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1. INTRODUCTION 

A variety of methods have been proposed for reasoning about concurrent pro- 
grams. Most of these are for proving safety properties--properties asserting that 
the program never enters an unacceptable state. Some methods deal with con- 
current programs that use shared variables [2, 4, 11, 12, 16, 18]; more recently, 
the absence of shared variables in CSP [10] has led to other techniques for 
reasoning about such programs [1, 5, 15, 19]. This diversity of methods has 
obscured the fact that there is really a simple principle involved in all of them: 
proving the invariance of an assertion. 

The Generalized Hoare Logic (GHL) [13], a formal logical system for deriving 
invariance properties of programs from the properties of their components, 
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provides a uniform way to describe these other assertional methods for reasoning 
about concurrent programs. This allows a comparison of the methods, which can 
help in understanding them. 

GHL is a generalization of the programming logic proposed by Hoare [9] for 
reasoning about sequential programs. In Hoare's logic, one views a program as a 
partial correctness relation between two predicates, a precondition and a postcon- 
dition, meaning that if the program is started in a state that satisfies the 
precondition and it terminates, then the final state satisfies the postcondition. 
Using the logic, one derives partial correctness properties of sequential programs 
from properties of their components. This provides an elegant formulation of 
Floyd's method [8] for pro~ing the correctness of a program. Although one must 
still perform the same basic verification steps, by providing a new way of viewing 
programs, Hoare's approach has led to improved ways for specifying and con- 
structing programs, such as Dijkstra's programming calculus [7]. 

In the same vein, GHL can be viewed as another formulation of the methods 
for reasoning about concurrent programs. It leads to a new way of viewing a 
concurrent program--as maintaining the invariance of a predicate. This, in turn, 
has led to new specification methods for concurrent programs [14], and we hope 
it will lead to improved techniques for constructing concurrent programs. 

Using invariance to reason about concurrent programs is not new, having been 
proposed by Ashcroft [2] and Keller [11]. What  GHL does is provide a logic for 
deriving invariance properties of a program. In this paper, we show how various 
techniques for establishing safety properties of concurrent programs can be 
formulated in GHL in terms of invariance. Section 2 contains an overview of 
GHL and its principles; Section 3 applies the principles to some popular proof 
systems. 

2. PROVING SAFETY PROPERTIES WITH GHL 

2.1 Atomic Actions 

During execution of a program, there will be times when the system is in 
undefined or pathological states. For example, when the contents of a bit of 
memory is changed, it will pass through an intermediate state in which its value 
is neither zero nor one. Since a safety property asserts that  a predicate is always 
true, it is unlikely to hold if such a transient intermediate state were visible. We 
therefore assume the existence of atomic actions, which transform the system 
from one state to another without passing through any visible intermediate 
states. An operation whose execution is atomic will be enclosed in angle brackets. 

The notion of an atomic operation is irrelevant for sequential programs. 
However, to specify a concurrent program, one must specify which operations 
are atomic. To see this, consider the following two programs z and p: 

lr: c o b e g i n  (x := x + 1 ) / / ( x  := x + 1) c o e n d  
p: c o b e g i n  (x)  :-- (x + 1 ) / / ( x )  := (x + 1) c o e n d  

Execution of 7r consists of two atomic actions, each incrementing x by one. Hence, 
the program will terminate with x two greater than its initial value. Execution of 
p consists of four atomic actions: two that fetch the value of x and increment it, 
and two that store a value in x. If both fetches precede both stores, then p will 
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increment x by one; otherwise it will increment x by two. Thus, executing ~r and 
p can produce different results, so they are different programs. If we simply write 

c o b e g i n  x := x + 1 / / x  := x + i coend 

without specifying what operations are atomic, then no assertion can be made 
about the final value of x. (Consider what could happen if fetching or storing 
each bit is a separate atomic operation, two's complement representation is used, 
and the program is started with x = -1.)  

We place no restrictions on what can appear inside angle brackets, thereby 
allowing a complicated statement or sequence of statements to be atomic. This 
allows one to write atomic operations that need not terminate, raising the 
question of how a nonterminating atomic action can he executed, since, being 
atomic, it cannot he interrupted before completion. We answer this by requiring 
that an atomic operation not be executed unless it will terminate. Conditionally 
terminating atomic operations can then be used to represent synchronization 
primitives. For example, a P(s) semaphore operation can be represented by ~ 

( s  :-- s - 1; w h i l e  s < 0 d o  s k i p  o d ) .  

We do not advocate allowing a programmer to put anything inside angle 
brackets; that would be impossible to implement. We are simply observing that 
nothing has to be added to GHL in order to reason about the synchronization 
primitives provided by concurrent programming languages, since these primitives 
can be represented as conditionally terminating atomic operations. 

