to x such that A - B, and
if A and B are executions of operations to y [i ] such that A is part of the
implementation of A and B is part of the implementation of B, then A - B .
Hence, the assumption that the writes to x are totally ordered by - implies
that, for all i , the writes to y [i ] are also totally ordered by -, and if no read
of x is concurrent with any write of x , then no read of y [i ] is concurrent
with any write of y [i ].

7.3 Using Weak Read/Write Registers

Processes using a weak read/write register must be synchronized to prevent
concurrent access to the register. Wait/signal registers can be used to im-
plement this synchronization. Combining a weak read/write register with
producer/consumer style synchronization, one process can transmit values
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to another. However, for deterministic processes, this accomplishes nothing
because it is known in advance what values will be transmitted. To make
use of weak read/write registers, we must add nondeterminism.

Implementing nondeterminism requires an arbiter. However, we can con-
sider the nondeterministic choice to be made by the environment and given
to the system as input. So, allowing a process to make a nondeterministic
choice can be thought of as a way of modeling an arbiter-free system that
accepts inputs from an environment that can use an arbiter. We therefore
consider the synchronization problems that can be solved using wait/signal
registers, weak read/write registers, and the operation of nondeterministi-
cally choosing one of a finite number of values. To describe these problems,
we extend marked graphs to value-marked graphs as follows:

• We let each token have one of a finite number of values.4

• We label each arc with a set of operations and a “nondeterministic
function” that, as a function of the values of the tokens removed from
the input arcs, nondeterministically chooses an operation to perform
and the values of the tokens placed on the output arcs.

A process value-marked graph is defined in the obvious way, with the re-
quirement that all the operations labeling a node are operations of the same
process.

The algorithm of Section 6.1 for implementing a process marked graph
can be modified to implement a process value-marked graph. We again
replace the graph by an equivalent one in which each arc can have at most
one token. To each arc we associate a weak read/write register as well as
a wait/signal register. The operation of putting a token with value v on
the arc is implemented by writing v to the register and then performing the
Signal operation. The operation of removing the token from the arc consists
of first performing the Wait and then reading the value of the register. It
is easy to show that this protocol guarantees that there are no concurrent
operations to the register. The nondeterministic choice operation is used
to decide what operation to execute and what values to put on the output
tokens, as a function of the values read from the registers.

The generalization of process marked graphs described at the end of Sec-
tion 6.2 can be applied to value-marked graphs as well. The implementation
of an ordinary process value-marked graph can be extended to generalized

4The value of a token should not be confused with the number assigned to it, which is
referred to in property MG2.

35



process value-marked graphs. We conjecture that generalized process value-
marked graphs are the most general class of system that can be implemented
by nondeterministic finite-state processes using wait/signal registers, weak
read/write registers.

7.4 Or-Waiting

Waiting for a signal can be implemented without an arbiter. Waiting for
either of two signals can also be implemented without an arbiter, as long
as no attempt is made to determine which of the two signals occurred. If
the Wait operation is implemented as a circuit that generates a signal when
the operation completes, then combining the two outputs with an or gate
implements waiting for either of the two signals. So, there is an arbiter-free
implementation of the or-waiting operation OrWait(x , y) whose execution
completes if there is a matching execution of a Signal(x ) or Signal(y) oper-
ation (or both). Completion of an execution OW of OrWait(x , y) implies
a relation S - OW , where S is the corresponding execution of one of the
two Signal operations.

When an OrWait(x , y) operation completes, we know that either a
Signal(x ) or a Signal(y) operation has begun; but we cannot tell which.
(To do so would require an arbiter.) If x and y are reusable registers, the
OrWait must be followed by Wait operations to each register before the
register can be reused. For every requirement Op - W for the execution
W of the following Wait operation, the relation Op - OW must hold for
the execution of the OrWait . For example, suppose x is a sender-resettable
register. Using the notation of (7) in Section 4.3, if OW [i ] is an execution of
OrWait(x , y) waiting for the execution S [i ]

x of Signal(x ), then the algorithm
must guarantee R[i−1]

x - OW [i ] - W [i ]
x .

We generalize the OrWait operation in the obvious way to allow waiting
for a Signal to any of n wait/signal registers. We allow multiple OrWait
operations involving the same register to precede the Wait for that regis-
ter. For example, a process could execute OrWait(x , y), OrWait(x , z ), and
OrWait(y , z ) before executing the next Wait(x ), Wait(y), and Wait(z ) op-
erations.

