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1 Introduction

This paper describes two projects to formally specify and verify cache-
coherence protocols for multiprocessor computers being built by Compaq.
These protocols are significant components of major products, and the
projects are steps towards moving formal verification from research to Com-
paq engineering.

The first project, undertaken by researchers, was for an Alpha EV6-based
computer®. The protocol was too complex to be verified completely, but the
results were encouraging enough to motivate the second project—formal
verification of the protocol for the Alpha EV7 processor. This project, which
is still underway, is being undertaken jointly by researchers and engineers.
So far, it has been quite successful.

Verifications of several cache-coherence protocols have been described in
the literature [10, 11, 12, 13]. However, the protocols we have attempted
to verify are more complicated than any we know of. For example, the
protocol specification verified by McMillan and Schwalbe consisted of 500
lines of “code” that was “written in a very simple description language based
on Boolean logic” [10]. In contrast, our specifications each consist of about
1800 lines of mathematical formulas, written in a sophisticated high-level
language based on first-order logic and set theory.

Both projects used the specification language TLA™, described in Sec-
tion 2. That section also describes the hierarchical proof style that we used.
The EV7 project is also using TLC, a model checker being developed for a
subclass of TLA™ specifications. TLC is described in Section 4.

The project to verify the EV6 protocol began in the fall of 1996 and
ended the following fall; it is described in Section 3. The project to verify
the EVT7 protocol began in the spring of 1998; it is described in Section 5.
A concluding section summarizes what we have learned from these projects
about the use of formal methods in industry.

2 Preliminaries

2.1 TLAT*

TLA™T is a formal specification language based on (untyped) ZF set theory,
first-order logic, and TLA (the Temporal Logic of Actions). TLA is a version
of temporal logic developed for describing and reasoning about concurrent

'EV6 and EV7 are the internal names for the Alpha 21264 and 21364 processors.



and reactive systems [7]. TLAT includes modules and ways of combining
them to form larger specifications. An introduction to TLA™ appears in [4],
further details can be found on the World Wide Web [5].

Although TLA™ permits a wide variety of specification styles, the speci-
fications discussed here all have the form Init A ONext A Liveness, where:?

Init is the initial-state predicate—a formula describing all legal initial states.

Next is the next-state relation, which specifies all possible steps (pairs of
successive states) in a behavior of the system. It is a disjunction of
actions that describe the different system operations. An action is a
mathematical formula in which unprimed variables refer to the first
state of a step and primed variables refer to its second state. For
example, (z' =z + 1) A (¢ = y) is an action describing steps in which
the variable z is incremented by 1 and the variable y is unchanged.

Liveness is a temporal formula that specifies the liveness (progress) prop-
erties of the system as the conjunction of fairness conditions on ac-
tions. Although the specifications we wrote included liveness proper-
ties, these properties were not checked during the verification, so we
ignore liveness here.

Such a specification can be viewed as describing a state machine. However,
unlike specifications in methods based on abstract machines or programming
languages, a TLA™ specification consists of a single mathematical formula.
Moreover, the state predicates and actions in TLAT specifications are ar-
bitrary formulas written in a high-level language with the full power of set
theory and predicate logic, making TLA™ very expressive.

A state predicate [ is an invariant of a specification § iff S implies O7,
the formula asserting that [ is always true. When S equals Init A ONext,
this is proved by finding a formula Inv, called an invariant of Next, that
satisfies Init = Inv, Inv A Next = Inv’, and Inv = I, where Inv’ is the
formula obtained from Inv by priming all variables. A particularly simple
form of invariant is one that expresses type correctness, asserting that each
variable is an element of some set (its “type”).

To prove that a specification S7 implements another specification Ss,
we must express the variables of S5 as functions of the variables of S; and
prove S1 = S5, where S5 is formula S, with its variables replaced by the

2The formula ONext should actually be O[Next],, where v is the tuple of all variables;
we drop the subscript for simplicity. We also ignore the hiding of internal variables,
expressed with temporal existential quantification.



corresponding functions of the variables of S1. A major part of this proof
involves finding and verifying a suitable invariant of S;. The proof may
also require adding auxiliary variables to Si, usually to capture history
information [1].

TLAT specifications are mathematical formulas, and correctness prop-
erties are expressed directly as mathematical theorems. There is no need
to generate verification conditions; what you see is what you prove. More-
over, the proof rules of TLA reduce all proofs to reasoning about individual
states or pairs of states, using ordinary, nontemporal mathematical reason-
ing. Over the years, such state-based reasoning has been found to be more
reliable than behavioral reasoning, in which one reasons directly about the
entire execution.