2.2 Proving Safety Properties 

A safety property has the following form, for some predicates Ini t  and Etern: 

SP: If the program is started in any state satisfying Init, then every state reached 
during its execution satisfies Etern. 

Examples of safety properties are deadlock freedom, where Etern asserts that 
the program is not in a deadlock state, and mutual exclusion, where Etern asserts 
that two processes are not both in their critical sections. The general method for 
proving SP is to find a predicate I such that: 2 

$1. In i t  ~ I. 
$2. If the program is started in any state satisfying I, then every state reached 

during its execution satisfies I. 
$3. I ~ Etern. 

$1-$3 trivially imply SP. A predicate I satisfying $2 is called an invariant of the 
program. Properties $1 and $3 are usually easy to verify, since they are static 
properties of the predicates. Property $2, invariance, is the core of the proof, 
since it is a property of the program's behavior--a dynamic property. 

The invariance of a predicate I is proved by showing that each atomic action, 
if started in a state satisfying I, will terminate in a state with I true. By a trivial 

This representation is consistent with the safety properties of the semaphore operation, but not its 
liveness properties. Since GHL deals only with safety properties, that is sufficient. 
2 We use ~ to denote logical implication. 
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induction argument, this implies that I is invariant. The virtue of this approach 
is that it considers each atomic action in isolation and ignores the history of the 
computation. 

Viewing atomic actions in isolation requires that the state of the system include 
control information--the values of "program counters"--to determine what 
atomic actions can occur next. The control state is just as much a part of a 
program's state as the values of its variables. Indeed, every programmer knows 
that variables can often be eliminated by encoding their values in the control 
state and that control structure can often be simplified by adding extra variables. 
Moreover, it is well known that one cannot verify concurrent programs without 
reasoning about their control state [17]. Whether one reasons about control state 
directly or by introducing "dummy variables" (sometimes called ghost or auxiliary 
variables) is a matter of taste. We find it inelegant to add dummy variables to a 
program when their values can easily be defined as functions of the real program 
state. 

When reasoning about invariance properties, we need to consider what the 
program does when started from any state. 3 We therefore do not assume any 
preferred starting state, allowing execution to begin in any state--even one with 
control in the middle of the program. If, as is usually the case, we are only 
interested in properties that hold when the program is started with control at 
the beginning, then the predicate Init of SP will state that control is at the 
program's entry point. 

2.3 GHL: A Logic of Invariance 

A program is made up of declarations, which we ignore, and executable program 
fragments. A program fragment may itself be composed of smaller program 
fragments. For example, an i f - t hen -e l s e  statement is a program fragment 
composed of three smaller fragments: the conditional test, the t hen  clause, and 
the else clause. The set of atomic operations that  make up program fragment 7r 
is denoted a[~r]. If ~r is composed of subfragments ~1 . . . .  , ~,, then 

OL['II'] = (3~["t/'l] U - . .  U (3£[7En]. 

Formulas of GHL have the form 

{z} {i} 

where I is a predicate and 7r a program fragment. This formula means that  
executing any atomic action in r starting in a state in which I is true leaves I 
true. A simple induction argument shows that  if v is the entire program, then 
this is equivalent to $2; so {I} v {I} means that  I is an invariant of ~r. 

In [13], GHL is described for a simple programming language. An inference 
rule for each language construct is given, enabling invariance properties of 
statements to be derived from invariance properties of their components. All 
these inference rules are based on the following principle: 

3 A state consists of a value for the program's control state and, for each program variable, a value 
that is consistent with its declared type. 
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Decomposition Principle. I f  a [v]  = a[Trl] U . . -  U O/[Vn] , then  

{z} vl  {z}, . . . ,  {i} vn{z} 
{z} v {z} 

For example, the atomic operations of S ;  T are just  the atomic operations of S 
together  with the atomic operat ions of T: 

a [ S ; T ]  = a [S]  U a[T] ,  

so the Decomposit ion Principle yields the following inference rule for s ta tement  
concatenation:  

{I} S {I}, {I} T {I} 

{I} S;  T {I} 

In this paper, we use the Decomposit ion Principle to derive inference rules for 
some programming constructs  not  considered in [13]. 

To  describe how G H L  is used, we shall also require some inference rules from 
[13] tha t  apply to all programming constructs.  The  first rule allows invariance 
propert ies of the same program fragment  to be combined. In light of the meaning 
of {I} ~r {I}, it is obviously valid. 

Conjunction Rule: 

{I1} v {Id, . . . ,  {/,} v {In} 
1I~ A . . .  A ./.1 v I/1 A . . .  A I . } "  

As ment ioned earlier, the  state of the system must  include control  information.  
G H L  uses the following predicates to describe the control  state: 

at(v) -- "control  resides at  an ent ry  point  of v".  

in(v) - "control  resides somewhere in v, including 
at  its en t ry  point".  

after(v) = "control  resides at a point  immediately 
following 7r". 

