
Reduction in TLA

Ernie Cohen and Leslie Lamport

10 May 1998

Appeared in CONCUR’98 Concurrency Theory, David
Sangiorgi and Robert de Simone editors. Lecture Notes
in Computer Science, number 1466, (1998), 317–331.

Table of Contents

1 Introduction . 317
2 The Relation Between S and SR . 318
3 An Intuitive View of Reduction . 319
4 Safety in TLA . 321
5 Liveness in TLA . 323
6 Reducing Fairness Conditions . 325
7 Weakening the Commutativity Hypotheses . 328
8 Two Illustrative Examples . 329
9 Proofs . 330
10 Further Remarks . 330
References . 330

Reduction in TLA

Ernie Cohen1 and Leslie Lamport2

1 Bellcore
2 Digital Equipment Corporation

Abstract. Reduction theorems allow one to deduce properties of a con-
current system specification from properties of a simpler, coarser-grained
version called the reduced specification. We present reduction theorems
based upon a more precise relation between the original and reduced
specifications than earlier ones, permitting the use of reduction to rea-
son about a larger class of properties. In particular, we present reduction
theorems that handle general liveness properties.

1 Introduction

We reason about a high-level specification of a system, with a large grain of
atomicity, and hope thereby to deduce properties of a finer-grained implemen-
tation. For example, the single atomic action

x , y : = f (x , y), g(x , y)

of a high-level algorithm might be implemented by the sequence of actions

P(sem); t : = x ; x : = f (x , y); y : = g(t , y); V (sem) (1)

where P and V are the usual operations on a binary semaphore sem, and t is a
new variable. This process is usually justified by asserting that the two specifica-
tion are, in some suitable sense, “equivalent”. A reduction theorem is a general
rule for deriving an “equivalent” higher-level specification SR from a lower-level
one S . We call SR the reduced version of S . For example, S might be a multi-
process program containing critical sections, and SR might be obtained from S
by replacing each critical section with a single atomicly executed statement.

The first reduction theorem was proposed by Lipton [10]. Several others fol-
lowed [3–6, 9]. Our theorems strengthen these early results in three ways. First, in
previous theorems, executions of the original and reduced specifications are com-
pletely separate; the executions are shown only to share certain properties, such
as satisfying the same pre/post-conditions. In the reduction theorems presented
here, the original and reduced specifications “run in parallel”, their executions
connected by a coupling invariant. Our theorems thereby provide a more pre-
cise (and hence stronger) statement of the relation between the original and the

318

reduced specifications. Second, this relation between executions of the two spec-
ifications allows certain hypotheses to be stated as assumptions about a given
execution, rather than in the stronger form of assumptions about all executions.
Finally, our theorems handle general liveness properties as well as safety proper-
ties. The only previous theorems we know of that concern liveness are Back’s [3]
results for total correctness of sequential programs and [4], which shows how to
pretend that certain progress properties of a component are preserved under fair
parallel composition with an environment.

Our theorems are stated in TLA (the Temporal Logic of Actions) [8], but
they should be adaptable to other formalisms with a trace-based semantics.

2 The Relation Between S and SR

We begin by examining the relation between the original specification S and
the reduced version SR. We want to infer properties of S by proving properties
of SR. For this, S and SR needn’t be equivalent; it’s necessary only that S
implement SR—for some suitable notion of implementation.

Suppose S represents a multiprocess program with shared variables x and y
that are accessed only in critical sections, and the reduced version SR is obtained
by replacing each critical section with a single atomic statement—for example,
replacing (1) with

t , x , y : = x , f (x , y), g(x , y)

One sense in which S implements SR is that, if we ignore the times when
a process is in a critical section, S assigns the same sequences of values to all
variables that SR does. This is the notion of implementation used by Doeppner
in his reduction theorem [6]. While satisfactory for many purposes, this notion
of implementation is rather weak. It says nothing about what is true while a
process is in its critical section, which can be a problem because assertional
reasoning requires proving that an invariant holds at all times.

Let v be the tuple of all variables of S , including x and y. Our stronger
notion of implementation is that there exists a tuple of “virtual variables” v̂
such that, as the real variables v change according to S , the virtual variables
v̂ change according to the specification ŜR obtained from SR by replacing each
real variable with its virtual counterpart. The relation between the real and
virtual variables is expressed by a predicate I relating v and v̂ . (Such a predicate
is known as a “coupling invariant” [7].) This generalizes Doeppner’s notion of
implementation if I implies v = v̂ when no process is in a critical section.

In the critical section example above, our theorems say that there are virtual
variables t̂ , x̂ , ŷ , and ŝem such that the execution of (1) leaves the virtual
variables unchanged except for the assignment to t , which performs the “virtual
assignment”

t̂ , x̂ , ŷ : = x̂ , f (x̂ , ŷ), g(x̂ , ŷ)

319

The predicate I relating the real and virtual variables implies:

t̂, x̂, ŷ =

t, x, y before executing t := . . .
t, f(x, y), g(x, y) just after executing t := . . .
t, x, g(t, y) just after executing x := . . .
t, x, y after executing y := . . .