2.2 Hierarchical Proofs

The TLA™ formulas that describe our protocols are about 1800 lines long.
Correctness proofs of such systems are therefore long and complex. Handling
complexity requires two things: hierarchical structure and the ability to refer
to parts of that structure by name.

We use a hierarchical proof structure, in which a level n proof step
consists of a numbered statement and its proof, which is a sequence of level
n + 1 proof steps [8]. The steps of a level n proof are named (n)1, (n)2,
etc. (Even though all level n proofs use the same step names, references
to those names are unambiguous in context.) At the lowest level are the
leaf proofs. In a mechanically checked proof, they contain instructions for
a proof checker. A hand proof is usually not carried out to so low a level,
and the leaf proofs are short paragraphs containing ordinary mathematical
reasoning. Greater rigor can be achieved by carrying out the proof to more
levels. Structured proofs provide a continuum of tradeoffs between reliability
and cost—the more levels of detail, the greater the rigor and the higher the
cost.

Mathematical formulas are inherently structured—usually as nested con-
junctions and disjunctions. A simple convention is used to name individual
conjuncts and disjuncts; for example, the second conjunct of the third dis-
junct of the fourth conjunct of formula P is named P.4.c.2 [6].

The structure of the formula to be proved largely determines the struc-
ture of the proof. For example, the proof of A = B A C consists of the two
lower-level steps A = B and A = C, and the proof of AV B = (' consists
of the steps A = C and B = (. In this way, a large proof is quickly de-
composed into a large number of smaller subproofs. Intelligence is needed to



guide this decomposition, so reasoning common to several subproofs appears
only once. Once the proof has been decomposed this far, further levels of
decomposition depend on the details of the individual substeps.

This way of structuring proofs and formulas can be used informally as
well as formally. A formula can be written informally as nested conjunctions
and disjunctions of assertions that combine mathematics and English. Steps
in a structured proof can likewise be informal assertions.

3 The EV6 Project

In a shared-memory multiprocessor, processors communicate by reading and
writing shared memory locations. Each processor has a cache in which it
stores the current value of recently-used memory locations for quick and
easy access. A memory model defines the relationship between the values
written by one processor and read by another—a relationship that must be
preserved by a cache-coherence protocol.

The cache-coherence protocol is at the core of a multiprocessor’s design,
and proving its correctness seemed to be an ideal application for introducing
formal methods into product engineering at Compaq.? Therefore, when we
learned about the Alpha EV6-based multiprocessor, we were eager to use it
as a way of bringing our research to bear on engineering problems.

The EV6 cache-coherence protocol? is highly optimized and is the most
complicated one any of us has ever heard of. Its complexity made the de-
signers welcome our help in checking its correctness.

In modern cache-coherence protocols, processors send messages to one
another over a high-speed communication network, moving data from one
cache to another and invalidating other copies of data when a processor up-
dates its copy. TLAT was developed precisely for this type of asynchronous
concurrent system, so its choice as our specification language was an obvious
one.

We envisioned a verification of the cache-coherence protocol consisting
of three parts:

e A specification of the Alpha memory model, which the protocol is
supposed to implement.

3The EV6 project was undertaken at Digital, which was later acquired by Compaq.
4This protocol is for one particular EV6-based multiprocessor, but for brevity, we refer
to it simply as the EV6 protocol.



e A specification of an abstract version of the protocol, and a proof that
it implements the Alpha memory model.

e A specification of the lower-level protocol, and a proof that it imple-
ments the abstract version.

Given the amount of time and manpower available, a complete verification
was infeasible. In the following three sections, we describe the parts of these
three tasks that we did accomplish.

3.1 The Alpha Memory Model

When we began, there was already a carefully worked out, though somewhat
informal, definition of the Alpha memory model [2]. However, it defines the
model in terms of the sequences of operations (such as loads, stores, and
memory barriers) that are allowed. To write the kind of proof described in
Section 2.1, we needed a state-based definition of the memory model. So we
defined the model as a TLAT specification that describes an abstract state
machine.

