
The "Hoare Logic" of CSP, and All That

LESLIE LAMPORT
SRI International
and
FRED B. SCHNEIDER
Cornell University

Generalized Hoare Logic is a formal logical system for deriving invariance properties of programs. It
provides a uniform way to describe a variety of methods for reasoning about concurrent programs,
including noninterference, satisfaction, and cooperation proofs. We describe a simple recta-rule of
the Generalized Hoare Logic--the Decomposition Principle--and show how all these methods can
be derived using it.

Categories and Subject Descriptors: D.2.4 [Software Engineering]: Program Verification--correct-
ness proofs; D.3.1 [Programming Languages]: Formal Definitions and Theory--semantics; D.3.3
[Programming Languages]: Language Constructs--concurrent programming structures; F.3.1
[Logics and Meanings of Programs]: Specifying and Verifying and Reasoning about Programs;
F.3.3 [Logics and Meanings of Programs]: Studies of Program Constructs--control primitives;

General Terms: Languages, Verification

Additional Key Words and Phrases: Invariance, safety properties, Generalized Hoare Logic, decom-
position principle, noninterference, message-passing, communicating sequential processes

1. INTRODUCTION

A variety of methods have been proposed for reasoning about concurrent pro-
grams. Most of these are for proving safety properties--properties asserting that
the program never enters an unacceptable state. Some methods deal with con-
current programs that use shared variables [2, 4, 11, 12, 16, 18]; more recently,
the absence of shared variables in CSP [10] has led to other techniques for
reasoning about such programs [1, 5, 15, 19]. This diversity of methods has
obscured the fact that there is really a simple principle involved in all of them:
proving the invariance of an assertion.

The Generalized Hoare Logic (GHL) [13], a formal logical system for deriving
invariance properties of programs from the properties of their components,

This work is supported in part by National Science Foundation Grant MCS 81-04459 at SRI
International and MCS 81-03605 at Cornell University.
Authors' addresses: L. Lamport, Computer Science Laboratory, SRI International, 333 Ravenswood
Ave., Menlo Park, CA 94025; F. B. Schneider, Department of Computer Science, Cornell University,
Ithaca, NY 14853.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
© 1984 ACM 0164-0925/84/0400-0281 $00.75

ACM Transactions on Programming Languages and Systems, Vol. 6, No. 2, April 1984, Pages 281-296.

282 • L. Lamport and F. B. Schneider

provides a uniform way to describe these other assertional methods for reasoning
about concurrent programs. This allows a comparison of the methods, which can
help in understanding them.

GHL is a generalization of the programming logic proposed by Hoare [9] for
reasoning about sequential programs. In Hoare's logic, one views a program as a
partial correctness relation between two predicates, a precondition and a postcon-
dition, meaning that if the program is started in a state that satisfies the
precondition and it terminates, then the final state satisfies the postcondition.
Using the logic, one derives partial correctness properties of sequential programs
from properties of their components. This provides an elegant formulation of
Floyd's method [8] for pro~ing the correctness of a program. Although one must
still perform the same basic verification steps, by providing a new way of viewing
programs, Hoare's approach has led to improved ways for specifying and con-
structing programs, such as Dijkstra's programming calculus [7].

In the same vein, GHL can be viewed as another formulation of the methods
for reasoning about concurrent programs. It leads to a new way of viewing a
concurrent program--as maintaining the invariance of a predicate. This, in turn,
has led to new specification methods for concurrent programs [14], and we hope
it will lead to improved techniques for constructing concurrent programs.

Using invariance to reason about concurrent programs is not new, having been
proposed by Ashcroft [2] and Keller [11]. What GHL does is provide a logic for
deriving invariance properties of a program. In this paper, we show how various
techniques for establishing safety properties of concurrent programs can be
formulated in GHL in terms of invariance. Section 2 contains an overview of
GHL and its principles; Section 3 applies the principles to some popular proof
systems.

2. PROVING SAFETY PROPERTIES WITH GHL

2.1 Atomic Actions

During execution of a program, there will be times when the system is in
undefined or pathological states. For example, when the contents of a bit of
memory is changed, it will pass through an intermediate state in which its value
is neither zero nor one. Since a safety property asserts that a predicate is always
true, it is unlikely to hold if such a transient intermediate state were visible. We
therefore assume the existence of atomic actions, which transform the system
from one state to another without passing through any visible intermediate
states. An operation whose execution is atomic will be enclosed in angle brackets.

The notion of an atomic operation is irrelevant for sequential programs.
However, to specify a concurrent program, one must specify which operations
are atomic. To see this, consider the following two programs z and p:

lr: c o b e g i n (x := x + 1) / / (x := x + 1) c o e n d
p: c o b e g i n (x) :-- (x + 1) / / (x) := (x + 1) c o e n d

Execution of 7r consists of two atomic actions, each incrementing x by one. Hence,
the program will terminate with x two greater than its initial value. Execution of
p consists of four atomic actions: two that fetch the value of x and increment it,
and two that store a value in x. If both fetches precede both stores, then p will

ACM Transactions on Programming Languages and Systems, Vol. 6, No. 2, April 1984.

