
Lower Bounds on Consensus

Leslie Lamport
Compaq Systems Research Center

Mon 13 Mar 2000 [10:01]

Abstract

We derive lower bounds on the number of messages and the number
of message delays required by a nonblocking fault-tolerant consensus
algorithm, and we show that variants of the Paxos algorithm achieve
those bounds.

1 Introduction

What is the cost of making a decision in a fault-tolerant distributed sys-
tem? The answer depends on the class of algorithms we allow and how we
measure the cost. We consider asynchronous algorithms and their standard
cost measures—namely, the number of messages and the number of message
delays. (An algorithm requires k message delays if some execution contains
a chain of k messages, each of which cannot be sent before receiving the
preceding one.)
The classic result of Fischer, Lynch, and Patterson [3] implies that a

fault-tolerant algorithm cannot be asynchronous. However, outside the do-
main of process control, most fault-tolerant distributed algorithms use time
only to detect failure. In the absence of failure, they are essentially asyn-
chronous. Since failures should be rare, the cost of failure recovery need
only be reasonable; it need not be optimal. The number of message delays
and the number of messages, in the absence of failure, are the significant
costs.
How long it takes to make a decision depends on precisely what making

a decision means. We take it to mean choosing an output to send outside
the system. For example, in a banking system, it could mean sending a
message that instructs an automated teller machine (ATM) to dispense $200
to a customer. The sending of an output is irrevocable. The system might

1

later send a second output countermanding the first—for example, sending
a message that instructs the ATM to ask the customer to return the $200.
But, that does not change the first output. We also assume that what output
is sent may affect future outputs. Hence, the output must be made known
to at least some of the processors implementing the system.
We assume that an individual processor can decide that the system

should generate a certain output. We determine the number of message
delays until the output can actually be sent and until some set of processors
knows what output has been chosen. We also determine the total number
of messages required.
Under our assumptions, the problem of making a decision can be ab-

stracted as the following consensus problem: each processor begins with an
input value that only it knows, and the processors must eventually agree
upon a single output value that equals some processor’s input value. Re-
quiring that processors have no knowledge of other processors’ input values
rules out solutions that “cheat” by assuming a priori knowledge of what the
output should be.
We consider consensus algorithms implemented with a network of proces-

sors that communicate by message passing. The algorithm should tolerate
non-Byzantine failures—that is, failures in which processors may “crash”
and messages may be lost. Our lower bounds depend only on the possibility
of message loss, but a practical algorithm should also tolerate processor fail-
ure. We require the algorithm to be nonblocking, meaning that a majority
of nonfaulty processors that can all communicate with one another must
eventually choose an output value.
Fault-tolerant algorithms are usually implemented by selecting one pro-

cessor to be the leader, and having it coordinate the decision-making process.
If the leader fails, then a new leader is chosen. There seem to be two con-
flicting popular beliefs about the cost of making a decision. One is that the
leader can simply decide and then inform the other processors of its decision
with a single message delay [1]. If the leader fails, the other processors make
the decision. The other belief is that a three-phase commit protocol à la
Skeen [6] is needed. It is not exactly clear what that means, but it seems to
imply that at least three message delays are required. If making a decision is
interpreted as solving the consensus problem, then neither belief is correct.
We show that consensus requires and can be achieved in two message

delays. With only three processors, two of the processors can know the
outcome after only one message delay; with more processors, two message
delays are needed before any processor knows what output has been cho-
sen. For an N -processor system, the time-optimal algorithm requires about

2

N (N − 2)/2 messages to inform all processors of the output. By taking
about N /2 message delays, an output can be chosen and made known to all
processors with only about 3N /2 messages. In both cases, variants of the
Paxos algorithm [2, 4, 5] yield optimal algorithms.

2 The Consensus Problem

We now specify the consensus problem more precisely. We assume a network
of processors that communicate by sending messages that can be lost. For
the lower-bound result, there is no need to appeal to processor failure, al-
though we do allow the possibility that network partition causes all messages
to and from some processor to be lost. Like the ordinary Paxos algorithm,
its optimal variants can tolerate processor failure and message duplication
as well.
We require that safety always be preserved—that is, two processors can

never choose different outputs, regardless of how many messages are lost.
For liveness, we require that the system eventually produce an output if a
majority of the processors can communicate with one another. To allow
for more general algorithms—especially when there are an even number of
processors—we generalize from a majority of the processors to a majority
set of processors. We require that, if there is some majority set M such
that no message sent from one processor in M to another processor in M is
lost, then an output is eventually chosen and all processors in M eventually
learn its value. All we assume of the collection of majority sets is that they
satisfy the following conditions.