We specified a memory model that is simpler than the actual Alpha
memory model in two ways:

e It describes only operations to entire cache lines. Much of the complex-
ity of the complete model arises from interactions among operations
of different granularity—for example, if two processors are accessing
different parts of a word while a third performs an operation on the
entire word.

e It rules out certain types of behavior that are permitted by the general
model, but that cannot occur in any currently envisioned protocols.
In particular, our specification assumes that all remote accesses to any
individual cache line have a common point of synchronization. (It is
unclear how one could implement the Alpha model without such a
synchronization point.)

The heart of the Alpha memory model is a Before relation that orders reads
and writes and determines what values must be returned by the reads. The
heart of our TLAT definition of the model is a predicate GoodEzecutionOrder
that specifies the required properties of the Before relation. The state ma-
chine itself has just four actions:

ReceiveRequest(p, ) Receive a load, store, or memory barrier request 7 from
processor p.



ChooseNewData(p,i) Choose the data that will be returned to processor p
in response to its ¢th request.

Respond(p, i) Send processor p the response to its ith request.

EzxtendBefore Nondeterministically add new relations to the current Before
order. This action makes it easier to verify correctness of an implemen-
tation that is more restrictive than the very permissive Alpha memory
model.

Each action asserts that GoodEzecutionOrder is true in the final state of a
step (so it is true in all reachable states). In particular, the values chosen
by ChooseNewData steps must be allowed by the Before order.

The TLA™T specification is about 200 lines long.> The definition of
GoodFEzxecutionOrder, the interesting part of the specification, takes about
40 lines. Our specification is shorter than the definition in [2], illustrating
the advantage of using a powerful, mathematics-based language like TLAT.

3.2 The Abstract Protocol

As with many real systems, the EV6 cache-coherence protocol can be viewed
as an abstract protocol together with complicated implementation details.
In the case of the EV6 protocol, the correctness of even the abstract protocol
was far from obvious. The combination of a complex protocol and the
rather subtle requirements of the Alpha memory model made us feel that
the abstract protocol could easily be incorrect. Indeed, we discovered that
it allows a behavior that does not satisfy the original Alpha model. It was
decided that what we had found was an error in the Alpha memory model,
which was subsequently changed in [2].

To prove that a protocol implements our TLA™ specification of the Al-
pha memory model, we must define the specification’s variables in terms
of the implementation’s variables. (This requires adding an auxiliary vari-
able to record the history of all operations that have ever been issued.)
The key specification variable is the one that describes the Before order,
and the key step in the proof is showing that the order always satisfies
GoodEzxecutionOrder.

For the EV6 protocol, it was fairly clear how the Before order should be
defined. The difficult part in proving GoodExecutionOrder is to show that
the Before order is acyclic. One of the system designers had a good intuitive

5The lengths we give for all our formal specifications do not include comments. With
comments, most of the specifications are about 2 or 3 times as long.



understanding of why the abstract protocol worked and had sketched an
informal proof that the Before order is acyclic. We converted that sketch into
a rigorous, though not formal, hierarchically structured behavioral proof.
The proof consisted of about 100 lines of definitions and 350 lines of proof.
The deepest portion of the proof had 8 levels.

Behavioral proofs are notoriously error-prone, so we wanted an invari-
ance proof that the Before order is always acyclic. Although one of us has
over 20 years of experience constructing invariance proofs of concurrent al-
gorithms, this turned out to be extremely difficult. We produced a 35-line
invariant, based on about 300 lines of definitions. The invariance proof was
about 550 lines long and had a maximum depth of 10 levels.

The definitions and the invariant were informal. (They were structured
formulas whose basic components were assertions in mathematical English.)
To make them formal, we would have to write a TLA™ specification of the
abstract protocol. We believe that such a specification would be about 500
lines long. It should then be a straightforward exercise to translate our
informal invariant into a formal one. The invariance proof should be the
largest part of a complete proof that the abstract protocol implements the
memory model.

3.3 The Lower-Level Protocol
3.3.1 Writing the Specification

We actually began the project by writing the specification of the lower-level
protocol. To do this, we had to overcome two obstacles.

The first obstacle was the difficulty of obtaining a single, coherent de-
scription of the system. We received a massive amount of documentation—a
pile about 8 cm. tall containing some 20 separate documents. For us, coming
into the middle of the design process, it was a confusing array of descrip-
tions of different parts of the system at different levels of abstraction. Often,
documents written at different times would use different names for the same
object. Fortunately, a few of the documents provided overviews of the sys-
tem. We also obtained the Lisp code for a simulator written by one of
the designers—code that proved to be crucial to understanding some of the
system details. None of this documentation provided the complete, precise
description of the system that we needed as the basis for a proof, so we had
to write our own.