In G H L  the definition of a language construct  includes a specification of its at, 
in, and after predicates, which serve to define its control  flow semantics. 

We define {P} v {Q} to be an abbreviation for 4 

{in(v) ~ P A after(v) ~ Q} Ir {in(v) ~ P A after(v) ~ Q}. 

If  v is an atomic operation, then  {P} v {Q} means tha t  executing v start ing in a 
state in which P holds produces a state in which Q is true. (Recall tha t  an atomic 
operat ion v cannot  be executed unless it will terminate.)  When  v is, in addition, 
a complete s tatement ,  this is the same meaning as in Hoare 's  programming 
logic. '~ 

4 Since {I} ~r {I} is a special case of [P} ~r {Q}, we have seemingly defined it to have two different 
meanings. However, the following Locality Rule implies that the meanings are equivalent. 
s In Hoare's original notation this would be written as P 17rJ Q. 
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For a program fragment r that  might not be atomic, {P} ~r {Q} means that  if 
control is anywhere inside 7r and P holds, then executing the next atomic 
operation in r will either 

(1) leave control in r with P true, or 
(2) leave control at an exit point of r with Q true. 

If 7r is atomic, then there is only one control point inside ~r--the one at its entry 
point. 

The only other GHL inference rule we need follows from the observation that  
it is possible to execute an atomic operation 7r only if in(Tr) is true, and that  
control is at an exit point of 7r only if after(r) is true. 

Locality Rule: 

{in(v) A I} r lafter(70 A I}. 

I / I  r I / I  

The Locality Rule can be derived from P2 and P3 of [13]. Note that  from the 
definition of {P} r {Q}, it follows immediately that  {in(v) A I} lr {after(v) A I} 
means 7r leaves (in(v) V after(v)) ~ I invariant. 

3. FORMULATIONS IN GHL 

We turn now to some specific methods for proving programs and show how they 
can be formulated in GHL. These methods are for proving one specific safety 
property: partial correctness. Partial correctness of program r with respect to 
precondition P and postcondition Q is an instance of SP with the predicates 

Init: at(~r) h P . 

Etern: after(v) ~ Q. 

Note that  because we do not assume any preferred starting point, we have to 
include the conjunct at(v) in Ini t  to specify that  the program is started at the 
beginning. 

3.1 Floyd's Method Revisited 

Floyd's method [8] uses the flowchart representation of the program. The 
program's flowchart consists of a set of nodes connected by directed arcs. The 
nodes represent program fragments; the arcs represent control flow. There is an 
arc from node r to node ~b if the entry point of ~b is an exit point of ~. For 
example, consider Figure 1, where boxes are labeled 7rl - ~3 and control points 
are labeled al-a4. The node r2 corresponds to a conditional test. It has two exit 
points, a3 and a4, the former being the entry point of 7r~ and the latter the exit 
point of the entire program. Which one is reached depends on the outcome of 
the test. Note also that  a2 is the exit point of both ~1 and ~r3, as well as the entry 
point of 7r2. 

In Floyd's method, partial correctness with respect to a precondition P and a 
postcondition Q is proved by associating a predicate with each control point. P 
is associated with the entry point, Q is associated with the exit point, and the 
predicates associated with the other control points are chosen so that  the 
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! 
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j= l  

n ~  False 

true 

P , : s =  ~ b[j] 
j=l 

I 

a:~,P:~:P~Ai ¢ n 

+ b[i] 

Figure 1 

following condition holds: 

AI :  If the program is started at any control point and the predicate associated 
with that control point is true, then throughout execution the predicate 
associated with the current control point is true. 

This implies that if the program is started at its entry point with the precondition 
P true and it reaches its exit point, then its final state satisfies the postcondition 
Q. To prove A/, it is necessary to prove the following verification condition for 
each box ~i: 

VC: If ri is executed starting in a state that satisfies the predicate associated 
with its entry point, then the predicate associated with the control point it 
reaches after its execution will be true. 

A simple induction argument shows that the truth of VC for every box 7r~ implies 
the truth o f  AI .  This reduces the problem of proving partial correctness to proving 
a verification condition for each box. Floyd gave simple rules for proving these 
verification conditions. 

Figure 1 illustrates the use of Floyd's method to prove a partial correctness 
condition for a simple program that sums the first n elements of a one-dimen- 
sional array b and leaves the result in s. Our goal is to prove that if execution is 
begun with n - 0, then it can terminate only with s = ~,inl b[j]. In the figure, 
the predicate associated with each control point a~ is labeled P~; the precondition 
n _ 0 is associated with control point al and the postcondition s - ~i%1 b[j] with 
a4. There are three verifications conditions--one for each box--which are easily 
checked. For example, the verification condition for 7r2 asserts that if testing i = 
n with P2 true yields false, then P3 must hold, and if it yields true then P4 must 
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hold. This verification condition follows immediately from the definitions of P2, 
P:~, and P4. 

