
Real-Time Model Checking is

Really Simple

Leslie Lamport

Microsoft Research

13 June 2005

To be presented at Charme 2005, to be held 3-6 October 2005,
in Saarbrücken, Germany.

This version is formatted differently, with different line and page
breaks, from the version to appear in the Charme proceedings.

Contents

1 Introduction 1

Introduction 1

2 Writing Explicit-Time Specifications 2

3 Model Checking Explicit-Time Specifications 4
3.1 Specifications and Temporal Properties 4
3.2 Symmetry . 5
3.3 Model Checking . 5
3.4 View Symmetry . 7
3.5 Symmetry Under Time Translation 7
3.6 Periodicity and Zeno Behaviors 8

4 Comparison with Uppaal 10
4.1 The Leader Algorithm . 10
4.2 Fischer’s Algorithm . 14

5 Conclusion 15

References 16

Real-Time Model Checking is

Really Simple

Leslie Lamport

Microsoft Research

13 June 2005

Abstract

It is easy to write and verify real-time specifications with existing
languages and methods; one just represents time as an ordinary vari-
able and expresses timing requirements with special timer variables.
The resulting specifications can be verified with an ordinary model
checker. This basic idea and some less obvious details are explained,
and results are presented for two examples.

1 Introduction

Numerous special languages and logics have been proposed for specifying
and verifying real-time algorithms. There is an alternative that I call the
explicit-time approach, in which the current time is represented as the value
of a variable now and the passage of time is modeled by a Tick action that
increments now . Timing constraints are expressed with timer variables.

Hardly anything has been written about the explicit-time approach, per-
haps because it is so simple and obvious. As a result, most people seem to
believe that they must use special real-time languages and logics. It has
already been shown that an explicit-time approach works fine for specifying
and proving properties of real-time algorithms [1]. Here, I consider model
checking explicit-time specifications.

The major advantage of the explicit-time approach is that it can be used
with any language and logic for describing concurrent algorithms. This is
especially important for complex algorithms that can be quite difficult to
represent in the lower-level, inexpressive languages typical of real-time model
checkers. For example, distributed message-passing algorithms have queues
or sets of messages in transit, each with a bound on its delivery time. Such

algorithms are difficult or impossible to handle with most real-time model
checkers. Section 2 briefly explains the explicit-time approach with a simple
distributed algorithm. A complete specification of the algorithm in TLA+ [8],
a high-level mathematics-based language, appears in [9].

Explicit-time descriptions can use either continuous or discrete time.
Section 3 shows that when discrete time is used, these descriptions can be
checked with ordinary model checkers. This simple fact has been known for
quite a while and is implicit in several published results [5]. However, a direct
statement of it does not seem to have appeared before in print. Moreover,
there are some aspects of model checking explicit-time specifications that
may not be obvious, including the use of view symmetry and a method for
checking that a specification is nonZeno [1].

Section 4 describes the result of checking the algorithm described in
Section 2 with TLC, a model checker for TLA+ specifications, and with
Uppaal [10], the only real-time model checker I know of that can handle this
example. It also compares TLC, Spin [6], and SMV [11] with Uppaal on the
Fischer mutual exclusion algorithm [13]. More details appear in [9].

2 Writing Explicit-Time Specifications

In an explicit-time specification, time is represented with a variable now that
is incremented by a Tick action. For a continuous-time specification, Tick
might increment now by any real number; for a discrete-time specification,
it increments now by 1. Timing bounds on actions are specified with one
of three kinds of timer variables: a countdown timer is decremented by the
Tick action, a count-up timer is incremented by Tick , and an expiration
timer is left unchanged by Tick .1 A countdown or count-up timer expires
when its value reaches some value; an expiration timer expires when its
value minus now reaches some value. An upper-bound timing constraint on
when an action A must occur is expressed by an enabling condition on the
Tick action that prevents an increase in time from violating the constraint;
a lower-bound constraint on when A may occur is expressed by an enabling
condition on A that prevents it from being executed earlier than it should be.

I illustrate how one writes explicit-time specifications using the example
of a simple version of a classic distributed algorithm of Radia Perlman [12].
The original algorithm constructs a spanning tree rooted at the lowest-
numbered node, called the leader. The tree is maintained by having the

1Dutertre and Sorea [3] use a different kind of timer variable that predicts the time at
which an action will occur.

