-38-

A GENERAL CONSTKUCTLON FOR EXPRESSING REPETITION

L. Lamport
SRI International

3353 Ravenswood Ave.
Menlo Park, CA GH025

I have became aware of a shortcoming in programming languages which

makes it difficult to express some fairly simple things. As an example,
consider an algorithm which processes one input at a time, obtaining
that input from n different input queues. The algorithm can take as
its next input the first element from any of the queues. In order to

express this non-determinism, it seems natural to write the algorithm as
follows, using Dijkstra's do statement [1].

(1) do queue 1 not empty -— process first element of queue 1 -

gqueue n not empty -—— process first element of gueue n

od

Unfortunately, the elipsis (...) is not part of the programming
language. Moreover, (1) would not even be a convenient informal
expression if "process first element of queue" were 23 complicated
expression. This immediately suggests the following sort of notation
for expressing this algorithm,

d for i := 1 until n

queue i not empty ---> process first element of queue i

od

However, there are two reasons to consider a more general type of
construction. First of all, the fact that the gueues happened to be
numbered by consecutive integers is clearly not significant; they could
just as well have been indexed by the elements of any finite set.
Secondly, this type of repetitive construction is also useful in

-39-

contexts other than a do statement. I therefore propose the following
general notation. The expression
(2) forall id in S separator E(id) endforall

is equivalent to the expression

(3) E(x) separator E(x) ... separator E(x)
1 2 n
where id is an identifier; separator 1s a syntactic atom;
X s .., X is any enumeration of the distinct elements of the set
1 n
S ; and E(x) is the expression obtained by substituting «x for
i i

id in the expression E(id) . If 8 1is the empty set, then (3) is a
null sequence, whose meaning will depend upon the separator

As an example of this notation, the do statement (1) can be
expressed as follows:

(4) do forall i in (1 .. n] O

queue 1 not empty -——— process first element of queue i

endforall
od

where [1 .. n)] denotes t
so [1 .., n] is tr: emp
statement.

.

h
£ is equivalent to a skip

e se
y se

(S

of integers from 1 to n . If n = 0,
, then (4)

The forall statement (2) does not specify any ordering of the

expressions E(x) . To specify an ordering, I propose the following
i

(5) forall id seq in S separator E(id) endforall

where id |, separator and E are as in (2), and S is an ordered
set. The meaning of (5) is given by (3), except that this time the
enumeration of S must be chosen so that x < x < ... <X

1 2 n
< is the ordering relation on the ordered set S

, Where

The use of the forall construction is further illustrated below,
where several different concepts are expressed with it.

-40-

equivalent expression in
"for all" expression "ordinary"™ notation

Algol statement:

forall i seq in for i := 1 step 1 until n
[T .. n] 3 E(i) endforall do E(i)

Logical expressions:

in S Vxe S E(x)

forall x in
and E(x) endforall

forall x in S dx € S 1 E(x)
or E(x) endforall

Arithmetic expression:
n
forall i 4din [1 .. n] S, E(i)
+ E(i) endforall i o= 1

Note that a null sequence of ands is defined to be identically true, and
a null sequence of ors is defined to be identically false.

The forall construction may be viewed either as an informal
notation, or as an addition to any programming language. As a
programming language construction, it has the following three possible
uUses, depending upon what kind of sets S may be specified.

(1) If S 1is a finite set which is known at compile time,
then the forall simply provides "syntactic sugaring";
it can be implemented by with an ordinary "macro'".

(2) If S 1is a set which is known to be finite, but which is
not known at compile time, then the forall can provide
a useful semantic extension to the language. For
example, if n 1is an ordinary program variable, then
there is no nice, simple way to write the statement (4)
in Dijkstra's language. The type of semantic extension
introduced in this case does not seem to raise any
serious theoretical or implementation difficulties.

(3) If 8 is a set which may be countably infinite, then the

forall provides a very strong semantic extension to the
language. For example, the expression

3

wd] -

forall i seqg i v ... 1 3 4if P then E endfcrall

where [1 ...] denotes the set of positive integers,

P 1is a boolean function without side effects, and P
and E do not mention 1 , could be interpreted to be
equivalent to the expression

while P do E .

This type of extension seems to be difficult to
interpret, and I would not recommend it. Hence, 1
propose that the syntax for expressing sets be restricted
8o S has to be finite and "easy to compute".

It is incumbent upon anyone proposing a new semantic construction
to rigorcusly define the semantics of that construction. However, the
proposed forall construction is a syntactic rather than a semantic
one. One can no more speak of the semantics of the forall
construction than of the semantics of the comma. The meaning of a
statement containing a forall must be defined as part of the semantics
of the entire language. However, the following recursive relation can
be viewed as a formal "meta-definition" of the non-sequential forall
construction. (A similar relation can be written for the sequential
construction.)

forall x in S separator E(x) endforall ::=

IF S empty THEN "null separator string"
ELSE 3x € s+ E(x) separator
0 0
forall x in S - {x } separator E(x)
0

endforall

where "null separator string" must be defined for the particular
separator.

The forall construction can also aid in defining the semantics of
a programming language. For example, by using the forall , Dijkstra's
do and if statements can be defined without requiring the (informal)
ellipsis employed in [1].

The forall seems to be a very useful informal notation, and I
recommend that it be used now as part of the "natural language" of

42

mathematical reasoning. If it succeeds in becoming popular, it will
inevitably find its way into programming languages.

REFERENCES

1. E.W. Dijkstra: A Discipline of Programming, Prentice-~Hall, Inc.
Englewood Cliffs, N.J. (1976).

