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Abstract

Hyperproperties generalize ordinary properties by expressing relations
among multiple executions of a system. Self-composition has been used
to reduce verifying that a system satisfies certain classes of hyperprop-
erties to verifying that a derived system satisfies an ordinary property.
By describing systems and their properties in the temporal logic TLA,
we use self-composition to handle a larger class of hyperproperties that
includes those we have seen that express security conditions. TLA
tools are used to verify that high-level designs of industrial systems
satisfy properties. Now, they can also verify that those systems satisfy
these hyperproperties. No prior knowledge of hyperproperties or TLA
is assumed.
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1 Introduction

A property is a predicate on executions; it is true or false of an individual
execution. Classical verification shows that a system satisfies a property.
A hyperproperty is a predicate on sets of executions; it is true or false of a
set of executions. New logics and tools have been developed to verify that
systems satisfy certain classes of hyperproperties [3, 5, 6, 9, 12, 15, 18, 30].
We instead use TLA [19], a temporal logic supported by languages (TLA+

and PlusCal) along with tools that have been developed and used in industry
for two decades.

We show how to reduce verifying that systems satisfy a large class of
hyperproperties—which we call finitary hyperproperties—to verifying TLA
formulas. We start with a system described by a TLA formula P and a
hyperproperty expressed by a formula H involving k behaviors. To assert
that the system satisfies H, we give a TLA formula Q ⇒ R containing k
copies of P . Formula Q describes a new system comprising multiple copies
of the system running in parallel, so Q ⇒ R asserts that this new system
satisfies property R. Such an approach is called self-composition [6] and has
been used before when R does not contain P . Because TLA is expressive
enough to describe systems, we can allow R to contain copies of P and
thereby handle a larger class of hyperproperties.

Such a reduction would be of little interest without a practical method
to represent real systems and to verify the resulting formulas Q ⇒ R. TLA+

[20] is a language based on TLA that is used in industry [28] to specify and
verify high-level designs of complex concurrent and distributed software and
hardware systems. Its tools include a model checker and a proof checker.
Those tools were developed for verifying a TLA formula asserting that a
system satisfies a property, including the case of a system implementing a
higher-level system. We show that the tools can also verify a subclass of
finitary hyperproperties called ∀∃ -hyperproperties, which includes specifi-
cations of system security and other examples that motivate hyperproperty
verification in the literature. Accurately expressing these specifications uses
a property of TLA called stuttering insensitivity in a new way.

In principle, TLA+ can be used to verify descriptions of systems at
any level of abstraction. In practice, TLA+ and its tools are most useful
for verifying high-level designs of systems—designs at the algorithm level
rather than the code level. Such verification is especially important for
concurrent systems, where it is easy to make algorithmic errors and difficult
to find and correct those errors in the code. Having verified a high-level
design, we would like to know that the property verified is preserved under
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refinement to an implementation. A simple condition ensures this to be the
case for ordinary properties. It had already been observed in the context of
security that hyperproperties need not be preserved under refinement [27].
We give a new mathematical analysis of when a refinement does preserve a
∀∃ -hyperproperty.

We assume no knowledge of hyperproperties or TLA. After some pre-
liminaries, we describe a representation of hyperproperties in temporal logic.
We then introduce RTLA, a temporal logic similar to TLA but lacking
stuttering insensitivity. How hyperproperties are verified is illustrated with
RTLA by verifying that a tiny system satisfies generalized noninterference
(GNI)—a hyperproperty chosen to illustrate most of the issues that arise with
our approach. Another small example shows that stuttering insensitivity is
required to state GNI properly. We then introduce TLA and sketch a TLA
verification that both small examples satisfy GNI; a TLA+ formalization is
available on the Web [22]. TLA+ has already been used [4] to prove that a
model of a commercial system satisfies a hyperproperty called observational
determinism, but that proof required recording the execution history using
an auxiliary variable. Section 7 describes that work and shows how our
method allows a direct proof that the system satisfies the hyperproperty,
with no auxiliary variables. In Section 8, we formulate other well-known
security hyperproperties in TLA.

2 Preliminaries

An execution is often modeled as a sequence of states. Even in methods that
describe executions in terms of events, a system is usually described by a state
machine in which events are generated by state transitions—examples are
Mealy machines, Büchi automata, and I/O automata [23]. Such a description
corresponds to a state-based one, where events correspond to state changes.