The second obstacle we faced was the sheer complexity of the algorithm.
Taking into account the fact that some messages had slightly different se-



mantics in different message queues, there were over 60 kinds of messages
that could be flowing through the system. Finding the right abstractions for
reasoning about this kind of system is essential, and is still an art requiring
skill and experience. In our case, one of the most successful abstractions was
to identify a collection of 15 units of functionality that we called quarks, and
to represent each message in the system as a collection of quarks. In our
specification, the individual quarks in a message are processed separately
and independently when the message is received. In addition to simplifying
the TLA™T specification, this abstraction was helpful enough that the design-
ers started using it, as we discovered on overhearing them discussing the
system during a break in a meeting.

The complete specification was about 1900 lines long. Three of us spent
about three months writing it, during which time we interacted frequently
with the designers by email and telephone. After writing the specification,
we went over it with the designers in a two-day meeting, making sure that
they agreed that our specification accurately reflected their design. One
discrepancy was discovered in that meeting, leading to a change in our spec-
ification.

3.3.2 The Low-Level Proof

After writing the specification, we faced the problem of verifying its correct-
ness. It was evident that we did not have enough people and time to write
a complete proof. We decided that the most efficient way to find errors was
to write an invariance proof—to try to find an invariant of the next-state
relation and prove its invariance.

Finding and checking a complete invariant would have been too time-
consuming. We wrote about 1000 lines of informal state predicates that
formed the major part of a complete invariant. Formalizing those 1000
lines would have been straightforward, but it would have made them about
four times as long and we decided that it wasn’t worth doing. We selected
two conjuncts, each about 150 lines long, as the invariant’s most important
parts. Each of these conjuncts described all possible sequences of messages
that could appear in a particular class of message queues. We felt that
if there were an error in the protocol, it was most likely to be found by
verifying these two parts of the invariant.

Writing an invariance proof is a tedious process of checking a large num-
ber of cases, and continually correcting the invariant when the proof fails. It
was probably made easier by TLA T because we could reason mathematically
about the specification itself without first having to generate verification



conditions. The conjuncts of the invariant we were verifying were as much
as 11 levels deep (alternations of conjuncts and disjuncts). One step of the
proof might involve assuming that disjunct a.2.a.2.b.1.b.2.b of the invariant
is true in the initial state and then, for each possible action in the next
state relation, identifying the disjunct that should hold in the next state,
and proving that it is indeed true.

We completed the proof for one of the conjuncts. The proof was about
2000 lines long and 13 levels deep. The proof of the second conjunct would
have been about twice as long. However, about halfway through its proof,
we decided that we had reached the point of diminishing returns, and the
likelihood of finding an additional error was too small to justify further
effort. In all, four of us spent a total of about seven man-months on these
two proofs.

The result of this effort was the discovery of one bug in the design—an
easily-fixed error in one entry of one table. The simplest scenario displaying
the bug required four processors, two memory locations, and over 15 mes-
sages. We believe that this error could only have been found by writing a
proof. The chances of it being found through testing are remote. The low-
level protocol is so complex that we believe that any realistic finite-state
model that exhibited the error would have too many states to be checked
exhaustively by a model checker. (However, it may be possible to construct
a small enough model whose sole purpose is to allow a model checker to
exhibit this one particular bug.)

3.4 Lessons Learned

Four of us spent more than two man-years on the project. This was not
enough to attempt anything close to a complete proof. However, even our
incomplete proof subjected the algorithm to a level of rigorous analysis that
significantly increased the designer’s confidence in their protocol. During a
meeting at the end of the project, the designers indicated that they were
quite happy with our work. Finding a bug in the Alpha memory model was
another accomplishment of the project.

Conventional wisdom, at least in the academic community, is that math-
ematical proofs usually discover many errors. We were therefore surprised
to find only one small error in the design. This was a tribute to the skill
of the designers, and a consequence of the fact that we started work on the
proof quite late in the design cycle—some two years after the designers had
begun work on the system. Apparently, all the easy bugs had already been
found.



The one bug in the protocol we did find testifies to the efficacy of writing
proofs, since it could almost certainly not have been discovered by simulation
or model checking. Moreover, we don’t think that any model checker could
have discovered the discrepancy between the protocol and the original Alpha
memory model. Because it records the history of all issued commands, the
memory model has too many reachable states for serious model checking
to be feasible. The hierarchical structuring techniques described above in
Section 2.2 were crucial to our proof effort; it would have been impossible
to manage the complexity of the proofs without them.