The assertion that, in this sense, S implements SR is expressed in temporal
logic by

S ⇒ ∃∃∃∃∃∃ v̂ : ✷I ∧ ŜR (2)

where ∃∃∃∃∃∃ is existential quantification over flexible1 variables.2 This is approxi-
mately the conclusion of our reduction theorems.

We would like to prove that SR satisfies (implies) a property Π and deduce
that S satisfies Π . By (2), all we can infer from SR ⇒ Π is S ⇒ ∃∃∃∃∃∃ v̂ :✷I ∧ Π̂ .
How useful this is depends upon the nature of I and Π ; for now, we mention
one important case. Suppose I implies ẑ = z for every variable occurring in Π .
In this case, ∃∃∃∃∃∃ v̂ :✷I ∧ Π̂ implies Π , so we infer S ⇒ Π from SR ⇒ Π . It is
this result that justifies the well-known rule for reasoning about multiprocess
programs that allows grouping a sequence of operations into a single atomic
action if they include only one access to a shared variable [11].

3 An Intuitive View of Reduction

We consider the situation in which one operationM is reduced to a single atomic
action MR—for example, one critical section is replaced by an atomicly executed
statement. Reduction of multiple operations can be performed by applying the
theorem multiple times to reduce one operation at a time.

A single execution of the operation M consists of a sequence of M steps.
These can be interleaved with other system steps, which we call E steps, as in:

· · · s41
M−→ s42

E−→ s43
M−→ s44

E−→ s45
E−→ s46

M−→ s47
M−→ s48 · · · (3)

We think of E as M ’s environment. The idea is to construct a behavior “equiv-
alent to” (3) by moving all the M steps together, as in

· · · s41
E−→ u42

M−→ u43
M−→ u44

M−→ u45
M−→ u46

E−→ u47
E−→ s48 · · · (4)

which is then equivalent to the behavior

· · · s41
E−→ u42

MR−→ u46
E−→ u47

E−→ s48 · · · (5)

of the reduced system.
1 In temporal logic, a flexible variable is one whose value can change over time; a rigid

variable is one whose value is fixed.
2 As with any form of implementation, this works only if SR allows stuttering steps

and ∃∃∃∃∃∃ preserves stuttering invariance [8].

320

To construct behavior (4), we assume that an execution of M consists of a
sequence of R steps, followed by an X step, followed by a sequence of L steps.
We say that an execution of M is in its first phase before X is executed, and
in its second phase after X is executed. (The terminology comes from the two-
phase locking discipline of database concurrency control, described in Section 8.)
Intuitively, M receives information from its environment in the first phase, and
sends information to its environment in the second phase. Behaviors (3) and (4)
are then

· · · s41
R−→ s 42

E−→ s 43
X−→ s 44

E−→ s 45
E−→ s 46

L−→ s 47
L−→ s48 · · · (6)

· · · s41
E−→ u42

R−→ u43
X−→ u44

L−→ u45
L−→ u46

E−→ u47
E−→ s48 · · · (7)

To obtain (7) from (6), we must move R steps to the right and L steps to the
left. We say that action A right commutes with action B , and B left commutes
with A, iff for any states r , s , and t such that r A−→ s B−→ t , there exists a state
u such that r B−→ u A−→ t . If R right commutes with E , and L left commutes
with E , then we can obtain (7) from (6) by commuting actions as shown in
Figure 1. Observe that, since we don’t have to commute the X action, u43 = s43

and u44 = s44.

· · · s41
R−→ s 42

E−→ s 43
X−→ s 44

E−→ s 45
E−→ s 46

L−→ s 47
L−→ s48 · · ·

❍❍❍❥✟✟✟✙ ❍❍❍❥✟✟✟✙
· · · s41

E−→ u42
R−→ s 43

X−→ s 44
E−→ s 45

L−→ r46
E−→ s 47

L−→ s48 · · ·
❍❍❍❥✟✟✟✙ ❍❍❍❥✟✟✟✙

· · · s41
E−→ u42

R−→ s 43
X−→ s 44

L−→ u45
E−→ r46

L−→ u47
E−→ s48 · · ·

❍❍❍❥✟✟✟✙
· · · s41

E−→ u42
R−→ s 43

X−→ s 44
L−→ u45

L−→ u46
E−→ u47

E−→ s48 · · ·

Fig. 1. Constructing (7) from (6).

Lipton [10] was concerned with pre/postconditions, so he essentially trans-
formed (6) to (5). Doeppner [6] transformed (6) to (7) and observed that the new
behavior differs from the original only on states in which the system is in the
middle of operation M . In our theorems, we use the behavior (7) to construct
the virtual variables v̂ for the behavior (6). The value of v̂ in a state s i of (6)
is defined to be the value of v in a corresponding state ν(s i) of (7), where the
correspondence is shown in Figure 2. For example, ν(s44) = u46, so the value of
v̂ in state s44 of (6) is the value of v in state u46 of (7). Observe that R and L
steps leave v̂ unchanged, and the X step changes v̂ the way an MR step changes
v (see (5)).