2

Tick ∆= ∃ d ∈ {r ∈ Real : r > 0} :
∧ ∀n ∈ Node : timer [n] + TODelay ≥ d
∧ ∀ms ∈ BagToSet(msgs) : ms.rcvTimer ≥ d
∧ now ′ = now + d
∧ timer ′ = [n ∈ Node 7→ timer [n]− d]
∧msgs ′ = let Updated(ms) ∆=

[ms except !.rcvTimer = ms.rcvTimer − d]
in BagOfAll(Updated , msgs)

∧ unchanged 〈ldr , dist〉

Figure 1: The Tick action’s definition for the leader algorithm.

leader periodically propagate an I’m Leader message down it that informs
each node of its distance to the leader. A new tree is constructed if a failure
causes some node to time out before receiving the I’m Leader message. I
have simplified it by eliminating failures, so correctness means simply that
every node learns the leader within some fixed length of time. A complete
TLA+ specification of the algorithm appears in [9]. Here, I describe only the
TLA+ specification of the Tick action.

The algorithm has three timing parameters, Period , MsgDelay , and
TODelay . Each node n has a countdown timer timer [n]. Setting timer [n]
to τ causes a timeout to occur between τ and τ +TODelay seconds later. By
letting τ be the minimum timeout interval, this models both delay in react-
ing to a timeout and variation in the running rate of physical timers. When
its timeout occurs, node n sends an I’m Leader message and sets timer [n]
to Period . If n receives an I’m Leader message from a lower-numbered
node, it resets timer [n] to a suitable value. A message is assumed to be re-
ceived at most MsgDelay seconds after it is sent, a constraint enforced with
a rcvTimer countdown timer field in the message. The algorithm achieves
stability if, upon receiving a message from its leader, a node n sets timer [n]
to a value no smaller than Period + TODelay + dist [n] ∗MsgDelay , where
dist [n] is the distance from n to the leader.

Figure 1 contains the definition of the Tick action from the TLA+ spec-
ification. It can’t be completely understood without seeing the rest of the
specification and having some knowledge of TLA+ (including the definitions
of the operators BagToSet and BagOfAll from the standard Bags module).
However, it will indicate how timing constraints are specified and also give an
idea of the high-level nature of TLA+. This version is for a continuous-time
specification, in which now is incremented by some real value d . We obtain

3

a discrete-time specification by replacing “∃d ∈ {r ∈ Real : r > 0} : ”
with “ let d ∆= 1 in ”.

The action’s first two conjuncts enforce the upper-bound constraints.
The first prevents timer [n] from becoming less than −TODelay , for each
node n. The second prevents the timer ms.rcvTimer from becoming nega-
tive, for all messages ms in the bag (multiset) msg of messages in transit.

The action’s remaining conjuncts assert how the variables are changed.
The third conjunct asserts that now is incremented by d . The fourth and
fifth conjuncts assert that all the timers are decremented by d , the fourth
for each timer [n] and the fifth for the timer component ms.rcvTimer of
each message ms. The final conjunct asserts that the specification’s other
variables are unchanged.

The complete specification asserts the additional timing constraint that
a timeout action of node n cannot occur before timer [n] has counted down
past 0. This constraint is expressed by the conjunct timer [n] < 0 in that
action’s definition.

3 Model Checking Explicit-Time Specifications

Most real-time system specifications are symmetric under time translation,
meaning that system actions depend only on the passage of time, not on ab-
solute time values. This section explains what symmetry and model check-
ing under symmetry mean and describes a simple method of model checking
explicit-time specifications that are symmetric under time translation.

3.1 Specifications and Temporal Properties

Let a state of a specification be an assignment of values to all the specifi-
cation’s variables, and let its state space be the set of all such states. A
state predicate is a predicate (Boolean function) on states, and an action is
a predicate on pairs of states. The formula s A−→ t asserts that action A is
true on the pair s, t of states. A behavior is a sequence of states. A temporal
property is a predicate on behaviors. Temporal properties are represented
syntactically as temporal formulas.

Assume a specification S that consists of an initial predicate Init , a next-
state action Next , and a liveness assumption L that is a temporal property,
possibly equal to true. The initial predicate and next-state action form
the safety part S of specification S. A behavior s1, s2, . . . satisfies S iff s1

satisfies Init and s i
Next−→ s i+1 for all i ; it satisfies S iff it satisfies both S

and L.

