The Coordinate Method for the Parallel

Execution of Iterative Loops

by

Leslie Lamport

August 2, 1976
CA-7608-0221
Minor Revisions: 31 May 1979 and
21 October 1981

2 Internetional

This work was done while the author was at Massachusetts Computer
Associates, and was supported by the Advanced Research Projects
Agency of the Department of Defense and Rome Air Develcrment
Center. It was monitored by Rome Air Development Centsr under
contract number F 30602-76-C0094.

e L
AT TN NN

SRi

Internation
NN LA
ST P

333 Ravenswood Ave. « Menlo Park, CA 94025
al (415) 859-6200 « TWX: 910-373-2046 - Telex: 334 486
= ®

Abstract

A method is described for compiling a sequential program for execution
on an array or vector computer. It transforms sequential loops so that the dif-
ferent iterations are executed in parallel, generalizing previous techniques for
doing this. A method of analyzing and representing a program is developed

which can be applied to other optimization problems.

Key Words and Phrases: parallel computing, array computers, vector

computers, nested loops, compiler optimization, multiprocessor computers.

CR Categories: 4.12, 5.24

Table of Contents

Introduction « « « « ¢« « ¢ ¢ o o o o @
The Programming Language . . « « «
The Essential Aspects of the Program
The Tree Representations « «
Equivalent Tree Representatiohs. 4
The Coordinate Algorithm . . « « « &
The Coordinate Method . . . « « . &
The Hyperplane Method « i s
CoRCIUSIONn. &« w5 o % a5 % % % & &
References . ¢« ¢ o o ¢« o o & PR
FIGUTES & s o s v % o % o » @ s« & &

Tables L] Ll a L] L L] L - o - Ll L] - - L L

« &3

. 26

.34

« 37

« 39

. 42

. 44

. 49

Introduction

There are currently several array and vector computers in operation.

The need for increased computation power and the decreasing cost of hardware

will lead to the wider availability of such parallel computers. We consider the
problem of compiling a sequential program for parallel execution by these com-
puters. Different types of parallel computers will differ in the details of what
they can execute in parallel, and writing efficiemnt programs for them will not
be easy. The ability to compile a sequential program into a parallel version
tailored to the particular computer will simplify the programming task and make

it easier to transfer a program from one computer to another.

The coordinate method described here basically attempts to tramnsform
iterative loops so that all the iterations are performed in parallel. This seems
to be the most practical approach for current array and vector computers. How-
ever, it may not be possible to execute an entire loop in this way. We will il-
lustrate the coordinate method by applying it to the loop:. of Figure 1. This loop
is written in a simple programming language which will be precisely defined later,
but its meaning should be clear. (The circled items are for future reference, and
should be ignored now.) The SIM FOR ALL K statement specifies simultaneous
execution of its DO clause for all the indicated values of K, and might have
been generated by a previous step in the coordinate method. The loop does not
compute anything of interest, but is contrived to provide a compact illustration
of the coordinate method's capability. In attempting to execute all iteratioms of
this TOR I loop in parallel, the coordinate method can transform this loop into
the program shown in Figure 2. To obtain the maximum amount of parallel execution,

(1)

the FCR I loop is split into three parts: the parallel SIM FOR ALL I and SIM FOR

ALL ILJ) statements, and the sequential FOR 1(2) loop. Note the radical restructuring

(2) (3)

that is performed. The FOR I and SIM FOR ALL statements have been moved

inside the FOR J loop, and the single IF statement has been split so that the ELSE

1

3
clause is in the FOR 1(2) loop and the THEN clause is in the 3IM FGR ALL I()
statement. In general, the coordinate method can be zpplied to any program
containing nested sequential loops. This should include most progrzmzs suitable for

execution by an array or vector computer.

Much work has already been done on the problem of sequential to parallel
conversion [3, 4, 5, 7, 9, 11, 12). The method described in this paper generalizes
the coordinate method of [4 1, as weil as generalizing several other approaches
I8, 10, 11]. A way of generalizing the hyperplane method of [&4] ie z2lsc sketched.

Preliminary versions of some of the results described here

FE : 2

Perhaps more important than the actual sequential ro parzllel conversion
techniques themselves is the method of analyzing and representing a Program upon
which they are based. Translating a sequential zrogram to zn equivalent parallel
version may require changing the order in which differeut parts of the program
are executed. Such a program transformation is usually described in terms of
moving code from onme part of the program to another. we tzke a different approach.

The program is first translated into a new form, called a tree representation, which

eliminates the unnecessary execution orderingshat were speciiied when it was
written in an ordinary programming language. Sequentizl to parallel conversion

is periormed by transforming the tree representation. che can then be generated
directly from the new representation. We believe that zny optimization technique
which exploits the program's loop structure can best be performed by such a trans-

formation of the tree representation.

The major part of the paper is devoted to the development of the tree
representation. Although the ideas are basically simple, quite a bit of nota-
tion must be introduced. We feel that the elegance and simplicity of the re-
sults justifies the effort of coping with this unfamiliar notation. Moreover, the

notation itself can be useful in implementing the coordinate method.

The Programming Language

We begin by describing a simple programming language for the source
program, which allows the explicit specification of parallel execution. The
language contains no input/output or subroutine calling statements, so it can
only be used to represent part of an actual source program. The only data
structures are k-dimensional array variables, for any k,and integer valued

indices. (A scalar is a zero-dimensional array.)

Note: 1. The indices in Figure 1 are I, J, K and L. They are usually called
index variables, but we reserve the term''variable'" for a variable whose value

may be changed by an assignment statement. End note.

An expression is defined in the usual way. The components of an ex-
pression are constants, variable occurrences and indices. A variable occurrence
is an expression of the form V(subscripts), where V is a k-dimensicnal array vari-
able and subscripts is a k-tuple of integer valued expressions. We will not bother
to specify any declaration statements, and will not concern ourselves with the

range of values which an element of an array variable may assume.

A program consists of a single statement. A statement consists of a
list of elementary statements separated by semicolons. There are four types
of elementary statements, illustrated in Figures 1 and 2: assignment, IF, FOR
and SIM statements. For convenience, we assume that no two FOR or SIM state-

ments have the same index.

To describe the semantics of this programming language precisely, we

first introduce some notation. For any subscripted symbol or expression Xi

: -
and any integer m 2 0 , we let Xm denote the m-tuple (Xl, cee ¢ Xm) . In

-.
particular, XO denotes the O-tuple () . We define Z™ to be the set of all
.M

m-tuples of integers. Addition and subtraction in 2™ are the usual vector
L.

-+ -+

operations defined by im + jm =1 , and the zero element 0 ¢ gt
M L]

m = jm
equals (0, ..., 0) . Welet < [boldface <] denote the lexicographical
H
- -+
ordering on %m defined inductively by im < jm iff (if and only if) either
M

- -

@) i < -

= - . .
i or(b) i _y =i,y and i <j, .