For an action A, let A+−→ be the irreflexive transitive closure of A−→, so s A+−→ t
iff there exist states r1, . . . , rn (n ≥ 0) such that s A−→ r1

A−→ · · · A−→ rn
A−→ t .

321

· · · s41
R−→ s 42

E−→ s 43
X−→ s 44

E−→ s 45
E−→ s 46

L−→ s 47
L−→ s48 · · ·

· · · s41
E−→ u42

R−→ s43
X−→ s44

L−→ u45
L−→ u46

E−→ u47
E−→ s48 · · ·

❄
�

��✠
�

��✠

❍❍❍❍❍❥

❍❍❍❍❍❥

❍❍❍❍❍❥
❅

❅❅❘ ❄

Fig. 2. The correspondence ν between states of (6) and of (7).

There is the following relation between a state s i and its corresponding state
ν(s i).

– If (in state s i) M is not currently being executed—states s41 and s48 in
Figure 2—then s i = ν(s i).

– In the first phase (execution of M begun but X not yet executed)—states
s42 and s43 in Figure 2—we have ν(s i)

R+−→ s i .

– In the second phase (X executed but M not terminated)—states s44 through
s47 in Figure 2—we have s i

L+−→ ν(s i). (To see that s45
L+−→ ν(s45), observe

from Figure 1 that s45
L−→ r46

L−→ u47.)

Observe also that:

– M is not currently being executed in a state ν(s i).

The construction of ν described by Figure 2 assumes that, once the X step
has occurred, the execution of M eventually terminates. This construction also
works if the entire system halts after executing X , as long as we can extend the
behavior (6) by adding a finite sequence of L steps that complete the execution
of M . Therefore, in the conclusion of our reduction theorems, we replace (2)
with

S ∧ Q ⇒ ∃∃∃∃∃∃ v̂ : ✷I ∧ ŜR (8)

where Q asserts that, once an X step has occurred, either the execution of M
eventually terminates or else the entire system halts in a state in which it is
possible to complete the execution of M . Note that we allow behaviors in which
execution of M remains forever in its first phase, never taking an X step.

4 Safety in TLA

In TLA, a state is an assignment of values to all flexible variables, and a behavior
is a sequence of states. An action is a predicate that may contain primed and
unprimed flexible variables. If A is the action x ′ = 1 + y, then s A−→ t is true
iff the value assigned to x by state t equals 1 plus the value assigned by state s
to y. The canonical form of the safety3 part of a specification is Init ∧ ✷[N]v ,
where Init is a state predicate (a formula containing no primes), N is an action
3 Any property is the conjunction of a safety property, which constrains finite behavior,

and a liveness property, which constrains only infinite behavior. [2]

322

called the next-state action, v is the tuple of all flexible variables occurring in
Init and N , and [N]v is an abbreviation for N ∨ (v ′ = v).4 A behavior s1, s2, . . .

satisfies this formula iff Init is true in the initial state s1, and s i
[N]v−→ s i+1 holds

for all i—that is, iff Init holds initially and every step is either an N step or a
stuttering step (one that leaves all the relevant variables unchanged).

From now on, we assume that v is the tuple of all flexible variables
that appear in our formulas.

The next-state action N is usually written as the disjunction of all the indi-
vidual atomic actions of the system. For our reduction theorems, N is defined
to equal M ∨ E , where M is the disjunction of the atomic actions of the oper-
ation being reduced, and E is the disjunction of the other system actions. We
assume two state predicates R and L, where R is true when execution of M
is in its first phase (M has begun but X has not yet been executed), and L is
true when execution of M is in its second phase (X has been executed but M
has not yet terminated). We take Init , M , E , R, and L to be parameters of the
theorems. The theorems assume the following hypotheses, which assert that R
and L are consistent with their interpretations as assertions about the progress
of M . These hypotheses are explained below.

(a) Init ⇒ ¬(R∨ L)
(b) E ⇒ (R′ ≡ R) ∧ (L′ ≡ L)

(c) ¬(L ∧M ∧R′)
(d) ¬(R ∧L)

(9)

(a) The system starts with M not in the middle of execution.
(b) Executing an environment action can’t change the phase.
(c) Execution of M can’t go directly from the second phase to the first phase

(without completing the execution).
(d) The two phases are disjoint. This hypothesis is actually unnecessary; given

predicates R and L that satisfy the other hypotheses, we can satisfy this
assumption as well by replacing either R with R ∧ ¬L or L with L ∧ ¬R.
However, the hypothesis simplifies the definition of the coupling invariant I .

We define the actions R, L, and X in terms of M , R, and L by

R ∆= M ∧R′ L ∆= L ∧ M X ∆= (¬L) ∧ M ∧ (¬R′) (10)

That is, an R step is an M step that ends in the first phase, an L step is an M
step that starts in the second phase, and an X step is any other M step. Either
phase can be empty. Both phases might even be empty, in which case execution
of M consists of just a single X step.