4

3.2 Symmetry

A symmetry is an equivalence relation on states. A state predicate P is
symmetric with respect to a symmetry ∼ iff, for any states s and t with
s ∼ t , predicate P is true in state s iff it is true in state t . An action A is
symmetric with respect to ∼ iff, for any states s1, s2, and t1,

s1
A−→ t1 s1

A−→ t1

o implies there exists t2 such that o o
s2 s2

A−→ t2

In other words, for any states s1 and s2 with s1 ∼ s2 and any state t1, if
s1

A−→ t1 then there exists a state t2 with t1 ∼ t2 such that s2
A−→ t2.

A symmetry ∼ is extended to an equivalence relation on behaviors in the
obvious way by letting two behaviors be equivalent iff they have the same
length and their corresponding states are equivalent. A temporal property
is symmetric (with respect to ∼) iff, for every pair of behaviors σ and τ with
σ ∼ τ , the property is true of σ iff it is true of τ .

A temporal formula is constructed from state predicates and actions
by applying temporal operators, logical connectives, and ordinary (non-
temporal) quantification. The formula is symmetric if each of its component
state predicates and actions is symmetric.

3.3 Model Checking

An explicit-state model checker works by computing the directed graph G
of a specification S’s reachable states. The nodes of G are states, and G is
the smallest graph satisfying the following two conditions: (i) G contains
all states satisfying Init , and (ii) if state s is a node of G and s Next−→ t ,
then G contains the node t and an edge from s to t . Paths through G
(which may traverse the same node many times) starting from an initial
state correspond to behaviors satisfying S. Those behaviors that also satisfy
its liveness assumption are the ones that satisfy S.

The model checker constructs G by the following algorithm, using a set
U of unexamined reachable states. Initially, G and U are both empty. The
checker first sequentially enumerates the states satisfying Init , adding each
state not already in G to both G and U . It does the following, while U is
nonempty. It chooses some state s in U and enumerates all states t satisfying
s Next−→ t . For each such t : (i) if t is not in G then it adds t to G and to U ;
(ii) if there is no edge from s to t in G, then it adds one.

5

Model checking under a constraint P is performed by constructing a
subgraph of G containing only states that satisfy the state predicate P . To
compute the subgraph, this procedure is modified to add a state to G and
U only if the state satisfies P .

Model checking under a symmetry ∼ consists of constructing a smaller
graph E by adding a state to E and U only if E does not already contain an
equivalent state. The graph E constructed in this way satisfies the following
properties: (i) s 6∼ t for every distinct pair of nodes s, t of E ; (ii) for every
state s satisfying Init , there is a node t in E such that t satisfies Init and
s ∼ t ; (iii) for every node s of E and every state t such that s Next−→ t , the
graph E contains a node t ′ with t ∼ t ′ and an edge from s to t ′. The
specification is then checked as if E were the reachable-state graph.

Here, I ignore practical concerns and assume a theoretical model checker
that can perform this algorithm even if the state graph is infinite. All the
results apply a fortiori if the state graph is finite.

For model checking with symmetry to be equivalent to ordinary model
checking, the following condition must hold:

SS. A behavior satisfies S iff it is equivalent (under ∼) to a behavior de-
scribed by a path through E starting from an initial state.

This condition does not imply that the behaviors described by paths through
E satisfy S, just that they are equivalent to ones that satisfy S. Condition
SS is true if the specification satisfies the following two properties:

S1. (a) Init is symmetric, or
(b) No two states satisfying Init are equivalent.

S2. Next is symmetric.

The specification is defined to be safety symmetric iff it satisfies S1 and S2.
An explicit-state model checker checks that a correctness property F

holds by checking that L ⇒ F holds for every behavior described by a path
through the reachable-state graph starting from an initial state, where L is
the specification’s liveness assumption. A symmetric property is true of a
behavior iff it is true of any equivalent behavior. Condition SS therefore
implies that model checking with symmetry is equivalent to ordinary model
checking for verifying that a safety symmetric specification with a symmetric
liveness assumption satisfies a symmetric property.

The simplest kind of temporal property is a state predicate P , which as a
temporal formula asserts that P is true initially. If the specification satisfies
S1(b), then model checking with symmetry is equivalent to ordinary model
checking for verifying that P is satisfied, even if P is not symmetric.