Each program statement and expression S has associated with it a

Y -
free index list of the form Im z In , where the Ik and IJz are indices. We

-+ -+
call Im and In the FOR multi-index and the SIM multi-index of S , respec-
-
tively. The FOR multi-index Im indicates that S is in the DO clause of a
FOR im statement, which is in the DO clause of a FOR Im—l statement,
etc. Similarly, the SIM multi-index indicates the nesting of SIM state-
.2 m n -
ments which contain § . Forany (i _;j) ¢ 2 x2Z , defineS({ ;i)
m n M ™ m n
to be the statement or expression obtained from S by substituting ik
for Ik,k-'—l, v w gp B go80d j£ for }'L,f,:l,_... ., n . The

entire program is a single statement whose free index list is (); () .

r

<+ =

A program statement or expression S with free index list Im; In is

-’
executed with a context of the form ?m; ¢ , where i’m € ﬁm and C cﬁn .
-
Executing S with the context ?m: C means executing S(?m; j n) simultaneous-
-’

1y for all jn e C , as defined below.

The entire program is executed with the context (); Z0 . The semantics

L

of our programming language are then defined inductively by the following des-
-+

Y
cription of how a statement S with free index list Im; In is executed with the

-’
context im: ¢ . There are five cases to be considered.

Sl. S is the list of elementary statements Sl: i Sp . Each

=
Si is executed in turn with the context i i c .

S2. S is the assignment statement

V[subscripts] :=exp .
The expressions subscripts and exp are first executed by evaluating

-+ = -+ -

subscrigts(im; jn) and exg(im; jn) for all R The occurrence
V[subscripts] is then executed by setting each array element

; -+ - + - =
V[subscripts(i_: j)] equal to exp(i ;j) forall joecC . We
require that if ?]-" e C and ? %F then subscripts (-i' -;) #

n' n n’ ‘n’ m’ ‘n

-'
subscrigts(im; j;l) . Hence, no array element is set twice by this

execution.

S3.- S is the statement

ELSE S, FlI .

IMNMM 2M

IF exp THEN S
A MAMAAAM

The boolean valued expression exp is first executed by evaluating

- -+ -+
exg(im: jn) for all jn e ¢ . Next, S1 is executed with the context

- -+ - - -)
i pecC exp(i ;) true} , and then §, is executed with

4

-+ -+ -+
the context i ; {j e C :expli ,j) = false} .

S4. S is the statement
:= 2] L] o . .
FOR Im-i-]_ lower, 1imit EE upper. limit DO S' OD . For simplicity,
w e only consider the case in which the integer valued expressions
lower,.limit and upper.limit do not contain any of the SIM indices
-+
T g These expressions are first executed by evaluating lower.limit(im)
-5

and ugger,limit(im) , and S' is then executed successively with

i for i =1 limit(@), 1 limit(@) + 1
the contexts i+1 ¢ for i _,, = lower.lim t i), lower.limit(i e onan B
ggger,limit(?m) . Of course, S' is not executed at all if

-y . >
lower hmlt(lm) > ugger.hmit(lm) .

S5. S is the statement
SIM FOR ALL T ¢S DO §' OD. .
ey ok AW HANAI

The expression § , whose value is a set of integers, is first executed
- -

-’
by evaluating g(im; jn) for all jpecC . The statement S' is then
d with th L.t T ' @ :7)
executed with the context i _; {j ., i ec and j_,, esi : iy .

Notes: 2. We have chosen the IF statement as our conditional statement for
simplicity. Any conditional construction can be used, including conditional
gotos. We need only require that the gotos neither transfer control into or out

of a DO clause, nor form a loop.

3. For simplicity, we only define a FOR loop in which the index is
incremented by one. The generalization of our method to an arbitrary con-

stant increment is described later.

4, The assignment, IF and FOR statements have their usual meanings

when they are not inside any SIM statement and are executed with the context
-5
im; ZO . In this case, one clause of the IF statement is executed with the
M
'y
context ?m; ZO and the other clause with the context im; ¢ . where ¢ denotes
L)

the empty set. A statement does nothing if it is executed with the context

-i..
m'® °

5. The set ¢ in the context ?m: ¢ is called the SIM context. The
SIM and IF statements are used to change the SIM context under which their
component clauses are executed. They can be eliminated by introducing a
statement to explicitly set the SIM context. In fact, the SIM and IF state-
ments are removed from a program in just this way when compiling it for
execution on an array or vector computer. (If the computer has separate
scalar operations, then an IF statement whose conditional expression con-

tains no SIM indices is eliminated by using conditional gotos.)

6. Suppose a statement or expression S is executed once with the
-+ . . —_ -5 -
context 1i_; C and another time with the context il'n; ¢' . Then im # ir'n

and the execution with context ?m: ¢ is specified by S1-85 to precede the

—

—
execution with context i;n; c' iff < i;n . The generalization of S4 to allow

i
m

lower. limit and upper, limit to contain SIM indices is made so that this remains

“true. We will not bother with the details of the general definition.

7. Suppose the statement

SIM FORALL I¢8 DO S' OD

RSN RAAMMARAA AN AN
is to be executed on an array computer having fewer processors than there are
elements in & . Then S' cannot actually be executed simultaneously for all
elements of § . To minimize the amount of index computation, one would
then like to "strip mine" the SIM statement by executing it as follows:

FOR J:=1 TO n DO SIM FORALL I8, DO 8" OD OD ,

MM LT AR MMM M I R MM AN
where § = 8;U--.US, and if Xe8, yesj , and i< j then x<y
This is not always possible, since it changes the execution order specified

by S1-85. The problem of strip mining a SIM statement is discussed in [61.

8. Many additional r;astrictions must be placed on a program to permit
efficient execution by a particular computer. For example, some restriction
on the subscript expression of a variable occurrence is needed to insure that
the parallel fetching or storing of values implied by the SIM context can actually
be performed in parallel by the computer. These restrictions will not concern

us. End notes.

The Essential Aspects of the Program

The programming language provides a convenient method for

describing programs. However, it is notwell suited to our purpose because

it places unnecessary constraints on the order in which expressions are executed.
We will extract from the program just those constraints which are necessary.

This will lead to the tree representation of the program.

Executing a program involves the following three types of actions:
(1) Fetching the value of an array variable element
(2) Storing a value in an array variable element.
(3) Evaluating a function of the fetched values and the index
values to determine:
(i) the values of the indices for which a fetch or
store is to be executed, or
(ii) the particular array element to be fetched or
stored, or

(1ii) the value to be stored.

We will concern ourselves with actions of type(1l) and (2) and largely
ignore type(3)iactions. A complete representation of the program must include a spec-
ification of the functions to be evaluated. Defining this specification is not
difficult, but it involves a number of uninteresting details which we wish to
avoid. Instead, we will just consider the execution of the program to con-
sist of the fetches and stores to variable elements. Our first task is to deter-
mine what ordering relations on these fetches and stores are needed to pre-

serve the meaning of the program.

We will represent the program's nested FOR statement structure by a

tree, so we need some terminology for discussing trees. We let @ denote
the root of a tree, and use the customary father/son relation to describe the
tree structure. Hence, 0 is an ancestor of all nodes other than itself. A
node with no sons is called a leaf. Two distinct nodes are said to be cousins

if neither one is an ancestor of the other.

For any node v , we define]v| to be the number of ancestors of

v ,so || =0 . We define the ancestor-tuple of v to be ;lvl_l p

where Q , Mye soo s “I”I'l , v is the unique path from the roctto v .

For any pair of leaves u, v we define u nv to be the node v such
that (i) » is an ancestor of both u and v , and (ii) if y is any other an-
cestor of both u and v then |4 is anancestorof v ., Hence, unu is

the father of u .

