
Dijkstra Book

Chapter on Concurrent Algorithms

Leslie Lamport

18 December 2021

Contents

1 Introduction 3

2 Mutual Exclusion 3
2.1 Preliminaries . 4
2.2 Dekker’s Algorithm . 7
2.3 Dijkstra’s Algorithm . 9
2.4 Semaphores . 11
2.5 A Closer Look at the Problem 12
2.6 The Dining Philosophers . 14

3 Self-Stabilization 15
3.1 The Problem . 15
3.2 A Coarse-Grained Algorithm 16
3.3 A Finer-Grained Algorithm 19
3.4 What Dijkstra Actually Wrote 19
3.5 The Paper’s Influence . 21

4 On-the-fly Garbage Collection 21
4.1 The Problem . 22
4.2 A Solution . 24
4.3 Verification . 26
4.4 The Algorithm and its Significance 28

5 Termination Detection 29
5.1 The Problem . 29
5.2 The Tree Algorithm . 30

1

5.3 The Ring Algorithm . 31
5.4 A Bit of History . 36

6 Conclusion 36

References 37

2

1 Introduction

A concurrent algorithm is one in which concurrently executing, independent
processes interact with one another. A parallel algorithm is one in which
the processes are not independent, but were created to speed up execution
of a single computation. There is no precise distinction between parallel
and concurrent algorithms, and a concurrent algorithm may be used to
synchronize the separate processes executing a parallel algorithm. However,
they differ in practice and pose different problems. Distributed algorithms
are a class of concurrent algorithms.

Dijkstra published five influential papers about concurrent algorithms.
The first was the most important because it began the study of concurrent
algorithms. This chapter describes most of the algorithms in those five
papers, along with background material for some of them. Their descriptions
here do not reflect how the algorithms were presented in the papers. I
have extensively modified Dijkstra’s notation and the way he described the
algorithms, reflecting what has been learned in the decades since he did
that work (and perhaps my biases). In particular, algorithms are written in
the sort of informal pseudo-code I might have used in the 1980s and is still
widely used today.

Dijkstra was careful to acknowledge colleagues who influenced his papers,
often including them as coauthors. I believe he was the driving force behind
these five papers, and I am reasonably sure that he did all the actual writing
himself. I do not mean to belittle any of the coauthors of these papers
(especially since I am one of them). However, for brevity, the papers are
referred to simply as Dijkstra’s.

2 Mutual Exclusion

In 1965, Dijkstra published in Communications of the ACM (CACM) a
paper [5] containing what I believe was the first concurrent algorithm to
appear in print. More important than the paper’s algorithm was its intro-
duction of the mutual exclusion problem that the algorithm solved. Even
more important than that, the paper introduced the way we now think about
concurrently executing processes. And it did all this in one page.

In the mutual exclusion problem, there are N processes, each of which
may repeatedly execute a section of code called its critical section. The
remainder of its code is called the noncritical section. A process may halt
only in its noncritical section. The problem is to add synchronization code

3

to ensure that executions of the critical section by two different processes
cannot occur at the same time. Dijkstra discussed this problem in EWD35,
apparently written in 1962. He wrote there that, in 1959, the mathematician
Theodorus Jozef Dekker found a solution for two processes, and that:

[F]or almost three years, this solution has been considered a
“curiosity”, until these issues at the beginning of 1962 suddenly
became relevant for me again. . . 1

It was building the THE operating system [8] that made the problem rel-
evant. That system was implemented as a collection of separate processes.
Mutual exclusion was used, for example, to prevent two different processes
from trying to print with the same printer at the same time.

2.1 Preliminaries

Dekker’s and Dijkstra’s algorithms, as well as many later mutual exclusion
algorithms, are based on what I call the one-bit protocol : Each process has
a flag (a Boolean-valued variable) that initially equals true; it enters the
critical section by setting its flag to false and then waiting until it has read
the value true in every other process’s flag.2 A process resets its flag to
true upon exiting the critical section. No two processes can be executing
their critical sections at the same time because the last one to set its flag to
false would have read the other’s flag equal to false if that other process
were still in its critical section.

The one-bit protocol ensures mutual exclusion, but it does not solve the
mutual exclusion problem. (I call it a protocol because it is used only as part
of a complete algorithm.) If two processes both set their flags to false before
reading the other process’s flag, then something must be done to prevent
both of them from waiting forever for the other to set its flag to true.

In Dekker’s and Dijkstra’s algorithms, this deadlock is broken by having
one of the processes set its flag to true to let the other process enter the
critical section before it does. This is also done in a simpler way by what
I call the one-bit algorithm. This algorithm, for N processes numbered
1 through N , is described in Figure 1 using the following notation. The
variable statement declares the shared variables, which can be accessed by

1From a translation by Martien van der Burgt and Heather Lawrence on the
cs.utexas.edu web site.

2Following Dijkstra, I am using a flag whose value indicates if the process does not
want to enter the critical section. These days, the protocol is described with a flag having
the opposite meaning.

4

variable flag [i ∈ 1 . .N] = true

process i ∈ 1 . .N do
while true

do noncritical section ;

L: 〈flag [i] : = false 〉 ;
for j ∈ 1 . .(i − 1)

do if 〈 ¬flag [j] 〉 then 〈flag [i] : = true 〉 ;
〈await flag [j] 〉 ;
goto L

fi
od ;

for j ∈ (i + 1) . .N
do 〈await flag [j] 〉 od ;

critical section ;

〈flag [i] : = true 〉
od

od

Figure 1: The one-bit algorithm.

any process, and their initial values. The expression i . . j equals the set
of all integers k with i ≤ k ≤ j . Variable flag is declared to be an array
with index set 1 . .N such that flag [i] equals true for all i in that set. The
statement

process i ∈ 1 . .N do . . . od

declares that there is a process for each number in 1 . .N , where “. . . ” is
the code for process number i . The meanings of the while. . . do. . . od,
if . . . then. . . fi, and goto statements3 should be obvious; and : = denotes
assignment. Boolean negation is written ¬ . The for and await statements
and the angle brackets 〈 〉 require explanation.

Execution of the statement

for j ∈ S do T od

means executing T once for each value of j in the set S . The executions
for different values of j can occur in any order. At that time, Dijkstra

3In 1965, Dijkstra had not yet begun his crusade against the goto, and he used it
freely. Simplicity is crucial for avoiding errors in concurrent algorithms. A goto should
be used if it simplifies the algorithm’s description.

5

would use a conventional for statement or other looping construct to perform
the executions of statement T in a specified order, even when the order of
execution didn’t matter. He would sometimes mention that the order was
irrelevant, but often didn’t—perhaps because he expected it to be obvious
to the reader.

Dijkstra assumed that the execution of a concurrent algorithm can be
described as a sequence of atomic actions, each performed by a single pro-
cess. (I will usually eliminate the word “atomic”.) Exactly how execution
of an operation is broken down into separate actions doesn’t matter for
single-process algorithms. It does for concurrent algorithms. Suppose two
processes concurrently execute the statement x : = x + 1. This increments
x by 2 if execution of the statement is a single action. There are many other
possible outcomes if reading and setting each bit in the representation of x
is a separate action. Writing 〈 x : = x + 1 〉 indicates that the execution is
a single action. For an expression E , writing 〈E 〉 indicates that evaluation
of E is a single action. Execution of an operation not in angle brackets can
be split in any way into a sequence of actions.

The statement 〈await E 〉 can be interpreted in two ways. One way is
that the statement is executed only when the expression E equals true, and
its execution just causes control to pass to the following statement. The
other way is that it is equivalent to:

L : 〈 if ¬E then goto L fi 〉

which is the way Dijkstra wrote it (without the angle brackets). With the
first interpretation, its execution consists of a single action. The second
interpretation allows that action to be preceded by a sequence of actions
that have no effect. An action that has no effect is unobservable, so those
two interpretations are equivalent.

Let us now examine the algorithm. To enter its critical section, process
i must set flag [i] to false and then execute the two for loops. Completing
execution of those loops requires reading flag [j] equal to true for every
other process j . The algorithm therefore implements the one-bit protocol
for entering the critical section, ensuring mutual exclusion.

The algorithm also satisfies a property called deadlock freedom4: when-
ever some process is trying to enter its critical section, eventually (then or
at a later time) some process is in its critical section. The proof is by contra-

4This name is misleading, because deadlock usually means that processes are wait-
ing forever at await statements. Here, deadlock freedom also rules out livelock, where
processes keep executing statements but never make progress.

6

diction. We assume that some process is trying to enter its critical section
but no process is ever in its critical section, and we obtain a contradiction.

1. Eventually, every process is forever either in its noncritical section, or
waiting at an await statement, or looping through statement L.