6

3.4 View Symmetry

A view symmetry is defined by an arbitrary function on states called a view.
Two states are equivalent under a view V iff the value of V is the same
in the two states. Many explicit-state model checkers test if a state s is
in the state graph G constructed so far by keeping the set of fingerprints
of nodes in G and testing if G contains a node with the same fingerprint
as s. Such a checker is easily modified to implement checking under view
symmetry by keeping fingerprints of the views of states rather than of the
states themselves. TLC supports view symmetry as well as symmetry under
permutations of a constant set.

View symmetry is equivalent to abstraction [2, 4] for a symmetric speci-
fication S. Abstraction consists of checking S by model checking a different
specification A called an abstraction of S. The view corresponds to the
abstraction mapping from states of S to states of A.

3.5 Symmetry Under Time Translation

Time-translation symmetry is a special kind of symmetry in which two states
are equivalent iff they are the same except for absolute time. I now define
what this means, using the notation that s.v is the value of variable v in
state s.

A time translation is a family of mappings T d on the state space of the
specification S that satisfies the following properties, for all states s and
all real numbers d and e: (i) T d (s).now = s.now + d , (ii) T 0(s) = s, and
(iii) T d+e(s) = T d (T e(s)). Specification S is defined to be invariant under
this time translation iff it satisfies the following two conditions, for all real
numbers d .

T1. (a) A state s satisfies Init iff T d (s) does, or
(b) s.now = t .now for any states s and t satisfying Init .

T2. s Next−→ t iff T d (s) Next−→ T d (t), for any states s and t .

Given a time translation, we define the time-translation symmetry ∼ by
s ∼ t iff s = T d (t) for some d . T1 and T2 imply S1 and S2 for this
symmetry. Hence, a specification that is invariant under a time translation is
symmetric under the corresponding time-translation symmetry. Invariance
under time translation is stronger than time-translation symmetry because,
in addition to implying SS, it implies the following property.

7

TT. Let s1, . . . , sk and t1, t2, . . . be two behaviors satisfying S (the second
behavior may be finite or infinite). If sk = T d (t j), then the behavior
s1, . . . , sk , T d (t j+1),T d (t j+2), . . . also satisfies S.

To define a time translation, we must define T d (s).v for every real number
d , state s, and variable v . Explicit-time specifications have three kinds
of variables: now , timer variables, and “ordinary” variables that are left
unchanged by the Tick action. We know that T d (s).now equals s.now + d .
Time translation should not change the value of an ordinary variable v , so
we should have T d (s).v = s.v for such a variable. For a timer variable
t , we should define T d (s).t so that the number of seconds in which t will
time out is the same in s and T d (s). The value of a countdown or count-up
timer directly indicates the number of seconds until it times out, so T d (s).ct
should equal s.ct for such a timer ct . Whether or not an expiration timer et
has timed out depends on the value of et − now . The time translation T d

preserves the number of seconds until et times out iff T d (s).et −T d (s).now
equals s.et − s.now , which is true iff T d (s).et = s.et + d .

With this definition of the T d , any explicit-time specification is invariant
under time translation, and hence safety symmetric under time-translation
symmetry, if it expresses real-time requirements only through timer vari-
ables. Let v1, . . . , vm be the specification’s ordinary variables and count-
down and count-up timer variables, and let et1, . . . , etn be its expiration
timer variables. Then symmetry under time translation is the same as view
symmetry with the view 〈v1, . . . , vm , et1 − now , . . . , etn − now 〉.

3.6 Periodicity and Zeno Behaviors

Let NZ be the temporal property asserting that time increases without
bound. A specification S is nonZeno iff every finite behavior satisfying S
can be extended to an infinite one satisfying S and NZ [1]. Property NZ
is not symmetric under time translation; by replacing states of a behavior
with ones translated back to the behavior’s starting time, we can construct
an equivalent behavior in which now never changes. Thus, model checking
with time-translation symmetry cannot be used to check that a specification
is nonZeno. However, we can take advantage of time-translation invariance
as follows to use ordinary model checking to show that a specification is
nonZeno.

