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IN THIS ARTICLE,  the reader and I will journey between 
two concurrent algorithms of the 1970s that are 
still studied today. The journey begins at the bakery 
algorithm9 and ends at an algorithm for implementing 
a distributed state machine.12 I hope we enjoy the 
voyage and perhaps even learn something.

The bakery algorithm ensures processes execute 
a critical section of code one at a time. A process 
trying to execute that code chooses a number it 
believes to be higher than the numbers chosen by 
other such processes. The process with the lowest 
number goes first, with ties broken by process 
name. In the distributed state-machine algorithm, 
each process maintains a logical clock, with the 
clocks being synchronized by having a process 

include its clock value in the messages 
it sends. Commands to the state ma-
chine are ordered according to the 
value of a process’s clock when it is-
sues a command, with ties broken by 
process name.

The similarity between the bakery 
algorithm’s numbers and the state-
machine algorithm’s clocks has been 
noticed, but I know of no previous rig-
orous connection between them. Our 
trip makes this connection, going from 
the bakery algorithm to the state-ma-
chine algorithm through a sequence of 
algorithms, each (except the first) de-
rived from the preceding one.

The first algorithm on the journey 
is a straightforward generalization of 
the bakery algorithm, mainly by allow-
ing a process to read other processes’ 
numbers in an arbitrary order. We 
then deconstruct this algorithm by 
having each process maintain mul-
tiple copies of its number, one for 
each other process. Next is a distrib-
uted version of the deconstructed al-
gorithm obtained by having each copy 
of a process i’s number kept by the 
process that reads it, where i writes 
the value stored at another process 
by sending a message to that process. 
We then modify this distributed al-
gorithm to ensure that numbers in-
crease with each execution of the crit-
ical section. Finally, we arrive at the 
distributed state-machine algorithm 
by forgetting about critical sections 
and just using the numbers as logical 
clocks.

Not only do our algorithms date 
from the 1970s, but the path between 
them is one that could have been fol-
lowed at that time. The large amount of 
related work done since then has nei-
ther influenced nor obviated any part 
of the route. At the end of our journey, 
a concluding section discusses that re-
lated work and why the algorithms that 
begin and end our path are still stud-
ied today. The correctness proofs in 
our journey are informal, much as they 
would have been in the 1970s. More 
modern, rigorous proofs are discussed 
in the concluding section.

Deconstructing 
the Bakery  
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equal 0 for all i, so every process inside 
the bakery would be waiting forever at 
statement L3. But this is impossible 
because the waiting process i with the 
smallest value of (number[i], i) would 
eventually enter the critical section. 
Hence, the algorithm is deadlock free.

To show that the algorithm is star-
vation free, it suffices to obtain a con-
tradiction by assuming that a process i 
remains forever inside the bakery and 
outside the critical section. By dead-
lock freedom, other processes must 
continually enter and leave the critical 
section, since they cannot halt there.

However, once a process j is outside 
the bakery, to enter the bakery again 
it must execute statement M and set 
number[j] to be greater than number[i]. 
At that point, process j must remain 
forever inside the bakery because it will 
loop forever if it reaches L3 with k = i. 
Eventually, number[i] will be less than 
number[j] for every process j in the bak-
ery, so i will enter its critical section. 
This is the contradiction that proves 
starvation freedom.

Essentially, the same proof shows 
that the other mutual-exclusion algo-
rithms we derive from the bakery algo-
rithm also satisfy starvation freedom. 
So, we will say little more about star-
vation freedom. We now explain why 
the bakery algorithm satisfies mutual 
exclusion. For brevity, we abbreviate 
(number[i], i) << (number[ j], j) as i << j.

Here is a naive proof that i and j can-
not both be in their critical sections at 
the same time. For i to enter the critical 
section, it must find number[j] = 0 or i 
<< j when executing L3 for k = j. Simi-
larly, for j to enter the critical section, 
it must find number[i] = 0 or j << i when 
executing L3 for k = i. Since a process’s 
number is non-zero when it executes 
L3, this means that for i and j both to 
be in their critical sections, i << j and j 
<< i must be true, which is impossible.