The "Hoare Logic" of CSP, and All That • 283

increment x by one; otherwise it will increment x by two. Thus, executing ~r and
p can produce different results, so they are different programs. If we simply write

c o b e g i n x := x + 1 / / x := x + i coend

without specifying what operations are atomic, then no assertion can be made
about the final value of x. (Consider what could happen if fetching or storing
each bit is a separate atomic operation, two's complement representation is used,
and the program is started with x = -1.)

We place no restrictions on what can appear inside angle brackets, thereby
allowing a complicated statement or sequence of statements to be atomic. This
allows one to write atomic operations that need not terminate, raising the
question of how a nonterminating atomic action can he executed, since, being
atomic, it cannot he interrupted before completion. We answer this by requiring
that an atomic operation not be executed unless it will terminate. Conditionally
terminating atomic operations can then be used to represent synchronization
primitives. For example, a P(s) semaphore operation can be represented by ~

(s :-- s - 1; w h i l e s < 0 d o s k i p o d) .

We do not advocate allowing a programmer to put anything inside angle
brackets; that would be impossible to implement. We are simply observing that
nothing has to be added to GHL in order to reason about the synchronization
primitives provided by concurrent programming languages, since these primitives
can be represented as conditionally terminating atomic operations.

2.2 Proving Safety Properties

A safety property has the following form, for some predicates Ini t and Etern:

SP: If the program is started in any state satisfying Init, then every state reached
during its execution satisfies Etern.

Examples of safety properties are deadlock freedom, where Etern asserts that
the program is not in a deadlock state, and mutual exclusion, where Etern asserts
that two processes are not both in their critical sections. The general method for
proving SP is to find a predicate I such that: 2

$1. In i t ~ I.
$2. If the program is started in any state satisfying I, then every state reached

during its execution satisfies I.
$3. I ~ Etern.

$1-$3 trivially imply SP. A predicate I satisfying $2 is called an invariant of the
program. Properties $1 and $3 are usually easy to verify, since they are static
properties of the predicates. Property $2, invariance, is the core of the proof,
since it is a property of the program's behavior--a dynamic property.

The invariance of a predicate I is proved by showing that each atomic action,
if started in a state satisfying I, will terminate in a state with I true. By a trivial

This representation is consistent with the safety properties of the semaphore operation, but not its
liveness properties. Since GHL deals only with safety properties, that is sufficient.
2 We use ~ to denote logical implication.

ACM Transactions on Programming Languages and Systems, Vol. 6, No. 2, April 1984.

284 • L. Lamport and F. B. Schneider

induction argument, this implies that I is invariant. The virtue of this approach
is that it considers each atomic action in isolation and ignores the history of the
computation.

Viewing atomic actions in isolation requires that the state of the system include
control information--the values of "program counters"--to determine what
atomic actions can occur next. The control state is just as much a part of a
program's state as the values of its variables. Indeed, every programmer knows
that variables can often be eliminated by encoding their values in the control
state and that control structure can often be simplified by adding extra variables.
Moreover, it is well known that one cannot verify concurrent programs without
reasoning about their control state [17]. Whether one reasons about control state
directly or by introducing "dummy variables" (sometimes called ghost or auxiliary
variables) is a matter of taste. We find it inelegant to add dummy variables to a
program when their values can easily be defined as functions of the real program
state.

When reasoning about invariance properties, we need to consider what the
program does when started from any state. 3 We therefore do not assume any
preferred starting state, allowing execution to begin in any state--even one with
control in the middle of the program. If, as is usually the case, we are only
interested in properties that hold when the program is started with control at
the beginning, then the predicate Init of SP will state that control is at the
program's entry point.

2.3 GHL: A Logic of Invariance

A program is made up of declarations, which we ignore, and executable program
fragments. A program fragment may itself be composed of smaller program
fragments. For example, an i f - t hen -e l s e statement is a program fragment
composed of three smaller fragments: the conditional test, the t hen clause, and
the else clause. The set of atomic operations that make up program fragment 7r
is denoted a[~r]. If ~r is composed of subfragments ~1 , ~,, then

OL['II'] = (3~["t/'l] U - . . U (3£[7En].

Formulas of GHL have the form

{z} {i}

where I is a predicate and 7r a program fragment. This formula means that
executing any atomic action in r starting in a state in which I is true leaves I
true. A simple induction argument shows that if v is the entire program, then
this is equivalent to $2; so {I} v {I} means that I is an invariant of ~r.

In [13], GHL is described for a simple programming language. An inference
rule for each language construct is given, enabling invariance properties of
statements to be derived from invariance properties of their components. All
these inference rules are based on the following principle:

3 A state consists of a value for the program's control state and, for each program variable, a value
that is consistent with its declared type.

ACM Transactions on Programming Languages and Systems, Vol. 6, No. 2, April 1984.