Let S be a specification that is invariant under time translation. For sim-
plicity, we assume that the initial condition of S asserts that now equals 0,
so s.now ≥ 0 for all reachable states s. For any reachable state s, let

8

LeastTime(s) be the greatest lower bound of the values t .now for all states
t equivalent to s (under time-translation symmetry). The period of S is de-
fined to be the least upper bound of the values LeastTime(s) for all reachable
states s of S. Intuitively, if a system’s specification has a finite period λ,
then all its possible behaviors are revealed within λ seconds. More pre-
cisely, any λ-second segment of a system behavior is the time translation of
a segment from the first λ seconds of some (possibly different) behavior.

Define the condition NZλ as follows, where λ is a positive real number.

NZλ. Every finite behavior satisfying S that ends in a state s with s.now ≤ λ
can be extended to a behavior satisfying S that ends in a state t with
t .now ≥ λ + 1.

It can be shown that if a specification S is time-translation invariant, has
a period less than or equal to the real number λ, and satisfies NZλ, then it
is nonZeno. Therefore, we can check that S is nonZeno by verifying that S
has a period of at most λ and that it satisfies NZλ.

Here is how we can use model checking under time-translation symmetry
to find an upper bound on the period of S. Let E be the state graph con-
structed by model checking under this symmetry. Because every reachable
state is equivalent to a node in E , the period of S is less than or equal to
the least upper bound of the values s.now for all nodes s of E . (Since all
initial states have now = 0, the period of most specifications will equal this
least upper bound for a model checker that, like TLC, uses a breadth-first
construction of the state graph.) Debugging features allow the TLC user
to insert in the specification expressions that always equal true, but whose
evaluation causes TLC to perform certain operations. Using these features,
it is easy to have TLC examine each state s that it finds and print the value
of s.now iff s.now > t .now for every state t it has already found.2 This
makes computing an upper bound on the period of S easy. An explicit-state
model checker that lacks the ability to compute the upper bound can ver-
ify that λ is an upper bound on the period by verifying the invariance of
now ≤ λ, using time-translation symmetry.

To check that S satisfies NZλ, we must show that from every reachable
state with now ≤ λ, it is possible to reach a state with now ≥ λ+1. We can
do this by model checking with the constraint now ≤ λ + 1, in which the
model checker ignores any state it finds with now > λ+1. It is easy to verify
NZλ under this constraint with a model checker that can check possibility
properties. With one like TLC that checks only linear-time temporal proper-
ties, we must show that S together with fairness assumptions on subactions

2One of the features needed was added to TLC after publication of [8].

9

of its next-state action imply that the value of now must eventually reach
λ + 1 [1, 7]. That is, we add fairness assumptions on certain actions and
check that eventually now ≥ λ + 1 holds, using the constraint now ≤ λ + 1.

All of this, including the definition of period, has been under the assump-
tion that now = 0 for all initial states. Extending the definition of period to
the general case is not hard, but there is no need to do it. Invariance under
time translation requires that either (a) the set of initial states is invariant
under time translation, or (b) the value of now is the same in all initial
states. In case (b), that value will probably either be 0 or else a parameter
of the specification that we can set equal to 0. In case (a), we conjoin the
requirement now = 0 to the initial predicate. Invariance under time trans-
lation implies that, in either case, modifying the specification in this way
does not affect whether or not it is nonZeno.

4 Comparison with Uppaal

4.1 The Leader Algorithm

I have checked the TLA+ specification of the leader algorithm with the TLC
model checker. Although the specification is time-translation invariant, the
correctness property is not. It asserts (now > c(n)) ⇒ P(n) for each node
n, where c(n) is a constant expression and P(n) does not contain now . We
could add a timer variable and restate the property in terms of it. (This is
what is done in the Uppaal model.) However, I instead had TLC check the
property under a symmetry ∼ defined as follows. Let Σ be the maximum
of c(n) for all nodes n. Then s ∼ t iff s.now and t .now are both equal or
both greater than Σ. Both the specification and the correctness property
are symmetric under ∼. This symmetry is view symmetry under the view
consisting of the tuple 〈v1, . . . , vk , if now > Σ then Σ + 1 else now 〉,
where the v i are all the variables except now .