Tools are essential, and even simple tools are important. One tool that
made our task easier was an Emacs-based system of TAGS files to help find
definitions and move around the specification. Another was a collection of
FEmacs macros for expanding and hiding parts of hierarchically-structured
proofs. The use of names like Inv.a.2.a.2.b.1.5.2.b for parts of formulas
completely obliterated any intuitive context. A simple Emacs package let us
manually highlight the applicable assumptions and the current goal when
writing a proof step. With only these primitive tools, we had to develop
organizational techniques to cope with the complexity of the proofs. We
had to keep track by hand of what had been proved when. (A proof that
referred to a step that was later changed needed to be checked.) More
sophisticated tools for managing large proofs would have been a big help.

The project was made even more interesting by geographical separation.
Two of us were at one site in California; the other two were at two sites in
the eastern United States, separated by 50 km. Participants at two or three
different sites frequently worked together. For this long-distance collabora-
tion, we used telephones (with headsets) and shX—an X-windows utility for
running a single application, such as a text editor, on multiple computers.
This setup worked quite well, as long as the network provided the necessary
bandwidth. In addition to the shared windows, we each had our own private
windows for viewing the specification and proof. This put more information
at our fingertips than had we been working together in the same office.

4 TLC—The TLA™ Model Checker

TLC is a new on-the-fly model checker for debugging a TLA™ specification
by checking invariance properties of a finite-state model. It is unique in that
it works on specifications written in a very rich language, rather than in the
primitive, low-level languages typical of model checkers.

The design and implementation of TLC was partly motivated by our
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experience in the EV6 project. When working on the correctness proof, we
became convinced that a model checker could be used to catch errors in the
design, the specification, and the proof assertions. We considered using some
existing model checkers such as SMV [9] and Muryp [3], but their low-level
input languages made it awkward, if not impossible, to use them to check
TLA™ specifications and proofs.

TLC checks invariance properties of the form Init A ONext = OI. Its
input is a TLA™ specification and a configuration file. The configuration
file provides the names of the initial condition (Init), the next-state relation
(Next), and the invariance property (I). It also specifies a finite-state model
that determines a finite subset of the potentially infinite set of reachable
states of the TLA™T specification. The model is specified by instantiating
the specification’s parameters and giving the name of a constraint. For
example, in the TLAT specification of a cache-coherence protocol, the sets
of processors and memory addresses are unspecified parameters, and queues
can be unbounded. The configuration file instantiates the sets of processors
and addresses with specific finite sets, and a constraint bounds the number
of messages in each message queue, making the set of reachable states finite.
TLC also requires a type invariant, which is identified by the configuration
file.

TLC explores all reachable states in the model, looking for one in which
(a) an invariant is not satisfied, (b) deadlock occurs (there is no possible
next state), or (c) the type declaration is violated. When TLC detects an
error, a minimal-length trace that leads from an initial state to the bad state
is reported as part of the error report.

No model checker can handle all the specifications that can be written in
a language as expressive as TLAT. TLC can handle a subclass of TLA T spec-
ifications that we believe includes most specifications that describe actual
systems. We expect it to be less likely to handle a more abstract, high-level
specification, such as the specification of the Alpha memory model described
in Section 3.1.

We began work on TLC in February of 1998, almost at the same time
that the EV7 verification project was begun. By August of 1998, TLC was
working on some toy TLA T specifications. Implementation and performance
tuning continued, and in November of 1998, we tried applying TLC to the
TLA™ specification for the EV7 cache-coherence protocol. After two weeks
of further debugging, TLC was able to handle the EV7 specification. Per-
formance enhancement and debugging of TLC continue. We hope it will be
ready for public release in the summer of 1999.

Our initial experience using TLC led us to add an assertion feature.
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When TLC encounters the formula Assert(P, e) while evaluating an expres-
sion, it evaluates the formula P. If P is false, TLC prints the value e and
reports an error, printing a trace leading to the current state. (The Assert
formula is defined in TLA™ to equal TRUE.) For example, an assertion can
assert that a condition P holds whenever some particular type of step is
taken.