The "Hoare Logic" of CSP, and All That • 285

Decomposition Principle. I f a [v] = a[Trl] U . . - U O/[Vn] , then

{z} vl {z}, . . . , {i} vn{z}
{z} v {z}

For example, the atomic operations of S ; T are just the atomic operations of S
together with the atomic operat ions of T:

a [S ; T] = a [S] U a[T] ,

so the Decomposit ion Principle yields the following inference rule for s ta tement
concatenation:

{I} S {I}, {I} T {I}

{I} S; T {I}

In this paper, we use the Decomposit ion Principle to derive inference rules for
some programming constructs not considered in [13].

To describe how G H L is used, we shall also require some inference rules from
[13] tha t apply to all programming constructs. The first rule allows invariance
propert ies of the same program fragment to be combined. In light of the meaning
of {I} ~r {I}, it is obviously valid.

Conjunction Rule:

{I1} v {Id, . . . , {/,} v {In}
1I~ A . . . A ./.1 v I/1 A . . . A I . } "

As ment ioned earlier, the state of the system must include control information.
G H L uses the following predicates to describe the control state:

at(v) -- "control resides at an ent ry point of v".

in(v) - "control resides somewhere in v, including
at its en t ry point".

after(v) = "control resides at a point immediately
following 7r".

In G H L the definition of a language construct includes a specification of its at,
in, and after predicates, which serve to define its control flow semantics.

We define {P} v {Q} to be an abbreviation for 4

{in(v) ~ P A after(v) ~ Q} Ir {in(v) ~ P A after(v) ~ Q}.

If v is an atomic operation, then {P} v {Q} means tha t executing v start ing in a
state in which P holds produces a state in which Q is true. (Recall tha t an atomic
operat ion v cannot be executed unless it will terminate.) When v is, in addition,
a complete s tatement , this is the same meaning as in Hoare 's programming
logic. '~

4 Since {I} ~r {I} is a special case of [P} ~r {Q}, we have seemingly defined it to have two different
meanings. However, the following Locality Rule implies that the meanings are equivalent.
s In Hoare's original notation this would be written as P 17rJ Q.

ACM Transactions on Programming Languages and Systems, Vol. 6, No. 2, April 1984.

286 • L. Lamport and F. B. Schneider

For a program fragment r that might not be atomic, {P} ~r {Q} means that if
control is anywhere inside 7r and P holds, then executing the next atomic
operation in r will either

(1) leave control in r with P true, or
(2) leave control at an exit point of r with Q true.

If 7r is atomic, then there is only one control point inside ~r--the one at its entry
point.

The only other GHL inference rule we need follows from the observation that
it is possible to execute an atomic operation 7r only if in(Tr) is true, and that
control is at an exit point of 7r only if after(r) is true.

Locality Rule:

{in(v) A I} r lafter(70 A I}.

I / I r I / I

The Locality Rule can be derived from P2 and P3 of [13]. Note that from the
definition of {P} r {Q}, it follows immediately that {in(v) A I} lr {after(v) A I}
means 7r leaves (in(v) V after(v)) ~ I invariant.

3. FORMULATIONS IN GHL

We turn now to some specific methods for proving programs and show how they
can be formulated in GHL. These methods are for proving one specific safety
property: partial correctness. Partial correctness of program r with respect to
precondition P and postcondition Q is an instance of SP with the predicates

Init: at(~r) h P .

Etern: after(v) ~ Q.

Note that because we do not assume any preferred starting point, we have to
include the conjunct at(v) in Ini t to specify that the program is started at the
beginning.

3.1 Floyd's Method Revisited

Floyd's method [8] uses the flowchart representation of the program. The
program's flowchart consists of a set of nodes connected by directed arcs. The
nodes represent program fragments; the arcs represent control flow. There is an
arc from node r to node ~b if the entry point of ~b is an exit point of ~. For
example, consider Figure 1, where boxes are labeled 7rl - ~3 and control points
are labeled al-a4. The node r2 corresponds to a conditional test. It has two exit
points, a3 and a4, the former being the entry point of 7r~ and the latter the exit
point of the entire program. Which one is reached depends on the outcome of
the test. Note also that a2 is the exit point of both ~1 and ~r3, as well as the entry
point of 7r2.

In Floyd's method, partial correctness with respect to a precondition P and a
postcondition Q is proved by associating a predicate with each control point. P
is associated with the entry point, Q is associated with the exit point, and the
predicates associated with the other control points are chosen so that the

ACM Transactions on Programming Languages and Systems, Vol. 6, No. 2, April 1984.

The "Hoare Logic" of CSP, and All That • 287

!
a~ TP~: n _ 0

+
i : = 0
s : = 0

7g 2

a2

a4

P.,:O<_i<_ nA s= ~ b[j]
j= l

n ~ False

true

P , : s = ~ b[j]
j=l

I

a:~,P:~:P~Ai ¢ n

+ b[i]

Figure 1

following condition holds:

AI : If the program is started at any control point and the predicate associated
with that control point is true, then throughout execution the predicate
associated with the current control point is true.