2.1 Behaviors and State Machines

We call a sequence of states a behavior, and we call a pair of consecutive
states in a behavior a step. Behaviors representing executions have usually
been described by state machines, written in diverse ways such as Turing
machines, Petri nets, and C++ programs. A state machine can be described
by an initial predicate I on states and a next-state predicate N on pairs of
states. (The set of states need not be finite.) The behaviors generated by
the state machine are ones in which predicate I is true on the first state of
the sequence and predicate N is true on every step.
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A concurrent system can be described by a state machine in which
each step represents operations performed by one or more processes at the
same time. (Usually, when describing asynchronous systems, each step
represents an operation of a single process.) The state machine representing
an asynchronous system is generally nondeterministic, allowing a state to
have multiple next states.

We consider state machines whose states are assignments of values to
variables. For example, we can describe an hour-minute clock by a state
containing variables hr and min that represent the hour and minute, respec-
tively. We write this state machine’s initial predicate as a formula containing
the variables hr and min. For a 12-hour clock that reads 12:00 when first
plugged in, the initial predicate is:

Ihm
∆
= (min = 0) ∧ (hr = 12)

The clock’s next-state predicate N is a formula containing unprimed and
primed variables, where v represents the value of variable v in the first state
and v ′ represents its value in the second state. For the hour-minute clock,
the next-state predicate is:

Nhm
∆
= min ′ = (min + 1) mod 60

∧ hr ′ = if min = 59 then if hr = 12 then 1
else hr + 1

else hr

2.2 Properties

Since we represent executions as behaviors, a property is a predicate on
behaviors. We write b |= P to mean that property P is true of behavior b.
For a set S of behaviors, we let S |= P mean that b |= P is true for all b ∈ S .
Verification traditionally establishes that all behaviors of a state machine
that corresponds to a system satisfy some property P , which means verifying
S |= P where S is the set of all behaviors generated by the machine. For
example, termination can be expressed as S |= Term, where b |= Term is
true iff (if and only if) b reaches a terminating state.

There is a natural correspondence between subsets of a set and predicates
on the elements of that set. A predicate P on a set U corresponds to the
subset of all elements of U for which P is true. Thus, a property corresponds
to a set of behaviors.1 We consider a property both to be a predicate on

1We do not require states to form a set, so behaviors form a class—a collection that
may be “too big” to be a set. (For example, the class of all sets is not a set.) We informally
use the term set because it is more familiar than class.
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behaviors and the set of behaviors satisfying that predicate; each view is
at times the more useful. Propositional logic operators on the predicates
correspond to ordinary set operations—for example, ∨ corresponds to ∪
(set union), ⇒ (implication) corresponds to ⊆ (subset), ≡ (equivalence)
corresponds to =, and ¬ corresponds to set complement.

If we identify the property P with the set of behaviors satisfying P , then
S |= P means that S ⊆ P is valid. If we regard the set S of behaviors to be
a property, then S |= P means that b |= (S ⇒ P) is true for all behaviors b.
For a property Q , let |= Q mean that Q is true for all behaviors, so S |= P
is equivalent to |= (S ⇒ P). Verification traditionally has been formulated
as showing S |= P rather than |= (S ⇒ P) because state machines and
properties were written and thought of in different ways.

2.3 Making State Machines Do Something

In our description of a state machine, the next-state predicate specifies only
what steps are allowed. It says nothing about what steps must occur. This
omission was deliberate. For reasons irrelevant to this paper, we want the
initial predicate and next-state predicate to allow behaviors that end at any
point—even though the next-state predicate allows further steps. To require
that certain steps must occur, we add to the description a supplementary
property that must also be satisfied by behaviors of the state machine. For
example, the supplementary property of the state machine describing a con-
current system might require that steps representing operations performed
by a non-terminated process keep occurring in the behavior. The supplemen-
tary property is generally a liveness property [2], and most often a fairness
property [16]. However, here we make no assumption about supplementary
properties.