Real-time model checkers use much lower-level modeling languages than
TLA+. Uppaal [10] is the only one I know of whose language is expressive
enough to model this algorithm. Arne Skou, with the assistance of Gerd
Behrmann and Kim Larsen, translated the TLA+ specification to an Uppaal
model. Since Uppaal’s modeling language is not as expressive as TLA+,
this required some encoding. In particular, Uppaal cannot represent the
potentially unbounded multiset of messages in the TLA+ specification, so
the Uppaal model uses a fixed-length array instead. To ensure that the
model faithfully represents the algorithm, Uppaal checks that this array
does not overflow.

10

TLC and Uppaal were run on different but roughly comparable machines.
As indicated, some Uppaal executions were run on a 30-machine network.
More detailed results are presented in [9].

The parameters of the specification are the number N of nodes, a con-
stant operator that describes the graph, and the timing constants Period ,
TODelay , and MsgDelay . The latter two are upper-bound constraints,
which implies that the number of reachable states is an increasing func-
tion of their values. Figure 2 shows the results of checking the correctness
property on two different graphs, with 3 and 4 nodes, for some haphazardly
chosen values of the timing bounds. Uppaal timings are given for a single
machine and for the 30-machine network; fail means that Uppaal ran out of
memory.

We expect that increasing a timing bound will increase the number of
reachable states, and hence TLC’s execution time, since it increases the
number of possible values of the timer variables. The time required by
Uppaal’s algorithm depends only on the ratios of the timing bounds, not
on their absolute value. The results show that Uppaal’s execution time is
strongly dependent on the ratio MsgDelay/Period . For ratios significantly
less than .6, Uppaal’s execution time depends almost entirely on the graph
and not on the other parameters. TLC’s execution time depends on the
magnitude of the parameters as well as on this ratio. Hence, if Uppaal
succeeds, it is usually faster than TLC for small values of the parameters
and much faster for larger values. Using 30 processors extends the range of
parameters for which Uppaal succeeds. TLC can be run on multiple com-
puters using Java’s RMI mechanism. Tests have shown that execution speed
typically increases by a factor of about .7 times the number of computers.
This suggests that, run on a network of processors, TLC’s execution speed
is comparable to Uppaal’s for the range of instances tested. However, since
increasing the timing-constraint parameters increases the number of reach-
able states, TLC will be slower than Uppaal for large enough values of these
parameters.

The overall result is that Uppaal can check models with larger timing-
constraint parameters, and hence with a finer-grained choice of ratios be-
tween the parameters. However, TLC can check a wider range of ratios
among the parameters. For finding bugs, the ability to check parameter ra-
tios of both 1:2 and 2:1 is likely to be more useful than the ability to check
ratios of both 1:2 and 11:20.3

3The Uppaal model was subsequently rewritten to improve its performance. Because
the TLA+ specification was written to be as simple as possible, with no consideration of
model-checking efficiency, the fairest comparison seems to be with the first Uppaal model.

11

N = 3 N = 4

1
©
H

2

3
1 2 3 4

MsgDelay 30-proc
N Period MsgDelay TODelay Period TLC Uppaal Uppaal

3 10 3 5 .3 255 9.4 2.9
3 1 1 .33 4 9.4 13.4
5 2 5 .5 70 11.2 2.9
5 3 1 .6 13 30.8 3.0
5 3 5 .6 265 fail 20.9
3 2 1 .67 7 10.2 3.0
3 2 2 .67 20 fail 16.6
5 4 1 .8 27 32.5 9.2
5 4 5 .8 980 fail fail
2 2 1 1 11 fail fail
1 2 1 2 270 fail fail
1 2 2 2 1280 fail fail

4 10 3 5 .3 1385 42.2 2.5
3 1 1 .33 6 43.9 2.7
5 2 2 .4 42 48.3 4.2
5 2 5 .4 390 93.0 4.3
2 1 1 .5 6 48.2 3.7
5 3 1 .6 28 72.8 3.8
5 3 5 .6 1770 fail 84.6
3 2 1 .67 12 73.1 9.8
3 2 2 .67 44 fail 73.1
5 4 5 .8 6760 fail fail
2 2 1 1 13 fail fail
1 2 1 2 390 fail fail
1 2 2 2 1650 fail fail

Figure 2: Comparison of Uppaal and TLC execution times in seconds for
the indicated graphs with 3 and 4 nodes.

12

MsgDelay reachable msgs in transit
Period MsgDelay TODelay Period states max mean

2 2 1 1 6579 6 3.46
1 2 1 2 240931 12 6.57
3 2 2 .67 20572 6 3.69
10 3 5 .33 247580 6 3.85

Figure 3: The number of messages in transit.