Using the program z of Figure 1, we now illustrate that the Floyd method is 
an instance of the use of GHL to prove a safety property, in which A I  is the 
invariant I of S1-$3. 

To apply GHL, a program's atomic operations must be specified. For a program 
represented by a flowchart, we assume that  each box is an atomic operation. Let 
pc be the control state, so pc  = ai means that  the program is at control point ai. 
Since for program z of Figure 1 a t ( r )  ~- pc  = al and a f t e r ( r )  -- pc  = a 4 ,  we have 

In i t  =- (pc = aO A P1 

E t e r n  = (pc = a4) ~ P4 
4 

A I  ffi A (pc = ai ~ Pi). 
i= l  

Clearly, In i t  ~ A I  and A I  ~ E tern ,  so S1 and $3 are satisfied. To prove $2, the 
invariance of AI ,  we must prove the GHL formula {AI} ~r {AI}. By the Decom- 
position Principle, this can be reduced to proving the three formulas {AI} ~r~ 
{AI}, {AI} z2 {AI}, and [AI} z3 {AI}. 

To prove {AI} z2 {AI}, we apply the Locality Rule, reducing it to the problem 
of proving {in(r2) h A I }  z2 {afterOr2) h AI} .  We have 

inOr2) •- pc  = a2 

af ter(z2)  ffi (pc = a.~ V pc  = a4), 

so {in(v2) A AI}  z2 {afterOr2) A AI }  is equivalent to 

{pc = a2 A P2} 7r2 {(pc = a3 A P3) V (pc = a4 A P4)}. 

Since z2 is atomic, this formula means that  if executing the test z2 moves control 
to a3 (the "false" exit) then P3 must hold, and if control moves to a4 (the "true" 
exit) then P4 must hold. Recall that  this is just the verification condition for box 
z2 in the Floyd method. Therefore, proving {AI} z2 {AI} is equivalent to estab- 
lishing the verification condition for box ~r2. Similarly, proving {AI} ~r~ {AI} and 
{AI} ~r3 {AI} are equivalent to establishing the verification conditions for boxes 
zl and z3. These three verification conditions can be proved formally in GHL 
using the axioms and inference rules in [13]. 

In this way, a proof by the Floyd method of the partial correctness of any 
program z with respect to precondition P and postcondition Q can be expressed 
in GHL. The GHL proof ultimately requires proving the same verification 
conditions as the Floyd method. We expect that  every assertional method for 
reasoning about a program will reduce to proving these same verification condi- 
tions. However, this should not be surprising--it is the verification conditions 
that  capture the semantics of the program. 

3.2 The Owicki-Gries Method Reviewed 

The Owicki-Gries method is a way of proving partial correctness for a concurrent 
program ~r of the form 

~: cobegin ~ 1 / / ~ / /  . . .  //7r. coend, 
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where the processes 7rh communicate only by using shared memory [18]. Partial 
correctness of ~r with respect to a precondition P and a postcondition Q is proved 
in two steps. 

(1) It is proved for each process rk in isolation. 
(2) These proofs are combined by establishing non in t e r f e rence - - execu t i on  of 

one process does not invalidate assertions in the proof of another. 

Such a proof can be formulated in GHL as follows. The partial correctness 
proof for each process 7rk in step (1) of the Owicki-Gries method is done 
essentially by the Floyd method. As shown above, this means that there is a 
predicate Ih such that 

at(Trh) A P ~ h (3.2.1) 

{Ik} rh {I~} (3.2.2) 

14 = (a[ter(Trh) = Q). (3.2.3) 

(These are just S1-$3 for 7rk.) 
In the GHL proof, the invariant I is the predicate/1 A - . .  A/~.  Conditions 

S1-$3 for ~r are 

a t ( r )  A P ~ I (3.2.4) 

{I} 7r {I} (3.2.5) 

I ~ (after(~r) ~ Q). (3.2.6) 

We assume that at the entry point of 7r, control is at the entry points of all the 
~rk; and control reaches the exit of ~r when it is at the exits of all the ~rk. 6 This 
means that 

at(Tr) = at(Trl) A . . .  A atOrn) 

after(i t)  - after(IrO A . . .  A after(Trn). 

From these relations, and the fact that (3.2.1) and (3.2.3) hold for all k, we obtain 
(3.2.4) and (3.2.6) directly. 