Proof: By the code and the assumption that no process ever again enters
the critical section.

2. Eventually, every process is forever either in its noncritical section or
waiting at an await statement.

Proof: Since no process is ever in its critical section, we need only show
that no process is forever looping through statement L. If there is such
a process, let process i be the lowest-numbered one. The code implies
process i never examines the flag of any other process looping through
statement L. By step 1, all the flag values it examines eventually never
change, so it must eventually either exit its first for loop or wait forever
at an await inside it. Hence, eventually no more processes can be looping
through statement L.

3. Let process i be the lowest-numbered process with flag [i] eventually al-
ways equal to false.

Proof: Such an i exists by step 2 and the assumption that some process
is waiting to enter its critical section.

4. Contradiction.

Proof: By step 3, process i must be waiting forever for flag [j] to equal
true, for j < i . This implies i is in its first for loop, so flag [i] equals
true, contradicting step 3.

This algorithm was never mentioned by Dijkstra. It was discovered inde-
pendently by James E. Burns, me, and perhaps others in the 1970s. To my
knowledge, it was not published until the 1980s [3, 21]. However, it is so
simple that it’s hard to believe that Dijkstra, who understood the one-bit
protocol, had not already discovered it by 1965. He might have, but then
dismissed it for a reason discussed below.

2.2 Dekker’s Algorithm

Deadlock freedom means that, if some process i is trying to enter the critical
section, then some process j eventually enters it. It does not imply that i
eventually enters it. The one-bit algorithm gives lower-numbered processes
priority. A process may try forever to enter the critical section while lower-
numbered processes keep entering and leaving. One might like the stronger

7

variables flag [i ∈ {0, 1}] = true, turn ∈ {0, 1}
process i ∈ {0, 1} do

while true
do noncritical section ;

L1: 〈flag [i] : = false 〉 ;
L2: if 〈 ¬flag [1− i] 〉

then if 〈 turn = i 〉 then goto L2
else 〈flag [i] : = true 〉 ;

〈await turn = i 〉 ;
goto L1

fi
fi ;

critical section ;

〈 turn : = 1− i 〉 ;
〈flag [i] : = true 〉

od
od

Figure 2: Dekker’s algorithm.

property that every trying process eventually enters the critical section. For
a reason that should be obvious later, this property has come to be called
starvation freedom.

Dekker’s algorithm for two processes achieves starvation freedom by us-
ing a dynamic priority rather than the fixed priority based on process num-
ber of the one-bit algorithm. It has an additional variable turn whose value
indicates which process has priority. If turn equals i , then process i waits
with flag [i] equal to false; otherwise, it waits with flag [i] equal to true.
Upon exiting the critical section, a process sets turn to the number of the
other process. The algorithm, as it appeared in EWD123 (but with more
modern notation), is in Figure 2. The processes are numbered 0 and 1, and
the declaration of the variable turn indicates that its initial value can be
either 0 or 1.

In the algorithm, processes execute the one-bit protocol to enter the
critical section, guaranteeing mutual exclusion. Here is Dijkstra’s proof of
deadlock freedom, restated rather tersely in terms of our notation.

Suppose both processes are trying to enter the critical section. If
neither succeeds, then the value of turn remains constant. It is
then easy to see that process number turn must eventually wait
with flag [turn] equal to false while process 1− turn waits with

8

flag [1 − turn] equal to true, allowing process turn to enter the
critical section. If only a single process i is trying to enter, then
process 1 − i must reach the noncritical section with flag [1 − i]
equal to true, allowing process i to reach the critical section.

This argument is incomplete. It fails to consider the possibility that process
i reads flag [1− i] equal to false in the outer if test and then waits forever
with turn equal to 1− i while process 1− i remains forever in its noncritical
section. It’s not difficult to show that this can’t happen, but the proof is
not trivial.

Dijkstra’s proof was based on considering all possible behaviors of the
algorithm. The lacuna in the proof illustrates that this kind of reasoning is
dangerous; it is hard to think of all the possible behaviors of a concurrent
algorithm. While Dekker’s algorithm is correct, we will see that such rea-
soning would later lead Dijkstra to write a correctness proof of an incorrect
algorithm.

Although not asserted by Dijkstra, Dekker’s algorithm is starvation free
as well as deadlock free. In more than one place, Dijkstra mentioned the
difficulty of finding and proving the correctness of concurrent algorithms,
and he urged the reader to try to solve a problem before reading his solution.
In that spirit, I leave the proof that Dekker’s algorithm is starvation free to
the reader.

2.3 Dijkstra’s Algorithm

In the N -process mutual exclusion algorithm of [5], Dijkstra uses Dekker’s
idea of a variable turn that determines which among competing processes
should be the next to enter the critical section. Instead of having the value
of turn set by a process upon exiting the critical section, a process trying
to enter the critical section tries to set turn to its own number. It can do
so only when turn is the number of a process currently in its noncritical
section. For this purpose, the algorithm uses an additional variable idle,
where idle[i] equals true when process i is in its noncritical section. The
code is in Figure 3. The variable temp is declared to be local to the process,
each process having its own copy. The expression (1 . .N) \ {i} equals the
set of all integers from 1 through N except i .

The algorithm obeys the one-bit protocol, since a process enters the
critical section only by completing the else clause without looping back to
L. Mutual exclusion is therefore guaranteed. To show deadlock freedom, it
suffices to assume some process is trying to enter the critical section and no

9

variables flag [i ∈ 1 . .N] = true, idle[i ∈ 1 . .N] = true, turn ∈ 1 . .N

process i ∈ 1 . .N
variable temp ∈ 1 . .N

do while true
do noncritical section ;

〈 idle[i] : = false 〉 ;
L: if 〈 turn 6= i 〉

then 〈flag [i] : = true 〉 ;
〈 temp : = turn 〉 ;
if 〈 idle[temp] 〉 then 〈 turn : = i 〉 fi ;
goto L

else 〈flag [i] : = false 〉 ;
for j ∈ (1 . .N) \ {i}

do if 〈 ¬flag [j] 〉 then goto L fi od ;
fi ;

critical section ;

〈flag [i] : = true 〉 ;
〈 idle[i] : = true 〉

od
od

Figure 3: Dijkstra’s algorithm.

10

process ever succeeds, and to show that some process eventually does enter
the critical section. With no process entering the critical section, eventually
every process either remains forever in its critical section or keeps looping
through the if test at L. Since idle[j] is true if process j is in its noncritical
section, if process number turn is not looping, then some looping process
will set turn to its own number. At that point, turn must always equal the
number of a looping process, so idle[turn] always equals false. Each looping
process can then set turn at most once, so eventually the value of turn stops
changing. The value of flag [j] will then eventually forever equal true for
every process except process turn, and process turn will enter its critical
section.

While it is deadlock free, Dijkstra’s algorithm is not starvation free even
for two processes. One process i can set turn equal to i and keep cycling
through its noncritical and critical sections, while another process waits
forever, always reading idle[i] equal to false.

2.4 Semaphores

These mutual exclusion algorithms were of intellectual interest only. They
were impractical for implementing mutual exclusion in the THE system.
Instead, Dijkstra introduced the semaphore, described in EWD35. A binary
semaphore sem is a special kind of variable, whose value initially equals 0,
that can be accessed only by the two operations P(sem) and V (sem).5

These operations are defined by:

P(sem):
〈

await sem > 0 ;
sem := sem− 1

〉

V (sem): 〈 sem : = 1 〉

Thus, the value of a binary semaphore always equals either 0 or 1. As
reported in EWD123, Carel Scholten suggested allowing semaphores whose
value can be any natural number, where the V (sem) operation is replaced
by 〈 sem : = sem + 1 〉.

It is trivial to implement mutual exclusion with a binary semaphore sem.
Simply precede the critical section with a P(sem) statement and follow it
with V (sem). Semaphores can also be used in other ways to synchronize
processes. Binary semaphores are still commonly used today. They are now
called locks, and P and V are called lock and unlock.

5P and V are the first letters of Dutch words meaning pass and release.

11

When multiple processes are waiting to execute a P(sem) operation,
execution of a V (sem) allows one of them to proceed. Dijkstra said nothing
about which one will enter. His definition allows an individual process to
wait forever if other processes keep executing P(sem) operations. The simple
mutual exclusion algorithm using a single semaphore is then deadlock free
but not starvation free.

Allowing a process to wait forever on a P(sem) operation may not be
acceptable. A semaphore sem is said to be fair if every process waiting
on a P(sem) operation will eventually execute it, assuming every P(sem)
operation is followed by a corresponding V (sem) operation. Fair semaphore
implementations often guarantee something stronger than fairness, ensuring
that no process waits too long to execute a P(sem) operation. It would
be surprising if that were not the case for semaphores in the THE system.
For proving properties such as starvation freedom that assert something
eventually happens, fairness is usually all that is required.