The dependence on the MsgDelay/Period ratio can be explained as fol-
lows. Since Period is a lower bound on the time between the sending of
messages and MsgDelay is an upper bound on how long it takes to deliver
the message, the maximum number of messages that can be in transit at
any time should be roughly proportional to this ratio. The table of Figure 3
gives some idea of what’s going on, where the results are for the 3-node
graph. The first two rows show the dramatic effect of changing Period and
leaving the other parameters the same. The second two rows show that the
MsgDelay/Period ratio is just one of the factors determining the number of
messages in transit and the number of reachable states.

It is possible that these results reflect some special property of this ex-
ample. However, the sensitivity to the MsgDelay/Period ratio suggests that
it is the messages in transit that pose a problem for Uppaal. Each message
carries a timer, and the performance of real-time model checkers tends to
depend on the number of concurrently running timers. Perhaps the most
common use of real time in systems is for constraints on message transit
time—constraints that are modeled by attaching timers to messages. This
suggests that Uppaal might have difficulty checking such systems if there
can be many messages in transit. However, more examples must be tried
before we can draw any such conclusion.

TLC was also used to check that some of the instances in Figure 2
were nonZeno. For N = 3, this took about twice as long as checking the
correctness property; for N = 4 the two times were about the same.

Uppaal can check the new model on a single computer an average of 4.5 times faster for
the N = 3 instances of Figure 2 and 50 times faster for the N = 4 instances, but it still
fails when MsgDelay/Period is greater than about 1. The new model therefore does not
alter the basic result that Uppaal is faster than TLC for the range of parameter ratios it
can handle, but it cannot handle as wide a range.

13

Safety Liveness
K states TLCs TLC Spin SMV TLC Spin SMV
2 155976 9 29 .7 1.3 128 3.7 2.5
3 450407 10 78 2.4 3.8 385 13 6.3
4 1101072 16 194 6.9 6.5 1040 49 10
5 2388291 26 399 19 10 3456 171 16
6 4731824 47 784 51 14 5566 468 22
7 8730831 78 1468 142 25 13654 1317 40
8 15208872 132 2546 378 35 3593 54
9 25263947 244 4404 977 46 5237 73
10 40323576 446 7258 2145 62 95

Uppaal 135

Figure 4: Execution times in seconds for a simple version of Fischer’s al-
gorithm with 6 threads, where TLCs is TLC with symmetry under thread
permutations.

4.2 Fischer’s Algorithm

I also compared the explicit-state approach to the use of Uppaal on a ver-
sion of Fischer’s mutual exclusion algorithm [13] that is distributed with
Uppaal. Because TLA+ is a very high-level language, TLC must “execute”
a specification interpretively. It is therefore significantly slower than con-
ventional model checkers for verifying simple systems. I also obtained data
for two other popular model checkers whose models are written in lower-
level languages: the explicit-state model checker Spin [6] and the symbolic
checker SMV [11] that uses binary decision diagrams. The Spin model was
written and checked by Gerard Holzmann, and the SMV model was written
and checked by Ken McMillan. Checked were the safety properties of mu-
tual exclusion and deadlock freedom (except for SMV) and a simple liveness
property.

This version of Fischer’s algorithm uses a parameter K that is both an
upper- and lower-bound timing constraint. All the models were tested for 6
threads, which is the smallest number for which Uppaal takes a significant
amount of time. The results for different values of K are shown in Figure 4.
Uppaal’s execution time is independent of K . For checking safety, TLC was
run both with and without symmetry under permutations of threads. (The
liveness property is not symmetric.) The speedups obtained by the 6-fold
symmetry should not be taken very seriously; in real examples one at best
obtains only 2- or 3-fold symmetry.

14

Since Uppaal’s execution time is independent of K , we know that for
large enough values of K it will be faster than a model checker whose run-
ning time depends on K . All of the model checkers could check the spec-
ification for large enough values of K to provide reasonable confidence of
its correctness, though the numbers do not bode well for the ability of TLC
and Spin to check liveness for more complicated examples. We do not ex-
pect TLC’s performance on liveness checking to be good enough for large
applications. But because Fischer’s algorithm is so simple, it is dangerous to
infer from these numbers that the performance of Uppaal and SMV would
be good enough.