We now define the program tree of a program to be the tree whose root

is 0 , whose leaves are the program's variable occurrences, and whose re-
maining nodes are the program's FOR indices. The expected tree structure is
defined by requiring that the ancestor-tuple of each occurrence equals its FOR
multi~-index. Each variable occurrence in the programs of Figures 1 and 2 has
been given a name, which appears in a circle beneath the occurrence. The

program tree for the program of Figure 1 is given in Figure 3.

The semantics of our programming language defines a partial ordering

relation -+ among the variable occurrences, where u 4 v means that the oc-

10

currence u precedes the occurrence v in the execution sequence. More pre-
cisely, if u and v are occurrences in a statement S , then u = v in the fol-

lowing cases.

L1, S is the statement Sl; i :Sp ,u appears in Si , V appears

in S, and i<j .

j

L2, S is the statement
v = eXp

and u appears in the expression exp .

L3. S is the statement
IF exp THEN S1 ELSE S2 Fl
A A A NANAMANA A
and either (i) u appears in exp and v appears in S1 or 82 ‘

or (ii) u appears in S1 and v appears in S2 g

L4. S is the statement
FOR I := lower.limit TO upper.limit DO §' OD ,
AL MAMA M AN

u appears in lower,limit or upper.limit and v appears in s' .

L5. S is the statement
SIM FORALL Je¢s DO S OD ,
HAAMAMMAANAAMAMAM A AR AN

u appears in the expression § and v appears in S' .

11

L6. The occurrence v is of the form V[subscripts] and u appears

in the expression subscripts .

Let v be an occurrence of the form V[subscripts] with free index
list fm: ?n . We call v a generation if it appears as the left-hand side of
an assignment statement, otherwise it is called a use. A generation is executed
by setting the value of an array element, and a use is executed by fetching its
value. We define z(v) to equal Em X En , and define the index set of v ,
denoted by J4() , to be the subset of Z (v) consisting of all elements
(i.m: ;n) such that v is executed under a context ?m’. ¢ with ?n eC .
During the execution of the program, the occurrence v is executed once for
each element (fm: ?) in g(v) . This execution of v is said to reference the

n
the array element V[subscripts (i'm;]T'n)] , fetching its value if v is a use

-
and setting its value if v is a generation. For any element (im; i) ezlv) ,

n
we define (f:J_")l to equal 'y eZk k=1, ..., m . We also define
m n'I]c | ™

(-D

o 0
i Jn)l0 to equal () el .

In the program of Figure 1, we have Zz(cZ) = Ez xEI and g(c2) =
{G,2;%) :1sisRl] , 3s¢4s9 , 0sks63 and F[i, x]>0} . The
index set thus depends upon the initial values of variables. Executing c2
for the element (i,z; k) ¢ J(c2) references C[i-1, k+1, ;-3] by fetching
its value. For any (i, 2; k)e z(c2) we have (i, 4; k)|L = (i, #) and

(t,gs %)= @) .

12

We now ask what ordering of the individual executions of occurrences
is specified by the program. Remembering Note 6, it is a simple exercise in
understanding our notation to verify that the answer is given by the following

condition.

PE. Let u, v be a pair of occurrences, let pe J(u) and qe 3v) .
The execution of u for f.. precedes the execution of v for g;‘ if
either

1)

(ii)

N EA

E(unv
b
"

lunv

If the order of two executions is not specified by PE , then those
executions may be performed in either order, or simultaneously. Observe

that PE applies when u =v as well as when u#v .

Condition PE specifies many unnecessary orderings among executions
because the relation -+ is stronger than it need be. For example, consider
the statement
*(J:=0; ¥]e=0 .
Because of L1, condition PE specifies that the setting of X[] must precede
the setting of Y[] , even though the order of these operations is obviously
irrelevant. We will therefore redefine the relation -+ to eliminate the unneces-

sary orderings specified by L1-L6.

13

In L2, L3(1), L4, L5 and L6, the value fetched by executing the use u for
some p e J(u) is used either to execute v for some q ¢ J(v) [L2, L6] , or
M A
else to determine if q is an element of 8(v) [L3(i), L4, L5] . The structure

M

= q| , so the

of the program implies that in all of these cases R[u av AQunv

relation u » v 1is needed to preserve the logical structure of program. For

later use, we restate these conditions more abstractly as follows.

"Rl. If u is a use and v any occurrence, and for some De J) ,
3 e z(v) the value fetched when u is executed for p i.s' used either:
(1) to determine if q e Jv) , or
(ii) to evaluate the subscript expression of v when it is
executed for g e dv) , or
(iii) to evaluate the expression which determines the value

stored by executing v for g ¢ 4(v) , v a generation;
A

then Elunv = ?“!-unv and u-+v .

Note: 9. Condition (i) is a restatement of L3(i), L4 and L5. It means that the
value fetched by executing u for p is needed to decide if v should be exe-
)

cuted for @ . The relation u -+ v insures that this value is available before
.

the execution of v for ﬁ . This is clearly necessary if v is a generation.
It is not necessary if v is a use, since executing a fetch has no effect if
the value fetched is never used. In practise, however, fetching the value
might cause an out of bounds memory reference, and e{zaluating an expres-

sion with it might cause an overflow error. Thus, these theoretically unneces-

sary relations - usually must be included, even though they will prevent cer-

14

tain optimizations. (In a parallel or pipelined computer, it is often faster
unconditionally to evaluate an expression even if its value might not subse-
quently be used.) This suggests a possible area for improvement in computer

design. End note,.

We now consider which of the relations - determined by the remaining
conditions L1 and L3(i1) are necessary. Condition Rl insures that when exe-
cuting the program, the arguments of functions are fetched before the functions
neeld to be evaluated. We are thus free to regard the program execution as con-
sisting only of fetch and store operations. We now ask which of the orderings
among those operations are Inecessary to preserve the meaning of the program.
The order of operations to different array elements, or of fetches to the same
element, is clearly irrelevant. It is easy to see that the following condition

suffices to preserve the meaning of the program.
Q1. If two occurrence executions reference the same array element,
and at least one of them is a store, then the order of those executions
must be preserved.

As an example, consider the following statement.

SIM FORALL I¢ {i:1ls i< 99}
WMW
DO IF S{(1]>0 THEN T{I]:=T[1I-1]

FANMAL MM AAUAAAAN AL
ELSE T[1]l:=7T[1]l+1 FI OD
AAAAAN WAL UL

15

Condition L3(ii) im.plies that all the fetches of T[I-1] in the THEN clause
precede all the stores of T{ 1] in the ELSE clause. Reversing the order of
these fetches and stores may change the effect of executing the statement,
thus altering the meaning of the program. It does not matter whether or not
the fetches in the THEN clause are performed before the fetches in the ELSE
clause. It also does not matter in which order the stores are performed, since

they reference different array elements.

We define a relevant occurrence pair u, v to be a pair of occurrences
of the same variable, at least one of which is a generation. Using condition PE,

we may restate Q1 as follows.

Q2. For every relevant occurrence pair u, v : if there exist
Pe d(u) and q ¢ J(v). such that
M
(@) the executions of u for R and of v for g reference
M

same array element,

(b) = ﬁlunv , and

Plunv
(c) if u=v then p#q ,
) MA

then either u+v or v-su .