One other feature that we have found to be missing is coverage analy-
sis. It is easy for a simple error in the specification to make it impossible
for some action ever to be taken—a problem that cannot be detected by
checking an invariant. We can verify that an action is taken by conjoining
an Assert(FALSE, ...) assertion to it and seeing if TLC finds the “error”.
However, we prefer not to have to modify the specification in this way.
Moreover, adding these assertions is time-consuming and repetitive enough
to be a good candidate for automation. We have not yet determined how
this can best be done.

5 The EV7 Project

The next generation of Alpha processor after the EV6 is the EV7. The
EVT7’s memory controller is on the chip, so there is a single protocol for all
EV7-based computers. Embedding the protocol on the chip makes any error
even more costly. The success of the EV6 project made the EV7 designers
interested in having formal verification applied to their cache-coherence pro-
tocol. Despite reluctance to commit engineering resources, it was decided
that the EV7 verification team—the engineers who run simulations and tests
of the hardware—would work with the researchers on a project to verify the
protocol.

The TLAT specification of the Alpha memory can be used for the EV7
as well as the EV6. Hence, we had to write a specification only of the
cache-coherence protocol itself. Because it had to be implemented entirely
on the processor chip, the EV7 protocol is significantly simpler than the
EV6 protocol. We have not yet seen any need to verify an abstract version
of the protocol, so we have been working only on a lower-level view.

5.1 Writing the Specification

Our goal is to move formal methods from research to engineering. The
researchers felt that the engineers should be able to write the TLA™ speci-
fication by themselves. It was agreed that the researchers would teach the
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verification engineers how to write the TLA™ specification, and the formal
verification would be based on their specification.

At the time, there was no introductory document on TLA™T. To learn
to write TLA™ specifications, the engineers received about eight hours of
face-to-face instruction, read some example specifications, and had their
specifications corrected by email. The current EV7 protocol specification
was essentially written by one engineer, who is now comfortable writing
TLA™T specifications by himself.

As in the EV6 project, writing the specification required translating
several high-level descriptions of the protocol into one formal description in
TLA™. The original descriptions were in various formats, including English
mixed with tables and a specially formated pseudocode. Translating these
descriptions, which contained varying levels of ambiguity, into a precise for-
mal specification took some effort. It required determining the behavior
of the protocol in many corner cases not mentioned by the informal de-
scriptions. The engineer writing the specification decided that, in case of
uncertainty about exactly what behaviors should be allowed, it was better to
adopt a more restrictive approach. He felt that it would be easier at a later
time to admit a new behavior than to argue that one that was previously
allowed should be forbidden. (This was in contrast with the researchers’
approach in writing the EV6 protocol specification, which was to check all
such decisions with the designers.)

To convert the informal protocol description to a formal specification, we
first had to determine the level of abstraction. A cycle-accurate specification
of the protocol would have far too much detail to be tractable. We chose a
level that was as abstract as possible, but still exhibited all the orderings of
events at the communication ports that could occur in the actual system.
Writing the actual TLA™ specification involved the following steps.

Identifying the atomic actions. The atomic actions of the specification
are the sending of one or more messages and the receipt of a single
message. This assumes that the system handles all messages to a
single processor one at a time. Systems in which a processor can
receive several messages concurrently are not accurately described by
this specification. One would presumably prove that such a system
implements the current specification.

Determining the state. Most of the specification’s state was modeled af-
ter the actual system state, as described by the design documents.
However, their values were represented in the TLA™ specification by
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more abstract data structures. Queues became sequences; an un-
ordered interconnection network became an array of sets, each set
containing the messages in transit to a particular processor.

Incrementally describing the protocol. We started by writing a speci-
fication that described only the simple case of a request by a processor
for an address that is not cached by another processor. We then added
other cases, including more complicated ones involving third parties
and race conditions, a few at a time.

The current TLA™ specification is about 1800 lines.

5.2 The Verification Effort
5.2.1 Model Checking

When the engineers were taught TLA™T, they were told to observe only one
restriction for writing a specification that TLC could handle: to use bounded
quantification (formulas of the form 3z € S : P) rather than unbounded
quantification (formulas of the form 3z : P). Guided by just this weak re-
striction, they wrote a TLA ™ specification that TLC could handle; no rewrit-
ing was needed to accommodate TLC. To apply TLC to the specification,
we just had to provide a configuration file, as explained in Section 4—and
fix a few TLC bugs, as expected when using a new program.

To reduce the state space to a tractable size, we use a model having only
one cache line, two data values, and two or three processors. With these
restrictions, there are 6 to 12 million reachable states, depending on three
mode bits that are parameters of the algorithm. A complete TLC run then
takes between 3 days and a week on a fast workstation.