This implies that if the program is started at its entry point with the precondition
P true and it reaches its exit point, then its final state satisfies the postcondition
Q. To prove A/, it is necessary to prove the following verification condition for
each box ~i:

VC: If ri is executed starting in a state that satisfies the predicate associated
with its entry point, then the predicate associated with the control point it
reaches after its execution will be true.

A simple induction argument shows that the truth of VC for every box 7r~ implies
the truth o f AI . This reduces the problem of proving partial correctness to proving
a verification condition for each box. Floyd gave simple rules for proving these
verification conditions.

Figure 1 illustrates the use of Floyd's method to prove a partial correctness
condition for a simple program that sums the first n elements of a one-dimen-
sional array b and leaves the result in s. Our goal is to prove that if execution is
begun with n - 0, then it can terminate only with s = ~,inl b[j]. In the figure,
the predicate associated with each control point a~ is labeled P~; the precondition
n _ 0 is associated with control point al and the postcondition s - ~i%1 b[j] with
a4. There are three verifications conditions--one for each box--which are easily
checked. For example, the verification condition for 7r2 asserts that if testing i =
n with P2 true yields false, then P3 must hold, and if it yields true then P4 must

ACM Transactions on Programming Languages and Systems, Vol. 6, No. 2, April 1984.

288 • L. Lamport and F. B. Schneider

hold. This verification condition follows immediately from the definitions of P2,
P:~, and P4.

Using the program z of Figure 1, we now illustrate that the Floyd method is
an instance of the use of GHL to prove a safety property, in which A I is the
invariant I of S1-$3.

To apply GHL, a program's atomic operations must be specified. For a program
represented by a flowchart, we assume that each box is an atomic operation. Let
pc be the control state, so pc = ai means that the program is at control point ai.
Since for program z of Figure 1 a t (r) ~- pc = al and a f t e r (r) -- pc = a 4 , we have

In i t =- (pc = aO A P1

E t e r n = (pc = a4) ~ P4
4

A I ffi A (pc = ai ~ Pi).
i= l

Clearly, In i t ~ A I and A I ~ E tern , so S1 and $3 are satisfied. To prove $2, the
invariance of AI , we must prove the GHL formula {AI} ~r {AI}. By the Decom-
position Principle, this can be reduced to proving the three formulas {AI} ~r~
{AI}, {AI} z2 {AI}, and [AI} z3 {AI}.

To prove {AI} z2 {AI}, we apply the Locality Rule, reducing it to the problem
of proving {in(r2) h A I } z2 {afterOr2) h AI} . We have

inOr2) •- pc = a2

af ter(z2) ffi (pc = a.~ V pc = a4),

so {in(v2) A AI} z2 {afterOr2) A AI } is equivalent to

{pc = a2 A P2} 7r2 {(pc = a3 A P3) V (pc = a4 A P4)}.

Since z2 is atomic, this formula means that if executing the test z2 moves control
to a3 (the "false" exit) then P3 must hold, and if control moves to a4 (the "true"
exit) then P4 must hold. Recall that this is just the verification condition for box
z2 in the Floyd method. Therefore, proving {AI} z2 {AI} is equivalent to estab-
lishing the verification condition for box ~r2. Similarly, proving {AI} ~r~ {AI} and
{AI} ~r3 {AI} are equivalent to establishing the verification conditions for boxes
zl and z3. These three verification conditions can be proved formally in GHL
using the axioms and inference rules in [13].

In this way, a proof by the Floyd method of the partial correctness of any
program z with respect to precondition P and postcondition Q can be expressed
in GHL. The GHL proof ultimately requires proving the same verification
conditions as the Floyd method. We expect that every assertional method for
reasoning about a program will reduce to proving these same verification condi-
tions. However, this should not be surprising--it is the verification conditions
that capture the semantics of the program.

3.2 The Owicki-Gries Method Reviewed

The Owicki-Gries method is a way of proving partial correctness for a concurrent
program ~r of the form

~: cobegin ~ 1 / / ~ / / . . . //7r. coend,
ACM Transactions on Programming Languages and Systems, Vol. 6, No. 2, April 1984.

The "Hoare Logic" of CSP, and All That • 289

where the processes 7rh communicate only by using shared memory [18]. Partial
correctness of ~r with respect to a precondition P and a postcondition Q is proved
in two steps.

(1) It is proved for each process rk in isolation.
(2) These proofs are combined by establishing non in t e r f e rence - - execu t i on of

one process does not invalidate assertions in the proof of another.