To prove (3.2.5), we apply the Decomposition Principle, reducing the problem 
to showing 

{I} ~k {I} (3.2.7) 

for all k. By the Conjunction Rule, (3.2.7) is established by proving the following 
for all i: 

{h A Ii} rh {h A I;}. (3.2.8) 

For k = i, this is just (3.2.2). For k ~ i, (3.2.8) states that execution of ~rk does 
not invalidate assertions in the proof of 7ri, which is exactly the noninterference 
condition proved in step (2) of the Owicki-Gries method. This completes our 
formulation of the Owicki-Gries method in GHL. 

6 We could have in t roduced a more  complicated control  s t ruc ture  for the  c o b e g i n - - f o r  example,  
hav ing  a separa te  en t ry  poin t  a t  the  beg inn ing  of  ~r, before control  "forks" to the  beginning  of  the  
processes  ~ri. However,  th is  would have added extra  details  wi thout  providing any  fur ther  insight .  
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Again, the GHL proof involves the same verification conditions as the Owicki- 
Gries method. However, we feel that  invariance is clearer than noninterference 
of proofs, so formulating a proof in GHL makes it easier to understand. Also, 
unlike the Owicki-Gries method, synchronization primitives do not require 
special proof rules in GHL. This is because they are represented by conditionally 
terminating atomic operations, so Floyd's method handles them quite easily. 

3.3 CSP Reexplained 

CSP [10] is intended for describing distributed programs. A CSP program ~ has 
the form 

• " : :  [~ ' ,  II ~'~ II " "  II ~ ' . ]  

where each 7ri is a sequential process. Processes synchronize and communicate 
by using synchronous input and output commands. For notational simplicity, we 
consider a variant of CSP in which communication commands reference channels 
instead of other processes. Thus, to model CSP as described by Hoare, two 
unidirectional channels ~ij and ~ji connect each pair of processes ~ri and 7rj. 
Channel ~ij can be named only in output commands in 7ri and input commands 
in 7rj. For a channel ~, an expression expr, and a variable var, execution of the 
output command 

s: ~!expr 

by some process causes it to be delayed until some other process executes a 
matching input command 

r: f~ ? var. 

The two commands are executed simultaneously as a single atomic action, causing 
the value of expr to be assigned to var. Thus, this matching pair of communica- 
tions commands can be viewed as the "decentralized" atomic assignment state- 
ment 

( var := expr), 

which we label r *--~ s. Communication commands can occur as free-standing 
Statements or in the guards of guarded commands. 

There are two types of guarded commands in CSP: the alternative command 
and the repetitive command. Here, we consider only the repetitive command; 
treatment of alternative commands is similar. The syntax of a repetitive com- 
mand rpt is 

rpt: *[G1 --* C10 --. 0 G, --* C,] 

The command rpt contains an atomic operation gevalrpt that  can perform the 
following action: 

if  control is at the entry point of rpt, then 
(a) if the value of some Gi is true, then it moves control to the entry point 

of Ci; 
(b) if the values of all the Gi are false, then it moves control to the exit point 

of rpt. 
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If more than one Gi has the value true, then the choice of i in (a) is nondetermin- 
istic. 

A Boolean guard Gi consists of a Boolean expression, and its value is defined 
to be the value of that expression. If all the G~ are Boolean guards, then rpt is 
the same as Dijkstra's do statement [7]. However, we also allow communication 
guards of the form 

Bi ; commi 

where Bi is a Boolean expression and commi is a communication command. 7 The 
value of this guard is defined to equal false if B~ is false, and maybe if Bi is true. 
Thus, geval~p~ cannot be executed if some guards have the value maybe and all 
the rest have the value false. A communication guard Gi whose value is maybe 
may be executed by executing its communication command commi, causing 
control to move to the beginning of statement C~. Of course, this requires 
simultaneously executing a matching communication command in another 
process. 

In GHL, an invariance property {I} 7r {I} for a CSP program r is proved as 
follows. We regard each channel ~ as a program fragment. The atomic operations 
of ~ consist of all operations r *--~ s for matching communication commands s 
and r using channel ~. Observe that ~[~r], the set of atomic operations of ~, is 
given by 

o/[7r] = o~[7rl] U - - .  U O/['/rn] U ~ [~1]  U . . .  U Cll[,~m] 

for processes ~i - 7r. and channels ~i - ~m. We partition ~ into two parts, 7r pr 

and 7r ch with 

~[~p'] = ~[~] u ... v ~[~n] 

~[~ch] = ~[~,] U ... U ~[~m]. 