This argument is flawed because it 
assumes that both i and j were inside 
the bakery when the other process ex-
ecuted L3 for the appropriate value of k. 
Suppose process i read number[j] while 
j was in the doorway (executing M) but 
had not yet set number[j]. It is possible 
for j to have read number[i] = 0 in L3 and 
entered the critical section, and for i 
then to have chosen number[i] to make 
i << j and entered the critical section.

The flaw in the argument is correct-

The Original Bakery Algorithm
The bakery algorithm solves the 
mutual-exclusion problem introduced 
and solved by Edsger Dijkstra.3 The 
problem assumes a set of processes 
that alternate between executing a 
noncritical and a critical section of 
code. A process must eventually exit 
the critical section, but it may stay 
forever in the noncritical section. The 
basic requirement is that, at most, 
one process can be executing the criti-
cal section at any time. A solution to 
the mutual-exclusion problem lies at 
the heart of almost all multiprocess 
programming.

The bakery algorithm assumes 
processes are named by numbers 
from 1 through N. Figure 1 contains 
the code for process number i, almost 
exactly as it appeared in the original 
paper. The values of the variables num-
ber and choosing are arrays indexed 
by process number, with number[i] 
and choosing[i] initially equal to 0 for 
every process i. The relation << is lexi-
cographical ordering on pairs of num-
bers, so (1, 3) << (2, 2) << (2, 4); it is an 
irreflexive total ordering on the set of 
all pairs of integers.

Mutual exclusion can be achieved 
very simply by not allowing any process 
to ever enter the critical section. A mu-
tual-exclusion algorithm needs to also 
satisfy some progress condition. The 
condition Dijkstra’s algorithm satis-
fies is deadlock freedom, meaning that 
if one or more processes try to enter 
the critical section, one of them must 
succeed. Most later algorithms satisfy 
the stronger requirement of starvation 
freedom, meaning that every process 
that tries to enter the critical section 
eventually does so. Before discussing 
mutual exclusion, we show that the 
bakery algorithm is starvation free. But 
first, some terminology.

We say that a process is in the door-
way when it is executing statement M. 
After it finishes executing M until it 
exits its critical section, we say that it 
is inside the bakery. When it is at any 
other place in its code, we say that it is 
outside the bakery.

We first show that the algorithm is 
deadlock free. If it weren’t, it would 
eventually reach a state in which every 
process is either forever in its non-
critical section or forever inside the 
bakery. Eventually, choosing[i] would 

The bakery 
algorithm  
ensures processes 
execute a critical 
section of code  
one at a time.
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the critical section does not need to be 
completed before the process enters 
the noncritical section. In fact, that 
assignment need not even be com-
pleted if the process leaves the non-
critical section to enter its critical sec-
tion again. As long as that assignment 
is completed or aborted (leaving the 
register equal to ¿) before number[i] is 
assigned a new value in statement M, 
it just appears to other processes as if 
process i is still in the critical section 
or is executing the assignment state-
ment immediately after the critical 
section. Therefore, mutual exclusion 
is still satisfied. To maintain starva-
tion freedom, the write of 0 must even-
tually be completed if i remains for-
ever in the noncritical section. There 
seems to be no simple way to describe 
in pseudo-code these requirements 
for setting number[i] to 0 upon com-
pleting the critical section. We simply 
add the mysterious keyword asynchro-

Figure 2. A generalization of the original bakery algorithm.

Figure 1. Process i of the original bakery algorithm.

ed by statement L2. Since choosing[j] 
equals 1 when j is in the doorway, 
process i executed L3 after L2 found 
that j was not in the doorway; similar-
ly, j executed L3 after finding i not in 
the doorway. If, in both cases, the two 
processes were inside the bakery when 
L2 was executed, then the naive argu-
ment is correct. If one of them, say j, 
was not inside the bakery, it must have 
been outside the bakery. Since i was 
then inside the bakery, with its cur-
rent value of number[i], process j must 
have chosen number[j] to be greater 
than the current value of number[i], 
making i << j true. Hence, j could not 
have exited the L3 loop for k = i and 
entered the critical section while i was 
still in the bakery. Therefore, i and j 
cannot both be in the critical section.

Observe that the choosing vari-
able serves only to ensure that, when 
process i executes L3 for k = j, there 
had been an instant when i was already 
inside the bakery and j was not in the 
doorway. This will be important later.