Which of the two possible relations u-v or v »u holds is
determined by L1-L6. Since u and/or v is a generation, L1-L6 imply that
one of these relations holds when u #v . When u=v , the assumption
made in S2 implies that (@) and (b) of Q2 cannot hold for R# q . Hence,

that assumption is implied by Q2 and the fact that v A v .

16

- - |unv|
For EQJ(U) and J'q“e;ga(v) ,Ietﬁ ,q.lunv Elunveﬁ .
Then 2ly nvESluny ¥ X282 % BlunvTdlny HE7L -

In Q2, it is more convenient to work with the single element x rather than
I3
the pair of elements p, 9 . We therefore make the following definition.
L
Definition: For any relevant occurrence pair u, v , the set <<u, v>> cﬁ‘u nvi
i{s defined to be the set of all x for which there exist p ¢ 4(u) and q ¢ J(v)
L. . L] A
such that:

@ %= upv Bluav

(b) the execution of u for p and of v for q reference
M M
the same array element, and

(¢) if u=v then p#q .
L])
Using this definition, Q2 can be restated more compactly as follows.

Q3. For any relevant occurrence pair u, v : if 0 ¢ <<u, v>> then
A

either uav or vau .

As an example, consider the relevant occurrence pair bl, b3 in the
program of Figure 1. We see from Figure 3 _that bl nb3 = I ., Execution of
bl for I =i references the same element as execution of b3 for I=1i-1
Hence, <:<b%, b3>> = { (1)} if there is some 1, j, k, 4 such that
(i, §;) e 9(b1) and (i-1, g; k) ¢ 4(b3) ; otherwise, <<bl, b3>> =¢ .

Similarly, <<bl, b2>> is the set of all elements of the form (0, y) such
that there exist i, j with (i, j;) ¢ 3(bl) and (@, j+y;) ¢ 3(b2)

17

The set <<u, v>> may depend upon the initial values of variables, and
so may not be known to the compiler. We therefore assume that for each relevant
occurrence pair u, v , we are given a set <u, v>cC J“Zm‘ unvi such that
<<, v>> c<u,v> . The set <u, v> is the smallest convenient upper bound
which the compiler can place on <<u, v>> . For the program of Figure 1, we

could have <bl, b3> = {(-1)} and <bl, b2>={(0, y) : -99 <y < 99} .

Table I contains the sets <u, v> which a compiler might construct
for the program of Figure 1. We have made very simple choices for these sets.
E.g., we ignored the information about <<bl, b2>> given by the limits of the
FOR J statement. This is because the only thing a compiler needs to know
about an element of <u, v> when applying the coordinate algorithm is which

of its components are positive, which are negative, and which are zero.

Finding a set <u, v> which contains all possible useful information
about <<u, v>> is crucial to obtaining all possible parzllel execution. The
problem of computing these sets will not be considered. Some relevant discus-
sion can be found in [4]. A compiler would probably make a good choice for
<u, v> when the subscript expressions of u and v assume some standard
form, and make a simple worst-case approximation otherwise. The sets given

in Table I should indicate the type of computations which are needed.

Note: 10. Itis clear that <<v, u>> = {-xX:X ¢ <<u, v>>} . We may assume
LS A .
that the same relation holds between the sets «<u, v> and «v, u> . Thus,

Table I specifies all the relevant sets <u, v> for the program of Figure 1.

End note.

18

We replace Q3 with the following stronger condition. (It is stronger

because it may imply more -+ relations.)

R2. For every relevant occurrence pair u, v : if 0 ¢ <u, v> then
[l

either u+v or vau .

Condition R2 implies that 0 ¢ <v, v> for any generation v . This
A
means that the compiler must be able to verify that the assumption made in
S2 is satisfied. The restrictions mentioned in Note 8 will usually make this

a simple task.

Conditions Rl and R2 determine all the relations -+ which are needed
to insure that any execution satisfying PE is a correct execution of the program.
Using the <u, v> sets of Table I, Rl and R2 imply the relations -+ shown in
Table II, where u - v is indicated by a - in the u-row, v-column. The

other entries in Table II are explained later.

The Tree Representation

We have abstracted the following items from a program written in our

programming language.

T1. A program tree of occurrences and FOR indices.

19

T2. For each occurrence v , a specification of the functions of
fetched values and index values which determine:

1) st .

(1) the value of the subscript expression of v .

(111) the value to be stored if v is a generation.

T3. For each relevant occurrence pair u, v : a set <u, v> which

contains <<u, v>> .

T4. A relation -+ on the set of occurrences.

We call these four items a tree representation. Conditions R1 and R2

together with PE imply that the tree representation completely defines the

result of executing the program.

Now suppose that we have constructed a tree representation in some
arbitrary fashion, not necessarily starting from the programming language
representation of a program. Does this tree representation define a program ?
The answer is yes, if it satisfies R1, R2 and one additional condition given
below. However, the program might not be representable in our programming

language without adding additional variables.
Part T2 of the tree representation specifies how to determine (i) what

fetches and stores are to be executed, (ii) the array elements to be referenced,

and (iii) the values to be stored. Conditions Rl and R2 imply that executing

20

these fetches and stores in any order satisfying PE must produce the same result.
All that remains is to require that there exist some execution order which satis-
fies PE. We know that such an order exists if the tree representation is derived
from a program written in our programminé language. However, its existence

is not implied by Rl and R2 alone, since these conditions allow the possibility

that the relations u-+v and v -+ u both hold for some occurrences u, v .

We must obviously require that the relation -+ be cycle-free -~ 1i.e.,
that there is no cycle VI#Vy P ee. 2V 2V However, we will need a
stronger condition. Suppose that in the program tree of Figure 3 we had
bl » b3 and b3 -~ Ib2 . Even though there were no cycles, this would contra-
dict the FOR statement structure implied by the tree. The program tree implies
that the FOR J and FOR L statements are disjoint, but the relations bl -+ b3 = b2
would imply that b3 , which appears in the FOR L statement's DO clause, must

also be in the FOR] statement's DO clause.

To be able to state the necessary condition precisely, we need some

more terminology about trees. For any node v , we define tribe(v) to equal the

set of all leaves which are descendants of v if v is not a leaf, and to equal
{v} if v is a leaf. A relation + on the set of nodes of a tree is said to be

tree complete if it satisfies the following property:

If 4 and v are cousins, p' ¢ tribe(u) , v' e tribe(v) , and

w' v’ ,then y-v .

21

Given a relation - on the set of leaves of a tree, its tree completion is defined
to be the smallest tree complete relation on the entire set of tree nodes which

contains -+ . A relation is said to be tree consistent if its tree completion is

cycle-free.

An index node I of the program tree represents the DO clause of a
FOR I statement. The tree completion of -+ consists of all precedence rela-
tions on the set of DO clauses and occurrences implied by the relations -+
between occurrences. This tree completion is cycle-free iff the tree repre-
sentation defines a program which can be written in terms of the nested FOR
statement structure specified by the program tree. We therefore add the fol-

lowing condition.

R3. The relation -+ is tree consistent.

Conditions R1 - R3 guarantee that an arbitrary tree representation defines

a valid program.

Naotes: 11. If the relation - is cycle-free but not tree consistent, then the
tree representation still defines a meaningful program. However, this program
could not be implemented with simple iterative loops, but would instead require
a more complicated and inefficient control structure. We will therefore not

consider such programs.