3 Hyperproperties

3.1 Hyperproperties as Predicates on Sets of Behaviors

Properties cannot directly describe certain security conditions [27], so they
were generalized to hyperproperties [10]. A hyperproperty is a predicate on
sets of behaviors rather than on a single behavior, making it a predicate on
properties. An example is the hyperproperty H where, for a property P , we
define H(P) to be true iff:

Any two terminating behaviors satisfying P that have different
initial values of x have different terminal values of y .
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Viewing a property P to be a set of behaviors, we define H to be a finitary hy-
perproperty iff H(P) can be written as a formula using propositional logic op-
erators and quantification of the form ∀ b ∈ P with predicates F (b1, . . . , bn)
that depend only on the behaviors bi and not on P .2 (Since negation is
allowed, we can also write quantification of the form ∃ b ∈ P .)

3.2 Hyperproperties as Predicates on Behaviors

By a standard result in predicate logic, it is always possible to “move all the
quantifiers to the outside” (renaming bound variables, if necessary) in the
definition of a finitary hyperproperty H and rewrite H(P) as

∀∃ b1 ∈ P : . . . ∀∃ bk ∈ P : J (b1, . . . , bk )(1)

where each ∀∃ is either ∀ or ∃ , and J does not depend on P . Verifying
that a property P satisfies the hyperproperty H means verifying formula (1).
Verifying that P satisfies a property is the special case:

∀ b ∈ P : J (b)(2)

Methods developed over the past half century for verifying (2) (when P is
described by a state machine) are not directly applicable to (1).

Our goal is to find a way to apply methods for verifying (2)—that is,
verifying ordinary properties—to finitary hyperproperties. Self-composition
has been used for the special case in which every quantifier ∀∃ of (1) is
the universal quantifier ∀ [6, 15, 30]. In that case, we let Pk be the state
machine defined by running k copies of the state machine P in parallel, where
a possible state of Pk is a k -tuple of possible states of P . We can then write
(1) as

∀ b ∈ Pk : J (π1(b), . . . , πk (b))(3)

where πi is the element-by-element projection that maps from a sequence of
k -tuples to the sequence of their i th components. Formula (3) has the same
form as (2).

We will generalize this approach to the class we call ∀∃ -hyperproperties—
those with definitions of the form:

∀ b1 ∈ P : . . . ∀ bj ∈ P :
K (b1, . . . , bj ) ⇒ ∃ bj+1 ∈ P : . . . ∃ bk ∈ P : L(b1, . . . , bk )

(4)

2The only non-finitary hyperpropertiesH we know for which it is interesting to verify that
H(P) holds involve the probability of system P doing something. Those hyperproperties
require a probability measure on P .
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The methods we use might generalize further, but (4) is the most general form
for which we know that a practical approach for verifying ordinary properties
can be directly applied. Moreover, all published finitary hyperproperties that
we have found are of this form.

Formula (4) views P as a set of behaviors. We now rewrite it with P
viewed as a predicate on behaviors. We replace “ ∀ b ∈ P :” by “∀ b : P(b)⇒ ”
and replace “∃ b ∈ P :” by “∃ b : P(b)∧ ”. Doing that and applying a bit of
predicate logic, (4) becomes:

∀ b1, . . . , bj : P(b1) ∧ . . . ∧ P(bj ) ∧K (b1, . . . , bj )
⇒ ∃ bj+1, . . . , bk : P(bj+1) ∧ . . . ∧ P(bk ) ∧ L(b1, . . . , bk )

(5)

In this formula, P , K , and L are predicates on behaviors. We will write
them in a state-based temporal logic. The value of a variable in such a logic
describes part of the system state at some instant of time. Therefore, we
must assume that the dependence of P , K , and L on any behavior bi is
formulated using only a finite number of variables that describe the system
state. Such an assumption seems necessary for using a state-based logic to
describe properties or hyperproperties.

3.3 Hyperproperties as Temporal Logic Formulas

We use a linear-time temporal logic, so the meaning of a formula is a predicate
on behaviors. Temporal formulas are obtained from state predicates by
applying temporal operators and the ordinary operators of predicate logic.
For example, state predicate x > y is true on a state iff the value of x in that
state is greater than the value of y in that state. Interpreted as a temporal
formula, it is true of a behavior iff it is true in the first state of that behavior.
The temporal operator 2 (read always or henceforth) is defined by letting
b |= 2F be true iff c |= F is true for c equal to b and all suffixes of b. Thus,
b |= 2(x > y) is true iff x > y is true for all states of b.