The most surprising property of the 
bakery algorithm is that it does not re-
quire reading or writing a memory reg-
ister to be an atomic action. Carefully 
examining the proof of mutual exclu-
sion shows that it just requires that 
number[i] and choosing[i] are what were 
later called safe registers,13 ensuring 
only that a read not overlapping a write 
obtains the current register value. A 
read that does overlap a write can obtain 
any value the register might contain.

It is most convenient to describe 
a safe register in terms of atomic ac-
tions. We represent writing a value v to 
the register as two actions: the first sets 
its value to a special constant ¿ and the 
second sets it to v. We represent a read 
as a single atomic action that obtains 
the value of the register if that value 
does not equal ¿. A read of number[i] 
when it equals ¿ can return any natural 
number, and a read of choosing[i] when 
it equals ¿ can return 0 or 1.

Generalization of  
the Original Algorithm
Two generalizations of the bakery al-
gorithm were obvious when it was pub-
lished. The first is that, in statement M, 
it is not necessary to set number[i] to 1 
+ maximum(. . .). It could be set to any 
number greater than that maximum. It 
can also be set to the maximum if that 

makes (number[j], j) << (number[i], i) for 
all j, but we will not bother with that 
generalization. We rewrite statement 
M using :> to mean “is assigned a value 
greater than.”

The second obvious generaliza-
tion is that statements L2 and L3 for 
different values of k do not have to be 
executed in the order specified by the 
for statement. Since the proof of mu-
tual exclusion considers each pair of 
processes by themselves, the only re-
quirement is that, for any value of k, 
statement L2 must be executed before 
L3. For different values of k, those state-
ments can be executed concurrently by 
different subprocesses. Also, there is 
no reason to execute them for k = i be-
cause their if tests always equal false.

These two generalizations have 
appeared elsewhere.5,10 There is an-
other, less obvious generalization that 
seems to be new: The assignment of 0 
to number[i] after the process leaves 
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Since number[i] has been replaced by 
the registers localNum[j][i], process i 
now has a separate doorway for each 
other process j. We say that i is in the 
doorway with respect to j from when 
it begins executing statement M until 
its subprocess j assigns number[i] to 
localNum[j][i]. We say that i is inside 
the bakery with respect to j from when 
it leaves the doorway with respect to j 
until it exits the critical section. The 
definition of i outside the bakery is the 
same as before.

To transform the proof of correct-
ness of the original bakery algorithm 
to a proof of correctness of the de-
constructed algorithm, we replace 
every statement that i or j is in the 
doorway or inside the bakery with 
the statement that it is there with re-
spect to the other process. The modi-
fied proof shows that the function of 
statement L2 is to ensure some time 
between i coming inside the bakery 
with respect to j and executing L3 for j, 
process j was not in the doorway with 
respect to i.

The Distributed Bakery Algorithm
We now implement the deconstructed 
bakery algorithm with a distributed 
algorithm. Each main process i is ex-
ecuted at a separate node, which we 
call node i, in a network of processes 

Figure 3. The deconstructed bakery algorithm.

We have explicitly indicated the 
two atomic actions that represent 
writing a value v to the safe register 
localNum[j][i], first setting its value to 
¿ and then to v. We have not bothered 
to do that for the writes to localCh[j]
[i]. The localCh[j][i] and localNum[j][i] 
writes are performed by subprocesses 
of process i, except that the N - 1 sep-
arate writes of ¿ to all the registers 
localNum[j][i] are represented by an 
assignment statement

localNum[*][i] := ¿

of the main process i. (This will be 
more convenient for our next version of 
the bakery algorithm.) To set number[i] 
to 0 after i exits the critical section, all 
the registers localNum[j][i] are set to 
¿ by the main process, and each is set 
to 0 by a separate process. We require 
that the setting of localNum[j][i] to 0 
has been either completed or aborted 
when localNum[j][i] is set to number[i] 
by subprocess (i, j). Again, this is not 
made explicit in the pseudo-code.

A proof of correctness for the de-
constructed algorithm can be ob-
tained by simple modifications to the 
proof for the original algorithm. For 
the original algorithm, we defined 
process i to be in the doorway while 
executing statement M, which ended 
with assigning the value of number[i]. 

nously and refer to this discussion for 
its explanation.