2.5 A Closer Look at the Problem

We have seen Dijkstra’s solution of the mutual exclusion property. More im-
portant than his solution was the statement of the problem, including what
could be assumed about the processes. He first stated the mutual exclusion
requirement. He then assumed that processes communicated through what
are now called atomic shared memory registers, accessed only with read and
write operations. (Remember that he wrote an await statement as a wait-
ing loop.) During an execution of the algorithm, the results of operations
to shared memory by all the processes were assumed to be the same as if
those operations were performed in some sequential order consistent with
each process’s code. He then stated four requirements for a solution. The
last three were:

1. Nothing could be assumed about the relative execution speeds of the
processes. Left implicit was the assumption that the speed was not
zero—that is, each process kept executing instructions unless it exe-
cuted a halt instruction.

2. Any process could halt in its noncritical section.

3. Deadlock freedom. In stating this assumption, he explicitly ruled out
any algorithm in which “After you. No, after you.” blocking, though
highly improbable, could continue indefinitely.

12

The importance of each of these requirements is remarkable. Requirement 1
was probably suggested by the THE system, in which all processes shared
a single processor, so one process might do nothing for a long time while
other processes used the processor. However, Dijkstra realized this was not
just an artifact of that system. He understood that the distinction between
process and processor would exist even on multiprocessor machines, and that
processes could represent devices with very different execution speeds, such
as computers, printers, and humans. The assumption that each process
keeps executing, today called process fairness, is now assumed for most
concurrent algorithms

Requirement 2 ruled out simple solutions in which all processes cycle
through the critical section—a process immediately exiting it if it has noth-
ing critical to do.

The remarkable part of requirement 3 is not deadlock freedom, but that
it should hold for every possible execution. Using the 1-bit protocol, it’s not
hard to find algorithms that ensure mutual exclusion but allow the kind of
blocking the requirement forbids. Dijkstra probably thought some people
would think those algorithms were correct because such blocking is unlikely
to persist for long.

We now take it for granted that correctness means correctness of all ex-
ecutions. But this paper was published two years before Floyd’s seminal
paper [13] that effectively launched the modern field of program correct-
ness. I don’t know of any algorithm that was published before this one with
a correctness proof. Even 14 years later, no indication of why an algorithm
might be correct was required for the ACM to publish it [1]. Testing was the
standard way of verifying correctness of an algorithm. But testing cannot
show that every possible execution of an algorithm does what it is supposed
to—especially a concurrent algorithm, where the absence of a bound on rela-
tive execution speeds of the processes usually allows infinitely many possible
executions. In 1965, only a proof could do that.

Dijkstra’s remaining requirement, the first one on his list, was:

The solution must be symmetrical between the N computers; as
a result we are not allowed to introduce a static priority.

I used to think that this was added as a “poor man’s substitute” for star-
vation freedom. It meant that, although his solution didn’t guarantee that
any particular process ever entered the critical section, it ensured that every
process had an equal chance of entering it. But in EWD35, written three
years earlier, Dijkstra mentioned that Dekker’s algorithm was symmetric
but did not say that it was starvation free. He apparently felt this condition

13

was more important than starvation freedom. He could have known the
one-bit algorithm and not mentioned it because it was asymmetric.

The first starvation free N -process mutual exclusion algorithm, which
was also symmetric, was published eight months later by Donald Knuth [17].
It essentially uses Dekker’s idea of modifying the one-bit algorithm so process
priority is indicated by a variable turn that is set by a process when exiting
the critical section. The process numbers, in order of decreasing priority,
are turn, turn − 1, . . . , 1, N , N − 1, . . . , turn + 1.

Almost all mutual exclusion algorithms published since then have been
starvation free. Symmetry no longer seems to be considered important. For
example, the popular bakery algorithm [18] ensures first-come, first-served
entry to the critical section—arguably a fairer guarantee than symmetry—
but is not symmetric because of a static priority among processes that arrive
concurrently.

2.6 The Dining Philosophers

The mutual exclusion problem has been generalized in various ways to allow
more than one process to be in its critical section at the same time. One
early example is when the critical section serves to protect some data. A
process must not modify the data while another process is trying to read or
modify it. However, multiple processes that only read the data can access
it at the same time. This is called the readers/writers problem. Processes
are partitioned into readers and writers, and the mutual exclusion criterion
is that a writer cannot be in its critical section while any other process is in
its critical section. Early solutions used semaphores [4].

The most popular variant of mutual exclusion is the Dining Philosophers
problem. It appears in EWD198, where Dijkstra calls it the “Problem of
the Dining Quintuple”. EWD1000 recounts that he invented it as an exam-
ination problem for a course he gave in 1965, and that C.A.R. (Tony) Hoare
renamed it the Dining Philosophers problem.

In this problem, five philosophers alternate between thinking and eating.
The philosophers eat at a round table, where each is assigned a seat with a
plate in front of him. They are served a “difficult kind of spaghetti” that
must be eaten with two forks.6 There are five forks, one between each pair
of philosophers. A philosopher can use only the two forks next to him; and
he eats when in his critical section. Since a fork can be used by only one

6The insular nature of European cuisine at the time is displayed by the philosophers’
use of two forks rather than a pair of chopsticks.

14

philosopher at a time, the mutual exclusion condition is that two adjacent
philosophers cannot be in their critical sections at the same time.

Dijkstra evidently regarded this as a concurrent programming problem
rather than an algorithm problem. In [9], he derived a solution using a global
semaphore that allows only one philosopher at a time to examine the state of
his two neighbors and modify his own state. It was an exercise in practical
programming, not in finding an interesting algorithm. Dijkstra then ob-
served that his solution was probably not satisfactory because a philosopher
could be prevented from ever eating by voracious philosophers on either side
of him. He said that a solution should allow every hungry philosopher to
eventually enter his critical eating section, making it “starvation free”. He
indicated how such a solution can be obtained, but did not describe it.

The dining philosophers became very popular, both as a programming
problem and an algorithmic one. I never felt it merited as much attention
as it received; I believed its popularity was due to the cute story with which
it was presented. A number of years later, my colleagues and I did some
work that I thought deserved to be well known. The example of the din-
ing philosophers inspired me to explain it with a story involving traitorous
generals [23]. That worked quite well.

3 Self-Stabilization

3.1 The Problem

Nine years passed before Dijkstra published his second paper about concur-
rent algorithms, which also appeared in CACM [10]. I believe it was the
first paper devoted to fault tolerance in concurrent algorithms.

Dijkstra observed that correct functioning of a system can be achieved
by ensuring that it is always in a “legitimate” state. A fault in the program
or the computer can cause incorrect behavior by putting the system in an
illegitimate state. The system could recover from the fault by correcting its
state.

An obvious way for the system to correct its state is to periodically check
it and reset an illegitimate state to a legitimate one. This is not easy in a
multiprocess system, where each process can examine only part of the state.
Dijkstra’s idea was to have each process, acting independently, cause the
system to eventually go from any state to a legitimate once.

He defined a self-stabilizing algorithm to be one that, when started in
any possible state, would eventually reach a legitimate state and operate
properly from then on. He decided to take as his goal to make self-stabilizing

15

what we would now call a token ring.7 As formulated by Dijkstra, there are
N + 1 processes numbered 0 through N , arranged in a circle. Let L(i) and
R(i) equal (i − 1) mod (N + 1) and (i + 1) mod (N + 1), respectively. We
call processes L(i) and R(i) the left and right neighbor of process i . In
a token ring, there should always be a single token that resides at one of
the processes. When process number i has the token, it must pass it to its
right-hand neighbor, process number R(i).

Expressed more precisely, the problem is to find an algorithm and a
Boolean-valued function HasToken(i) of the state of process i such that
process i can perform an action only when HasToken(i) equals true. A
legitimate state is one in which HasToken(i) equals true for exactly one
process i , in which case its action makes HasToken(i) equal false and
HasToken(R(i)) equal true. Self-stabilization means that started in any
possible state, the algorithm must eventually reach a legitimate state.