Such a proof can be formulated in GHL as follows. The partial correctness
proof for each process 7rk in step (1) of the Owicki-Gries method is done
essentially by the Floyd method. As shown above, this means that there is a
predicate Ih such that

at(Trh) A P ~ h (3.2.1)

{Ik} rh {I~} (3.2.2)

14 = (a[ter(Trh) = Q). (3.2.3)

(These are just S1-$3 for 7rk.)
In the GHL proof, the invariant I is the predicate/1 A - . . A/~. Conditions

S1-$3 for ~r are

a t (r) A P ~ I (3.2.4)

{I} 7r {I} (3.2.5)

I ~ (after(~r) ~ Q). (3.2.6)

We assume that at the entry point of 7r, control is at the entry points of all the
~rk; and control reaches the exit of ~r when it is at the exits of all the ~rk. 6 This
means that

at(Tr) = at(Trl) A . . . A atOrn)

after(i t) - after(IrO A . . . A after(Trn).

From these relations, and the fact that (3.2.1) and (3.2.3) hold for all k, we obtain
(3.2.4) and (3.2.6) directly.

To prove (3.2.5), we apply the Decomposition Principle, reducing the problem
to showing

{I} ~k {I} (3.2.7)

for all k. By the Conjunction Rule, (3.2.7) is established by proving the following
for all i:

{h A Ii} rh {h A I;}. (3.2.8)

For k = i, this is just (3.2.2). For k ~ i, (3.2.8) states that execution of ~rk does
not invalidate assertions in the proof of 7ri, which is exactly the noninterference
condition proved in step (2) of the Owicki-Gries method. This completes our
formulation of the Owicki-Gries method in GHL.

6 We could have in t roduced a more complicated control s t ruc ture for the c o b e g i n - - f o r example,
hav ing a separa te en t ry poin t a t the beg inn ing of ~r, before control "forks" to the beginning of the
processes ~ri. However, th is would have added extra details wi thout providing any fur ther insight .

ACM Transactions on Programming Languages and Systems, Vol. 6, No. 2, April 1984.

290 • L. Lamport and F. B. Schneider

Again, the GHL proof involves the same verification conditions as the Owicki-
Gries method. However, we feel that invariance is clearer than noninterference
of proofs, so formulating a proof in GHL makes it easier to understand. Also,
unlike the Owicki-Gries method, synchronization primitives do not require
special proof rules in GHL. This is because they are represented by conditionally
terminating atomic operations, so Floyd's method handles them quite easily.

3.3 CSP Reexplained

CSP [10] is intended for describing distributed programs. A CSP program ~ has
the form

• " : : [~ ' , II ~'~ II " " II ~ ' .]

where each 7ri is a sequential process. Processes synchronize and communicate
by using synchronous input and output commands. For notational simplicity, we
consider a variant of CSP in which communication commands reference channels
instead of other processes. Thus, to model CSP as described by Hoare, two
unidirectional channels ~ij and ~ji connect each pair of processes ~ri and 7rj.
Channel ~ij can be named only in output commands in 7ri and input commands
in 7rj. For a channel ~, an expression expr, and a variable var, execution of the
output command

s: ~!expr

by some process causes it to be delayed until some other process executes a
matching input command

r: f~ ? var.

The two commands are executed simultaneously as a single atomic action, causing
the value of expr to be assigned to var. Thus, this matching pair of communica-
tions commands can be viewed as the "decentralized" atomic assignment state-
ment

(var := expr),

which we label r *--~ s. Communication commands can occur as free-standing
Statements or in the guards of guarded commands.

There are two types of guarded commands in CSP: the alternative command
and the repetitive command. Here, we consider only the repetitive command;
treatment of alternative commands is similar. The syntax of a repetitive com-
mand rpt is

rpt: *[G1 --* C10 --. 0 G, --* C,]

The command rpt contains an atomic operation gevalrpt that can perform the
following action:

if control is at the entry point of rpt, then
(a) if the value of some Gi is true, then it moves control to the entry point

of Ci;
(b) if the values of all the Gi are false, then it moves control to the exit point

of rpt.
ACM Transactions on Programming Languages and Systems, Vol. 6, No. 2, April 1984.

The "Hoare Logic" of CSP, and All That • 291

If more than one Gi has the value true, then the choice of i in (a) is nondetermin-
istic.

A Boolean guard Gi consists of a Boolean expression, and its value is defined
to be the value of that expression. If all the G~ are Boolean guards, then rpt is
the same as Dijkstra's do statement [7]. However, we also allow communication
guards of the form

Bi ; commi

where Bi is a Boolean expression and commi is a communication command. 7 The
value of this guard is defined to equal false if B~ is false, and maybe if Bi is true.
Thus, geval~p~ cannot be executed if some guards have the value maybe and all
the rest have the value false. A communication guard Gi whose value is maybe
may be executed by executing its communication command commi, causing
control to move to the beginning of statement C~. Of course, this requires
simultaneously executing a matching communication command in another
process.