The generalized algorithm is in 
Figure 2. Processes are explicitly de-
clared; the outer process statement 
indicates that there are processes 
numbered from 1 through N and 
shows the code for process number i. 
Variables are declared with their ini-
tial values. The inner process state-
ment declares that process i has N – 1 
subprocesses j with numbers from 
1 through N, with none numbered i, 
and gives the code for subprocess j. 
That statement is executed by forking 
the subprocesses and continuing to 
the next statement (the critical sec-
tion) when all subprocesses have ter-
minated. Harmful or not, gotos have 
been eliminated. The outer loop is 
described as a while statement. The 
loops at L2 and L3 have been described 
with await statements, each of which 
repeatedly evaluates its predicate and 
terminates when it is true. The :> in 
statement M and the asynchronously 
statement are explained above.

The Deconstructed 
Bakery Algorithm
We have assumed that number[i] and 
choosing[i] are safe registers, written 
only by i and read by multiple readers. 
Such a register is easily implemented 
with safe registers having a single 
reader by keeping a copy of the reg-
ister’s value in a separate register for 
each reader.

We deconstruct the generalized 
bakery algorithm by implement-
ing the safe registers choosing[i] and 
number[i] with single-reader registers 
localCh[j][i] and localNum[j][i], for 
each j ≠ i . Note the counterintuitive 
subscript order, with localCh[j][i] and 
localNum[j][i] containing the copies 
of choosing[i] and number[i] read by 
process j.

The pseudo-code of the decon-
structed algorithm is in Figure 3. The 
reads of choosing[j] and number[j] by 
process i in the generalized algorithm 
are replaced by reads of localCh[i]
[j] and localNum[i][j]. The variable 
number[i] is now read only by process 
i, and we have eliminated choosing[i] 
because process i never reads it. Ad hoc 
notation is used in statement M to in-
dicate that number[i] is set to be greater 
than the values of all localNum[j][i].
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Figure 4. The Distributed Bakery Algorithm, with magic.

livery ensures that it is set to 0 before 
its subsequent setting to a non-zero 
value. Also, since localNum[j][i] is now 
set by process (j, i) upon receipt of 
the message, the assignment to it in 
subprocess j of i has been removed.

Correctness of the deconstructed 
algorithm also depends on the assign-
ment to localNum[j][i] being performed 
before process i sets localCh[j][i] to 0. 
Since the assignment to localNum[j]
[i] is now performed at node j, the or-
dering of those two operations is no 
longer trivially implied by the code. To 
maintain that ordering, subprocess 
j of i must learn that process (j, i) has 
set localNum[j][i] to number[i] before it 
can set localCh[j][i] to 0. This is done 
by having (j, i) send a message to i with 
some value ack that is not a natural 
number. Process (j, i) sets the value of 

that communicate by message pass-
ing. The variable localNum[j][i], which 
is process j’s copy of number[i], is kept 
at node j. It is set by process i to the 
value v by sending the message v to 
j. The setting of localNum[j][i] to ¿ in 
the deconstructed bakery algorithm 
is implemented by the action of send-
ing that message, and localNum[j][i] 
is set to v by process j when it receives 
the message. Thus, we are implement-
ing the deconstructed algorithm by 
having process j obtain a previous 
value of localNum[j][i] on a read when 
localNum[j][i] equals ¿. Since the de-
constructed algorithm allows such a 
read to obtain any value, this is a cor-
rect implementation.

For now, we assume that process 
i can write the value of localCh[j][i] 
atomically by a magical action at a dis-
tance. We will remove this magic later.

We assume that messages sent from 
a process i to any other process j are re-
ceived in the order that they are sent. 
We represent the messages in transit 
from i to j by a first-in, first-out (FIFO) 
queue q[i][j]. We let ∅ be the empty 
queue, and we define the following op-
erations on a queue Q:

	˲ Append(Q, val) appends the ele-
ment val to the end of Q.

	˲ Head(Q) is the value at the begin-
ning of Q.

	˲ Behead(Q) removes the element at 
the beginning of Q.

	˲ Head(Q) and Behead(Q) are unde-
fined if Q equals ∅.