The Decomposition Principle can now be applied, so we need only prove 

{I} 71" pr {I} (3.3.1) 

{I} ~r ch {I}. (3.3.2) 

The program fragment 7r p" represents the concurrent program ~ without any 
communication over channels--that  is, where processes can communicate only 
using shared variables. (The use of shared variables is prohibited in CSP, but 
that makes no difference in this discussion.) Therefore, (3.3.1) can be verified by 
using ordinary methods, such as the Owicki-Gries method. In r p~, there are no 
atomic operations corresponding to communication commands ("!" and "?"). The 
operations that perform channel communications are in ~h. In proving (3.3.1), 
these operations can be regarded as "halts"--when control reaches the entry 
point of such an operation, no further progress is possible. This explains the 
"strange and astonishing" rules A1 and A2' of [1], the "miraculous" Receive 
Axiom of [19], and the corresponding Communication Axiom in [15]. 

To prove (3.3.1), we apply the Decomposition Principle to ~PL In doing this, 
we decompose a repetitive command rpt as follows. 

7 CSP  allows only inpt~t c o m m a n d s  in guards,  bu t  t ha t  restr ic t ion is i r relevant  here. 
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a[rpt] - a[gevalrptl u a[C1] tJ . . .  U a[Cn]. 

To prove that rpt leaves I invariant, the Decomposition Principle requires that 
we prove {I} C1 {I}, . . . ,  {I} Cn {I}, and {I} gevalrpt {I}. We already know how to 
prove {I} Ci {I}. To prove {I} gevaLpt {I}, we use the following GHL proof rules, 
where the term pure predicate refers to a predicate that does not contain 
references to at, in or after. 

- - I f  P is a pure predicate then {P} gevalr~t {P}. 

--{true} gevaL~t {(3i: Gi = true A at(Ci)) V (Vi: Gi = false A after(rpt))}. 

The first proof rule states that evaluating the guards does not change the value 
of any program variable. The second proof rule is just a formal description of the 
operational semantics of the repetitive guarded command that was given above. 
Note that maybe's do not appear there because control passes a communication 
guard only by an action of a channel, not by an action of gevalr~t. 

To apply the Locality Rule for a repetitive command rpt, we must also know 
the following relations among the at, in, and after predicates of its components. 

at(rpt)  = at(gevalrpt) 

after(gevalr~t) ~ at(C1) V at(C2) V . . .  V after(rpt) 

after(Ci) =- at(gevalrpt). 

The last rule says that the command iterates. 
To prove (3.3.2), we apply the Decomposition Principle to 7r oh, which requires 

proving 

{I} ~j {I} (3.3.3) 

for each channel }/. The atomic operations of }j consist of all operations r ~--~ s 
for matching communication commands r and s using channel }/. Applying the 
Decomposition Principle once again, proving (3.3.2) is reduced to proving 

{I} r ~---~ s: (var := expr) {I} (3.3.4) 

for all matching commands r and s and channels }. The final reduction is to 
apply the Locality Rule to (3.3.4). To do this, we must understand the meaning 
of in(r  ~--~ s) and after(r ,~--~ s). For an atomic operation p, in(p)  means that the 
control state is such that p could be the next operation executed. Similarly, 
after(p) means that the control state is such that p could have been the last 
operation executed. For free-standing communication commands r and s, the 
operation r *--} s can be executed only when control is at the entry point of both 
r and s, and its execution moves control to the exit points of r and s. Therefore, 

in(r  ~--~ s) ~ at(r) A at(s) 

after(r ~--~ s) = after(r) A after(s), 

and we can apply the Locality Rule to {3.3.4), reducing it to 

Cat(r) A at(s) A I} r .--~ s: (var := expr> {after(r) A after(s) A I} (3.3.5) 
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For the case where r and/or s appears in a guard, the definition of r <--f s must 
be changed to reflect the fact that the Boolean part of a guard must be true for 
that guard's communication operation to be executed. For example, if r is in Gi 
of rpt  and s is a free-standing output command, then, in the definition of 
i n ( r  <--f s), at(r )  is replaced by at ( rp t )  A Bi = true. Of course, alter(r)  =- at(Ci) ,  
and (3.3.5) is changed accordingly. 

These are the verification conditions for channel communications. They cor- 
respond to the cooperation proof in [1], the satisfaction proof and condition 
(3.4.2) in [15], and the similar conditions in [19]. The formal proof of (3.3.5) in 
GHL uses axioms and inference rules given in [13], where the operation r <--~ s 
is treated as the simple atomic assignment < var := expr) .  

On the basis of the semantics given thus far, a repetitive command will 
terminate only when all Booleans in its guards are false. In Hoare's CSP, there 
is a weaker condition for termination, namely, that every guard is either false or 
names a channel connected to a process that has terminated. To capture this, we 
simply define the value of the guard 

B~ ; xii ? val 

to be false if af ter (r i ) ,  and define the value of the guard 

Bi ; xij ! val 

to be false if after(~j) .  
To illustrate this approach to CSP, consider the following trivial program, 

which sets variable u to the value of variable x. 