Let Sig(x ) be the predicate asserting that the next Signal(x ) has been is-
sued, so OrWait(x , y , z ) waits for the predicate Sig(x )∨Sig(y)∨Sig(z ). Per-
forming two OrWaits in sequence is equivalent to waiting for the conjunction
of their conditions. For example, the sequence OrWait(x , y); OrWait(x , z )
waits for (Sig(x )∨Sig(y))∧(Sig(x )∨Sig(z )), which is equivalent to Sig(x )∧
(Sig(y) ∨ Sig(z )). Reduction to conjunctive normal allows us to implement
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with OrWait operations any expression formed by taking the conjunction
and disjunction of Sig predicates.

Or-waiting extends the class of synchronization problems that can be
solved with wait/signal registers. As an example, consider the following
artificial (and useless) variant of alternation, in which there is one consumer
and two producer processes performing the following sequence of operation
executions:

Producer 1: P
[1]
1

- P
[2]
1

- P
[3]
1

- · · ·
Producer 2: P

[1]
2

- P
[2]
2

- P
[3]
2

- · · ·
Consumer: C [1] - C [2] - C [3] - · · ·

The synchronization requirement is that, for each i , (a) P [i ]
1 or P [i ]

2 or both
must precede C [i ], and (b) C [i ] must precede both P [i+1]

1 and P [i+1]
2 .

This problem cannot be described by an operation execution graph, so
it cannot be solved with only Wait and Signal operations. However, we can
solve it using OrWait . We use two copies of the alternation algorithm (12),
except we precede the consumer’s C operation with an OrWait and move
its Wait operations after the C operation:

Producer 1: while (true) {P ; Signal(x1); Wait(y1)}
Producer 2: while (true) {P ; Signal(x2); Wait(y2)}
Consumer: while (true){OrWait(x1, x2); C ; Wait(x1); Wait(x2);

Signal(y1); Signal(y2)}
The proof that this implements the synchronization requirement is similar
to the proof that (12) implements alternation.

As this example shows, allowing or-waiting enlarges the class of synchro-
nization problems that can be solved with wait/signal registers. We do not
know how to characterize the class of problems solvable with or-waiting.

8 Conclusion

The impossibility of implementing arbitration in a bounded length of time
seems to be a fundamental law of nature. Hence, what kind of synchroniza-
tion can be achieved without arbitration should be a fundamental question
in any theory of multiprocess synchronization. We know of no previous at-
tempt to answer this question. Not coincidentally, we know of no practical
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benefits that might come from answering it. Nevertheless, we consider it to
be an interesting question in its own right.

The problematic nature of arbiters has been recognized in the hardware
community since at least the early 1970s [2]. There has been some consid-
eration of arbiter-free circuits [21], but we know of no characterization of
what can be implemented with such circuits. Moreover, the relation between
arbiter-free circuits and multiprocess synchronization is unclear.

We believe that this article is the first to study arbiter-free multiprocess
synchronization. We began by examining alternation, the simplest and most
common form of arbiter-free synchronization, in which two processes take
turns. For example, alternation is employed when one process transmits
a sequence of values, one at a time, to another process. A typical imple-
mentation of alternation at the circuit level can be described in terms of
wait/signal registers. With a wait/signal register, a receiver process can
perform a Wait operation that waits for a sender process to perform a
matching Signal operation. We identified five types of wait/signal registers,
and showed that each can implement the others. Proposition 6 character-
izes the class of synchronization implementable by deterministic, finite-state
processes using wait/signal registers. It shows that this class is essentially
the class of synchronization described by marked graphs [3].

Although a general read/write register requires an arbiter, no arbiter is
needed to implement a weak read/write register that assumes a write is never
concurrent with any other operation to the register. Adding weak read/write
registers and nondeterministic choice to wait/signal registers allows the im-
plementation of a generalization of marked graphs in which tokens have
values and firing a node involves nondeterministic choice. We conjecture
that such graphs essentially characterize the synchronization achievable by
finite nondeterministic processes communicating with wait/signal registers
and weak read/write registers.

We can also extend the capabilities of wait/signal registers, without
adding arbitration, by allowing a process to wait for a signal to occur on
any one of a set of registers. We do not know how to characterize the
synchronization achievable with this extension.

Wait/signal registers, or-waiting, and weak read/write registers can all
be implemented without arbiters. We do not know if there are other arbiter-
free synchronization devices that cannot be implemented with them. Nor
do we know how to characterize the multiprocess synchronization problems
that can be implemented without an arbiter, independent of the synchroniza-
tion mechanisms used. Much remains unknown in the theory of arbiter-free
synchronization.
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Appendix

A.1 Equivalence of Wait/Signal Registers

A.1.1 Equivalence of Resettable Registers

We first demonstrate that sender-resettable and receiver-resettable registers
are equivalent. We show how to implement a sender-resettable register x
with two receiver-resettable registers y1 and y2. The converse construction
of a receiver-resettable register from two sender-resettable registers is similar
and is omitted.