The system is composed of a number of identical components. Hence,
the state space has a lot of symmetry. Since the processors are identical,
processor p sending message m and processor ¢ sending message n is equiv-
alent, from a correctness point of view, to p sending n and ¢ sending m.
Lacking any tools for exploiting symmetries, we hand-coded some symmetry-
breaking constraints into the specification itself. By adding about 15 lines
to the specification, we were able to reduce the state space by about 50%.

The model checker has also been used in one unexpected way. The
error traces it produces can be transformed into input stimuli for the ver-
ification team’s RTL simulator. Errors tend to occur on corner cases that
are not found by random testing, and programming directed tests is time-
consuming, so these inputs provide useful tests. One design error has been
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found by running these tests. We are planning to automate the translation
from TLC’s trace output to simulator input, and to use TLC to generate
randomly chosen traces. Such traces should be better than purely random
ones, because they satisfy the TLA™ specification.

The RTL simulation also used the TLA™T specification itself in a way we
had not anticipated. When specifying the next-state relation with TLAT,
one must explicitly assert what variables an action leaves unchanged. These
assertions were added as checks to the simulator.

5.2.2 Proof

Because our goal is to move formal methods into engineering, we originally
intended to have the verification engineers write an invariance proof. How-
ever, a shortage of engineers on the verification team made this impossible.
So, the task of writing proofs has fallen once again to the researchers.

This protocol is simpler than the EV6 protocol, so we expect to be able
to get closer to a complete proof. However, largely because we have been so
successful at finding errors in the specification—especially with TLC—we
have not gotten very far yet with the proof. (There’s no point trying to
prove something that’s not correct.) The proof effort has thus far consisted
mainly of writing invariants and checking them with TLC. This process has
helped us find errors in the specification.

The benefit of using TLC to check invariants comes from how invariants
are found. An invariant Inv must satisfy Inv A Next = Inv’, where Next is
the next-state relation. (The other condition that Inv must satisfy, that it
is implied by the initial predicate, is generally trivial.) In practice, Inv is a
large conjunction of state predicates, each describing some part of the global
state. Finding Inv is an iterative process of “guessing” what it should be
and successively correcting that guess when the proof of Inv A Next = Inv’
fails. The proof can fail for one of two reasons:

1. The invariant is too weak. It is true in all reachable states, but it
is also true in some unreachable ones for which Inv A Next does not
imply Inv’.

2. The invariant is too strong. It is not true of all reachable states, so
there is a reachable state for which Inv A Next does not imply Inv'.

In case 1, we simply strengthen the invariant by conjoining some condition
and continue. The proof just gets bigger, because we now have to prove
the additional conjunct of Inv’. Case 2 is more problematic. It forces us
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to weaken the invariant by removing or weakening a conjunct. Any part of
the proof that used this conjunct has to be modified accordingly. So, we
need to look carefully at everything that has already been proved in order
to find and modify all uses of the conjunct. Although made easier by the
hierarchical structure of our proofs, this is still a time-consuming task. The
model-checker helps avoid this case. By checking it on all reachable states,
TLC can discover that the invariant is too strong before we try writing the
invariance proof.

5.2.3 Results So Far

As soon as we started using TLC, we found many errors in the TLAT spec-
ification. Initially, most of the errors were typos or simple type errors that
were easily caught, often by the parser. Starting from when the specifica-
tion was free of these simple errors, we found about 66 bugs in successive
versions. We can roughly categorize them as follows:

e 37 minor errors—typos, syntax errors, type errors, and other simple
mistakes introduced when making changes. This kind of error is gen-
erally detected by TLC within a few seconds.

e 11 errors in which the wrong message is sent or the wrong state is set.
Some of these errors were hard to understand and took more than one
rewrite to correct. Three of them corresponded to one error in the
design documents—an inconsistency between the descriptions of two
components.

e 14 instances of missing cases, overly restrictive conditions, and as-
sertions (Assert formulas) that were too strong. One of these was
introduced following a discussion about the protocol, where we mis-
takenly decided that a case could not occur. Most of the rest were due
to the restrictive approach taken when writing the specification.

e 4 miscellaneous errors: one caused by misunderstanding the semantics
of TLAT, one in which two different messages were represented by the
same element in a set of messages, an incorrect use of an Assert, and
one apparently useless disjunct of the next-state relation. (We are not
yet completely sure that the disjunct is useless.)