3.2 A Coarse-Grained Algorithm

Dijkstra devised three different self-stabilizing token ring algorithms. I will
discuss only the first. It has a single array variable S indexed by process
number, where S [i] is in 0 . .(K − 1) for a positive integer K whose value is
constrained below. A legitimate state is one in which there is some process
number i such that, for every process number j :

S [j] =

{
S [0] if 0 ≤ j ≤ i

(S [0] + 1) mod K if i < j ≤ N

For i equal to N , this means all the S [j] are equal.
Dijkstra defined HasToken by:

HasToken(i) =

{
S [i] 6= S [L(i)] if i 6= 0

S [i] = S [L(i)] if i = 0

Remember that L(0) equals N , so HasToken(0) equals S [0] = S [N].
It is easy to check that, in any legitimate state, HasToken(i) equals

true for exactly one process i . It is also easy to check that a process i
other than 0 can pass the token to process R(i) only by setting S [i] equal
to S [i − 1]. Process 0 can pass the token to process 1 by changing S [0] to
(S [0] + 1) mod K . Each token-passing action starting in a legitimate state
then produces a legitimate state.

7The paper states that one of its algorithms was used shortly after being discovered,
suggesting that Dijkstra chose a token-ring algorithm because he had an application in
mind.

16

variables S [i ∈ 0 . .N] ∈ 0 . .(K − 1)

process i ∈ 0 . .N do
while true do
〈 await HasToken(i) ;

if i 6= 0 then S[i] := S[i− 1]
else S[0] := (S[0] + 1) mod K

fi
〉

od
od

Figure 4: The coarse-grained algorithm.

Dijkstra begins with a coarse-grained algorithm in which the entire op-
eration of passing the token from i to R(i) is a single action. We’ve just
seen that this algorithm correctly implements a token ring when started in
a legitimate state. We now need to verify self-stabilization. To do this,
for each process i , we allow the initial value of S [i] to be any number in
0 . .(K − 1) and we show that the algorithm eventually reaches a legitimate
state. The precise algorithm is in Figure 4. The algorithm assumes K ≥ N .
Here is Dijkstra’s proof of self-stabilization.

1. In any possible state, HasToken(i) is true for at least one process i .

Proof: If HasToken(i) is false for each i > 0, then S [i − 1] = S [i] for
all i > 0. This implies S [0] = S [N], which implies HasToken(0) is true
because L(0) = N .

2. After an action of process i has occurred, another action of process i
cannot occur until the value of S [L(i)] has changed.

Proof: Executing the process i action makes HasToken(i) false. It can
become true again only by S [L(i)] changing.

3. Infinitely many actions of every process occur.

Proof: By step 1, it is always possible for an action of some process to
occur, so infinitely many actions of some process must occur. Since the
value of S [j] is changed only by an action of process j , step 2 implies
that if infinitely many actions of any process i occur, then infinitely many
actions of L(i) occur. Hence, infinitely many actions of any one process
implies infinitely many actions of all processes.

4. Eventually, a process 0 action that sets S [0] to 0 occurs.

Proof: By step 3, infinitely many process 0 actions occur, and each such

17

action increments S [0] by 1 modulo K .

Define the color of each process according to the following rules:

• Initially all processes are white.

• The first process 0 action that sets S [0] to 0 turns process 0 blue.
(Such an action occurs by step 4.)

• Node i > 0 is set blue either if process i executes an action when node
L(i) is blue, or if L(i) is set blue and S [L(i)] then equals S [i]. (Thus a
process action that sets itself blue may also set one or more processes
to its right blue.)

5. After process 0 becomes blue, at most N −1 process N actions can occur
before the action that turns N blue.

Proof: Because values of S [i] travel from left to right between processes
0 and N , and a value moving from a blue node to a white node turns
the white node blue, step 2 implies that the values that S [N] can have
before N becomes blue must be among the white nodes to its left. When
process 0 first becomes blue, there are at most N − 1 white nodes to the
left of node N . Hence, at most N − 1 process N actions can occur before
N becomes blue.

6. Immediately after N becomes blue, the sequence S [0],S [1], . . . ,S [N] is
nonincreasing.

Proof: Values move left to right, and new values are created by process 0
actions that increment S [0] by 1 modulo K . By 2 and 5, until N becomes
blue, at most N − 1 process N actions have occurred. Since S [0] equals
0 when process 0 becomes blue, we can use the assumption K ≥ N to
deduce from this that the value of S [0] can be at most K − 1. Therefore,
up to and immediately after execution of the action that makes N blue,
the sequence of values of blue nodes is nonincreasing.

7. The algorithm is eventually in a legitimate state.

Proof: By step 6, eventually S [0],S [1], . . . ,S [N] is nonincreasing. It is
easy to see that this must remain true until a process 0 step decreases
S [0], which by step 3 must happen and by definition of the process 0
action can happen only after S [N] equals S [0]. But S [N] = S [0] and the
sequence of values S [i] being nondecreasing implies that all the S [i] are
equal, which is a legitimate state.

18

3.3 A Finer-Grained Algorithm

Dijkstra next considered the finer-grained algorithm obtained by modifying
the algorithm in Figure 4 to make the await statement and the if statement
separate atomic actions—in other words, adding “〉” before the “;” and “〈”
before the “if”. That modification to the code in Figure 4 would be adequate
to describe the algorithm starting from a legitimate state. However, self-
stabilization also requires showing that a legitimate state is reached from any
possible starting state. The state of the finer-grained algorithm consists not
only of the value of the array S , but also the control state of each process—
that is, whether the next action of a process is execution of the await
statement or the if statement. The algorithm should be self-stabilizing if
the algorithm is started with each process in either possible control state.

Writing such an algorithm in pseudo-code would be complicated without
additional language features. (It is easy to do with more mathematical ways
of describing algorithms.) So, we will make do with this informal description
of the finer-grained algorithm.

The proof of self-stabilization is almost identical to the proof for the
coarse-grained algorithm. That proof breaks down in step 7. The assertion
that a process 0 step can change S [0] only when S [0] equals S [N] is incorrect.
Suppose K equals N . It is possible that S [N] equaled N − 1 immediately
before process N became blue. At that time, S [0] could have equaled N − 1
and found its await condition to be true, moving control to its if statement.
Process N could then have become blue with S [N] being set to 0. Process 0
could then have set S [N] to (N − 1 + 1) mod N (since K equals N), which
equals 0, and S [0],S [1], . . . ,S [N] could then be nonincreasing, invalidating
the proof.

This problem can be corrected by assuming K > N , and indeed this
assumption implies that the algorithm is self-stabilizing. However, I hope
that my admonition in Section 2.2 about the unreliability of behavioral
reasoning has made the reader skeptical of my assertion that this correction
produces a correct proof. There are now more reliable ways of proving
properties like self-stabilization. However, they are beyond the scope of this
chapter. The proofs presented here reflect the ones Dijkstra wrote, which
today are best considered informal explanations rather than rigorous proofs.

3.4 What Dijkstra Actually Wrote

Dijkstra first discussed self-stabilization in EWD391, where he presented
the coarse- and finer-grained algorithms and their proofs discussed above.

19

However, he did not describe those two versions of the algorithm in terms
of atomic actions, but in terms of “demons” that control what action gets
performed next. His first algorithm was obtained by a single centralized
demon, and the second by what he called a “distributed” demon.

It is easy to see that the centralized demon produces the algorithm of Fig-
ure 4. However, there seem to be two reasonable interpretations of what ex-
ecution by a distributed demon could mean. The first is the finer-grained al-
gorithm discussed above. The second is to consider that the token-advancing
operation for process i 6= 0 is performed by reading S [L(i)] just once, rather
than once for evaluating the await and again for performing the assignment
to S [i]. In that case, the finer-grained version should have had an addi-
tional variable local to each process that stores the value of S [L(i)] read in
the await statement for use in the if statement.

Fortunately, there is now an easy way to determine which one Dijkstra
meant: using a model checker to verify correctness of the algorithms for small
values of N and K . A model checker checks the correctness of all possible
executions, usually of a small instance of an algorithm. Model checking
shows that the version that reads S [L(i)] just once is not self-stabilizing for
K = N +1 = 4. I conjecture that it is self-stabilizing for large enough values
of K , but I will leave the proof or disproof of this as an exercise for highly
motivated readers.

The description in terms of demons was not just ambiguous. It seems
to have confused Dijkstra himself. EWD391 contained a proof of the finer-
grained algorithm based on arguing that executing the algorithm with the
distributed demon was equivalent to executing it with the centralized de-
mon. That argument led to a “proof” that the finer-grained algorithm is
self-stabilizing if K ≥ N . EWD392 contains an erratum stating that the al-
gorithm with a distributed demon requires the assumption K > N , but says
nothing about requiring any change to the proof. There is a note crediting
Carel Scholten with pointing out the error, saying “[It] shows a serious flaw
in my reasoning; I should have known better!”

The other two algorithms in the CACM paper and their proofs first
appeared in EWD392 and EWD396. However, no proofs were included
in the published version, which was only 13

4 pages long. The word “proof”
does not even appear.8 Dijkstra certainly recognized the need for correctness
proofs of concurrent algorithms. Perhaps he omitted the proof because he
felt that a shorter paper would have more impact.