The Signal executions of register x are implemented alternately by Signal
executions of y1 and y2. The Reset executions of register x do nothing. Each
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Wait of x is implemented by a Reset of one of the y registers and a Wait of
the other. (The first two Wait executions of x are implemented just by Wait
executions.) The construction and the proof are illustrated by the following
diagram:

· · ·
S

[2i−1]
x

S
[i]
y1

-
R

[2i−1]
x

-

S
[2i]
x

S
[i]
y2

-
R

[2i]
x

· · ·
½½> ZZ~ ½½>

· · ·
W

[2i−1]
x

R
[i−1]
y2 , W

[i]
y1

-

W
[2i]
x

R
[i]
y1, W

[i]
y2

- · · ·

(17)

The labeled boxes indicate how each operation on register x is implemented
by operations on registers y1 and/or y2. For all i , operation execution
S [2i−1]

x is implemented by operation execution S [i ]
y1, operation execution

R[2i−1]
x is implemented by an operation that does nothing, W [2i−1]

x is im-
plemented by the pair of operation executions R[i ]

y1 and W [i ]
y2, which may be

concurrent, and so on. For i = 1 and i = 2, the R[0]
y1 and R[0]

y2 operations are
omitted.

The arrows between boxes in diagram (17) are the relations on the oper-
ations of register x that we can assume. We have to use these assumptions
and the correctness properties of registers y1 and y2 to prove the conclusions
of SR, the correctness property of register x . We prove the conclusions of
SR for k = 2j ; the proof for k odd is similar. The hypothesis of SR asserts
that the - relations in (17) hold for all the operation executions of x up
to and including S [2j ]

x and W [2j ]
x . We must prove the three conclusions of

SR for k = 2j . These conditions, and their high-level proofs, are as follows.
(The lower-level proofs of 1.1, 2.1, and 2.2 are given later.)

1. If there is an S [2j ]
x operation execution, then it terminates.

1.1. If S [j ]
y2 occurs, then it terminates.

1.2. Q.E.D.
Proof: Step 1.1 obviously implies the desired conclusion, since S [2j ]

x

is implemented by S [j ]
y2.

2. If there is a W [2j ]
x operation execution, then it terminates iff there is an

S [2j ]
x operation execution, in which case S [2j ]

x - W [2j ]
x holds.

2.1. If R[j ]
y1 occurs, then it terminates.

2.2. If W [j ]
y2 occurs then it terminates iff S [j ]

y2 occurs, in which case S [j ]
y2

-

W [j ]
y2 holds.
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2.3. Q.E.D.
Steps 2.1 and 2.2 imply the desired conclusion because (i) an op-
eration to x terminates iff all the operations that implement it ter-
minate, and (ii) by (4) of Section 2.4, S [j ]

y2
- W [j ]

y2 implies S [2j ]
x -

W [2j ]
x .

3. If there is an R[k ]
x operation execution, then it terminates.

Proof: An operation that does nothing always terminates.

To complete the proof, we must prove 1.1, 2.1, and 2.2. These are the
conclusions of condition RR for register y2, with j substituted for k . Since we
are assuming that y2 satisfies RR, we just have to prove that the hypothesis
of RR holds for k = j . That is, we must prove S [i ]

y2
- R[i ]

y2
- S [i+1]

y2 , for all
i with 1≤i < j − 1. It’s easy to read these - relations from the diagram
above, since definition (3) of Section 2.4 asserts that a - relation between
two boxes implies - relations among the operation executions within the
boxes. Formally, we assume 1≤i < j − 1 and prove:

1. S [i ]
y2

- R[i ]
y2

1.1. S [2i ]
x - R[2i ]

x - W [2i+1]
x

Proof: This holds by hypothesis if 1 ≤ 2i +1 ≤ 2j (we are assuming
the hypothesis of SR for k = 2j ), and the assumption 1≤i < j − 1
implies 1 ≤ 2i + 1 ≤ 2j .

1.2. Q.E.D.
Proof: The conclusion follows from step 1.1, the transitivity of -,
and (3), since S [i ]

y2 implements S [2i ]
x and R[i ]

y2 is part of the implemen-

tation of W [2i+1]
x (because i ≥ 1 implies 2i + 1 > 2).