12. We have placed no condition on the SIM index structure corresponding

to R3 for the FOR indices. This is because the program can be implemented using

22

statements for explicitly setting the SIM context, as mentioned in Note S.
These statements can be executed efficiently on most array and vector com=

puters. End notes.

Equivalent Tree Representations

Two tree representations are said to be equivalent if they define
programs which produce the same results. An optimization technique like
the coordinate method involves transforming a program's tree representation
into an equivalent new tree representation. We must therefore develop suf-
ficient conditions for the new tree representation to be equivalent to the
original one. We will use the symbols z(), 4(), << >>, <>, n , and =
in reqular type when they refer to the original representation, and in bold-
face type [denoted in manuscript by wavy underlining] when they refer to

the new representation.

We only consider the case in which the two representations have the
same set of occurrences. We will guarantee equivalence by requiring that the
new program executes the same operations, using the same values, as the orig=-
inal one. This means that for each occurrence u and for each element 3 e (u)
for which u is executed in the original program, there must be a corresponding
element 1llu(ﬁ) € %u')“ for which u is executed in the new program. Moreover,

the functions specified by T2 of the new tree representation must be the same

as for the original representation, except with each array reference for an element

23

p ¢ 4(u) replaced by the corresponding reference for r.'gu(p) e J";u(u) . We cannot
LY M .

state this condition more precisely without giving a precise definition of the
specification mentioned in T2, but its meaning should be clear. We are thus

led to the following condition.

El. For each occurrence u , there is a 1-1 correspondence
4. : z(u) » z(u) such that the mappings y transform T2 of
u A M u

the original tree representation into T2 of the new tree repre-

sentation.

As an illustration, consider the original program of Figure 4 and the
equivalent new program of Figure 5 obtained by replacing the index K with
the index K' =J+K . For each occurrence u inside the FOR K statement's

2 : , . o
0 is given by wu(J, k) = B, %) s

DO clause, the mapping . : 27 x ZO - le X &
u ™ ™ " I
Executing this occurrence in the original program for the element G, k) e 9w
[i.e., with J=j and K= k] references the same array element as éxecuting
it in the new program for the element (j, j*k;) ¢ 3(u) [with J=j and K' = j+k (
AR
Observe how the limits of the FOR K' statement were chosen so that

%u?wl = ¢uU(u)) . This example should clarify the meaning of El.

Since both tree representations must satisfy R1 - R3, the only requirement
other than El needed to guarantee their equivalence is that the relevant ordering
of references to the same array element should be the éame. In other words, Q1
must be satisfied -- except that the ordering must now be preserved when trans-
lating from the original tree representation to the new one, rather than from the

programming language version to its tree representation as before.

24

T R u v e <<u, v>> has a corresponding

JPMy oy € S8 v This defines a
A

The element X = q]
M A

element g = Vo@Dl qy ¥
L)

mapping from <<u, v>> onto <<u, v>> . Since we could also have
‘I’ll.l,r v AN L)

x = alnv Blunv

be multiple valued.

for a different pair p' , @' , the mapping ¢ may
WA u, v

The same type of reasoning that led us before from Q1 to R2 now leads

us from Q1 to the following condition.

L glunvl |, glugvl
A

E2. For any relevant occurrence pair, let y
r L)

be the (possibly multiple valued) mapping defined by % = ¥y v(:-:} iff
M v A

there exist d h that x = ..
ﬁez(u) an ﬁeZ(V) suc Rkt Bluai

and x' = . Then:
i

Ltrv(f.l\.\)lu av ey nv
L) W
(a) :U, vi = ":.'u‘ V('Cur V)) [and

(b) if x ¢ <u, v> and either
A

(i)

each Yy v(:-c} either

[M

W g, (MH=>0,0r

r Vo oM

1)y, v(ﬁ)=9.. and u+v .

Conditions El and E2 are sufficient to guarantee that the new tree repre-

sentation is equivalent to the original one.

25

The Coordinate Algorithm

The heart of the coordinate method is the coordinate algorithm, which

essentially attempts to convert a single FOR I statement into a SIM FOR ALL I
statement. More precisely, given a tree representation with an index node I ,
the coordinate algorithm attempts to transform it into an equivalent representation
in which I becomes a SIM index and is thus removed from the program tree. If

this is not possible, then I may be transformed into one or more different nodes

106)

. Each occurrence which was originally a descendant of [will either be-

(k)

or else will be executed with [as a SIM

(k)

come a descendant of some I
index. Hence, the original FOR I statement is split into disjoint FOR I

statements and one or more SIM statements.

Figure 6 shows such a transformed version for the tree of Figure 3, in

(2)

which I has been transformed into a new node I . The occurrences which

(2)

were originally descendants of I but are not descendants of I in the new

tree will be executed in parallel for all values of I . Observe that it was

(2)

necessary to make I a descendant of J in order to preserve the tree structure,
even though] was originally a descendantof I . In Figure 2, we have trans-
lated the new tree representation into our programming language. Observe that

it was necessary to introduce a new variable T and an extra occurrence of R .

The new tree representation cannot be obtained directly from any program written

in our programming language.

For the transformation generated by the coordinate algorithm, it is clear what

the mappings?-u are. For amy X ¢ E.m , we define ;::c" to be the element of

26

z™ obtained by moving the |I]g3' coordinate of fmc to the right ‘I(k)\ ol 1

A

positions, and we define x to be the element of Zm-l obtained by deleting
M L)

the \I]m coordinate of x . We can then define the mapping y as follows.
L)

if u is not a descendant of I in the original tree

then y, Py ipy) = (i Py

M M ML A

else if u is a descendant of some I(k) in the new tree

then y (@, : P,) (B i py)
A AN A AN

else y (p, ;i py) = (51 i Py)
[T AR MM A

where pé is formed by taking Py and adding an extra coordinate equal to the

th AN , NAMA -
| I|== coordinate of Py -

AR

This definition of Yy implies that ¢ iu 11 %) - ZiH ﬁv‘ is the
’ M

M
single valued mapping defined as follows.

if u, v are not both descendants of I in the original tree

then ¢, v(}u&) =X

(k)

else if u, v are both descendants of some single I

EX> EXC

then by, v(i:)

else y, v(},:) =

The first step of the coordinate algorithm is to examine all relevant

occurrence pairs u, v to determine what E2 implies about the new tree repre-

27

sentation. E2 might imply that if u and v are not both descendants of a
single I(k) in the new tree, then u » v must hold. This is noted by writing
WA
u --+» v . Condition E2 might instead imply that u and v must both be des-

(k)

cendants of some single I In this case, there will be some descendant]
of I which is an ancestor of both u and v such that J must be a descendant

of I(k) in the new tree. This node J will be called a blocking node.

Combining the definition of , T with E2 gives us the following algo-

rithm step for constructing the relation ---+ and the set of blocking nodes.

Cl. For every relevant occurrence pair u, v such that u and v are
both descendants of I , and for every X ¢ <u, v> such that x> 0
LY LY

(i) if x =0 then add the relation u === v ;

(1i) if

X
.'Lli A
X < 0 then the descendant J of I such that
ML MA AR
(@) J is an ancestor of both u and v , and

(b) the \]’[m coordinate of x 1is its left-most
M
negative coordinate

is designated a blocking node.