In temporal logic, variables can have different values in different states
of a behavior,3 just like variables in a programming language. We assume
that our temporal logic has the usual temporal existential quantifier ∃∃∃∃∃∃ over
variables [24], where b |= ∃∃∃∃∃∃ x : F asserts that there exists a behavior b̂ that
is the same as b, except that the values of x in the states of b̂ and b may
differ, such that b̂ |= F is true. Unlike formula ∃ x : F of ordinary predicate
logic, which is true iff there exists a single value for x that makes F true, the

3What we call variables here are usually called flexible variables. Temporal logic also
has rigid variables whose values are the same in all states of a behavior, but they will not
concern us.
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temporal operator ∃∃∃∃∃∃ x : F is true for a behavior iff there exists a sequence
of values for x , one for each state of the behavior, that make F true. The
quantifier ∃∃∃∃∃∃ obeys all the rules that the quantifier ∃ of predicate logic does.

Formulas ∃∃∃∃∃∃ x : F (x ) and ∃∃∃∃∃∃ y : F (y) say nothing about the values actually
assumed by the variables x and y in a behavior. The symbols x and y in these
formulas are called bound variables. It can be useful to think of ∃∃∃∃∃∃ x : F (x )
as the formula obtained by “hiding” variable x of F (x ), and we sometimes
use the term hidden variables for bound variables. Unbound variables are
called free variables.

We now rewrite (5) as a temporal logic formula. Formula (5) refers to k
behaviors bi . A temporal logic formula can refer only to a single behavior,
which we call b. So, we encode the k behaviors bi in b. As assumed above,
(5) depends only on the values that the states of the behaviors bi assign to
some variables. Call those variables v1, . . . , vn . We now also assume that
formula P can then be written as a temporal logic formula P̃ containing only
those variables. To write (5) as a temporal formula about a single behavior
b, we replace P(bi ) in (5) with the formula obtained from P̃ by substituting
new variables for v1, . . . , vn — a different set of variables for each i .

We need a notation for the formula obtained from P̃ by substituting
new variables x 1, . . . , xn for v1, . . . , vn . Existing notations for writing
this formula are cumbersome. So, we introduce some new notation that is
informal, but whose meaning should be clear. We write the formula produced
by the substitution as P̃(x 1, . . . , xn). Moreover, we let x be an abbreviation
for x 1, . . . , xn , so we can write the formula as P̃(x); and we do the same
for other boldface identifiers. We also let xi denote the list x i ,1, . . . , x i ,n of
variables.

To write (5) as a temporal formula, which is a predicate on behaviors b,
we replace each P(bi) by P̃(xi). The values that b assigns to the variables
xi are thus interpreted as the values that the behavior bi assigns to the
variables v1, . . . , vn . We also assume that K (b1, . . . , bj ) and L(b1, . . . , bk )

can be written as temporal logic formulas K̃ (x1, . . . ,xj) and L̃(x1, . . . ,xk).
We can then write (5) as

|= P̃(x1) ∧ . . . ∧ P̃(xj) ∧ K̃ (x1, . . . ,xj)

⇒ ∃∃∃∃∃∃xj+1, . . . ,xk : P̃(xj+1) ∧ . . . ∧ P̃(xk) ∧ L̃(x1, . . . ,xk)

(6)

because |= F asserts that F is true for all behaviors. For convenience, we
drop the “ ˜ ” and let P identify both the temporal formula P̃ and the
predicate on behaviors that it represents, and we do the same for K and L,
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so (6) becomes:

|= P(x1) ∧ . . . ∧ P(xj) ∧K (x1, . . . ,xj)

⇒ ∃∃∃∃∃∃xj+1, . . . ,xk : P(xj+1) ∧ . . . ∧ P(xk) ∧ L(x1, . . . ,xk)

(7)

This formula asserts that the system described by the temporal logic formula
P satisfies the hyperproperty defined by (5). Thus, if the predicates P , K ,
and L on behaviors can be written as temporal logic formulas, then the
assertion (5) that a system satisfies a hyperproperty can also be written as a
temporal logic formula.

3.4 RTLA

The introduction of temporal logic to verification provided a formalism for
stating and verifying a rich class of properties. The original logic given
by Amir Pnueli [29] had only the single temporal operator 2, described
above. The logic could not express many properties of interest, so additional
temporal operators were subsequently proposed, including ∃∃∃∃∃∃ (though it
was not widely used). However, attempts to express (the sets of behaviors
generated by) state machines as temporal logic properties still did not prove
to be practical. So temporal logic verification consisted of proving formulas
S |= P , where the property P was expressed in temporal logic and state
machine S was expressed in some other way—usually as an automaton or in
something like a programming language.