About 90% of these errors were found by TLC. The rest were found by a
human reading the specification. One of these could not have been found by
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model checking because it occurs only in complex configurations, for which
the state space is too big to be exhaustively explored.

So far, we have found two design errors: the inconsistency, mentioned
above, in the design documents and the one mentioned in Section 5.2.1 that
was found using an error trace produced by TLC.

5.3 Lessons Learned

Our experience shows that learning TLA™ is not a major task. An en-
gineer can learn to read TLA™ specifications with an hour of instruction.
An engineer who is not intimidated by mathematical notation can learn to
write TLA™ specifications with just a few hours of instruction. But, writing
good specifications does require practice and experience. Even though the
EVT protocol is simpler, the specifications of the EV6 and EVT7 protocols
are about the same size. To some extent, this is because much of their
size reflects the complexity of the interface, not of the underlying protocol.
But, the EV6 specification is also more concise because it was written by
researchers with a lot of experience writing formal specifications; the EV7
specification was written by an engineer new to formal methods.

Most of the errors found so far in the EV7 protocol’s TLAT specification
were introduced when translating the informal documents into a formal spec-
ification. The EVT specification was written by a fairly junior engineer who
was somewhat diffident about asking the designers for clarification. Some of
these errors could probably have been avoided if he had been more aggres-
sive in this respect. However, the best way to avoid such errors is for the
designers, rather than the verification team, to write the TLA ™ specification.

Formal specification has been viewed as part of the verification process,
not as part of the design process. The verification team proposed that, be-
cause it clarified and made precise many details of the system, the TLA™
specification should be made part of the design documentation. The de-
signers rejected this idea because they felt that improving the specification
had too low a priority, so they were unwilling to learn how to read a TLA™
specification. However, after they received the first report of errors found
with TLC, we were able to convince the designers to take the time to learn
how to read a TLAT specification.

We believe that our experience shows that formal specification should
be part of the design process. It should not be postponed until a sepa-
rate verification phase. Making a formal specification part of the design
documentation has three benefits:
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e It removes ambiguity and forces the designers to confront all the subtle
corner cases.

o [t forces the designers to provide a description of the entire system
at a single level of abstraction. Informal engineering documents typ-
ically contain a melange of ideas ranging from high-level algorithm
descriptions to low-level data formats.

e [t allows the use of tools such as TLC to find errors early in the design
stage, when they are easier to correct.

We hope that, in future projects, the formal specifications will be written
by the designers.

6 Conclusion

We have described two projects, both verifications of cache-coherence pro-
tocols, but quite different from one another. The EV6 project was our first
attempt to verify a complete subsystem of an actual product under devel-
opment. We would have preferred to cut our teeth on a simpler problem.
However, verifying the EV6 protocol presented not just a research challenge,
but also an opportunity to do something useful for the company.

The results of the EV6 project were both humbling and encouraging.
They were humbling because, contrary to our expectations, we found no
serious errors—just a single low-level bug. They were encouraging because
the basic verification method, refined through years of research, worked
pretty much as expected. Writing the proofs was somewhat harder than
anticipated, and we learned some new things about managing very large
proofs. But there were no big surprises. We were also encouraged because
the system’s designers found what we did to be valuable.

The results so far of the EV7 project have been very satisfying. We
have shown that engineers can write TLA™T specifications. The TLC model
checker has performed beyond our expectations. After only preliminary de-
bugging, it was able to handle an unmodified, industrial-sized TLA™ spec-
ification. TLC has already helped find two design errors. We have taken
a large step towards introducing formal verification as a part of system de-
velopment at Compaq. There are three reasons why the EV7 project has
been more successful than the EV6 project: we started earlier in the design
phase, we have been able to use TLC, and the protocol is simpler.

An important lesson to be learned from our experience is the need for pa-
tience and perseverance in moving formal methods from the research commu-
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nity to the engineering community. Engineers are under severe constraints
when designing a system. Speed is of the essence, and they never have
as many people as they can use. In this situation, it is reasonable to do
what has worked before, and not to risk a project by using untried meth-
ods. Before introducing formal methods into the process, engineers must be
convinced that they will help.

A fortuitous set of circumstances led to the EV6 project, one done com-
pletely by researchers with the cooperation of the engineers. The success
of that project made the engineers willing to commit people to the EV7
project. The results of these two projects have made other engineers within
Compaq interested in applying the methods, and we hope TLA™ will play a
role in other projects in the near future.
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