Applying C1 to the program tree of Figure 6, using the <u, v> sets of
Table I, gives the relations --—+ indicated in Table II. There are no blocking
nodes. Observe that the elements x ¢ <u, v> with x <0 are considered when
M MA A

M

Cl is applied to the pair v, u . (See Note 10.)

Note: 13. Suppose that the SIM FOR ALL K statement in Figure 1 were replaced

by a FOR K statement. We would then have <cl, e2»={ (1, -1, 3)} , and appli-

28

cation of Cl to the pair cl, c2 would designate K as a blocking node.

End note.

The second stép in the algorithm is the crucial one which determines
the structure of the new program tree. Before stating it, we need some final
notation. A forest is a collection of disjoint trees. The definition of tree
consistency applies equally well to a forest. A terminal forest of a tree J
is a non-empty set F of nodes of J , not containing the root, such that
(1) if v ¢ F then every descendantof v isin F , and (i1) if v £ F then
F cannot contain both a cousin and a descendant of v . A pruning of a
tree T consists of a collection P = [Pl, cEE ¥ FS] of pairwise disjoint
terminal forests of T whose union contains all the leaves of g . The
pruning f defines the pruned tree ;IP whose leaves are Pl’ eee FS and
whose non-leaf nodes are the nodes of J which are not in any Pk . The
pruned tree has the obvious tree structure, where a node is an ancestor of
Fy iff it is not in -Fk and is an ancestor of some node in F}c . A relation
= on the leaves of T induces a relation on the leaves of gp defined by
Fy = P!. iff x£4 and u=v for some uctF 'ver :

The next step is to use the information gathered by step Cl to determine
the new program tree so that E2 and R3 are satisfied. This is done by construc-
ting a pruning [Fl' i FS} of the subtree rooted by I , and designating
some of the Fk to be sequential. A node will become a descendant of I(k)

in the new tree iff it is in the sequential element Fk . The nodes in a non-

sequential Fk will appear inside a SIM statement. . The precise statement of

29

the second step of the coordinate algorithm is as follows.

C2. Let =» denote the union of the relations -+ and --=* ,
and let 7 be the tree consi_sting of I and its descendants.

(1) Construct a pruning @ = [Fl, SR 7 Fs] af o
such that:

(1) every blocking node is in some 1='k , and
(11) the relation induced by = on o is tree
consistent.

(2) Designate certain elements of f to be sequential,
where F, is sequential if (but nof necessarily only
if):

(i) it contains a blocking node, or
(1i) the relation = on the forest F_ is nottree

consistent.

Such pruning P always exists:- namely, the trivial one consisting of the
single element containing all descendants of I . However, if this element is
sequential, then the new program tree will be the same as the old one, and no
parallel execution is achieved. The choice of the best pruning will be discussed
later. Figure 7 shows a pruned tree constructed by C2 for the program tree of
Figure 3 and the relations of Table II. The only sequential elementis ({al, a2 a3, g}

This pruning yvields the new program tree of Figure 6.

The final step of the coordinate algorithm constructs the new tree repre-

sentation in the obvious way.

30

C3. The new tree representation is constructed as follows.
(1) The new program tree consists of the same nodes as the

original tree except without I and with a new index node

(x)

I for every sequential element Fk in . Anode . is

an ancestor of a node v in the new tree iff either

(x)

@) p=1 and v eF ,or

(k)

(b) u is not one of the I and either
(i) u is an ancestor of v in the original tree, or
(i) v = %) and u is either an ancestor of I in

the old tree, or an ancestor of Fk in JP »

(2) Part T2 is the transformation of T2 of the original representation

obtained from the mappings Yy defined above.

(3) For each relevant occurrence pair u, v : <u, v> = {
M

> i v(<u, v>) .

(4) The relation - is defined by u -+ v iff
M M

@) uav , or
(b) u=---v and u and v are either

(i) in different elements of P , or

(ii) in the same non-sequential element of P .

Applying step C3 to the pruning shown in Figure 7 yields the tree repre-

sentation used to construct the program of Figure 2. Observe that each non-sequen-

(k)

tial F, becomes the set of occurrences in the DO clause of a SIM 1 statement.

k

31

To demonstrate the correctness of the coordinate algorithm, we must first
show that the new representation satisfies R1 - R3, so it defines a valid program,

and then show that El and E2 are satisfied.

Proof of R1: The definition of the mappings Vy imply that if

ﬁlunv unv unv - ‘”v(ﬁ)lunv

M M
Condition Rl for the new representation then follows easily from C3(2), Cc3(4)@),

= q then y_(p)] forany pez(w) , q9e¢zlv) .
™ U ™ ™

and the fact that the original representation satisfies Rl.

Proof of R2: Let u, v be a relevant occurrence pair. The definition of

shows that ¢~ (0)=0 . By C3(4) and the fact that R2 holds for the

‘bu, A'a M L)

original representation, we need only show that if 0 ¢ <u, v> and 0 £ <u, v>
L) M L) M
then usvor vsu . Recalling Note 10, it thus suffices to prove that if
L MA

Xeg<u, v>, x>0 and y (x) =0 , then u-»v . The definition of y
A ™ u M u,

¢ Vom ™ v

£V 3

shows that if x
M

of a single I(k) and 1y, (x) = x . By Cl and C3(4), this implies that u v .

r Vom L) L

0 and (x) =0 , then u and v are not both descendants
M W

Proof of R3: Consider the terminal forest of the new program tree con-
sisting of the I(k) and all the former descendants of I , and let 3' be the tree

formed by adding I as the root. Since u-v and uAv only if u and v are
. L)

both descendants of I in the original tree, it suffices to show that the relation

-+ is tree consistenton 7' . Let p' be any pruning of 7 . Itis easy to show

[

that - is tree consistent on 7' iff (a) it is tree consistent on each element of
I
p' [remember that the elements of p' are terminal subforests of J'], and (b)

it induces a tree consistent relation on a"P. . Let p'={Fy, «v. . F's} , where

32

= ®), | P = =
Fk= Fku{l } if Fk is sequential, and Fk' Fk otherwise. Then ;rp. _gp 5

and tree consistency follows easily from C2, C3(4) and the fact that the relation

-+ is tree consistent on the original program tree, and hence on each Fk .

Proof of E1: Condition El1 follows trivially from the definition of ¥y and

step C3(2).

Proof of E2: Let u, v be a relevant occurrence pair and x ¢ <u, v .
W
We showed in the proof of R2 that (i) if x =0 and u - v then I x) =0
MM u, ¥ m ™
and u+v , and (ii) if x>0 and y (x) =0 then u-v . All that is left
™ T u ™

fVm L]

for us to show is that it is impossible to have x> 0 and iy (x) « 0 . The defi-
MM WA Vv MM

M
nition of by, v implies that if ﬁﬁg and Wy, V(ﬁ) ﬁ& then x

0 . Let J be
Y
the blocking node obtained by C1(ii) for x . Steps C2 and C3(1) imply that J
L)
(k)

must be a descendant of some I , and the definition of T then implies
’

that %) > 0 . This completes the correctness proof of the coordinate al-

|
Jur V(Ml WA M
gorithm.

Notes: 14. Each non-sequential Fk in the pruning can form the DO clause of a
SIM FORALL I(k) statement. One can show that this statement can be strip

mined by writing it in the form

FOR J:c1 TO n DO SIM FORALL 1% . g
AR A AU

M A AAMAVAWIAAAANA T

. @ o oD
MANN

as discussed in Note 7.