In GHL, an invariance property {I} 7r {I} for a CSP program r is proved as
follows. We regard each channel ~ as a program fragment. The atomic operations
of ~ consist of all operations r *--~ s for matching communication commands s
and r using channel ~. Observe that ~[~r], the set of atomic operations of ~, is
given by

o/[7r] = o~[7rl] U - - . U O/['/rn] U ~ [~1] U . . . U Cll[,~m]

for processes ~i - 7r. and channels ~i - ~m. We partition ~ into two parts, 7r pr

and 7r ch with

~[~p'] = ~[~] u ... v ~[~n]

~[~ch] = ~[~,] U ... U ~[~m].

The Decomposition Principle can now be applied, so we need only prove

{I} 71" pr {I} (3.3.1)

{I} ~r ch {I}. (3.3.2)

The program fragment 7r p" represents the concurrent program ~ without any
communication over channels--that is, where processes can communicate only
using shared variables. (The use of shared variables is prohibited in CSP, but
that makes no difference in this discussion.) Therefore, (3.3.1) can be verified by
using ordinary methods, such as the Owicki-Gries method. In r p~, there are no
atomic operations corresponding to communication commands ("!" and "?"). The
operations that perform channel communications are in ~h. In proving (3.3.1),
these operations can be regarded as "halts"--when control reaches the entry
point of such an operation, no further progress is possible. This explains the
"strange and astonishing" rules A1 and A2' of [1], the "miraculous" Receive
Axiom of [19], and the corresponding Communication Axiom in [15].

To prove (3.3.1), we apply the Decomposition Principle to ~PL In doing this,
we decompose a repetitive command rpt as follows.

7 CSP allows only inpt~t c o m m a n d s in guards, bu t t ha t restr ic t ion is i r relevant here.

ACM Transactions on Programming Languages and Systems, Vol. 6, No. 2, April 1984.

292 • L. Lamport and F. B. Schneider

a[rpt] - a[gevalrptl u a[C1] tJ . . . U a[Cn].

To prove that rpt leaves I invariant, the Decomposition Principle requires that
we prove {I} C1 {I}, . . . , {I} Cn {I}, and {I} gevalrpt {I}. We already know how to
prove {I} Ci {I}. To prove {I} gevaLpt {I}, we use the following GHL proof rules,
where the term pure predicate refers to a predicate that does not contain
references to at, in or after.

- - I f P is a pure predicate then {P} gevalr~t {P}.

--{true} gevaL~t {(3i: Gi = true A at(Ci)) V (Vi: Gi = false A after(rpt))}.

The first proof rule states that evaluating the guards does not change the value
of any program variable. The second proof rule is just a formal description of the
operational semantics of the repetitive guarded command that was given above.
Note that maybe's do not appear there because control passes a communication
guard only by an action of a channel, not by an action of gevalr~t.

To apply the Locality Rule for a repetitive command rpt, we must also know
the following relations among the at, in, and after predicates of its components.

at(rpt) = at(gevalrpt)

after(gevalr~t) ~ at(C1) V at(C2) V . . . V after(rpt)

after(Ci) =- at(gevalrpt).

The last rule says that the command iterates.
To prove (3.3.2), we apply the Decomposition Principle to 7r oh, which requires

proving

{I} ~j {I} (3.3.3)

for each channel }/. The atomic operations of }j consist of all operations r ~--~ s
for matching communication commands r and s using channel }/. Applying the
Decomposition Principle once again, proving (3.3.2) is reduced to proving

{I} r ~---~ s: (var := expr) {I} (3.3.4)

for all matching commands r and s and channels }. The final reduction is to
apply the Locality Rule to (3.3.4). To do this, we must understand the meaning
of in(r ~--~ s) and after(r ,~--~ s). For an atomic operation p, in(p) means that the
control state is such that p could be the next operation executed. Similarly,
after(p) means that the control state is such that p could have been the last
operation executed. For free-standing communication commands r and s, the
operation r *--} s can be executed only when control is at the entry point of both
r and s, and its execution moves control to the exit points of r and s. Therefore,

in(r ~--~ s) ~ at(r) A at(s)

after(r ~--~ s) = after(r) A after(s),

and we can apply the Locality Rule to {3.3.4), reducing it to

Cat(r) A at(s) A I} r .--~ s: (var := expr> {after(r) A after(s) A I} (3.3.5)
ACM Transactions on Programming Languages and Systems, Vol. 6, No. 2, April 1984.

The "Hoare Logic" of CSP, and All That • 293

For the case where r and/or s appears in a guard, the definition of r <--f s must
be changed to reflect the fact that the Boolean part of a guard must be true for
that guard's communication operation to be executed. For example, if r is in Gi
of rpt and s is a free-standing output command, then, in the definition of
i n (r <--f s), at(r) is replaced by at (rp t) A Bi = true. Of course, alter(r) =- at(Ci) ,
and (3.3.5) is changed accordingly.

These are the verification conditions for channel communications. They cor-
respond to the cooperation proof in [1], the satisfaction proof and condition
(3.4.2) in [15], and the similar conditions in [19]. The formal proof of (3.3.5) in
GHL uses axioms and inference rules given in [13], where the operation r <--~ s
is treated as the simple atomic assignment < var := expr) .