:: [ ~ ,  :: s ,2:  ~ , ,  ! x II 

v2 :: rpt:  *[r~2:~,2?y--~ s23:~2~!y] ][ 

Our goal is to prove that if execution is started at the beginning of ~ ,  7r2, and 7r3 
then it can terminate only with u = x. We choose 

In i t  -- at(s~2) h a t ( rp t )  A at(r23) 

I =- (after(s12) ~ x = y )  A (after(r23) ~ y -~ u) 

E t e r n  - (alter(s12) A a f ter (rp t )  A alter(r23)) ~ x = u. 

Note that In i t  ~ I, since at(s~2) ~ "Tafter(s~2) and at(r23) ~ -~after(r23); so S1 
is satisfied. Also, I ~ E tern ,  so $3 is satisfied. To prove $2, the GHL formula 
{I} r {I} must be proved. By the Decomposition Principle, this can be reduced 
to proving 

{I} 7rl {I} (3.3.6) 

{I} r2 {I} {3.3.7) 

{I} r~ {I} (3.3.8) 

{I} ~12 {I} {3.3.9) 

{I} ~23 {I}. (3.3.10) 
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Formula (3.3.6) is obviously true because ~1 contains no atomic actions--the 
communications action is considered to be part of channel ~12. The proof of 
formula (3.3.7) follows because the only action in v2 is gevalrpt. Executing gevalrpt 
does not change the value of x, y, or u. Thus, x = y and y = u are not changed by 
~r2. The GHL proof rule for cobeg in  (rule P3(d) of [13]) states that  no action in 
one process can affect the value of at, in, and after for other processes. Hence, 
the antecedents of the implications in I are also unaffected by executing gevalrvt 
and so (3.3.7) is proved. In fact, maintaining this property of the cobeg in  rule is 
one reason why we have placed communications operations in channels instead 
of in processes. The proof of (3.3.8) is similar to that of (3.3.6). 

To prove (3.3.9), first observe that channel ~2 contains only one operation: 
r~2 ~--~,2 s~2. Thus, by applying the Decomposition Principle it is sufficient to 
prove 

{I} r12 ~---~,2 s12: (x := y)  {I}. 

The Locality Rule reduces this to 

{at(r~2) h at(s~2) A I}r12 ~'--~2 s12: (x := y) {after(r12) h after(s~2) A I} 

which follows directly from the GHL axiom for communication actions. The 
proof of (3.3.10) is similar to that of (3.3.9). 

3.4 Other Methods 

GHL can be used to reason about other interprocess communication mechanisms 
as well. For example, consider asynchronous message-passing, which can be 
viewed as a modification of CSP in which an output command ("!") does not wait 
for execution of a matching input command ("?"). In this case, the channel is a 
shared variable, rather than a program fragment. The asynchronous output 
command is an atomic operation to add a message to the channel and the 
corresponding input command is an atomic operation that removes a message. 

The Decomposition Principle and GHL inference rules can be used to reduce 
the proof of invariance to elementary verification conditions, just as in the 
Owicki-Gries method. A proof method for programs that use such asynchronous 
message-passing is given in [19]. There, the state of the communications network 
is captured by using additional state variables (or D and PD), not unlike the way 
we have used at, in and after to capture the state of program counters. In general, 
it may be necessary to add such variables when axJkomatizing a programming 
construct. 

4. CONCLUSIONS 

In this paper, we have considered proof systems for reasoning about shared- 
memory communication and for reasoning about the synchronous message pass- 
ing of CSP. In so doing, we hope to have removed the mystery from this plethora 
of proof systems. Our thesis is that concurrent programs should be understood 
in terms of invariance. We believe that it is better to think of a concurrent 
program as an "invariance maintainer" than as a "predicate transformer". To 
that end, GHL, a simple formal system for reasoning about invariance, was 
developed. 
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Viewing proof methods in terms of invariance is not new. Many researchers 
have realized that  different proof techniques resulted from different decomposi- 
tions of a global invariant, an idea first expressed explicitly by Cousot and Cousot 
[3, 4]. In [5], they suggested the decomposition of CSP programs into processes 
and channels. In contrast to the Cousots' work, which is based on program 
execution, our Decomposition Principle is based on syntactic decomposition of 
statements. It yields proof methods that are well suited to particular programming 
constructs. 

The Decomposition Principle also suggests two principles for the design of a 
programming language. First, the syntactic components of the language should 
correspond to the logical components into which one decomposes a program 
when reasoning about it. The process construct is an example of such a syntactic 
component, processes being the logical components into which a program is 
decomposed when reasoning about a concurrent program. Secondly, the language 
should permit many properties of a program to follow naturally from the syntax. 
For example, the juxtaposition of statements sl and s2 denotes after(s1) ~ at(s2 ) 
in most programming notations. 