33

15. Had we permitted FOR statements with arbitrary constant increments,
rather than just the increment 1, then PE would no longer hold. However, all of
our results would remain valid by changing the definition of <<u, v>>' as follows.
Let Tm be the FOR multi-index of u , let unv = I.K , and let dj denote the
increment of the FOR Ij statement, j=1, ... , m . Then we need only change

part (a) of the definition of <<u, v>> to the following:

@" d End not
a ﬁlunv ﬁlun\r:dkxk an ﬁ:ik " nd notes.

The Coordinate Method

The coordinate method consists of applying the coordinate algorithm
successively to different index nodes of the tree representation.‘ We could
easily generalize the coordinate algorithm so it can be applied to several
indices at once, rather than to just a single index. However, this general
algorithm would yield the same results as repeated application of the single
index algorithm. This is obvious if the index nodes are all cousins. Suppose
K is a descendant of [. Any relation --= or blocking node generated by
applying the coordinate algorithm to K will also be generated by applying the
generalized algorithm to I and K together. It follows from this that any
tree representation obtained by applying the generalized algorithm to I and
K can be obtained by first applying the coordinate algorithm to K and then

applying itto I .

In general, the coordinate algorithm should be applied to an index before

it is applied to any of its ancestors. This order of application is important.
The program of Figure 1 could have been obtained by applying the coordinate
algorithm to a purely sequential program with a FOR K node. The final version
of Figure 2 could not have been obtained from this sequential program had we

first applied the coordinate algorithm to Iand then to K . (See Note 13.)
Implementing the coordinate method in a compiler involves many prac-
tical details. A complete discussion of these details is beyond the scope of

this paper. We briefly discuss some of them below.

Choice of indices: Choosing the indices to which the coordinate method

should be applied can be a difficult problem. Parallel execution may place cer-
tain requirements on how arrays are stored. This means that the choice of whether
to apply the coordinate algorithm to a particular FOR index must be based upon an
examination of the entire program, even though the coordinate algorithm only uses
that FOR statement itself. This choice could be made either by a suitable heuristic

algorithm, or else by the user in an interactive system.

Step C2: Choosing the pruning in C2 is an important problem. It is easy
to construct a pruning which yields the maximum possible parallelism. More pre-
cisely, let ; denote the tree completion of the relation : on the tree 3§ . Then
@ can be chosen so that an occurrence u is ina sequential I-‘k iff there is a node
w such that u e tribe(:) and y is either a blockigg node or else is contained in
* *

acycle u= ...=u . However, maximizing parallelism will not always produce

an optimal program for a parallel computer. The use g in our example could have

35

been executed within a SIM I statement. However, all that thi.s parallel exe-
cution would do is put the values intb temporary registers from which they must
later be fetched sequentially. The optimal choice for ¢ will depend heavily
upon the details of the computer on which the program is to be executed, and
finding it would be a very difficult task. However, it should not be too hard
to devise a heuristic algorithm that will usually yield a good pruning, and will

never produce a less efficient program than the original.

Scalar variables: It is clear that a generation of a scalar variable cannoi: be.
placed inside a SIM FOR ALL statement. Moreover, if an index node J is a son of I which
contains such a generation, then J will be a blocking node at_ld none of its descendants
can be place inside a SIM FOR ALL. It is therefore very important to
try to remove such a scalar variable from the FOR I statement before applying

the coordinate algorithm. There are two common cases where this is easily done.
(a) The value of the variable is a function of the values of the
indices. The variable is then eliminated by direct substi-
tution. An example of this appears on pages 92-93 of [4].
(b) The variable holds the result of an intermediate calculation.
For example suppose the following sequence of assignment
statements appear in a FOR [statement:

X[(1:=A[1]**2 ; B{I1]:=2*X(] ; cl1]:=1/X[] .

and the value of X[] is not used elsewhere. These occurrences

36

of X can be eliminated when forming the tree representation
of the program. Part T2 of the representation can specify the
relations between the value fetched from A[I] and the values
stored into B[I] and C[I] .

(k)

Other methods of parallel execution: Each FOR I statement implies a
certain amount of additional index computation, so the number of different se-
quential elements 1='k of the pruning should usually be kept as small as possible
without reducing the amount of parallel execution. However, a FOR statement
whose DO clause contains a single assignment statement can sometimes be
executed very efficiently on an array computer using Kogge's recursive doubling

technique [2] or on a vector computer using special vector operations. For exam-

ple, the statement

FOR 1:=1 39 n DO X(1:=x[] +Al1]*B[I] OD
can be executed on an array computer in 1_og2n steps, and on a vector computer
with a single vector inner product operation. If it is possible for the pruning to
include a sequential Fk containing a single generation, then the compiler should
see if the resulting FOR I(k) statement can be executed efficiently by one of

these methods.

The Hyperplane Method

The hyperplane method described in [4] can yield parallel execution not

37

obtainable by the coordinate method. It was restricted to a "tight nest”

of FOR statements of the form

FOR = TO
m?m WA e M
DO FOR I2 = Xp EE Mo

AN MM

DO

]

L]

FOR 1, %=y 23 Hn
DO S OD
A MAMANA

with n>2 . By using index variable substitutions, the coordinate algorithm

can provide a generalizafion of the hyperplane method of [4]. This is illustrated

with the program of Figure 4. The coordinate algorithm applied to J or K cannot
obtain any significant parallel execution of the FOR K statement's DO clause. Re-
placing the index K by the new index K' = J+K transforms this program into the

one of Figure 5. Applying the coordinate algorithm to the index J in this new program,
we find that the program can be rewritten by replacing the FOR J with a SIM FOR ALL J.

Hence, the index substitution permits the parallel execution of the innermost DO

clause.

38

As another example, consider the rewriting performed with the hyperplane
inethod on pages 83-84 of [4]. Essentially the same rewriting can be obtained
as follows: (1) replace K by K'=J+K , (2) apply the coordinate algorithm to
the index J , (3) replace K' by K' =K' +2I , (4) apply the coordinate algo-
rithm to the index I . A more complete discussion of the generalized hyperplane

method is beyond the scope of this paper.

Conclusion

The coordinate method transforms a sequential program into a parallel
one for execution on an array or vector computer. It employs the coordinate al-
gorithm, which converts a sequential FOR statement into a single SIM statement
or into several FOR and SIM statements. This coordinate method generalizes the
one described in [4]. By introducing index substitutions, it can also generalize

the hyperplane method of [4].

We have not considered the cost of applying the coordinate method when
compiling a program. Except for the sets <u, v> and the relation -+ , the tree
representation will be similar to the internal representation into which the compiler
would normally translate the program. Each outer level FOR statement can be
treated separately, and these statements are seldom very long. Hence, computing
the sets <u, v> and the relation - , and performing steps Cl and C3 of the co-
ordinate algorithm should not require an excessive émount of computation. Choosing

the indices to which the coordinate algorithm is applied, and choosing the pruning

39

'in step C2 cannot be done by exhaustive searching, so heuristic methods must

be developed.
Although we have only discussed array and vector computers, the coordinate
algorithm and the techniques used to derive it have other applications to compiling.

We list some of these below.