On the basis of the semantics given thus far, a repetitive command will
terminate only when all Booleans in its guards are false. In Hoare's CSP, there
is a weaker condition for termination, namely, that every guard is either false or
names a channel connected to a process that has terminated. To capture this, we
simply define the value of the guard

B~ ; xii ? val

to be false if af ter (r i) , and define the value of the guard

Bi ; xij ! val

to be false if after(~j) .
To illustrate this approach to CSP, consider the following trivial program,

which sets variable u to the value of variable x.

:: [~ , :: s ,2: ~ , , ! x II

v2 :: rpt: *[r~2:~,2?y--~ s23:~2~!y]][

Our goal is to prove that if execution is started at the beginning of ~ , 7r2, and 7r3
then it can terminate only with u = x. We choose

In i t -- at(s~2) h a t (rp t) A at(r23)

I =- (after(s12) ~ x = y) A (after(r23) ~ y -~ u)

E t e r n - (alter(s12) A a f ter (rp t) A alter(r23)) ~ x = u.

Note that In i t ~ I, since at(s~2) ~ "Tafter(s~2) and at(r23) ~ -~after(r23); so S1
is satisfied. Also, I ~ E tern , so $3 is satisfied. To prove $2, the GHL formula
{I} r {I} must be proved. By the Decomposition Principle, this can be reduced
to proving

{I} 7rl {I} (3.3.6)

{I} r2 {I} {3.3.7)

{I} r~ {I} (3.3.8)

{I} ~12 {I} {3.3.9)

{I} ~23 {I}. (3.3.10)

ACM Transactions on Programming Languages and Systems, Vol. 6, No. 2, April 1984.

294 • L. Lamport and F. B. Schneider

Formula (3.3.6) is obviously true because ~1 contains no atomic actions--the
communications action is considered to be part of channel ~12. The proof of
formula (3.3.7) follows because the only action in v2 is gevalrpt. Executing gevalrpt
does not change the value of x, y, or u. Thus, x = y and y = u are not changed by
~r2. The GHL proof rule for cobeg in (rule P3(d) of [13]) states that no action in
one process can affect the value of at, in, and after for other processes. Hence,
the antecedents of the implications in I are also unaffected by executing gevalrvt
and so (3.3.7) is proved. In fact, maintaining this property of the cobeg in rule is
one reason why we have placed communications operations in channels instead
of in processes. The proof of (3.3.8) is similar to that of (3.3.6).

To prove (3.3.9), first observe that channel ~2 contains only one operation:
r~2 ~--~,2 s~2. Thus, by applying the Decomposition Principle it is sufficient to
prove

{I} r12 ~---~,2 s12: (x := y) {I}.

The Locality Rule reduces this to

{at(r~2) h at(s~2) A I}r12 ~'--~2 s12: (x := y) {after(r12) h after(s~2) A I}

which follows directly from the GHL axiom for communication actions. The
proof of (3.3.10) is similar to that of (3.3.9).

3.4 Other Methods

GHL can be used to reason about other interprocess communication mechanisms
as well. For example, consider asynchronous message-passing, which can be
viewed as a modification of CSP in which an output command ("!") does not wait
for execution of a matching input command ("?"). In this case, the channel is a
shared variable, rather than a program fragment. The asynchronous output
command is an atomic operation to add a message to the channel and the
corresponding input command is an atomic operation that removes a message.

The Decomposition Principle and GHL inference rules can be used to reduce
the proof of invariance to elementary verification conditions, just as in the
Owicki-Gries method. A proof method for programs that use such asynchronous
message-passing is given in [19]. There, the state of the communications network
is captured by using additional state variables (or D and PD), not unlike the way
we have used at, in and after to capture the state of program counters. In general,
it may be necessary to add such variables when axJkomatizing a programming
construct.

4. CONCLUSIONS

In this paper, we have considered proof systems for reasoning about shared-
memory communication and for reasoning about the synchronous message pass-
ing of CSP. In so doing, we hope to have removed the mystery from this plethora
of proof systems. Our thesis is that concurrent programs should be understood
in terms of invariance. We believe that it is better to think of a concurrent
program as an "invariance maintainer" than as a "predicate transformer". To
that end, GHL, a simple formal system for reasoning about invariance, was
developed.
ACM Transactions on Programming Languages and Systems, Vol. 6, No. 2, April 1984.

The "Hoare Logic" of CSP, and All That 295

Viewing proof methods in terms of invariance is not new. Many researchers
have realized that different proof techniques resulted from different decomposi-
tions of a global invariant, an idea first expressed explicitly by Cousot and Cousot
[3, 4]. In [5], they suggested the decomposition of CSP programs into processes
and channels. In contrast to the Cousots' work, which is based on program
execution, our Decomposition Principle is based on syntactic decomposition of
statements. It yields proof methods that are well suited to particular programming
constructs.