1. Any two majority sets have at least one processor in common.

2. No majority set consists of a single processor.

3. If a set P of processors is not a majority set, then the set of processors
not in P is a majority set.

The first assumption is necessary if there is to be a solution, since two discon-
nected subnetworks cannot be guaranteed to choose the same output value.
The remaining two assumptions insure that the algorithm is nonblocking,
since they imply that the failure of any one processor cannot prevent the
algorithm from making progress. The third assumption also ensures that
there are as many majority sets as possible. These three assumptions are
satisfied if the majority sets are taken to be all sets containing more than

3

half the processors, together with half the sets containing exactly half the
processors (if there are an even number of processors).
We measure cost under the assumption that all messages are delivered.

However, the algorithm cannot rely on messages being delivered; it must
maintain consistency in the face of arbitrary message loss.

3 The Lower Bounds

In deriving lower bounds, we assume that the algorithm works in rounds,
where a round consists of the sending of messages by some set of processors
and the receipt of a subset of those messages. Lower bounds on an algorithm
with such synchronous rounds obviously apply to asynchronous algorithms.
We first show that at least one round is needed before any processor

can know what value is chosen. Without receiving any message, a processor
p knows only its own input value, so that is the only value it can choose
as output. However, there exists a majority set M not containing p. If the
processors inM can communicate with one another, then they must choose a
value. If they cannot communicate with p, then they cannot learn p’s input
value, so they may choose a different value. Hence, p cannot unilaterally
choose its own value.
We now show that at least two rounds are needed before all processors

know what value is chosen. Suppose the value chosen is the input of pro-
cessor p. After the first round, p cannot know whether the messages it sent
have been received. Therefore, it cannot know if any other processor knows
its value. If no other processor received its messages, then its value could
obviously not have been chosen. Hence, p cannot know until the second
round that its value was chosen.
If there is a majority set consisting of exactly two processors, then we

will see that it is possible for one of those processors to know the output
after the first round. However, suppose that every majority set contains at
least three processors, and that the input of processor p is chosen. After
the first round, no processor q can know if any processor other than it and
p knows p’s input value. A network partition could have left p and q able
to communicate only with one another. In that case, there is a majority set
not containing p and q that might eventually choose a value—which might
not be p’s since they could not know p’s input value. So, q could not know
that p’s value is chosen after round 1. Hence, if there is no majority set
consisting of two processors, then at least two rounds are needed before any
processor knows what value is chosen.

4

We can refine these arguments to obtain lower bounds on the number
of messages, assuming that n processors must learn what value is chosen.
Let m be the number of processors in the smallest majority set, let M be a
majority set with m elements, and assume that the value chosen is the input
value of a processor p in M . Each processor in M must learn p’s value, and
must learn that every processor in M knows p’s value. Otherwise, some
processor q in M cannot distinguish the actual scenario from one in which
only some proper subset of the processors in M know p’s value—a scenario
in which some other majority set must choose a value that may be different
from p’s. The processors outside M must also learn that the value has
been chosen, so they need the same information. To accomplish this in two
rounds requires p to send m − 1 messages in round 1, and for each of the
other m − 1 processors in M to send a message to all n − 1 processors other
than itself. This gives a total of n(m − 1) messages. The same information
can be transmitted with fewer messages as follows. Processor p sends its
input to one processor in M , which relays it to another processor in M , and
so on until the message reaches the mth processor in M . That processor
then sends a message to all n − 1 processors other than itself. This uses
m+n − 2 messages and m rounds. It can be shown that this is the minimal
number of messages, and any algorithm using that few messages requires at
least m rounds.
The bounds given in the introduction were obtained by taking n to be

the number N of processors and m to equal about N /2. To ensure that the
system can make future decisions that depend on the chosen output, it is
only necessary that all processors in some majority set learn what value is
chosen. Any majority set then contains at least one processor that knows
the chosen value.