8The submitted version contained a comment about Scholten having found a nice proof
for one of the algorithms, but the comment was eliminated in the published version.

20

3.5 The Paper’s Influence

The coarse-grained algorithm described above requires at least N states per
process. The coarse-grained version of the second algorithm in the CACM
paper requires only 4 states per process, and that of the third algorithm
requires only 3 states. (The finer-grained versions of these algorithms require
N + 1, 4, and 3 states, plus the extra control state that is not accessed by
other processes.)

I regard these algorithms to be the most brilliant work Dijkstra ever did.
I was amazed by their simplicity and their depth. I was also impressed by
the significance of the CACM paper. It provided the first rigorous approach
to fault-tolerance in concurrent systems—indeed, the first discussion of the
problem.

Unfortunately, very few others understood the paper’s significance. This
was probably due to how little motivation the paper provided for self-
stabilization. The original submission (EWD397) said only that “the ap-
preciation is left as an exercise to the reader”. Probably in response to
referees’ comments, Dijkstra added two introductory paragraphs, but they
mostly clarified the problem and provided just a bit of motivation. As a
result, that paper almost completely disappeared until 1983.

In 1983, I gave an invited talk at the Principles of Distributed Computing
(PODC) conference. In it, I talked briefly about the CACM paper and said
how brilliant and how important it was. This introduced self-stabilization
to the PODC community and led to it becoming an active research topic.
I am proud of the part I played in helping this paper receive the atten-
tion it deserved. A discussion of the work the paper spawned as well as
an explanation of the 4-state algorithm are in Chapter ?? written by Ted
Herman.

The CACM paper also had an important effect on me personally. I
discovered a generalization of the 4-state algorithm to a tree of processes [19]
and sent it to Dijkstra. This led to his sending me some of his EWDs, which
led to my involvement in the paper discussed next.

4 On-the-fly Garbage Collection

It was probably in April of 1975 that I received from Dijkstra a copy of
EWD492, On-the fly garbage collection: an exercise in cooperation. I wrote
to him suggesting a small simplification, and about a month later I received
a copy of EWD496 with the same title, listing me among its five authors. A
much-revised version was published in CACM in November 1978 [12]. The

21

story of how EWD496 became the CACM paper is instructive.

4.1 The Problem

In 1975, garbage collection was relevant mainly for LISP programs. Today,
it arises in managing a heap of objects, which is at the heart of implementing
object-oriented programs. The value of a program variable can be a pointer
to an object in the heap, and a heap object can contain pointers to other heap
objects. A heap object is said to be reachable if and only if it is pointed to
by a variable or a reachable heap object. Only reachable objects can ever be
used by the program; non-reachable objects are said to be garbage. Garbage
collection is the reclaiming of memory space occupied by garbage objects.

Traditionally, garbage collection has been done by pausing the program,
collecting the garbage, and then restarting the program. An interactive pro-
gram becomes unresponsive while the garbage is being collected. The paper
addresses the problem of eliminating this interruption by having garbage
collection performed continuously by a collector process that runs concur-
rently with the main program. To eliminate details that do not affect the
basic concurrency problem, the paper makes the following simplifying as-
sumptions:

• There is a fixed set of variables that can contain pointers to heap
objects.

• The size of the heap is fixed.

• All objects occupy the same amount of memory and have the same
number of pointers.

The first assumption allows us to replace pointer-containing variables with
special root objects that are, by definition, always reachable. The other
assumptions mean there is no need to consider object creation and destruc-
tion. We can assume a fixed set of objects. The main program obtains
new objects from a portion of the heap called the free list, reachable from
special roots. Obtaining a new object then becomes an ordinary operation
of the main program on reachable heap objects. Garbage collection consists
of making garbage objects reachable as part of the free list. Real programs
can contain null pointers, which don’t point to any object. They can be
considered pointers to a special root object called null.

The result of these simplifications is that all operations performed by
the main program that change the heap can be represented as instances of

22

one simple operation: setting a pointer of a reachable object to point to a
reachable object.

I now switch to notation similar to that used in the paper. The state of
the heap is described as a directed graph with nodes and edges. If a pointer
in object A points to object B , we say that there is an edge from node A to
node B . A node is reachable if and only if it is reachable from a root node,
under the usual definition of reachability in a directed graph.

Let Nodes be the (fixed) set of all nodes. The heap is represented by
a variable heap whose value is an array indexed by the set Nodes. We are
assuming that all nodes have the same number of outgoing edges, so we can
represent the outgoing edges from a node A as an array heap[A].edges of
nodes indexed by a fixed set EdgeIds of edge identifiers. We represent the
main program by a process called the mutator, and we call the garbage col-
lecting process the collector. The mutator executes a sequence of operations

heap[A].edges[e] : = B

for some reachable nodes A and B and some e in EdgeIds. The collector
executes a sequence of collections, each of which can add unreachable nodes
to the free list, making them reachable.

To represent the programming operation of creating a new object and
making it reachable by mutator operations, the collector and mutator must
obey some protocol for adding nodes to and removing them from the free
list. The paper points out that this can be viewed as an instance of pro-
ducer/consumer synchronization, which had known solutions [20]. We ignore
how the free list is implemented by simply assuming that the collector can
add a node to the free list with an atomic action, making it reachable with
all its edges pointing to already reachable nodes. A collection will consist
of a marking phase in which reachable nodes are identified, followed by a
freeing phase in which nodes found not to be reachable are put on the free
list.

There are two correctness conditions required of a solution:

CC1. Every garbage node is eventually added to the free list.

CC2. The collector makes no change to the heap except by putting garbage
nodes on the free list.

Condition CC1 should be strengthened to require that garbage is collected
in a timely fashion. The paper’s algorithm ensures that any node that is
garbage at the beginning of the freeing phase will be added to the free list
by the end of the following complete collection. I will not discuss the proof

23

of CC1 and will consider only CC2. Since there is no reason for the collector
to modify the heap other than by adding nodes to the free list, the only
nontrivial part of satisfying CC2 is ensuring that no reachable node is ever
added to the free list.

4.2 A Solution

Dijkstra wanted to minimize any cost to the mutator required by the algo-
rithm. To avoid synchronization costs, he wanted the only atomic operations
to the heap to be reading or changing a single edge of a single node. With
that restriction, it’s easy to construct scenarios in which a node remains
reachable even though the collector never sees any edge pointing to it. So,
in addition to changing edges, the mutator must inform the collector in some
way when it changes them. This is done by having a flag, heap[A].white,
initially equal to true, for every node A. (The flag is not considered to
be part of the heap.) In the solution originally submitted to CACM, the
mutator’s single operation consists of these two atomic actions, for some
reachable nodes A and B and some edge identifier e:

〈 heap[B].white : = false 〉 ;
〈 heap[A].edges[e] : = B 〉

Thus, the only added cost for the mutator is setting one bit during every
pointer-changing operation. There is also a black flag for each node, used
only by the collector. We call a node A black if heap[A].black equals true. A
non-black node is said to be white if heap[A].white equals true and to be gray
if it equals false.9 Initially, no node is black; and the collector’s algorithm
ensures that a node can be black only when the collector is performing a
collection.

The collector’s marking phase is shown in Figure 5, where Roots is the
set of root nodes and temp is a variable local to the collector. The phase
begins with the collector setting the roots gray. In the body of the for A
loop, if node A is gray, then the collector: (i) sets the white flag false for
every node pointed to by A, making that node gray if it was white, otherwise
leaving its color the same, (ii) makes node A black, and (iii) begins the for A
loop again by going back to control point L. Thus, the marking phase ends
when the collector examines all nodes without finding a gray one. This must

9The paper describes the algorithm in terms of these three colors, without specifying
how they are encoded. I prefer using the two bits because it makes clear that setting a
node black or non-black modifies data accessed only by the collector, and that a node is
made non-white by setting a bit without having to read it.

24

for R ∈ Roots do 〈 heap[R].white : = false 〉 od;

L: for A ∈ Nodes
do if ¬(heap[A].white ∨ heap[A].black)

then for e ∈ EdgeIds do 〈 temp : = heap[A].edges[e] 〉 ;
〈 heap[temp].white : = false 〉

od ;
heap[A].black : = true ;
goto L

fi
od

Figure 5: The collector’s marking phase.

eventually happen, because each execution of that loop makes one gray node
black.

To prove CC1, we must show that no reachable node is ever put on the
free list. This requires showing that, at the end of the marking phase, every
white node is garbage. Here is a sketch of Dijkstra’s proof.

1. While the collector is in the marking phase, no black node ever points to
a white node.

Proof: When a node A is turned black, the white flag of all the nodes
pointed to by its edges had just been set false. If the mutator changed
one of those edges before the collector made A black, it must have first
set to false the white flag of the node the edge currently points to.