We define the sequential composition A·B of actions A and B so that s A·B−→ t
iff there exists a state u for which s A−→ u B−→ t . Equivalently, A·B equals
∃ r :A(r/v ′) ∧ B(r/v), where r is a tuple of rigid variables, A(r/v ′) denotes A
with each primed variable of v replaced by the corresponding component of r,

4 For any expression e containing no primes, e ′ is the expression obtained from e by
priming its flexible variables.

323

and B(r/v) denotes B with each unprimed flexible variable of v replaced by the
corresponding component of r. The equivalence of the two definitions is seen by
letting r be the tuple of values assigned to the variables in v by the state u.
The definition of commutativity given above can be restated as: action A right
commutes with action B , and B left commutes with A, iff A·B ⇒ B ·A. We
can then state the commutativity hypotheses we used in the previous section as
R·E ⇒ E ·R and E ·L ⇒ L·E .

We define A+ to equal A ∨ (A·A) ∨ (A·A·A) ∨ This defines s A+−→ t to
have the same meaning as above. A complete execution of M is a sequence of
M steps starting and ending in states for which M is not in the middle of its
execution—that is, in states satisfying ¬(R∨ L). We therefore define:

MR ∆= ¬(R∨ L) ∧ M + ∧ ¬(R ∨L)′ (11)

We define N , N R, S , and SR by

N ∆= M ∨ E
N R ∆= MR ∨ E

S ∆= Init ∧ ✷[N]v
SR ∆= Init ∧ ✷[N R]v

(12)

Suppose s A−→ t . If the tuple of variables v has the value v s in state s and the
value v t in state t , then the relation A(v s/v , v t/v ′), obtained by substituting
the elements of v s for the unprimed flexible variables of A and the elements of
v t for the primed variables of A, holds. We constructed the tuple v̂ of virtual
variables by defining a mapping ν on states of a behavior and defining the value
of v̂ in a state s to be the tuple of values of v in the state ν(s). This means
that, if s A−→ ν(s), then the values of v and v̂ in state s satisfy A(v/v , v̂/v ′),
which is just A(v̂/v ′). If ν(s) A−→ s , then the values of v and v̂ in state s satisfy
A(v̂/v , v/v ′). From the four observations above, based on Figure 2, about how s
and ν(s) are related, we obtain the following definition of the relation I between
v and v̂ :5

I ∆= ∧ R ⇒ R+(v̂/v , v/v ′)
∧ L ⇒ L+(v̂/v ′)
∧ ¬(R ∨ L)⇒ (v̂ = v)
∧ ¬(R ∨ L)(v̂/v)

(13)

5 Liveness in TLA

In (linear-time) temporal logic, ✷ means always and its dual ✸, defined to equal
¬✷¬, means eventually. Thus, ✷✸ means infinitely often and ✸✷ means even-
tually forever. Let σ be the behavior s1, s2, For a predicate P , formula ✷✸P
is true for σ iff P is true for infinitely many states s i , and ✸✷P is true for σ iff
P is true for all states s i with i > n, for some n. For an action A, formula ✷✸A
5 We let a list of formulas bulleted with ∧ or ∨ denote the conjunction or disjunction

of the formulas, using indentation to eliminate parentheses.

324

is true for σ iff s i
A−→ s i+1 is true for infinitely many i . To maintain invariance

under stuttering, we must write ✷✸〈A〉v rather than ✷✸A, where 〈A〉v is de-
fined to equal A ∧ (v ′ �= v). The formula ✷✸〈A〉v asserts of a behavior that
there are infinitely many nonstuttering A steps.

We define Enabled A to the be predicate asserting that action A is enabled.
It is true of a state s iff there exists some state t such that s A−→ t . Equivalently,
Enabled A equals ∃ r :A(r/v ′), where r is a tuple of rigid variables.

We observed above that the conclusion of a reduction theorem should be (8),
where Q asserts that either (i) M must eventually terminate after the X step
has occurred, or (ii) the entire system halts in a state in which execution of a
finite number of L steps can complete the execution of M .

To express (i), note that an X step makes L true, and L remains true until M
terminates.6 Thus, (i) asserts that L does not remain true forever, an assertion
expressed by ¬✸✷L, which is equivalent to ✷✸¬L. We can weaken this condition
by allowing the additional possibility that, infinitely often, it is possible to take
a sequence of L steps that makes L false, if such a sequence can lead to only a
finite number of possible values of v .

To express (ii), we note that in TLA, halting is described by a behavior that
ends with an infinite sequence of stuttering steps, so eventual halting is expressed
by ✸✷[false]v (which is equivalent to ✸✷[v ′ = v]v). It is possible to complete
the execution of M by taking L steps iff a sequence of L steps can make L false,
which is true iff it is possible to take an L+ step with L false in the final state.
Thus, condition (ii) can be expressed as ✸✷([false]v ∧ Enabled (L+ ∧ ¬L′)).

Using the temporal logic tautology ✸✷(F ∧ G) ≡ (✸✷F ∧ ✸✷G), we define
Q by

Q ∆= ∨ ✷✸(¬L ∨ (∃!! r : Enabled ((L+ ∧ ¬L′)(r/v ′))))
∨ ✸✷[false]v ∧ ✸✷Enabled (L+ ∧ ¬L′)

(14)

where ∃!! r :F means that there exists a finite, nonzero number of values for r for
which F holds. We can now state our first reduction theorem, for specifications
S that are safety properties.