4 The Algorithm

We have shown that any algorithm requires at least two message delays. An
algorithm that uses only two messages delays and informs n processors of
the outcome requires n(m − 1) messages; an algorithm can use as few as
m+n−2 messages, but then requires m message delays. We now show that
all these bounds can be achieved by variants of the Paxos algorithm—more
precisely, by variants of the synod protocol that lies at the heart of Paxos.
The synod protocol is a consensus algorithm that assumes that a leader has
been elected. Safety is guaranteed even if there is no leader or there are
multiple leaders. Liveness depends on the existence of a single leader. We

5

now sketch the protocol.
The synod protocol consists of three phases. In the first phase, the leader

sends a message to every processor in a majority set M and receives a reply.
(In this description, a processor can send a message to itself; in the actual
algorithm, such a message is not really sent.) In the second phase, the leader
sends another message containing its input to the processors in M . Each
processor in M replies with an acknowledgment message.
The leader’s input value is committed as the chosen value as soon as all

the processors in M have received the phase-2 message. The leader knows
that the value has been chosen as soon as it has received all the phase-2
acknowledgments. If the leader and another processor q in M form a two-
element majority set, then q knows that the value has been chosen as soon
as it receives the phase-2 message. If all majority sets contain more than
two processors, then the leader is the first to learn that its value has been
chosen. In phase 3, the leader sends messages to the other n − 1 processors
informing them that its input was chosen.
This sketch describes how the synod protocol behaves if there is a single

leader and there are no failures or lost messages. The complete synod pro-
tocol, which requires saving information in stable storage to protect against
processor crashes, can be found elsewhere [2, 4, 5].
The Paxos algorithm for implementing a distributed system uses a se-

quence of separate instances of the synod protocol. The first phase of all
those instances is executed only once. This is possible because the leader
does not reveal its input value until the second phase. We turn the synod
protocol into consensus algorithms satisfying our lower bounds by start-
ing it in the state following completion of phase 1. To obtain the two-
message-delay lower bound, we modify phase 2 by having processors send
their acknowledgments to all processors, not just to the leader. A processor
knows that the leader’s value has been chosen when it receives the acknowl-
edgments from all processors in M other than the leader. This produces a
two-message delay algorithm with the optimal number n(m−1) of messages
for such an algorithm. We can reduce the number of messages by packaging
the leader’s message and/or multiple acknowledgments in a single message.
The minimal number of messages, m+n−2, is obtained with an m-message
delay algorithm as indicated above. The leader sends its phase-2 message
to one other processor in M , who relays it and his acknowledgment to the
next processor in M , and so on; and the last processor in M combines all
those acknowledgments into a message that it sends to the remaining n − 1
processors. The original synod protocol is a compromise between the two
optimal versions, using three message delays and 2m + n − 3 messages.

6

Acknowledgment

Mark Hayden’s comments helped us improve the current version.

References

[1] Kenneth Birman, André Schiper, and Pat Stephenson. Lightweight
causal and atomic group multicast. ACM Transactions on Computer
Systems, 9(3):272–314, August 1991.

[2] Roberto De Prisco, Butler Lampson, and Nancy Lynch. Revisiting the
Paxos algorithm. In Marios Mavronicolas and Philippas Tsigas, edi-
tors, Proceedings of the 11th International Workshop on Distributed Al-
gorithms (WDAG 97), volume 1320 of Lecture Notes in Computer Sci-
ence, pages 111–125, Saarbruken, Germany, 1997. Springer-Verlag.

[3] Michael J. Fischer, Nancy Lynch, and Michael S. Paterson. Impossibility
of distributed consensus with one faulty process. Journal of the ACM,
32(2):374–382, April 1985.

[4] Leslie Lamport. The part-time parliament. ACM Transactions on Com-
puter Systems, 16(2):133–169, May 1998.

[5] Butler W. Lampson. How to build a highly available system using con-
sensus. In Ozalp Babaoglu and Keith Marzullo, editors, Distributed Algo-
rithms, volume 1151 of Lecture Notes in Computer Science, pages 1–17,
Berlin, 1996. Springer-Verlag.

[6] Marion Dale Skeen. Crash Recovery in a Distributed Database System.
PhD thesis, University of California, Berkeley, May 1982.

7