One way TLA differs from other temporal logics is by building its formulas
not from state predicates, but from predicates on steps (pairs of states). We
call these predicates actions. In TLA, an action is written as a formula
containing primed and unprimed variables, the way we wrote the next-state
predicate Nhm in Section 2.1. A state predicate in TLA is just an action
containing no primed variables, so it depends only on the first state of a
state pair. The only temporal operators in TLA are 2, ∃∃∃∃∃∃ , and operators
defined in terms of them.

Instead of explaining TLA directly, we begin with the slightly simpler
logic RTLA. It contains the operators 2 and ∃∃∃∃∃∃ defined above. An action,
interpreted as an RTLA formula, is true of a behavior iff it is true of the
first step of the behavior. So, the definition of 2 implies that b is a possible
behavior of the state machine described by the initial predicate I and the
next-state predicate N iff b |= I ∧2N is true, since b |= I asserts that the
first state of b satisfies I, and b |= 2N asserts that the first step of every
suffix of b satisfies N . (Every step of b is the first step of a suffix of b).

8



A supplementary property asserting that the state machine must generate
some steps is expressed by an RTLA formula, but we will not explain how.
The only supplementary property we need in this paper is one asserting that
the behavior cannot end in a state in which an N step is possible. It is
written WF(N ).

3.5 Hiding

It would be impossible to express even rather simple temporal properties in
RTLA without the operator ∃∃∃∃∃∃ . For example, consider the property that is
true of a behavior iff the value of x cannot equal 1 unless it has previously
equaled 42. Since this property depends only on the value of x , it can contain
only the variable x ; but it can’t be expressed by a formula containing only
x just by using the temporal operator 2. However, it’s easy to write that
property as follows using a (Boolean-valued) hidden variable y :

∃∃∃∃∃∃ y : (y = (x = 42))

∧ 2((¬y ⇒ (x ′ 6= 1)) ∧ (y ′ = (y ∨ (x = 42))))

This property has the form I ∧2N of a state machine, but with a hidden
variable y . The property is easy to express without a hidden variable using
the temporal operators of most temporal logics. However, more complicated
temporal properties are easier to understand when written as a state machine
with hidden variables than when written in terms of those temporal operators.

3.6 Verification

Traditionally, verification has meant showing S |= P , for a state machine
S and a property P . This can be written in temporal logic as |= (S ⇒ P) .
Properties can be written with ∃∃∃∃∃∃ , so |= (S ⇒ P) can have the form

|= (∃∃∃∃∃∃y : S (x,y)) ⇒ (∃∃∃∃∃∃ z : P(x, z))(8)

where x are the free variables of S and P , and y and z are their respective
hidden variables. By simple predicate logic, (8) is equivalent to

|= S (x,y) ⇒ (∃∃∃∃∃∃ z : P(x, z))(9)

which asserts that, for any behavior satisfying S (x,y), we can find assign-
ments of values to the variables z in each state of the behavior that makes
P(x, z) true. The value assigned to z in any state of the behavior might
depend on the values assigned to x and y in all the states of the behavior.
Verification of (9) becomes much simpler if the assignment of values to z in
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any state depends only on the values of x and y in that state. Let a state
function be any expression containing constants and unprimed variables (so
a state predicate is a Boolean-valued state function). Letting n be such that
z is z 1, . . . , zn , we verify (9) by finding state functions f1(x,y), . . . , fn(x,y)
that make this formula true:

|= S (x,y) ⇒ P(x, f(x,y))(10)

where f is the list f1, . . . , fn of state functions and P(x, f(x,y)) is the formula
obtained from P(x, z) by substituting fi(x,y) for z i , for each i . The formulas
fi(x,y) are called a refinement mapping [1].

In (10), we are substituting state functions f(x,y) for the variables z.
Substituting a state function f for a variable v in an RTLA formula includes
substituting f ′ for v ′, where the value of f ′ is the value of f in the next state,
so the formula f ′ is obtained by priming all variables in f .