Theorem 1. Let Init , R, and L be state predicates; let E and M be actions;
and let v be the tuple of all flexible variables that occur free in these predicates
and actions. Let R, L, S , SR, I , and Q be defined by (10)–(14). If

1. (a) Init ⇒ ¬(R∨ L) (c) ¬(L ∧ M ∧R′)
(b) E ⇒ (R′ ≡ R) ∧ (L′ ≡ L) (d) ¬(R∧ L)

2. (a) R · E ⇒ E · R (b) E · L ⇒ L · E

then S ∧ Q ⇒ ∃∃∃∃∃∃ v̂ : ✷I ∧ ŜR , where v̂ is a tuple of new variables and ̂
denotes substitution of the variables v̂ for the variables v.

The specifications S and SR are safety properties, so it may appear that
we are using the liveness property Q to prove that one safety property implies

6 More precisely, an X step either makes L true or terminates the execution of M .

325

another. We need Q in general because, even though ✷I ∧ ŜR is necessarily a
safety property, ∃∃∃∃∃∃ v̂ : ✷I ∧ ŜR need not be one. Recall that the purpose of
a reduction theorem is to deduce properties of S by proving properties of SR.
For the purpose of proving safety properties, we can eliminate Q by adding the
hypothesis

L ⇒ Enabled (L+ ∧ ¬L′) (15)

which asserts that, after executing X , it is always possible to complete the ex-
ecution of M . Let C(Π) be the strongest safety property implied by property
Π , so Π is a safety property iff Π = C(Π). A behavior satisfies C(Π) iff every
finite prefix can be extended to a behavior that satisfies Π [1]. (The operator C
is a topological closure operator.) Hypothesis (15) implies that every prefix of
a behavior satisfying S can be extended to one satisfying S ∧ Q , which implies
C(S ∧Q) ≡ S . Since C is monotonic (Φ ⇒ Π implies C(Φ) ⇒ C(Π)), this proves:

Corollary 2. With the notations and assumptions of Theorem 1, let Π be a
safety property. If L ⇒ Enabled (L+ ∧ ¬L′), then (∃∃∃∃∃∃ v̂ : ✷I ∧ ŜR) ⇒ Π
implies S ⇒ Π.

6 Reducing Fairness Conditions

Most TLA specifications are of the form S ∧ F , where S is as in (12) and F is
a liveness condition. We would like to extend the conclusion (8) to

S ∧ F ∧ Q ⇒ ∃∃∃∃∃∃ v̂ : ✷I ∧ ŜR ∧ F̂R (16)

where FR is a suitable reduced version of F . The liveness condition F is usually
expressed as a conjunction of WF (weak fairness) and/or SF (strong fairness)
formulas, defined by

WFv (A)
∆= ✸✷Enabled 〈A〉v ⇒ ✷✸〈A〉v

SFv (A)
∆= ✷✸Enabled 〈A〉v ⇒ ✷✸〈A〉v

Let’s begin by considering the simple case where F equals WFv (A), for some
action A. (The case F = SFv (A) is similar.) In this case, FR should equal
WFv (AR), where AR is the reduced version of action A. Reduction means re-
placing the given action M by MR; it’s not clear what the reduced version of
an arbitrary action A should be. There are two cases in which the definition is
obvious:

– If A is disjoint from M , then AR = A.
– If A includes M , so A = (A ∧ E) ∨ M , then AR = (A ∧ E) ∨ MR.

We generalize these two cases by taking AR to be (A ∧ E) ∨ AR
M , where an AR

M

step consists of a complete execution of M that includes at least one A∧M step.

326

The formal definition is:

AR
M

∆= ¬(R∨ L) ∧ M ∗ · (A ∧ M) · M ∗ ∧ ¬(R∨ L)′ (17)

where M ∗ stands for [M +]v .
From the definition of WF and a little predicate logic, we see that to prove

(16), it suffices to prove:

S ∧ Q ⇒ ∃∃∃∃∃∃ v̂ : ✷I ∧ ŜR ∧ (✷✸〈A〉v ⇒ ✷✸〈ÂR 〉
v̂
) (18)

✷I ∧ ✸✷Enabled 〈ÂR 〉
v̂

⇒ ✸✷Enabled 〈A〉v (19)

(For SF, we must replace ✸✷ by ✷✸ in (19).) We consider the proofs of (18)
and (19) separately.

To prove (18), we must show that if a behavior contains infinitely many 〈A〉v
steps, then it contains infinitely many 〈ÂR 〉

v̂
steps. To simplify this discussion,

we temporarily drop the angle brackets and subscripts. We must show that
infinitely many A steps imply infinitely many ÂR steps. Those infinitely many A
steps must include (i) infinitely many A∧E steps or, (ii) infinitely many A∧M
steps. We consider the two possibilities in turn.