2. R[i ]
y2

- S [i+1]
y2

2.1. W [2i+1]
x - R[2i+2]

x - S [2i+2]
x

Proof: This holds by hypothesis if 1 ≤ 2i +1 and 2i +2 ≤ 2j , both
of which follow from the assumption that 1≤i < j − 1.

2.2. Q.E.D.
Proof: The conclusion follows from step 2.1, the transitivity of -,
and (3), since R[i ]

y2 is part of the implementation of W [2i+1]
x (because

i ≥ 1 implies 2i + 1 > 2) and S [i+1]
y2 implements S [2i+2]

x .

This completes the correctness proof for our implementation of a sender-
resettable wait/signal register by two receiver-resettable ones.
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A.1.2 Equivalence of No-Reset Registers

An SW or WS wait/signal register trivially implements an NR wait/signal
register, since it is one. To show the equivalence of all three classes of
register, we must show how to implement an SW and a WS register from
NR registers. We implement a WS register; the implementation of an SW
register is similar.

The implementation of a WS register x uses two NR registers y and z .
It is described by the following diagram:

· · ·
S

[i−1]
x

S
[i−1]
y - S

[i−1]
z -

S
[i]
x

S
[i]
y - S

[i]
z - · · ·

½½> ½½>

· · ·
W

[i−1]
x

W
[i−1]
y - W

[i−1]
z -

W
[i]
x

W
[i]
y - W

[i]
z - · · ·

An operation to x is implemented by the corresponding operation to y fol-
lowed by the corresponding operation to z .

To prove the correctness of the implementation, we assume that y and z
satisfy condition NR and that the hypothesis of WS holds for some value of
k , and we prove that the two conclusions of WS hold for k . It is easy to check
that the two conclusions of WS follow from the corresponding conclusions of
NR for registers y and z . So, we just have to verify the hypothesis of NR for
these registers. That is, we must prove W [i ]

v - S [i+1]
v and S [i ]

v - W [i+1]
v for

v equal to y and to z , for all i with 1 ≤ i < k −1. The proof is by induction
on k . We assume that these relations hold for all i with 1 ≤ i < k − 2 and
prove them for 1 ≤ i = k − 2. The proofs are as follows.

1. W [k−2]
y - S [k−1]

y

Proof: By the assumption that W [k−2]
x - S [k−1]

x (from the hypothesis
of WS) and (3).

2. S [k−2]
y - W [k−1]

y

2.1. S [k−2]
y - S [k−2]

z

Proof: By definition of the implementation of S [i−1]
x .

2.2. S [k−2]
z - W [k−2]

z

Proof: By the induction assumption (W [i ]
z - S [i+1]

z and S [i ]
z -

W [i+1]
z for 1 ≤ i < k − 2) and condition NR for register z .

2.3. W [k−2]
z - W [k−1]

y

Proof: By (3) and the assumption W [k−2]
x - W [k−1]

x .
2.4. Q.E.D.
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Proof: Steps 2.1–2.3 and rule R2 of Section 2.1 imply S [k−2]
y -

W [k−1]
y .

3. W [k−2]
z - S [k−1]

z

Proof: By (3) and the assumption W [k−2]
x - S [k−1]

x .
4. S [k−2]

z - W [k−1]
z

4.1. S [k−2]
z - S [k−1]

y

Proof: By (3) and the assumption S [k−2]
z - S [k−1]

z .
4.2. S [k−1]

y - W [k−1]
y

Proof: By the induction assumption (W [i ]
y - S [i+1]

y and S [i ]
y -

W [i+1]
y for 1 ≤ i < k − 2) and condition NR for register y .

4.3. W [k−1]
y - W [k−1]

z

Proof: By definition of the implementation of W [i−1]
x .

4.4. Q.E.D.
Proof: Steps 4.1–4.3 and rule R2 imply S [k−2]

z - W [k−1]
z .

A.1.3 Equivalence of Resettable and No-Reset Registers

To complete the proof of equivalence of our five types of register, it suffices
to implement some type of no-reset register with a resettable register, and
vice-versa. It is easy to implement a sender-resettable register with a WS
register—just implement Reset with an operation that does nothing. It is
easy to check that this implementation satisfies condition SR. We now show
how to implement an NR register x using two SR registers y and z . The
implementation and the hypotheses of NR used in the proof are described
by the following diagram.

· · ·
S

[2i−1]
x

R
[i−1]
y2

- S
[i]
y1

-

S
[2i]
x

R
[i]
y1

- S
[i]
y2

- · · ·
ZZ~½½> ZZ~½½>

· · ·
W

[2i−1]
x

W
[i]
y1

-

W
[2i]
x

W
[i]
y2

- · · ·

(18)

(For i = 1, the operation R[0]
y2 is eliminated.)