2. While the collector is in the marking phase’s for A loop, every reachable
node is reachable by a path from a black or gray node.

Proof: Every reachable node is reachable from a root node, and every
root node has been turned grey and must remain either gray or black.

3. Upon completion of the marking phase, there is no gray node.

Proof: Suppose there is a gray node upon completion. It must have been
white and become gray after being examined in the for A loop. Consider
when the first such node became gray. By steps 1 and 2, it must then
have been pointed to by a gray node that had not yet been examined by
the loop. This is impossible because, when the loop examined that gray
node, the for A loop would have been restarted.

4. Upon completion of the marking phase, no white node is reachable.

Proof: If there were a white reachable node at that point, consider the
one reachable by the shortest path from a root. By steps 2 and 3, it is

25

reachable by a path from a black node, contradicting step 1.

The proof, sketched here and presented in more detail in the paper submitted
to CACM, convinced Dijkstra and his four coauthors. It is wrong, and the
algorithm is incorrect. Here is a scenario that displays the error.

The mutator begins the operation of making an edge from node A point
to node B , making B gray. The collector then performs a complete col-
lection, leaving the reachable nodes A and B both white. It then starts
another collection, reaching a point in which it has made A black but has
not yet examined B or made it non-white. The mutator then makes the
edge of A point to B . There is now an edge from a black to a white node,
showing that step 1 of the alleged proof is false. I will leave it to the reader
to complete the scenario to one in which the collector finishes the marking
phase, leaving B white, and then adds it to the free list in the freeing phase.

4.3 Verification

That five computer scientists, including someone as careful as Dijkstra, were
fooled by an incorrect proof indicated that we needed more reliable methods
of reasoning about concurrent algorithms. Edward Ashcroft had recently
developed one method [2].

The simplest semantic view of concurrent algorithms that formalizes
how Dijkstra reasoned about them is that an execution of an algorithm
is a sequence of states, and a correctness condition is a predicate on such
sequences. The type of correctness property at the heart of virtually all
rigorous correctness proofs is invariance, which asserts that a predicate on
states is true for every state of every execution. For example, step 1 of the
incorrect proof asserts that this predicate on states is invariant:

MP . If the collector is in a marking phase, then no edge from a black node
points to a white node.

Ashcroft observed that we can prove that a state predicate P is invariant
by verifying these two conditions:

1. P is true of every initial state.

2. Any atomic action of the program beginning in any state satisfying P
produces a state that satisfies P .

That these conditions imply P is true of every state of every execution
follows by mathematical induction on the number actions required to reach
the state.

26

A predicate P satisfying these two conditions is called an inductive in-
variant. Not every invariant is inductive. For example, even if MP were
an invariant, it could not be inductive because condition 2 is not true for
a state with a black node A and a white node B in which the mutator is
about to perform the action that makes an edge of A point to B . To prove
a formula is invariant, we must usually find an inductive invariant that im-
plies it. To prove the invariance of MP , the inductive invariant would have
to imply that, if the mutator is in a state in which it could make an edge
of a black node A point to node B , then B is not white. An attempt to
find such an inductive invariant would have failed and would have led to the
counterexample. This actually happened after the fact.

I learned that there was an error in the algorithm by receiving a copy
of a letter Dijkstra had sent to the editor of CACM withdrawing the paper.
The letter said that M. Woodger had found the error, but gave no indication
of what the error was. Since Dijkstra’s proof was so convincing, I thought
that the error must be minor and easily corrected. So, I decided to write an
inductive invariance proof, thinking that I would then find and correct the
error. In about 15 minutes, trying to write the proof led me to the error.

I suspected that the algorithm could be fixed by changing the order in
which two atomic actions were performed. I had no good reason to believe
that would work, and I could see no informal argument to show that it did.
However, I decided to go ahead and try to find and prove the correctness of
a suitable inductive invariant implying that only garbage nodes are white in
the freeing phase. It took me about two days of solid work, but I did it. I
was then convinced that the resulting algorithm was correct, but I still had
no intuitive understanding of why it was correct

Meanwhile, Dijkstra had found a different fix and had written the same
kind of proof as before. There was no reason not to use his algorithm, and
I sketched an inductive invariance proof of it. Given the evidence of the
unreliability of his style of proof, I tried to get Dijkstra to put a rigorous
inductive invariance proof in the paper. He was unwilling to do that, though
he did agree to make his proof closer to an invariance proof, with less be-
havioral reasoning. Here are his comments on that, written in July 2000 in
a letter to me:

There were, of course, two issues at hand: (A) a witness show-
ing that the problem of on-the-fly garbage collection with fine-
grained interleaving could be solved, and (B) how to reason ef-
fectively about such artifacts. I am also certain that at the time
all of us were aware of the distinction between the two issues. I

27

remember very well my excitement when we convinced ourselves
that it could be done at all; emotionally it was very similar to
my first solutions to the problem of self-stabilization. Those I
published without proofs! It was probably a period in my life
that issue (A) in general was still very much in the foreground of
my mind: showing solutions to problems whose solvability was
not obvious at all. It was more or less my style. I had done it
with the mutual exclusion [algorithm].

Following Ashcroft, a few methods were proposed for verifying the two con-
ditions needed to prove inductive invariance, their differences being based
on the way the algorithm was described. I used one I had just devised [20] in
my proof. The one developed by Susan Owicki and David Gries [24] was the
most popular method, probably because they described the algorithm with
ordinary programming-language constructs. Gries later used it to prove the
published algorithm [15]. His proof was essentially the same as the one I
had sketched. He simplified things a bit by combining two atomic operations
into one,10 but it would have been easy to add the details needed to handle
the actual algorithm.

4.4 The Algorithm and its Significance

The correct algorithm of the published paper is obtained from the incorrect
one by a simple but counterintuitive change to the mutator. The first atomic
action of the mutator’s operation of making an edge of node A point to node
B is changed so that, instead of setting to false the white flag of node B , it
sets to false the white flag of the previous node to which the mutator made
an edge point.

The paper provides a path of reasoning that leads to the algorithm and
a correctness proof. It calls this proof an “informal justification which we
do not regard as an adequate substitute for a formal correctness proof.” In
the text of a talk Dijkstra gave in 1984 [6], he wrote this about concurrent
and distributed systems:

I know of only one satisfactory way of reasoning about such sys-
tems: to prove that none of the atomic actions falsifies a special
predicate, the so-called ‘global invariant’. Once initialized, the
global invariant will then be maintained by any interleaving of
the actions.

10He mentioned this simplification in a footnote that CACM failed to print, though it
did include the footnote number in the text.

28

This is the only place I know in which he explicitly discussed the concept of
an inductive invariant.

Dijkstra was wise to decide that the important contribution of the paper
was the algorithm, not its proof of correctness. The algorithm implements
the sharing of data, the heap, by concurrently executed processes using
only atomic read and write operations. It does not use mutual exclusion or
any synchronization primitive such as a semaphore. This means that neither
process ever has to wait for the other one (except if the mutator finds the free
list empty, when waiting is unavoidable). Such an algorithm is now called
wait-free [16]. This was the first non-trivial11 wait-free implementation of a
shared data structure ever published.

5 Termination Detection

The last two of the five concurrent algorithm papers to be examined each
had an algorithm for detecting termination in distributed computations. As
documented in Section 4.3, Dijkstra was interested in finding concurrent al-
gorithms to solve problems for which it was not clear that a solution existed.
I think it must have been clear to him that solutions to this termination de-
tection problem existed. He was probably interested less in the algorithms
than in deriving them. He presented the algorithms with derivations based
on inventing the invariants that the algorithms should maintain. I suspect
he “derived” the algorithms after inventing them. But our concern here is
the algorithms, not how they might be derived. The algorithms are therefore
presented without rigorous derivations.

5.1 The Problem

Assume a set of processes that collectively perform a terminating computa-
tion, communicating with one another by sending messages. The content of
the messages and what is being computed are irrelevant. All that we care
about is that a process can be in one of two states: idle or active. An active
process can send messages to other processes. A process can change from
idle to active only when it receives a message. An active process can become
idle at any time. The computation terminates when all processes are idle.

One process is designated the leader. The problem is to superimpose
on the computation an algorithm by which the leader can detect that the

11I apparently invented an earlier wait-free implementation of a bounded FIFO queue
for use as an example in [20], but it seemed so trivial that I assumed it was already known.

29

computation has terminated. The algorithm must satisfy two properties:

DT1. The leader can detect that the computation has terminated only if it
actually has terminated.

DT2. If the computation terminates, then the leader eventually detects that
it has.