The complete algorithm is in Fig-
ure 4. The shading highlights uses 
of localCh, whose magical properties 
need to be dealt with. Along with the 
main process i, there are concurrently 
executed processes (i, j) at node i, for 
each j ≠ i. Process (i, j) receives and acts 
upon the messages sent to i by j.

The main process i of the distrib-
uted algorithm is obtained directly 
from the deconstructed algorithm by 
replacing the assignments of ¿ to each 
localNum[j][i] with the sending of a 
message to j, except for two changes. 
The first is that statement M and the 
following sending of messages to 
other processes (represented by ap-
pending number[i] to all the message 
queues q[i][j]) have been made a single 
atomic action. We can do this because 
we can view the end of each message 
queue q[i][j], onto which messages are 

appended, to be part of process i’s lo-
cal state. A folk theorem4 says that, for 
reasoning about a multiprocess algo-
rithm, we can combine any number 
of actions that access only a process’s 
local state into a single atomic action. 
That folk theorem has been formal-
ized in a number of results starting 
with one by Lipton,15 and perhaps the 
most directly applicable being Lamp-
ort.14 In our algorithm, making this 
action appear atomic just requires 
preventing other processes at node i 
from acting on any incoming messag-
es while the action is being executed.

The other significant change to the 
deconstructed algorithm is that the 
asynchronously statement has disap-
peared. The setting of localNum[j][i] 
is performed by the receipt of mes-
sages sent by i to j. FIFO message de-
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message delivery, that time was also 
before the receipt of the ack that L0 
is waiting for. In both cases, execut-
ing L0 ensures there was some time T 
after i entered inside the bakery with 
respect to j when j was not in the door-
way with respect to i. Hence, state-
ment L2 is redundant.

Because L2 is the only place where 
the value of localCh[i][j] is read, we can 
eliminate localCh and all statements 
that set it. Removing all the grayed state-
ments in Figure 4 gives us the distribut-
ed bakery algorithm, with no magic.

The first paper devoted to distrib-
uted mutual exclusion was apparently 
that of Ricart and Agrawala.19 Their 
algorithm can be viewed as an opti-
mization and simplification of our al-
gorithm. It delays the sending of ack 
messages in such a way that a process 
can enter its critical section when it re-
ceives an ack from every other process, 
so it does not have to keep track of 
other processes’ numbers. The num-
ber 0 messages sent upon exiting 
the critical section can therefore be 
eliminated, yielding an algorithm with 
fewer messages. Although nicer than 
our algorithm, the Ricart-Agrawala al-
gorithm is not directly on the path we 
are traveling.

A Distributed State Machine
In a distributed state machine,12 there 
is a set of processes at separate nodes 
in a network, each wanting to ex-
ecute state-machine commands. The 
processes must agree on the order in 
which all the commands are executed. 
To execute a command, a process must 
know the entire sequence of preceding 
commands.

A distributed mutual-exclusion al-
gorithm can be used to implement a 
distributed state machine by having 
a process execute a single command 
in the critical section. The order in 
which processes enter the critical sec-
tion determines the ordering of the 
commands. It is easy to devise a pro-
tocol that has a process in its critical 
section send its current command to 
all other processes, which order it af-
ter all preceding commands. Starting 
with this idea and the distributed bak-
ery algorithm, we will obtain the dis-
tributed state-machine algorithm12 by 
eliminating the critical section.

The bakery algorithm is based on 

the idea that if two processes are trying 
to enter the critical section at about 
the same time, then the process i with 
the smaller value of (number[i], i) en-
ters first. We now make that true no 
matter when the two processes enter 
the critical section. Define a version 
of the bakery algorithm to be number-
ordered if it satisfies this condition: 
If process i enters the critical sec-
tion with number[i] = ni and process 
j later enters the critical section with 
number[j] = nj, then (ni, i) << (ni, j). We 
now make the distributed bakery num-
ber-ordered. We can do that because 
we have generalized the bakery algo-
rithm to set number[i] to any number 
greater than the maximum value of the 
values of number[j] it reads, not just to 
the next-largest number.

We add to the distributed bakery 
algorithm a variable maxNum, where 
maxNum[i][j] is the largest value 
localNum[i][j] has equaled, for j ≠ i. We 
let maxNum[i][i] be the largest value 
number[i] has equaled. We then make 
two changes to the algorithm. First, 
we replace statement M with the state-
ment in Figure 5.