To prove the correctness of the implementation, we assume that y1 and
y2 satisfy condition SR and that the hypothesis of NR holds for some value
of k , and we prove that the two conclusions of NR hold for k . We give the
proof for k = 2j ; the proof for k odd is similar. Here are the statements of
those conclusions and their high-level proof outline.
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1. If there is an S [2j ]
x operation execution, then it terminates.

1.1. If there are R[j ]
y1 and S [j ]

y2 operation executions, then they terminate.
1.2. Q.E.D.

Proof: Step 1.1 implies the desired conclusion, since an operation
on x terminates iff all its component operations do.

2. If there is a W [2j ]
x operation execution, then it terminates iff there is an

S [2j ]
x operation execution, in which case S [2j ]

x - W [2j ]
x holds.

2.1. If there is an R[j ]
y1 operation execution, then it terminates.

2.2. If there is a W [j ]
y2 operation execution, then it terminates iff there is

an S [j ]
y2 operation execution, in which case S [j ]

y2
- W [j ]

y2.
2.3. Q.E.D.

Proof: The W [2j ]
x operation execution occurs iff W [j ]

y2 occurs, and

step 2.1 implies that S [2j ]
x occurs iff S [j ]

y2 does. The desired conclusion

then follows from step 2.2, since S [j ]
y2

- W [j ]
y2 implies S [2j ]

x - W [2j ]
x

by (4).

To complete the proof, we must prove statements 1.1, 2.1, and 2.2. These
all follow from the conclusions of condition SR for registers y1 and y2 and
k = j . So, to prove them, we must prove the hypothesis of SR with k = j .
Those hypotheses are that W [i ]

v - R[i ]
v - W [i+1]

v holds for v equal to y1
and to y2, and for 1≤i < j − 1. It is easy to see from diagram (18) that
these conditions are implied by (3) and the hypothesis of NR for register x
(the inter-box arrows in the diagram above).

A.2 Proof of Proposition 4

We first choose j ≥ 1 such that every arc of G is contained in a cycle that
has at most j tokens. To see that such a j exists, observe first that if there
were no cycle containing α, then Dest(α) could fire only a finite number of
times, contradicting the assumption that 〈G ,m 〉 is a process marked graph,
and hence is live. The existence of j then follows because a marked graph is
finite by definition. Let ⊕ and ª denote addition and subtraction modulo
j .

By MG1, there can be at most j tokens on any arc throughout a firing
sequence of 〈G ,m 〉. We construct 〈G ′,m ′ 〉 by making j copies of each node
and arc of G so that a marking of G with i tokens on an arc α corresponds
to a marking of G ′ with one token on i of the copies of α. The precise
construction is as follows. The nodes of G ′ consist of all nodes of the form
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〈n, i 〉 where n is a node of G and 0 ≤ i < j . Each node 〈n, i 〉 is labeled
with the operation labeling n. There is an arc from 〈n, i 〉 to 〈n, i ⊕ 1〉 for
all n and i . Marking m ′ puts a token on this arc iff i = j . For every arc α
of G and every i with 0 ≤ i < j , the graph G ′ also contains an arc 〈α, i 〉
from 〈Dest(α), i ªm(α)〉 to 〈Src(α), i 〉, for all i . Marking m ′ puts a token
on this arc iff 0 ≤ i < m(α).

It can be shown that there is a 1-1 correspondence between the firing
sequences of 〈G ′,m ′ 〉, and 〈G ,m 〉 where:

• For any n and any i , the k th firing of 〈n, i 〉 corresponds to the j ∗ (k −
1) + i + 1st firing of n, for any n and i , and

• For any α and i with 0 ≤ i ≤ j , a marking of G having i tokens on arc
α corresponds to a marking of G ′ such that, for some h, arc 〈α, h⊕ k 〉
has one token if 0 ≤ k < i and no token if i ≤ k < j .

We omit the proof.
It is easy to check that 〈G ′,m ′ 〉 is a process marked graph. (The cycle in

G containing the nodes of a process leads to a corresponding cycle j times
as long in G ′.) It then follows that the execution graphs E (G ′,m ′) and
E (G ,m) are isomorphic.

No arc ever contains more than one token during a firing sequence of
〈G ′,m ′ 〉. Therefore, adding a backwards pointing arc β̂ for an arc β of G ′,
with one token on the cycle formed by β and β̂, does not change the firing
sequences of 〈G ′,m ′ 〉. Adding all such arcs therefore leaves E (G ′,m ′) the
same up to isomorphism. This completes the proof of the proposition.
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