To implement the algorithm, the processes use additional control messages.
Idle as well as active processes may be required to send and receive control
messages. I call the two solutions Dijkstra presented the tree algorithm and
the ring algorithm.

5.2 The Tree Algorithm

The tree algorithm [7] assumes that the processes form a connected directed
graph, where process A can send messages to process B if and only if there is
an edge from A to B . The leader is assumed to have only outgoing edges.12

Initially, only the leader is active. The control messages are acknowledg-
ments (acks), sent in the opposite direction along edges. It is assumed that
no messages are ever lost, but there is no assumption that messages arrive
in the order they are sent—not even those sent along a single edge.

Define a process to be in a neutral state if it is idle, it has received
acks for every message it has sent, and it has sent acks for every message it
has received. Initially, only the leader is active and no messages have been
sent, so every process except the leader is in a neutral state. The algorithm
ensures that after the computation has terminated, every process eventually
enters a neutral state. Moreover, when the leader is in a neutral state, all
other processes are also in a neutral state.

A process leaves a neutral state only by receiving a message. A process in
a non-neutral state remembers on which edge it received that message. Let’s
call that edge the process’s up edge. We require that a process acknowledge
the receipt of every message it has received subject to one rule: it must leave
one message received on its up edge unacknowledged until acknowledging it
makes the process neutral. In other words, a process can send the one
remaining unsent ack to its up process only when it is idle, it has received
acks for every message it has sent, and it has sent acks for every other
message it has received. It must eventually send that last ack when allowed
by the rule.

12A leader that receives messages can be simulated by a pair of processes, one acting as
a leader that sends only a single message to the second.

30

When process A sends a message to process B that makes the edge from
A to B the up edge of B , process A can’t become neutral until process B
does, because only when B becomes neutral will it send the last ack that A
is waiting for from that edge. This implies that the non-neutral processes
form a tree with the leader as root, the parent of each non-neutral process
B in the tree being the process that is the source of the up edge of B . This
in turn implies that if the leader is neutral, then all processes are neutral, so
the computation has terminated. Hence DT1 is satisfied, where the leader
detects that the computation has terminated when it is in a neutral state.

Once the computation has terminated, all processes are idle and no more
messages are sent or received, so all acks except the last one to each non-
neutral process’s parent will eventually be sent. At that point, any leaf
of the tree of non-neutral processes can and eventually must send its last
ack and become neutral. Thus, all processes, including the leader, must
eventually become neutral, showing that DT2 is satisfied.

5.3 The Ring Algorithm

The ring algorithm [11] assumes that processes can be numbered from 0
through N −1 such that process number i can send control messages to pro-
cess number (i − 1) mod N . The leader is process 0. Control information
for the algorithm is also attached to the computation’s messages. The al-
gorithm assumes that the computation’s message passing is instantaneous.
Thus, the atomic action in which process i sends a computation message
(with its control information) to an idle process j also makes j active. The
algorithm can start with any set of processes active.

As in many distributed algorithms, a process has no control state. Its
“code” is a set of action specifications, each consisting of a code fragment
describing possible atomic actions that can be performed when the code
fragment is enabled. The main computation is performed by two kinds of
atomic actions of each process i : a SendMsg(i) action sends a message from
i to another process that at the same time receives it, and a GoIdle(i) action
puts the process in the idle state.

Termination detection is performed by a series of probes, in which a
token is passed from each process i to process (i − 1) mod N , starting from
process 0. When Process 0 has the token, it can initiate a probe by executing
a StartProbe action that passes the token to process N − 1. Each process
i > 0 can perform a PassTok(i) action that passes the token to process i−1.
The probe ends when the token returns to process 0.

The ring algorithm has the form shown in Figure 6. The construct

31

process 0 do
while true do

〈GoIdle(0) 〉 or 〈SendMsg(0) 〉 or 〈StartProbe 〉
od

od

process i ∈ 1 . .(N − 1) do
while true do
〈GoIdle(i) 〉 or 〈SendMsg(i) 〉 or 〈PassTok(i) 〉

od
od

Figure 6: The ring algorithm.

〈A1 〉 or . . . or 〈Ak 〉 indicates that any one of the atomic actions described
by Ai can be performed if it is enabled. We now have to define the GoIdle(i),
SendMsg(i), StartProbe, and PassTok(i) actions.

We start by considering what happens if no messages are ever sent, so
the only main computation action a process can perform is the GoIdle(i)
action. In that case, we can let the PassTok(i) action be enabled if and
only if process i is idle. After the token of a probe started by the leader
returns to the leader, every other process is idle and the computation has
then terminated when the leader is idle.

This algorithm obviously doesn’t work when messages can be sent. After
the token is relayed by an idle process, a message from another process
can make that process active. When that happens, we allow the token to
continue its trip back to the leader, but we ensure that the leader learns
nothing from it and must start a new probe. We do this by adding a color
to the token. The probe starts with the color white, and it is turned black
to tell the leader that the probe has failed and it must start a new probe.
Process i can make a probe fail by having the PassTok(i) action make the
token black. Once black, the token remains black for the rest of the probe.

The probe should fail if a process i sends a message to an idle process
j that the token has passed. Process j can’t make the token black because
the token has already passed it, so process i must do it. Our algorithm
wouldn’t represent a distributed system if we expected process i to know,
when it sends the message, whether process j is idle or where the token is.
So, we must be conservative. When process i sends any message, we have
it turn the token black the next time it passes the token. To let process i
remember that it has sent a message, we add a bit of information that we

32

variables active[i ∈ 0 . .(N − 1)] ∈ {true, false} ,
proclr [i ∈ 0 . .(N − 1)] ∈ {“white”, “black”} ,
tokloc ∈ 0 . .(N − 1) ,
tokclr = “black”

actions GoIdle(i): active[i] : = false

SendMsg(i): await active[i] ;
with j ∈ (0 . .(N − 1)) \ {i} do active[j] : = true od ;
proclr [i] : = “black”

StartProbe: await (tokloc = 0)
∧ ((tokclr = “black”) ∨ (proclr [0] = “black”)) ;

tokclr : = “white” ;
proclr [0] : = “white” ;
tokloc : = N − 1

PassTok(i): await (tokloc = i) ∧ active[i] ;
tokloc : = i − 1 ;
if proclr [i] = “black” then tokclr : = “black” ;

proclr [i] : = “white”
fi

Figure 7: Action specifications of the ring algorithm.

call the process’s color. The color of a process is initially white, and it is
made black when the process sends a message. The probe should also fail if
process 0 has sent a message, so it should fail if process 0 is black as well as
if the token is black.

This line of reasoning has effectively led us to an algorithm. If this were
1983, we would now have to do some careful thinking to find out if that
algorithm is correct. Today, such thinking is unnecessary if a model checker
can find an execution that shows the algorithm to be incorrect. Instead
of thinking, we can write exactly what the algorithm is and run a model
checker on it.

A precise description of our algorithm is in Figure 7. The variables have
the following meanings:

active[i] Equals true if process i is active and false if it is idle.

proclr [i] The color of process i , indicated by the string “white” or “black”.

tokloc The number of the process that holds the token.

33

tokclr The color of the token.

These variables can have any possible initial value, except that tokclr must
initially equal “black”. Thus, if the initial state is one in which a probe is
being executed, that probe will fail. Here is an explanation of the four kinds
of actions:

GoIdle(i) Makes process i idle. The action has no effect (does not change
the state) if it is executed when the process is already idle. As observed
in Section 2.1, an action that has no effect is unobservable, so it makes
no difference whether or not it is executed.

SendMsg(i) Enabled if and only if the await expression is true—that is,
if process i is active. As before, (0 . .(N − 1)) \ {i} equals the set of
all process numbers except i . The with statement executes its do
statement for an arbitrary value of j in that set, making process j
active. The action also sets the color of process i to black. (If i is
already black and j already active, then the action has no effect.)

StartProbe Performed only by process 0, it is enabled when that process has
the token and it or the token is black (or both are black). It makes the
process’s color and the token’s color both white and passes the token
to process N − 1.

PassTok(i) Performed by a process i 6= 0, it is enabled when the process
has the token and is idle. It passes the token to process i − 1. If
the process’s color is black, it makes the token black and itself white.
Otherwise, it leaves the process’s color white and the token’s color
unchanged.

A probe is defined to have succeeded if process 0 has the token and is idle,
and both process 0 and the token are white—more precisely, when this
formula is true:

(tokloc = 0) ∧ ¬active[0] ∧ (tokclr = proclr [0] = “white”)

Note that if process 0 and the token are white, then process 0 will not pass
the token and the current probe will succeed when process 0 becomes idle.