5 Conclusion

Experts in the field will not be surprised that one can write and check
explicit-time specifications using ordinary model checkers. But this is ap-
parently not widely appreciated because it has not been stated clearly in the
literature. Moreover, the use of view symmetry and the method described
here for checking that a specification is nonZeno may be new even to experts.

I know of no previous comparisons of the explicit-state approach with
the use of a real-time model checker. The results reported here do not tell us
how the two methods will compare on other examples. But they do indicate
that verifying explicit-time specifications with an ordinary model checker
is not very much worse than using a real-time model checker. Indeed, the
results for the leader algorithm suggest that the explicit-time approach is
competitive with Uppaal for distributed algorithms. The results of using
TLC to check two more complicated versions of Fischer’s algorithm are
reported in [9]. They too suggest that TLC can be used in practice to check
explicit-time specifications.

The main advantage of an explicit-time approach is the ability to use lan-
guages and tools not specially designed for real-time model checking. There
are practical reasons for using a higher-level language like TLA+ instead of
one designed expressly for model checking. As one industrial user remarked,
“The prototyping and debug phase through TLA+/TLC is so much more
efficient than in a lower-level language.”

15

References

[1] Mart́ın Abadi and Leslie Lamport. An old-fashioned recipe for real
time. ACM Transactions on Programming Languages and Systems,
16(5):1543–1571, September 1994.

[2] Edmund M. Clarke, Orna Grumberg, and David E. Long. Model check-
ing and abstraction. ACM Transactions on Programming Languages
and Systems, 16(5):1512–1542, September 1994.

[3] Bruno Dutertre and Maria Sorea. Modeling and verification of a fault-
tolerant real-time startup protocol using calendar automata. In Formal
Techniques, Modelling and Analysis of Timed and Fault-Tolerant Sys-
tems, Joint International Conferences on Formal Modelling and Analy-
sis of Timed Systems, FORMATS 2004 and Formal Techniques in Real-
Time and Fault-Tolerant Systems, FTRTFT 2004, Grenoble, France,
September 22-24, 2004, Proceedings, volume 3253 of Lecture Notes in
Computer Science, pages 199–214. Springer, 2004.

[4] Susanne Graf and Claire Loiseaux. Property preserving abstractions
under parallel composition. In Marie-Claude Gaudel and Jean-Pierre
Jouannaud, editors, TAPSOFT’93: Theory and Practice of Software
Development, volume 668 of Lecture Notes in Computer Science, pages
644–657. Springer, 1993.

[5] Thomas A. Henzinger and Orna Kupferman. From quantity to quality.
In Oded Maler, editor, Proceedings of the International Workshop on
Hybrid and Real-Time Systems (HART ’97), volume 1997 of Lecture
Notes in Computer Science, pages 48–62. Springer-Verlag, 1997.

[6] Gerard J. Holzmann. The Spin Model Checker. Addison-Wesley,
Boston, 2004.

[7] Leslie Lamport. Proving possibility properties. Theoretical Computer
Science, 206(1–2):341–352, October 1998.

[8] Leslie Lamport. Specifying Systems. Addison-Wesley, Boston, 2003. A
link to an electronic copy can be found at http://lamport.org.

[9] Leslie Lamport. Real time is really simple. Technical Report MSR-TR-
2005-30, Microsoft Research, March 2005.

16

[10] Kim Guldstrand Larsen, Paul Pettersson, and Wang Yi. UPPAAL
in a nutshell. International Journal of Software Tools for Technology
Transfer, 1(1/2):134–152, December 1997.

[11] K. L. McMillan. Symbolic Model Checking. Kluwer, 1993.

[12] Radia Perlman. An algorithm for distributed computation of a span-
ningtree in an extended LAN. In Proceedings of the Ninth Symposium
on Data Communications, pages 44–53. SIGCOMM, ACM Press, 1985.

[13] Fred B. Schneider, Bard Bloom, and Keith Marzullo. Putting time into
proof outlines. In J. W. de Bakker, C. Huizing, W.-P. de Roever, and
G. Rozenberg, editors, Real-Time: Theory in Practice, volume 600 of
Lecture Notes in Computer Science, pages 618–639, Berlin, Heidelberg,
New York, 1992. Springer-Verlag.

17