Second, in process (i, j), if localNum[i]
[j] is assigned a non-zero value, then 
maxNum[i][j] is assigned that same 
value. The FIFO ordering of messages 
assures the new value of maxNum[i]
[j] will be greater than its previous 
value. Clearly, localNum[i][j] always 
equals maxNum[i][j] or 0. The value of 
number[i] chosen this way is therefore 
allowed by statement M of the distribut-
ed algorithm, so this is a correct imple-
mentation of that algorithm. We now 
show that it is number-ordered.

Suppose i enters the critical section 
with number[i] = ni and j later enters 
the critical section with number[j] = nj. 
It’s evident that (ni, i) << (nj , j) if i = j, so 
we can assume i ≠ j. The proof of mu-
tual exclusion for the deconstructed 
algorithm shows that either (i) (ni, i) 
<< (nj, j) or (ii) j chose nj after reading 
a value of localNum[i][j] written after 
i set it to ni. In our modified version 
of the distributed algorithm, j reads 
maxNum[j][i] not localNum[i][j] to set 
number[j], and maxNum[j][i] never 
decreases. Therefore, (ni, i) << (ni, j) is 
true also in case (ii), so the algorithm 
is number-ordered.

Since the algorithm is number-
ordered, we don’t need the critical 

localNum[j][i] and sends the ack mes-
sage to i as a single atomic action. When 
process (i, j) at node i receives the ack 
message, it sets ackRcvd[i][j] to 1 to no-
tify subprocess j of process i that the ack 
has arrived. The setting of localNum[j][i] 
to number[i] in the deconstructed algo-
rithm is replaced by statement L0 that 
waits for ackRcvd[i][j] to equal 1.

The rest of the code for the main 
process i is the same as that of the cor-
responding process of the deconstruct-
ed algorithm, except that after i leaves 
the critical section, the asynchronous 
setting of all the registers localNum[j][i] 
to 0 is replaced by sending the message 
0 to all the processes j, and ackRcvd[i][j] 
is reset to 0 for all j.

The asynchronously executed process 
(i, j) receives messages sent by j via q[j][i]. 
For an ack message, it sets ackRcvd[i][j] to 
1; for a message with a value of number[j] 
it sets localNum[i][j] and, if the value is 
non-zero, sends an ack to j.

The one remaining problem is the 
magical atomic reading and writing 
of the register localCh[i][j]. The value 
of that register is used only in state-
ment L2. The purpose of L2 is to ensure 
that, before the execution of L3, there 
existed a time T when i was in the bak-
ery with respect to j and j was not in 
the doorway with respect to i. We now 
show that statement L2 is unnecessary, 
because executing L0 ensures the exis-
tence of such a time T.

The execution of statement M by j 
and the sending of number[j] in a mes-
sage to i are part of a single atomic 
action, and j enters the bakery with 
respect to i when that message is re-
ceived at node i. Therefore, j is in the 
doorway with respect to i exactly when 
there is a message with a non-zero in-
teger in q[j][i]. Let’s call that message 
a doorway message. Process i enters 
the bakery with respect to j when its 
message containing number[i] is re-
ceived at node j, an action that ap-
pends to q[j][i] the ack that L0 is wait-
ing to arrive. If there is no doorway 
message in q[j][i] at that time, then 
immediately after execution of that 
action is the time T whose existence 
we need to show, since it occurred 
before the receipt of the ack that L0 
was waiting for. If there is a doorway 
message in q[j][i], then the required 
time T is right after that message was 
received at node i. Because of FIFO 
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write operations to shared memory.22 
A number of them improve the bak-
ery algorithm, the most significant 
improvement being a bound on the 
chosen numbers.6,21 But all improve-
ments seem to add impediments to 
our path, except for one: Moses and 
Patin17 optimized the bakery algorithm 
by allowing process i to stop waiting for 
process j at statement L3 if it reads two 
different values of number[j]. However, 
it is irrelevant to our path because it op-
timizes a case that cannot occur in the 
distributed bakery algorithm.