To show that infinitely many A∧E steps imply infinitely many ÂR steps, it
suffices to construct the virtual variables so that each A∧E step is a

✭✭ ❤❤
A ∧ E step.

We have already constructed the virtual variables so that each E step is also a
Ê step. We must strengthen that construction so an A ∧ E step is also a

✭✭ ❤❤
A ∧ E

step. Recall that, in Figure 2, the step s44 → s45 of the top behavior is a Ê step
because the corresponding step u46 → u47 of the bottom behavior is an E step.
We must therefore guarantee that if s44 → s45 is an A∧E step, then u46 → u47

is also an A∧E step. Recalling the construction of the bottom behavior, shown
in Figures 1, we see that we can make u46 → u47 an A ∧ E step if R right
commutes with A∧E and L left commutes with A∧E . In general, reintroducing
brackets and subscripts, we can guarantee that infinitely many 〈A ∧ E 〉v steps
imply infinitely many 〈ÂR 〉

v̂
steps with the additional hypotheses:

R · 〈A ∧ E 〉v ⇒ 〈A ∧ E 〉v · R 〈A ∧ E 〉v · L ⇒ L · 〈A ∧ E 〉v
These hypotheses are vacuous if A ∧ E equals false. If A ∧ E equals E , they
follow from the commutativity conditions we are already assuming.

Step (ii) in proving (18) is showing that if there are infinitely many A ∧ M
steps, then there are infinitely many AR

M steps. It suffices to guarantee that if
one of the steps in a complete execution of M is also an A step, then the corre-
sponding M̂R step is an AR

M step. Figure 2 shows that an X step corresponds

to a M̂R step because its starting state s satisfies ν(s) R+

−→ s , its ending state t

satisfies t L+−→ ν(t), and M is not in the middle of its execution in states ν(s)
and ν(t). If the X step is an A ∧X step, then it is clear that the corresponding
M̂R step is an AR

M step. Suppose that one of the R steps is an A ∧ R step, and

327

let R+
A equal R∗ · (A ∧ R) · R∗. The M̂R step will be an AR

M step if the starting

state s of the X step satisfies ν(s)
R+

A−→ s . Figure 1 shows that we can construct
ν to satisfy this condition if we can interchange A ∧ R and E steps—that is, if
A∧R (as well as R) right commutes with E . Similarly, when one of the L steps
is an A∧ L step, we can guarantee that the M̂R step is an AR

M step if A∧ L (as
well as L) left commutes with E . Putting the brackets and subscripts in, we see
that infinitely many 〈A ∧M 〉v steps imply infinitely many ÂR steps if

〈A ∧ R 〉v · E ⇒ E · 〈A ∧ R 〉v E · 〈A ∧ L〉v ⇒ 〈A ∧ L〉v · E
These hypotheses are vacuous if A ∧ M equals false. If A ∧ M equals M , they
follow from the commutativity conditions we are already assuming.

The argument we just made assumes that each execution of M terminates.
For example, a behavior might contain infinitely many A ∧ R steps but no X
step, in which case there would be no AR

M step. We need the assumption that if
there are infinitely many A ∧ M steps, then there are infinitely many X steps.
So, we replace (18) with

S ∧ Q ∧ O ⇒ ∃∃∃∃∃∃ v̂ : ✷I ∧ ŜR ∧ (✷✸〈A〉v ⇒ ✷✸〈ÂR 〉
v̂
) (20)

where O equals ✷✸〈A ∧ M 〉v ⇒ ✷✸〈X 〉v .
Finally, we showed only that infinitely many 〈A〉v steps imply infinitely many

ÂR steps, which are not necessarily 〈ÂR 〉
v̂
steps. We need to rule out the degen-

erate case in which those ÂR steps are stuttering steps that leave v̂ unchanged.
We do this by assuming (〈A〉v)RM ⇒ (v ′ �= v). In most cases of interest, MR

implies v ′ �= v . so (〈A〉v)RM ⇒ (v ′ �= v) holds for any A.
A specification can contain a (possibly infinite) conjunction of fairness prop-

erties, so we must generalize from a single action A to a collection of actions Ai ,
for i in some set I. The definitions above are generalized to

AR
i

∆= (Ai ∧ E) ∨ (Ai)RM
O ∆= ∀ i ∈ I : ✷✸〈Ai ∧ M 〉v ⇒ ✷✸〈X 〉v

(21)

The theorem whose conclusion is the generalization of (20) is:

Theorem 3. With the notation and assumptions of Theorem 1, let Ai be an
action, for all i in a finite or countably infinite set I, and let (Ai)RM , AR

i , and
O be defined by (17) and (21). If, in addition,

2. (c) ∀ i ∈ I : R · 〈Ai ∧ E 〉v ⇒ 〈Ai ∧ E 〉v · R
(d) ∀ i ∈ I : 〈Ai ∧ E 〉v · L ⇒ L · 〈Ai ∧ E 〉v
(e) ∀ i ∈ I : 〈Ai ∧ R 〉v · E ⇒ E · 〈Ai ∧ R 〉v
(f) ∀ i ∈ I : E · 〈Ai ∧ L〉v ⇒ 〈Ai ∧ L〉v · E
(g) ∀ i ∈ I : (Ai)RM ⇒ (v ′ �= v)

then S ∧ Q ∧ O ⇒ ∃∃∃∃∃∃ v̂ : ✷I ∧ ŜR ∧ (∀ i ∈ I : ✷✸〈Ai 〉v ⇒ ✷✸〈ÂR
i 〉

v̂
).