The validity of (9) does not imply that there exists a refinement mapping
f satisfying (10). However, we can (in principle) always find such a refinement
mapping if we replace S by an equivalent formula obtained by adding auxiliary
variables to it [1]. Adding auxiliary variables a to S (x,y) means finding a
formula Sa(x,y,a) that is equivalent to S (x,y) when the variables a are
hidden—that is, where ∃∃∃∃∃∃a : Sa(x,y,a) is equivalent to S (x,y) [21]. We can
then verify (9) by verifying:

|= Sa(x,y,a) ⇒ P(x, f(x,y,a))

4 GNI

Generalized noninterference (GNI) [26] is a hyperproperty that was proposed
as a security condition for systems. We illustrate our method by showing
that two example state machines satisfy GNI. Notable features of these
verifications are: the refinement mappings for an existentially quantified
copy of P in (7) and the use of stuttering insensitivity to express GNI in a
state-based formalism. Whether GNI is useful is irrelevant.

GNI and other security conditions are usually stated in a model where
an execution is described as a sequence of events rather than as a sequence
of states. Events are classified as public, which are visible to all observers,
or secret, which are visible only to privileged observers. GNI is a condition
meant to ensure that a system’s public events provide no information about
its secret events. It asserts that for any two possible executions, there is a
third possible execution having the public events of the first and the secret
events of the second.
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We first express GNI in RTLA and then describe a tiny example state
machine that is easily be seen to satisfy GNI.

4.1 GNI in RTLA

In a state-based formulation of GNI, part of the state is public and part
is secret. We take GNI to mean that observing public state reveals no
information about secret state. Our state-based assertion that a system
satisfies GNI can be written in the form (5) as follows:

∀ b1, b2 : P(b1) ∧ P(b2) ⇒ ∃ b3 : P(b3) ∧ L(b1, b2, b3)(11)

where P(bi) asserts that bi is a possible behavior of the system, and
L(b1, b2, b3) asserts that the public state of b3 is always the same as that of b1
and the secret state of b3 is always the same as that of b2. We translate (11)
to temporal logic the way we translated (5) to (7). To express L(b1, b2, b3) as
a temporal logic formula, we assume that we are given state functions public
and secret that characterize the public and secret state of the system. These
state functions are parameters of the definition, just like P . The translation
of (11) to temporal logic is then:

|= P(x1) ∧ P(x2) ⇒ ∃∃∃∃∃∃x3 : P(x3) ∧ L(x1,x2,x3)

where L(x1,x2,x3)
∆
= 2 ( public(x3) = public(x1)

∧ secret(x3) = secret(x2) )

(12)

Remember that (12) asserts that a temporal logic formula, which is a predicate
on behaviors, is true for every behavior b. In that formula, the values that b
assigns to the variables xi correspond to behavior bi of (11).

4.2 System Tiny

System Tiny alternately produces a public output value and reads a secret
input value, where values are elements of a set Val . The value of the variable
in is the last input value read, and the value of the variable out is the last
value output. The initial values of in and out are arbitrary. The value of
the hidden variable nin determines whether the next step is a Pub step that
produces a public output or a Sec step that reads a secret input. These steps
can produce or read any value in Val .

System Tiny cannot satisfy GNI if a behavior could stop after taking an
arbitrary numbers of steps. This is because Tiny produces one input value
for every output value, so a behavior can have the public outputs of behavior
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I ∆
= in ∈ Val
∧ out ∈ Val
∧ nin = 0

N ∆
= Pub ∨ Sec

where Pub
∆
= nin = 0 ∧ nin ′ = 1
∧ out ′ ∈ Val
∧ in ′ = in

Sec
∆
= nin = 1 ∧ nin ′ = 0
∧ in ′ ∈ Val
∧ out ′ = out

L ∆
= WF(N )

Q
∆
= I ∧ 2N ∧ L

P
∆
= ∃∃∃∃∃∃nin : Q

public
∆
= out

secret
∆
= in

Figure 1: The RTLA Description of System Tiny.

b1 and the secret inputs of b2 only if the lengths of b1 and b2 differ by at
most 1. We make Tiny satisfy GNI by requiring that its executions never
stop, which we do by requiring it to satisfy the liveness condition WF(N ).

RTLA formula P that describes the Tiny state machine is defined in
Figure 1. Also defined there are the state functions public and secret for
which we expect Tiny to satisfy GNI. Since nin is a hidden variable, it is
not part of the actual state of Tiny , so it makes no sense to consider it either
public or secret.