The Decomposition Principle also suggests two principles for the design of a
programming language. First, the syntactic components of the language should
correspond to the logical components into which one decomposes a program
when reasoning about it. The process construct is an example of such a syntactic
component, processes being the logical components into which a program is
decomposed when reasoning about a concurrent program. Secondly, the language
should permit many properties of a program to follow naturally from the syntax.
For example, the juxtaposition of statements sl and s2 denotes after(s1) ~ at(s2)
in most programming notations.

Using GHL and the Decomposition Principle, which is really a meta-rule of
GHL, it is possible to derive and compare other proof methods for reasoning
about concurrent programs. Recent work of Cousot and Cousot [6] has shown
that for any programming language in which flow of control can be expressed in
terms of at, in, and after, GHL can be used to provide a sound and relatively
complete axiom system for proving invariance properties. The at, in, and after
predicates suffice to express the flow of control semantics in any concurrent
programming language we know of. In addition, the Decomposition Principle
provides useful insight for language designers.

ACKNOWLEDGMENTS
David Gries provided helpful comments on an early draft of this paper and
Rebecca Bennett assisted in the preparation of the manuscript. Discussions with
Patrick Cousot, Rick Hehner, and other members of IFIP W.G. 2.3 have been
very helpful. The comments of the referees are also appreciated.

REFERENCES
1. APT, K. R., FRANCEZ, N., AND DE ROEVER, W.P. A proof system for communicating sequential

processes. ACM Trans. Prog. Lang. Syst. 2, 3 (July 1980), 359-385.
2. ASHCROFT, E.A. Proving assertions about parallel programs. J. Comput. Syst. Sci. 10 (Jan.

1975), 110-135.
3. COUSOT, P., AND COUSOT, S. Systematic design of program analysis frameworks. In Conference

Record of the 6th ACM Symposium on Principles of Programming Languages (San Antonio, Tex.
Jan. 29-31}. ACM, New York, 1979, pp. 269-282.

4. COUSOT, P., AND COUSOT, a. Reasoning about program invariance proof methods. Tech. Rep.
CRIN-80-P0, Centre de Recherche en Informatique de Nancy, Nancy, France, July 1980.

5. COUSOT, P., AND COUSOT, R. Semantic analysis of communicating sequential processes. In
Proceedings of the 7th International Colloquium on Automata, Languages and Programming,
ICALP80. Lecture Notes in Computer Science, vol. 85. Springer-Verlag, New York, 1980, pp.
119-133.

6. COUSOT, P., AND COUSOT, R. On the soundness and completeness of generalized Hoare logic.
ACM Transactions on Programming Languages and Systems, Vol. 6, No. 2, April 1984.

296 • L. Lamport and F. B. Schneider

Tech. Rep. CRIN-80-P093. Centre de Recherche en Informatique de Nancy, Nancy, France, Dec.
1982.

7. DIJKSTRA, E.W. A Discipline of Programming. Prentice Hall, Englewood Cliffs, N.J., 1976.
8. FLOYD, R.W. Assigning Meanings to Programs. In Proceedings o[the Symposium on Applied

Mathematics, vol. 19. American Mathematical Society, Providence, R.I., 1967, pp. 19-32.
9. HOARE, C.A.R. An axiomatic basis for computer programming. Commun. ACM 12, 10 (Oct.

1969), 576-580.
10. HOARE, C.A.R. Communicating sequential processes. Commun. ACM 21, 8 (Aug. 1978),

666-677.
11. KELLER, R.M. Formal verification of parallel programs. Commun. ACM 19, 7 {July 1976},

371-384.
12. LAMPORT, L. Proving correctness of multiprocess programs. IEEE Trans. Softw. Eng. SE-3, 2

(Mar. 1977), 125-143.
13. LAMPORT, L. The 'Hoare Logic' of concurrent programs. Acta Inf. 14 {1980), 21-37.
14. LAMPORT, L. Specifying concurrent program modules. ACM Trans. Program. Lang. Syst. 5, 2

(Apr. 1983}, 190-222.
15. LEVIN, G.M., AND GRIES, D. A proof technique for communicating sequential processes. Acta

Inf. 15 (1981), 281-302.
16. MANNA, Z., AND PNUELI, A. Verification of concurrent programs: temporal proof principles. In

Proceedings of the Workshop on Logics of Programs, Lecture Notes in Computer Science, vol.
131. Springer-Verlag, New York, 1981, pp. 200-252.

17. OWlCKI, S.S. Axiomatic proof techniques for parallel programs. Ph.D. dissertation, Dep. of
Computer Science, Cornell Univ., Ithaca, N.Y., Aug. 1975.

18. OWICKI, S., AND GRIES, D. An axiomatic proof technique for parallel programs. Acta Inf. 6
{1976}, 319-340.

19. SCHLICHTING, R.D., AND SCHNEIDER, F.B. Using message passing for distributed programming:
Proof rules and disciplines. Tech. Rep., Dep. of Computer Science, Cornell Univ., Ithaca, N.Y.

Received May 1982; revised December 1982, July 1983; accepted August 1983