Using GHL and the Decomposition Principle, which is really a meta-rule of 
GHL, it is possible to derive and compare other proof methods for reasoning 
about concurrent programs. Recent work of Cousot and Cousot [6] has shown 
that for any programming language in which flow of control can be expressed in 
terms of at, in, and after, GHL can be used to provide a sound and relatively 
complete axiom system for proving invariance properties. The at, in, and after 
predicates suffice to express the flow of control semantics in any concurrent 
programming language we know of. In addition, the Decomposition Principle 
provides useful insight for language designers. 

ACKNOWLEDGMENTS 
David Gries provided helpful comments on an early draft of this paper and 
Rebecca Bennett assisted in the preparation of the manuscript. Discussions with 
Patrick Cousot, Rick Hehner, and other members of IFIP W.G. 2.3 have been 
very helpful. The comments of the referees are also appreciated. 

REFERENCES 
1. APT, K. R., FRANCEZ, N., AND DE ROEVER, W.P. A proof system for communicating sequential 

processes. ACM Trans. Prog. Lang. Syst. 2, 3 (July 1980), 359-385. 
2. ASHCROFT, E.A. Proving assertions about parallel programs. J. Comput. Syst. Sci. 10 (Jan. 

1975), 110-135. 
3. COUSOT, P., AND COUSOT, S. Systematic design of program analysis frameworks. In Conference 

Record of the 6th ACM Symposium on Principles of Programming Languages (San Antonio, Tex. 
Jan. 29-31}. ACM, New York, 1979, pp. 269-282. 

4. COUSOT, P., AND COUSOT, a. Reasoning about program invariance proof methods. Tech. Rep. 
CRIN-80-P0, Centre de Recherche en Informatique de Nancy, Nancy, France, July 1980. 

5. COUSOT, P., AND COUSOT, R. Semantic analysis of communicating sequential processes. In 
Proceedings of the 7th International Colloquium on Automata, Languages and Programming, 
ICALP80. Lecture Notes in Computer Science, vol. 85. Springer-Verlag, New York, 1980, pp. 
119-133. 

6. COUSOT, P., AND COUSOT, R. On the soundness and completeness of generalized Hoare logic. 
ACM Transactions on Programming Languages and Systems, Vol. 6, No. 2, April 1984. 



296 • L. Lamport and F. B. Schneider 

Tech. Rep. CRIN-80-P093. Centre de Recherche en Informatique de Nancy, Nancy, France, Dec. 
1982. 

7. DIJKSTRA, E.W. A Discipline of Programming. Prentice Hall, Englewood Cliffs, N.J., 1976. 
8. FLOYD, R.W. Assigning Meanings to Programs. In Proceedings o[ the Symposium on Applied 

Mathematics, vol. 19. American Mathematical Society, Providence, R.I., 1967, pp. 19-32. 
9. HOARE, C.A.R. An axiomatic basis for computer programming. Commun. ACM 12, 10 (Oct. 

1969), 576-580. 
10. HOARE, C.A.R. Communicating sequential processes. Commun. ACM 21, 8 (Aug. 1978), 

666-677. 
11. KELLER, R.M. Formal verification of parallel programs. Commun. ACM 19, 7 {July 1976}, 

371-384. 
12. LAMPORT, L. Proving correctness of multiprocess programs. IEEE Trans. Softw. Eng. SE-3, 2 

(Mar. 1977), 125-143. 
13. LAMPORT, L. The 'Hoare Logic' of concurrent programs. Acta Inf. 14 {1980), 21-37. 
14. LAMPORT, L. Specifying concurrent program modules. ACM Trans. Program. Lang. Syst. 5, 2 

(Apr. 1983}, 190-222. 
15. LEVIN, G.M., AND GRIES, D. A proof technique for communicating sequential processes. Acta 

Inf. 15 (1981), 281-302. 
16. MANNA, Z., AND PNUELI, A. Verification of concurrent programs: temporal proof principles. In 

Proceedings of the Workshop on Logics of Programs, Lecture Notes in Computer Science, vol. 
131. Springer-Verlag, New York, 1981, pp. 200-252. 

17. OWlCKI, S.S. Axiomatic proof techniques for parallel programs. Ph.D. dissertation, Dep. of 
Computer Science, Cornell Univ., Ithaca, N.Y., Aug. 1975. 

18. OWICKI, S., AND GRIES, D. An axiomatic proof technique for parallel programs. Acta Inf. 6 
{1976}, 319-340. 

19. SCHLICHTING, R.D., AND SCHNEIDER, F.B. Using message passing for distributed programming: 
Proof rules and disciplines. Tech. Rep., Dep. of Computer Science, Cornell Univ., Ithaca, N.Y. 

Received May 1982; revised December 1982, July 1983; accepted August 1983 