Mutual-exclusion algorithms based 
on read and write operations have 
been of no practical use for decades, 
since modern computers provide spe-
cial instructions to implement mutual 
exclusion more efficiently. Now, they 
are studied mainly as concurrent pro-
gramming exercises. The bakery algo-
rithm is of interest because it was the 
first mutual-exclusion algorithm not to 
assume lower-level mutual exclusion, 
which is implied by atomic reads and 
writes of shared memory. The distrib-
uted state-machine algorithm is inter-
esting because it preserves causality. 
But it too is less important than the 
problem it solves.

The most important contribution 
of my state-machine paper was the 
observation that any desired form of 
cooperation in a network of comput-
ers can be obtained by implement-
ing a distributed state machine. The 
obvious next step was to make the 
implementation fault tolerant. The 
work addressing that problem is too 
extensive to discuss here. Fault-tol-
erant state-machine algorithms have 
become the standard building block 
for implementing reliable distributed 
systems.20

There was no direct connection 
between the creation of the bakery 
algorithm and of the state-machine 
algorithm. The bakery algorithm was 
inspired by a bakery in the neighbor-
hood where I grew up. A machine dis-
pensed numbers to its customers that 
determined the order in which they 
were served. The state-machine algo-
rithm was inspired by an algorithm 
of Paul Johnson and Robert Thomas.7 
They used the << relation and process 
identifiers to break ties, but I don’t 
know if that was inspired by the bak-
ery algorithm.

Figure 6. A newer version of statement M.

Figure 5. A new version of statement M.

section to implement a distributed 
state machine. We can order the com-
mands by the value (number[i], i) would 
have had when i entered the criti-
cal section to execute the command. 
Process i can send the command it is 
executing in the messages containing 
the value of number[i] that it sends to 
other processes. In fact, we don’t need 
number[i] at all. When we send that 
message, number[i] has the same value 
as maxNum[i][i]. We can eliminate ev-
erything in the main process i except 
the atomic statement containing state-
ment M, which can now be written as in 
Figure 6, where Cmd is process i’s cur-
rent command.

There is one remaining problem. 
Process i saves the messages contain-
ing commands that it sends and re-
ceives, accumulating a set of triples 
(v, j, Cmd) indicating that process j is-
sued a command Cmd with number[j] 
having the value v. It knows that those 
commands are ordered by (v, j). How-
ever, to execute the command in (v, 
j, Cmd), it has to know that it has re-
ceived all commands (w, k, Dmd) with 
(w, k) << (v, j). Process i knows that, for 
each process k, it has received all com-
mands (w, k, Dmd) with w ≤ maxNum[i]
[k]. However, suppose i has received 
no commands from k. How can i be 
sure that k hasn’t sent a command in 
a message that i hasn’t yet received? 
The answer is to use the distributed 
bakery algorithm’s ack messages. 
Here’s how.

For convenience, we let process i 
keep maxNum[i][i] always equal to the 
maximum of the values maxNum[i]
[j] (including j = i). It does this by in-
creasing maxNum[i][i], if necessary, 
when receiving a message with the 
value of maxNum[i][j] from another 
process j. Upon receiving a message 
(v, Cmd) from process j, process i sets 

maxNum[i][j] to v (possibly increas-
ing maxNum[i][i]) and sends back to 
j the message (maxNum[i][i], ack). 
When that message is received, j sets 
maxNum[j][i] accordingly, (increas-
ing maxNum[j][j] if necessary). When i 
has received all the ack messages for a 
command it issued with maxNum[i][i] 
equal to v, all its values of maxNum[i]
[j] will be ≥ v, so process i knows it has 
received all commands ordered before 
its current command. It can therefore 
execute all of them, in the appropri-
ate order, and then execute its current 
command.

This is almost identical to the 
distributed state-machine algo-
rithm,12 where maxNum[i][i] is called 
process i’s clock. (The sketch of the 
algorithm given there is not detailed 
enough to mention the other regis-
ters maxNum[i][j].) The one differ-
ence is that, when process i receives 
a message from j with a new value 
v of maxNum[i][j], the algorithm re-
quires maxNum[i][i] to be set to a 
value > v, whereas ≥ v suffices. The 
algorithm remains correct if the val-
ue of maxNum[i][i] increases by any 
amount at any time. Thus, the reg-
isters maxNum[i][i] could be logical 
clocks that are also used for other 
purposes.