Any general-purpose model checker should be able to check if the al-
gorithm is correct for small values of N .13 I would expect an incorrect

13A few model checkers cannot check properties like DT2 that assert something must
eventually happen.

34

algorithm to be incorrect even for N = 3; and I would be surprised if it
were not incorrect for N = 4. For N = 8, the ring algorithm has 983,806
reachable states and the model checker I used verified DT1 and DT2 in 1
minute, 20 seconds on my laptop.14

Having checked that the algorithm is almost certainly correct, I will
explain why it is correct by writing a correctness proof. I will start by
proving the difficult part, DT1, which requires proving that a probe cannot
succeed if the computation has not terminated.

By definition of what it means for a probe to succeed, it suffices to
assume that the token has reached process 0 and some process is active,
and to prove that the token or process 0 is black. If this is the first time
the token reached process 0, then it is black because it was initially black
and only process 0 can turn it white. We can therefore assume the token
has passed process 0 already, so we are at the end of a complete probe that
started at process 0. Since a process passes the token only when it is idle, the
existence of an active process means that some process must have become
active after it passed the token. Let i be the first process to become active
after passing the token. Let j be the process that had the token when i first
became active, so j < i . Process i can have become active only by receiving
a message. Since i was the first process to become active after being passed
by the token, every process k with j < k was then idle, so the message that
made i active must have been sent by a process k with k ≤ j . Sending the
message made k black, and k ≤ j implies that k hasn’t yet passed the token.
This means that either the token must have been black after k passed it, or
else k = 0 so process 0 is black. This finishes the proof of DT1.

An examination of the proof reveals that the algorithm remains correct
if we modify the SendMsg(i) action so it colors process i black only if it
sends a message to a process j with j > i .

The proof of DT2 is simpler. We assume that all processes are idle and
show that a probe must eventually succeed. Since all processes are idle,
every process i > 0 will pass the token, so the token must eventually reach
process 0. If the token and process 0 are both white, then the probe has
succeeded. Otherwise, process 0 will start the next probe, which will turn
all the processes white. If the token is white when it reaches process 0, that
probe will have succeeded. If not, process 0 will then start another probe
that must succeed because all the processes are idle and white.

14I checked a slightly modified version of a TLA+[22] specification of Dijkstra’s algorithm
written by Stephan Merz, and I also checked (by hand) that the definitions in Figure 7
were equivalent to the ones in his specification.

35

Dijkstra’s experience with the garbage collection algorithm tells us that
we shouldn’t believe these proof sketches. Dijkstra’s derivation is more rig-
orous because he wrote down the invariants implicit in the proof sketches.
However, model checking for all values of N from 1 through 8 gives me
more confidence in the algorithm’s correctness than his derivation. (Neither
Dijkstra’s derivation nor my proof sketch considers the case N = 1.) But
this chapter is about algorithms, not about rigorous proofs, so we must be
content with a proof sketch.

5.4 A Bit of History

In his earlier concurrent algorithms, Dijkstra (and his collaborators) stood
alone. No one else had even thought of the problems he was solving. He
was also a pioneer in distributed termination detection, but he was not
alone. Nissim Francez was independently working on the same problem [14]
and cited an unpublished paper by Michel Sintzoff that was also about the
problem.

Dijkstra was careful to cite any work that directly influenced a paper
he was writing. For example, the tree algorithm paper cites a lecture
by P. M. Merlin for inspiring the problem. However, he did not mention
Francez’s work, even though he should have been aware of it before [7] was
published. It is not clear why he did not follow the usual practice of citing
such related work. Perhaps he felt that his termination detection papers
were about derivation, not about the algorithms, so Francez’s work was not
relevant to them.

6 Conclusion

The five papers discussed in this chapter are remarkable. The first initiated
the field of concurrent algorithms. The second two each started an impor-
tant subfield of concurrent algorithm research. The last two were “merely”
significant. And concurrent algorithms were not Dijkstra’s primary interest.

I learned a lot from Dijkstra, and he learned a little bit from me. By
the early 1980s, I believe we both felt we had nothing more to learn from
each other. I remained cognizant of the debt I and others owed him for his
seminal work on concurrent algorithms. However, it was only after he died
that I understood how much more we owed him.

There are a number of ideas that have been central to the study of con-
current algorithms—for example, representing the execution of an algorithm
as a sequence of states. Many of those ideas were in his papers, sometimes

36

only implicitly. They seemed obvious to me, so I assumed they were well
known. But some ideas become obvious only after someone has thought of
them. I have come to realize that many of the ideas that we take for granted
are due to Dijkstra. Even the idea that one should prove the correctness of
algorithms, though not unique to him, was radical at the time.

I have a more personal debt to Dijkstra. Before it ever occurred to me
that there could be a science of computing, he was teaching me how to be
a computer scientist.

References

[1] ACM. ACM algorithms policy. CACM, 22(5):329–330, May 1979.

[2] E. A. Ashcroft. Proving assertions about parallel programs. Journal of
Computer and System Sciences, 10:110–135, February 1975.

[3] James E. Burns, Paul Jackson, Nancy A. Lynch, Michael J. Fischer,
and Gary L. Peterson. Data requirements for implementation of N -
process mutual exclusion using a single shared variable. Journal of the
ACM, 29(1):183–205, January 1982.

[4] P. J. Courtois, F. Heymans, and David L. Parnas. Concurrent con-
trol with “readers” and “writers”. Communications of the ACM,
14(10):667–668, October 1971.

[5] E. W. Dijkstra. Solution of a problem in concurrent programming
control. Communications of the ACM, 8(9):569, September 1965.

[6] E. W. Dijkstra. Invariance and non-determinacy. Phil. Trans. R. Soc.
Lond., A312:491–499, 1984.

[7] E. W. Dijkstra and C. S. Scholten. Termination detection for diffusing
computations. Information Processing Letters, 11(1):1–4, August 1980.

[8] Edsger W. Dijkstra. The structure of the “THE”-multiprogramming
system. Communications of the ACM, 11(5):341–346, May 1968.

[9] Edsger W. Dijkstra. Hierarchical ordering of sequential processes. Acta
Informatica, 1:115–138, 1971.

[10] Edsger W. Dijkstra. Self-stabilizing systems in spite of distributed con-
trol. Communications of the ACM, 17(11):643–644, November 1974.

37

[11] Edsger W. Dijkstra, W.H.J. Feijen, and A.J.M. van Gasteren. Deriva-
tion of a termination detection algorithm for distributed computations.
Information Processing Letters, 16(5):217–219, 1983.

[12] Edsger W. Dijkstra, Leslie Lamport, A. J. Martin, C. S. Scholten, and
E. F. M. Steffens. On-the fly garbage collection: an exercise in co-
operation. Communications of the ACM, 21(11):966–975, November
1978.

[13] R. W. Floyd. Assigning meanings to programs. In Proceedings of the
Symposium on Applied Math., Vol. 19, pages 19–32. American Mathe-
matical Society, 1967.

[14] Nissim Francez. On achieving distributed termination. In Gilles Kahn,
editor, Semantics of Concurrent Computation, Proceedings of the In-
ternational Symposium, Evian, France, July 2-4, 1979, volume 70 of
Lecture Notes in Computer Science, pages 300–315. Springer, 1979.

[15] David Gries. An exercise in proving parallel programs correct. Com-
munications of the ACM, 20(12):921–930, December 1977.

[16] Maurice Herlihy. Wait-free synchronization. ACM Transactions on
Programming Languages and Systems, 13(1):124–149, January 1991.

[17] D. E. Knuth. Additional commments on a problem in concurrent pro-
gram control. Communications of the ACM, 9(5):321–322, May 1966.

[18] Leslie Lamport. A new solution of Dijkstra’s concurrent programming
problem. Communications of the ACM, 17(8):453–455, August 1974.

[19] Leslie Lamport. On self-stabilizing systems. Technical Re-
port CA 7412-0511, Massachusetts Computer Associates, December
1974. https://www.microsoft.com/en-us/research/publication/

self-stabilizing-systems/.

[20] Leslie Lamport. Proving the correctness of multiprocess programs.
IEEE Transactions on Software Engineering, SE-3(2):125–143, March
1977.

[21] Leslie Lamport. The mutual exclusion problem—part ii: Statement
and solutions. Journal of the ACM, 32(1):327–348, January 1986.

[22] Leslie Lamport. Specifying Systems. Addison-Wesley, Boston, 2003. A
link to an electronic copy can be found at http://lamport.org.

38

[23] Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantine
generals problem. ACM Transactions on Programming Languages and
Systems, 4(3):382–401, July 1982.

[24] Susan Owicki and David Gries. Verifying properties of parallel
programs: An axiomatic approach. Communications of the ACM,
19(5):279–284, May 1976.

39

