
-38 -

A GENERAL CONSTRUCTION FOR EXPRESSING REPETITIO N

L . Lampor t

SRI internationa l

333 Ravenswood Ave .

Menlo Park, CA 9402 5

I have became aware of a shortcoming in programming languages whic h

makes it difficult to express some fairly simple things . As an example ,

consider an algorithm which processes one input at a time, obtainin g

that input from n different input queues .

	

The algorithm can take a s

its next input the first element from any of the queues .

	

In order t o

express this non-determinism, it seems natural to write the algorithm a s

follows, using Dijkstra's

	

do

	

statement [1] .

(1)

	

do queue 1 not empty -- -> process first element of queue 1

	

0

queue n not empty ----4 process first element of queue n

o d

Unfortunately, the elipsis (. . .) is not part of the programmin g

language .

	

Moreover, (1) would not even be a convenient informa l

expression if "process first element of queue" were a complicate d

expression .

	

This immediately su g g ests the following sort of notatio n

for expressing this algorithm .

do for i

	

1 until n

queue i not empty ---> process first element of queue i

o d

However, there are two reasons to consider a more general type o f

construction .

	

First of all, the fact that the queues happened to b e

numbered by consecutive integers is clearly not significant ; they coul d

just as well have been indexed by the elements of any finite set .

Secondly, this type of repetitive construction is also useful i n

1

-39 -

contexts other than a do

	

statement .

	

I therefore propose the followin g

general notation .

	

The expressio n

(2) forall

	

id

	

in

	

S

	

separator

	

E(id)

	

endforal l

is equivalent to the expressio n

(3) E(x)

	

separator

	

E(x)

	

. . .

	

separator

	

E(x)

1

	

2

	

n

where

	

id

	

is an identifier ;

	

separator

	

is a syntactic atom ;

x

	

, . . . , x

	

is any enumeration of the distinct elements of the se t

1

	

n

S ; and

	

E(x)

	

is the expression obtained by substituting

	

x

	

fo r

i

	

i

id

	

in the expression

	

E(id) .

	

If

	

S

	

is the empty set, then (3) is a

null sequence, whose meaning will depend upon the

	

separator .

As an example of this notation, the

	

do

	

statement (1) can b e

expressed as follows :

(4)

	

d4

	

forall

	

i

	

in

	

[1 .

	

n]

	

q

queue i not empty -4 process first element of queue i

endforal l

o d

where [1 . . n] denotes the set of integers from

	

1

	

to

	

n .

	

If

	

n = 0

so

	

[1 . . n]

	

is tt'

	

empty set, then (4) is equivalent to a

	

skip.

statement .

The

	

forall

	

statement (2) does not specify any ordering of th e

expressions

	

E(x) .

	

To specify an ordering, I propose the followin g

i

statement :

(5) forall

	

id

	

sea in

	

S separator

	

E(id)

	

endforal l

where

	

id ,

	

separator and

	

E are as in (2), and

	

S is an ordere d

set .

	

The meaning of (5) is given by (3), except that this time th e

enumeration of S must be chosen so that x

	

< x < . . . < x

	

, wher e

1

	

2

	

n

<

	

is the ordering relation on the ordered set

	

S .

The use of the

	

forall

	

construction is further illustrated below ,

where several different concepts are expressed with it .

2

-40 -

equivalent expression i n

	

"for all"

	

expression

	

"ordinary" notatio n

	

-------------------- -

	

------------------------ -

Algol statement :

forall

	

i

	

seq in

	

for i

	

1 step 1 until n

[1 . . n]

	

;

	

E(i) endforall

	

do

	

E(i)

Logical expressions :

forall x in S

and

	

E(x)

	

endforal l

forall x in S

or

	

E(x)

	

endforal l

Arithmetic expression :

n

forall i Ui [1 ., n]

	

E(i)
+

	

E(i)

	

endforall

	

i

	

1

Note that a null sequence of ands is defined to be identically true, an d

a null sequence of ors is defined to be identically false .

The forall construction may be viewed either as an informa l

	

notation, or as an addition to any programming language .

	

As a

programming language construction, it has the following three possibl e

uses, depending upon what kind of sets S may be specified .

(1) If S is a finite set which is known at compile time ,
then the forall

	

simply provides "syntactic sugaring" ;

it can be implemented by with an ordinary "macro" .

(2) If S is a set which is known to be finite, but which i s
not known at compile time, then the forall can provid e

a aseful semantic extension to the language .

	

Fo r

example, if n is an ordinary program variable, the n
there is no nice, simple way to write the statement (4)

in Dijkstra's language .

	

The type of semantic extensio n

introduced in this case does not seem to raise an y
serious theoretical or implementation difficulties .

(3)

	

If S is a set which may be countably infinite, then th e
forall provides a very strong semantic extension to th e

language .

	

For example, the expressio n

Vx € S :

	

E(x)

3 x E S :

	

E(x)

3

-41 -

forall

	

i

	

seg. In

	

[1 . . .]

	

;

	

if P then E

	

endforal l

where

	

[1 . . .]

	

denotes the set of positive integers ,

P is a boolean function without side effects, and

	

P
and

	

E do not mention i , could be interpreted to b e

equivalent to the expressio n

while

	

P do

	

E

	

.

This type of extension seems to be difficult t o
interpret, and I would not recommend it .

	

Hence, I

propose that the syntax for expressing sets be restricte d

so

	

S has to be finite and "easy to compute" .

It is incumbent upon anyone proposing a new semantic constructio n

to rigorously define the semantics of that construction .

	

However, th e

proposed

	

forall

	

constriction is a syntactic rather than a semanti c
one .

	

One can no more speak of the semantics of the foral l

construction than of the semantics of the comma .

	

The meaning of a

statement containing a

	

forall must be defined as part of the semantic s
of the entire language .

	

However, the following recursive relation ca n
be viewed as a formal "meta-definition" of the non-sequential

	

foral l

constriction .

	

(A similar relation can be written for the sequentia l
constriction .)

	

forall

	

x

	

in

	

S

	

separator

	

E(x)

	

endforall

	

. . =

	

IF

	

S empty THEN

	

"null separator string "

ELSE

	

3x

	

S :

	

E(x)

	

separato r

0

	

0

forall

	

x

	

in

	

S - {x }

	

separator

	

E(x)

0

endforal l

where "null separator string" must be defined for the particula r

separator .

The forall construction can also aid in defining the semantics o f

a programming language .

	

For example, by using the

	

forall , Dijkstra' s
do and

	

if statements can be defined without requiring the (informal)
ellipsis employed in [1] .

The forall seems to be a very useful informal notation, and I

recommend that it be used now as part of the "natural language" o f

4

-42 -

mathematical reasoning .

	

If it succeeds in becoming popular, it wil l
inevitably find its way into programming languages .

REFERENCE S

1 .

		

E .W . Dijkstra : A Discipline of Programming, Prentice-Hall, Inc .
Englewood Cliffs, N .J . (1976) .

5