We have described all the pieces of 
a distributed state-machine algorithm 
but have not put them together into 
pseudo-code. “The precise algorithm is 
straightforward, and we will not bother 
to describe it.”12

Ancient and Recent History
In addition to being the author of this 
article, I am the author of the starting 
and ending algorithms of our journey. 
The bakery algorithm is among hun-
dreds of algorithms that implement 
mutual exclusion using only read and 
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reasoning I have used here is notori-
ously unreliable. I believe the best 
rigorous proofs of safety properties 
are usually based on invariants—
predicates that are true of every state 
of every possible execution.2 Invari-
ance proofs that the bakery algorithm 
satisfies mutual exclusion have often 
been used to illustrate formalisms or 
tools.5,11 An informal sketch of such a 
proof for the decomposed bakery al-
gorithm is in an expanded version of 
this article, which is available on the 
Web.8 Elegant rigorous proofs of prog-
ress properties can be written using 
temporal logic.18

Rigorous proofs are longer than in-
formal ones and can intimidate read-
ers not used to them. I almost never 
write one until I believe that what I 
want to prove is true. For the correct-
ness of our algorithms, that belief was 
based on the reasoning embodied in 
the informal proofs I presented—the 
same kind of reasoning I used when I 
discovered the bakery and distributed 
state-machine algorithms.

I understood the two algorithms well 
enough to be confident in the correct-
ness of the non-distributed versions of 
the bakery algorithm and of the deri-
vation of the state-machine algorithm 
from the distributed bakery algorithm. 
Model checking convinced me of the 
correctness of the distributed bakery al-
gorithm and confirmed the confidence 
my informal invariance proof had given 
me that the deconstructed algorithm 
satisfies mutual exclusion.

More recently, Stephan Merz wrote 
a formal, machine-checked version of 
my informal invariance proof. He also 
wrote a machine-checked proof that 
the actions of the distributed bakery 
algorithm implement the actions of 
the deconstructed bakery algorithm 
under a suitable data refinement. 
These two proofs show that the decon-
structed algorithm satisfies mutual 
exclusion. The proofs are available on 
the Web.16	
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The path between the two algo-
rithms that we followed is not the one 
I originally took. That journey began 
when I was looking for an example 
of a distributed algorithm for notes I 
was writing. Stephan Merz suggested 
the mutual-exclusion algorithm I had 
used to illustrate the state-machine 
algorithm. I found it to be too com-
plicated, so I simplified it. (I did not 
remember the Ricart-Agrawala algo-
rithm and was only later reminded of 
it by a referee). After stripping away 
things that were not needed for that 
particular state machine, I arrived at 
the distributed bakery algorithm. It 
was obviously related to the original 
bakery algorithm, but it was still not 
clear exactly how.

I wanted to make the distributed 
algorithm an implementation of the 
bakery algorithm. I started with the 
generalization of having subprocesses 
of each process interact independent-
ly with the other processes; that was 
essentially how I had been describing 
the bakery algorithm for years. Delay-
ing the setting of number[i] to 0 was 
required because the distributed al-
gorithm’s message that accomplished 
it could be arbitrarily delayed. It took 
me a while to realize that I should de-
construct the multi-reader register 
number[i] into multiple single-reader 
registers, and that both the original 
bakery algorithm and the distributed 
algorithm implemented that decon-
structed algorithm.

The path back from the distributed 
bakery algorithm to the distributed 
state-machine algorithm was easy. It 
may have helped that I had previously 
used the idea of modifying the bakery 
algorithm to make values of number[i] 
keep increasing. Paradoxically, that 
was done to keep those values from 
getting too large.10

Correctness of a concurrent algo-
rithm is expressed with two classes of 
properties: safety properties, such as 
mutual exclusion, that assert what the 
algorithm may do, and liveness proper-
ties, such as starvation freedom, that 
assert what the algorithm must do.1 
Safety properties depend on the ac-
tions the algorithm can perform; live-
ness properties depend as well on as-
sumptions, often implicit, about what 
actions the algorithm must perform.

The kind of informal behavioral 

Watch the author discuss  
this work in the exclusive 
Communications video.  
https://cacm.acm.org/videos/
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