4.3 Verifying That Tiny Satisfies GNI

For j in {1, 2, 3}, let I j , . . . , secret j be the formulas obtained from the
formulas I, . . . , secret defined in Figure 1 by substituting new variables in j ,
out j , nin j for the variables in, out , nin. With this notation, (12) becomes

|= P1 ∧ P2 ⇒ ∃∃∃∃∃∃ in3, out3 :
P3 ∧ 2 ((public3 = public1) ∧ (secret3 = secret2))

(13)
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The definition of P in Figure 1 and predicate logic reasoning shows that (13)
is equivalent to

|= Q1 ∧Q2 ⇒ ∃∃∃∃∃∃ in3, out3,nin3 :
Q3 ∧ 2 ((public3 = public1) ∧ (secret3 = secret2))

(14)

Expanding the definitions of Q and L and using the temporal logic tautology
2(F ∧G) ≡ 2F ∧2G , we see that Q1 ∧Q2 is equivalent to

(I1 ∧ I2) ∧ 2(N 1 ∧N 2) ∧ (WF(N 1) ∧ WF(N 2))(15)

Formula (14) has the form of (9), and the equivalence of Q1 ∧Q2 and (15)
shows that the left-hand side of the implication is equivalent to the standard
RTLA description of a state machine. Thus (13) has the form of (9), the kind
of formula that arises in verifying that a state machine satisfies a temporal
property.

As we observed above, we verify (9) by finding an appropriate refinement
mapping f and verifying (10). The required refinement mapping should
assign to each of the variables of P3 the following functions of the variables
of P1 and P2:

in3 ← in2 out3 ← out1 nin3 ← nin2(16)

Tiny is a tiny finite-state system, and it should be easy to verify (14) with a
model checker. However, there are no tools for RTLA. We will see that it is
easy to capture the meaning of (14) in a TLA formula, and that formula is
easy to verify with TLC, the TLA model checker.

5 From RTLA to TLA

5.1 Stuttering Insensitivity

We have eliminated the distinction between state machines and properties
by representing both with RTLA formulas. The assertion that a state
machine S satisfies a property P is |= (S ⇒ P). It would seem natural
for implementation to be the same as satisfying a property, so for a state
machine S 1 to implement a state machine S 2 would mean this formula is
valid:

|= S 1 ⇒ S 2(17)

A description of an hour-minute clock should not imply that the clock
has no display showing seconds—or no radio, or no alarm. So, (17) should
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be valid even if S 1 describes an hour-minute-second clock and S 2 describes
an hour-minute clock. An hour-minute clock (that is allowed to stop) is
described by this RTLA formula

Shm
∆
= Ihm ∧ 2Nhm(18)

where Ihm and Nhm are defined in Section 2.1. It is straightforward to
modify Shm by adding a variable scd, which represents seconds, to obtain an
RTLA formula Shms that describes an hour-minute-second clock. For these
clock descriptions, (17) becomes

|= Shms ⇒ Shm(19)

However, (19) is invalid. A behavior satisfying Shms must take 59 steps that
change only scd between steps that change min, but those scd-changing
steps are not allowed by Shm.

Formula (19) is invalid because Shm describes an hour-minute clock only
in a universe consisting just of the clock—or more precisely, a universe
described by just the variables hr and min. Formula Shm does not describe
an hour-minute clock in a universe also containing the variable scd. For
that universe, the description of an hour-minute clock must also allow steps
that leave hr and min unchanged. We should write a description of the
clock that is satisfied by every system that implements it. Moreover, that
description should be appropriate for a universe containing other systems
too—a universe for which a state consists of an assignment of values to scd
and all other possible variables.

Having a potentially infinite number of variables might seem strange, but
it’s what math does. An equation like x + y = 3 is not about a universe
containing only the variables x and y. There is no problem combining this
equation with one containing the variable z. Every math formula is about a
universe in which you can always talk about another variable. So a temporal
logic formula containing only the variables hr and min should not rule out
other variables; it should just make no explicit statement about their values.