328

To prove (19) and its analog for SF, it suffices to prove

I ∧ Enabled 〈ÂR 〉
v̂

⇒ Enabled 〈A〉v
This can be done with the following result, which is a simple consequence of the
definition of I .

Proposition 4. Let I be defined by (13). For any state predicates P and Q, if

(a)P ⇒ Q (b)Q∧ R ⇒ Q′ (c)L ∧ Q′ ⇒ Q
then I ∧ P̂ ⇒ Q, where ̂ is defined as in Theorem 1.

Combining this proposition with the definitions of WF and SF proves the fol-
lowing corollary to Theorem 3.

Corollary 5. With the notations and assumptions of Theorem 3, if

3. (a) ∀ i ∈ I : Enabled 〈AR
i 〉v ⇒ Enabled 〈Ai 〉v

(b) ∀ i ∈ I : (Enabled 〈Ai 〉v) ∧ R ⇒ (Enabled 〈Ai 〉v)′
(c) ∀ i ∈ I : L ∧ (Enabled 〈Ai 〉v)′ ⇒ Enabled 〈Ai 〉v

then
S ∧ (∀ i ∈ I : XFv (Ai)) ∧ Q ∧ O

⇒ ∃∃∃∃∃∃ v̂ : ✷I ∧ ŜR ∧ (∀ i ∈ I : XF
v̂
(ÂR

i))

where XFv (Ai) is either WFv (Ai) or SFv (Ai).

Hypothesis 3(a) holds automatically for each i such that Ai ∧ M equals false
or M , the two cases that inspired our definition of AR

i . It is this hypothesis that
most severely limits the class of actions Ai to which we can apply the corollary.
In applying the theorem or the corollary, we expect the specification’s fairness
properties to imply Q ∧ O .

7 Weakening the Commutativity Hypotheses

The fundamental assumptions on which our results are based are hypotheses
2(a) and 2(b) of Theorem 1, which are also hypotheses of all our other results.
These hypotheses allow us to “commute E steps past R and L steps”. We can
significantly strengthen our results by allowing an E step to change to an M
step when it commutes past an R or L step. That is, we can replace hypotheses
2(a) and 2(b) by the weaker conditions

2. (a) R · E ⇒ N · R
(b) E · L ⇒ L · N (22)

Allowing an E step to turn into an X step means that the virtual execution
may have additional M̂R steps during the first or second phases of an actual
execution of M , but the coupling invariant remains the same as before.

329

We can further strengthen our results for fairness by similarly weakening hy-
potheses 2(c)–(f) of Theorem 3 to allow E steps to change to M steps when com-
muting past R or L steps. However, one slight additional restriction is needed.
Suppose an Ai ∧ E step turned into an Ai ∧ R step when commuting past an
R step. If the system stayed forever in the first phase of executing M , never
executing an X step, then this Ai ∧R step would correspond to a stuttering step
of the virtual execution, not to an ÂR

i step. Hence, an execution could contain
infinitely many Ai steps and no ÂR

i steps. There are two ways to prevent this:
we can assume that there are infinitely many X steps, or we can forbid an Ai ∧E
step from turning into an Ai ∧ R step when it commutes past an R step. Since
we know of no interesting examples where commuting an E step can turn it
into an R step, we adopt the second approach and require that an Ai ∧ E step
either remain an Ai ∧E step or turn into an Ai ∧X step when commuting past
an R step. (The other possibility, turning into an Ai ∧ L step, is prohibited by
hypothesis 1(c).) Analogous considerations lead to the same requirement when
an Ai ∧E step commutes past an L step. So, we can replace hypotheses 2(c)–(f)
of Theorem 3 by:

2. (c) ∀ i ∈ I : R · 〈Ai ∧ E 〉v ⇒ 〈Ai ∧ (E ∨ X)〉v · R
(d) ∀ i ∈ I : 〈Ai ∧ E 〉v · L ⇒ L · 〈Ai ∧ (E ∨ X)〉v
(e) ∀ i ∈ I : 〈Ai ∧ R 〉v · E ⇒ N · 〈Ai ∧ R 〉v
(f) ∀ i ∈ I : E · 〈Ai ∧ L〉v ⇒ 〈Ai ∧ L〉v · N

(23)

8 Two Illustrative Examples

Our first example is a multiprocess database system. We assume every data item
has an associated lock that must be held by a process when it accesses the item,
and that a lock can be held by at most one process at a time. Suppose some
process p performs a sequence of transactions, and it executes each transaction
using a two-phase locking discipline: p can acquire but not release locks in the
first phase, and it can release but not acquire locks in the second. LetM represent
a process p action and let E represent an action of the rest of the system. We
define R and L so that M is in its first phase when process p acquires a lock
and in its second phase when p releases a lock. Theorem 1 asserts that we can
pretend that p executes each transaction in a single step of the atomic action
M̂R. If, in addition, we assume that p can preempt locks held by other processes,
then Corollary 5 allows us to infer fairness of action M̂R from fairness of M .