Pipelined sequential computers: It has been found that execution on a

pipelined sequential computer such as the CDC 7600 can be speeded up by re-
writing the program in terms of vector operations, and then executing these
operations with carefully optimized subroutines [1]. The coordinate method can
be used to perform this rewriting, since it generates vector operations. However,
the sequential computer does not actually require vector operations, but rather
very short FOR statements which can be executed efficiently by exploiting the
pipelining., The coordinate algorithm can be made to produce such FOR state-

ments by using the appropriate criteria to choose the pruning in step C2.

Compilers for arrav computers: Producing efficient code for an array com-=
puter from a parallel program is a non-trivial problem if the SIM statements specify
more parallel execution than is actually possible with the fixed number of proces-
sors. A special case of this is compiling a parallel program for execution on an
ordinary sequential computer. Our method of analysis can be used to solve this

problem. (See [61.)

40

Multiple instruction stream computers: The tree representation of a program
suppresses the unnecessary ordering between executions. Let : denote the tree
completion of the relation -» . If index nodes I and J are cousins, then the
execution of the FOR [loop must precede the execution of the FOR J loop iff
I :] . If neither I : J nor J : I holds, then the two FOR statements can be
executed concurrently (for a single iteration of any FOR statement's DO clause
containing them both). Thus, the ordering : can be used to generalize the
techniques described in [8] for parallel execution by a multiple instruction
stream computer. If each instruction stream functions like an ordinary sequen-
tial computer, then the tree representation of the original program is used. If
an individual instruction stream can perform parallel operations -- for example,
in a "multiple pipe" vector computer or a multiple quadrant ILLIAC IV -- then the
coordinate method is first applied to introduce parallel execution into the tree

representation.

Virtual memory: Reducing page faults in a virtual memory system may

require changing the order of execution of operations -- for example, changing
a FOR I/FOR | nest to a FORJ/FOR I nest. The method of analysis we have

developed can be used to determine when such a rewriting is possible.

In general, the tree representation is useful in implementing any compiler

optimization technique which exploits the FOR statement structure of the program.

41

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

Buzbee, B.L., and Rudsinski, L.E. Exploiting vector mode in an SISD

computer. Proc. 1975 Sagamore Comput. Conf. on Parallel Processing,

Syracuse University, p. 251,

Kogge, P.M. Parallel solution of recurrence problems. IBM J. Res. and

Devel., March 1974, pp. 138-148,

Kuck, David J. Parallel processor architechture - a survey. Proc, 1975

Sagamore Comput. Conf. on Parallel Processing, Syracuse University,

pp. 15=-39.

Lamport, Leslie. The parallel execution of DO loops. Comm. ACM 17,

2 (February 1974), pp. 83-93.

Lamport, Leslie, The coordinate method for the parallel execution of DO

loops. Proc. 1973 Sagamore Comput. Conf. on Parallel Processing,

Syracuse University, pp. 1-12.

Lamport, Leslie. Parallel execution on array and vector computers. Proc.

1975 Sagamore Comput, Conf. on Parallel Processing, Syracuse University,

pp. 187-191.

Muroaka, Yoishi. Parallelism exposure and exploitation in pregrams.

Ph.D. Th., U. of Illinois, Urbana, Illinois, 1971.

42

(8]

(ol

[10]

[11.]

Li2]

Ramamoorthy, C.V., and Gonzalez, M.]. A survey of techniques for
recognizing parallel processable streams in computer programs. Proc,

AFIPS 1969 FJCC, Vol. 35. AFIPS Press, Montvale, New Jersey, PP. 1-15.

Schneck, Paul B. Automatic recognition of parallel/vector operations in a

higher level language. Proc. ACM 1972 National Conference, pp. 772-773.

Schneck, Paul B. Movement of implicit parallel and vector expressions

out of program loops. Proc. Conf. on Programming Languages and Com-

pilers for Parallel and Vector Machines. Sigplan Notices 10, 3 (March 1979),

pp. 103-106.

Wedel, Dorothy. Fortran for the Texas Instrument ASC system. Proc.

Conf. on Proaramming Lanquages and Compilers for Parallel and Vector

Machines. Sigplan Notices 10, 3 (March 1975), pp. 119-132.

Cohagan, W. L. Vector Optimization for the ASC. Proc. 7th Annual Princeton

Conf. on Information Science Systems. Dept of Elec. Eng., Princeton Univ.

(1973), pp 169-174.

43

FOR 1:=1 TO R[]

AN N
DO FOR J:=1 TO 100
AR A)

DO IF Al7]l>0 THEN B[1]:=B[I]1+F[I, 7]

® & O

ELSE A[J]:=A(7]1+G[I,7T] ﬂ\

T e © 6

SIM FORALL K¢ {k : 0sks< 63 and F[I, k]>0]}
AAMANMANMAMAMUMANMAAAMAY . i

®

DO FOR L:=3 TO 9

AN AN
DO cl1,k, L]l =cl[1-1, K+¥1, L-3]*B[I+1] OD
ARAAA A
@ €
oD
AN

Figure 1

44

'g':=[1zlsisR[]]

stv ForaLL IV ¢ g
A AR AN

DO SIM FORALL Ke¢{ k : 0s k< 63 and F[I,x1>0}
JNN NAMAAMMAMAMIAIIN @

DO FOR L:=3 TO 9

AN AU NANA

po ct 1V, k, L1:=ct 11, k+1, L-3 180 1P+11 oD

NG @ ®

QD

MR

FOR J:=1 TO 100
L

MR

po FOR 1% :=1 TO R[]
AN AN MM

po Hi¥1:=al1ls0 ;
ey ;

@

IF T 1(2)] THEN
M AANAMANARA

eLse ALT] :=aljl+al1?, 11 FL

oD ;
MM

stm ForALL 1) . g
AR

po v tet® 7 trEn (11011019 5]

ELSE FI
NN AR
oD
AN
oD
AL
Figure 2

45

Figure 3

46

FOR J:=1 TO MI[]
A, R
DO B[7J]:=.25*(1 -A[7]) ;
AN
FOR K:=1 TO N[]
AN proe) '

DO UlJ, K]:=A[7]*Ul], K1 +B[TI*
- (Ul 7+1, K1 + UL T, K+1]
+UlJ-1, Kl +UCT, K-11)

Figure 4

FOR J:=1 TO M[]
MM L)
DO B[(J]:=.25*(1 -A[TD ;
AR
FOR K' := 1+] TO N([1+] |
NAAAA

po Ul7g, k'-71:=Al71*ul71, K-J1+B[J]*

(Ul 7+#1, K'-711+ UL T, K'-J+1]
+ulJ-1, K'-71 + UL], K'-J-11)

oD

oD

Figure 5

47

sz, L, cl, c2, b3 D

G bl, b2, f1) @al, a2, a3, g)

Figure 7

48

<al, a2>'

<al,

<a?l,

<bl,

<bll

<bl,

<C1:

<cl,

a2>‘

ad>

bls

b2>h

b3>'

C1>I

c2>

{ (x, 0) : x any integer }

{ (x, 0) :

{ & 0) 2

{0,y :

((0,9 :

{ (-1)

{1, 33

x#0)
x any integer }
y 70}

y any integer }

Table [

49

al
a2
ad
bl
b2
b3
ci
c2
fl

f2

al a2 a3 bl b2 b3 cl c fl f2
=
ey - - - -
——> == | ===
-
-—=
-
-—- -
-
-
> - —
—’
- > - > - - - | - - ->
Table II

50