Our second example is a pipelined system consisting of a producer and a
consumer connected by a FIFO channel. We define M , E , R, and L so that: X
is a producer action performed when the channel is empty, E is a producer action
performed when the channel is nonempty, L is any consumer action, and R is
false. The strengthened version of Theorem 1 allows us to pretend that messages
are consumed as soon as they are produced, production and consumption both
done by the single atomic action M̂R. If all produced messages are consumable,

330

then the strengthened version of Corollary 5 allows us to deduce fairness of the
atomic production/consumption action M̂R from fairness of the producer and
consumer actions.

9 Proofs

We now briefly describe how our results are proved; complete proofs will appear
elsewhere. Theorem 1 follows from Theorem 3 by letting I be the empty set.
We already observed how Corollary 2 is proved by showing that (15) implies
C(S ∧ Q) ≡ S . Proposition 4 is proved by a straightforward calculation based
on the definitions of I and of the + operator; it easily proves Corollary 5. This
leaves Theorem 3.

In Section 3 we sketched an intuitive proof of (8). Section 6 indicated how we
can extend that proof to a proof of Theorem 3 for a single fairness condition—
that is, when I contains a single element. We used hypotheses 2 to commute
A ∧M or A ∧E steps. In the general case, we have the extra difficulty that the
hypotheses do not allow us simultaneously to commute all the Ai steps. When
extending the construction shown in Figure 1, we must choose a single Ai to
commute at each step. The choice must be made in such a way that every Ai

that is executed infinitely often is chosen infinitely often.
This proof sketch can be turned directly into a semantic proof of Theorem 3.

The theorem can also be proved using only the rules of TLA, with no semantic
reasoning. The key idea is to introduce a history variable that gives the value of
v̂ when R is true (before X is executed) and a prophecy variable that gives the
value of v̂ when L is true (after X is executed). (History and prophecy variables
are explained in [1].) In addition, we need a new type of infinite prophecy variable
that tells which disjunct of Q holds, as well as history and prophecy variables
that choose, at each point in the construction, which Ai to commute.

10 Further Remarks

We often want to use an invariant Inv of the specification S to verify the hy-
potheses of the theorems. For example, when proving that R right commutes
with E , we want to consider only states satisfying Inv . With TLA, it isn’t nec-
essary to weaken the hypotheses to take account of an invariant. Instead, we
apply the general rule

✷Inv ⇒ (✷[A]v ≡ ✷[Inv ∧A ∧ Inv ′]v)

Thus, if S implies ✷Inv , then we can replace M and E by Inv ∧ M ∧ Inv ′ and
Inv ∧ E ∧ Inv ′.

Many TLA specifications are of the form ∃∃∃∃∃∃w : S ∧ F , where w is a tuple of
“internal” variables. Since one proves (∃∃∃∃∃∃w : S ∧F) ⇒ Π by proving S ∧F ⇒ Π
(renaming variables if necessary), it suffices to reduce S ∧F . Thus, we can ignore
existential quantification (hiding) when applying a reduction theorem.

331

References

1. Mart́ın Abadi and Leslie Lamport. The existence of refinement mappings. Theo-
retical Computer Science, 82(2):253–284, May 1991.

2. Bowen Alpern and Fred B. Schneider. Defining liveness. Information Processing
Letters, 21(4):181–185, October 1985.

3. R. J. R. Back. Refining atomicity in parallel algorithms. Reports on Computer
Science and Mathematics Ser. A, No 57, Swedish University of Åbo, February 1988.

4. Ernie Cohen. Compositional Proofs of Asynchronous Programs. PhD thesis, Uni-
versity of Texas at Austin, May 1993.

5. Ernie Cohen. A guide to reduction. Technical Report TM-ARH-023816, Bellcore,
1993. Available from the author at ernie@bellcore.com.

6. Thomas W. Doeppner, Jr. Parallel program correctness through refinement. In
Fourth Annual ACM Symposium on Principles of Programming Languages, pages
155–169. ACM, January 1977.

7. David Gries and Ivan Stojmenović. A note on Graham’s convex hull algorithm.
Information Processing Letters, 25(5):323–327, July 1987.

8. Leslie Lamport. The temporal logic of actions. ACM Transactions on Programming
Languages and Systems, 16(3):872–923, May 1994.

9. Leslie Lamport and Fred B. Schneider. Pretending atomicity. Research Report 44,
Digital Equipment Corporation, Systems Research Center, May 1989.

10. Richard J. Lipton. Reduction: A method of proving properties of parallel programs.
Communications of the ACM, 18(12):717–721, December 1975.

11. S. Owicki and D. Gries. An axiomatic proof technique for parallel programs I.
Acta Informatica, 6(4):319–340, 1976.