The problem with RTLA formula Shm is that it makes an implicit state-
ment about every possible variable—namely, that the values of those variables
change only when the value of min changes. In addition to steps satisfying
next-state action Nhm, formula Shm should permit steps that allow other
variables, including scd , to change but leave hr and min unchanged. Those
additional steps satisfy (hr ′ = hr) ∧ (min ′ = min). Since a tuple is left
unchanged iff its components are left unchanged, we can write this formula
as 〈hr ,min 〉′ = 〈hr ,min 〉 , where angle brackets 〈 〉 enclose tuples. So, to
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obtain an RTLA formula that describes an hour-minute clock and does not
constrain the rest of the universe, we redefine Shm:

Shm
∆
= Ihm ∧ 2(Nhm ∨ (〈hr ,min 〉′ = 〈hr ,min 〉))(20)

Formula Shm defined by (20) is stuttering insensitive (SI), meaning that
whether it is satisfied by a behavior is not affected by adding and/or removing
from the behavior steps that leave its free variables (hr and min) unchanged.

We now define SI more precisely. Two sequences of values are stuttering-
equivalent iff removing all repeated values from both produces identical
sequences. For example, these two sequences of numbers are stuttering equiv-
alent, since removing all repeated values from each produces the increasing
sequence of all positive integers:

1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, . . .

1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, . . .

For any state function f and behavior b, define b|f to be the sequence of values
obtained by evaluating f on the states of b. Define behaviors b1 and b2 to
be f -stuttering equivalent iff b1|f and b2|f are stuttering equivalent. For Shm ,
SI means that for any two behaviors b1 and b2 that are 〈hr ,min 〉-stuttering
equivalent, b1 |= Shm is true iff b2 |= Shm is. In general, a temporal formula
F (x) with free variables x is SI iff, for any two behaviors b1 and b2 that are
〈x〉-stuttering equivalent, b1 |= F (x) is equivalent to b2 |= F (x) .

There are many ways to view SI. For our purposes, the best is to consider
a behavior not as representing an execution of a system, but rather as being
a movie film of an execution. Each frame of the film depicts a state, and the
entire film is taken by a camera that can record at a varying speed, taking
more or fewer frames. The only requirement for the movie is that the state
produced by each step during an execution of the system appears in at least
one frame.

A formula is a predicate on behaviors, and we want it to be an assertion
about executions—not about films of executions. If a system is described by
the variables x, then two behaviors b1 and b2 are films of the same execution
iff they are 〈x〉-stuttering equivalent. Therefore, a formula F (x), which is a
predicate on behaviors, is an assertion about executions and not just about
particular films of executions iff b1 |= F (x) is equivalent to b2 |= F (x) for
any 〈x〉-stuttering equivalent behaviors b1 and b2—precisely the definition
of what it means for F (x) to be SI.

There is another way to express SI. We introduce a new temporal operator
∼ on state functions such that b |= (f ∼ g) is true for a behavior b iff b|f
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is stuttering equivalent to b|g . For lists of variables x and y, we abbreviate
〈x〉 ∼ 〈y〉 as x ∼ y. A temporal formula F (x) is SI iff

|= (x ∼ y)⇒ (F (x) = F (y))(21)

for lists x and y of variables. The operator ∼ can be defined in TLA; it is
used in expressing hyperproperties.

5.2 TLA

TLA is obtained by modifying RTLA so that every syntactically correct TLA
formula is SI. This requires two changes to RTLA. Define [A]f to equal
A ∨ (f ′ = f ) for an action A and a state function f . The first change to
RTLA is that, in TLA, primed variables may appear in a temporal formula
only in an action A in a subformula 2[A]f , for some state function f . Thus
(20) is written in TLA as

Shm
∆
= Ihm ∧ 2[Nhm]〈hr ,min 〉(22)

The second change to RTLA to ensure SI is to the definition of ∃∃∃∃∃∃ . In TLA,
b |= ∃∃∃∃∃∃ y : F (x, y) is defined to be true iff there exists a behavior b̂ that is
〈x〉-stuttering equivalent to b such that b̂ |= F is true. (Note that b̂ can
be obtained from a behavior b that is 〈x, y 〉-stuttering equivalent to b by
changing the values that the states of b assign to y .) If Shms is redefined
to be the TLA formula describing an hour-minute-second clock with the
definition analogous to (22), then ∃∃∃∃∃∃ scd : Shms is equivalent to Shm . With
the RTLA definition of ∃∃∃∃∃∃ , formula ∃∃∃∃∃∃ scd : Shms would not be SI because it
would be true only of behaviors that contain at least 59 steps (corresponding
to steps changing scd required by Shms) that leave hr and min unchanged
between every step that changes min.

Formula Shm defined in (22) allows behaviors ending with an infinite
number of steps that leave hr and min unchanged. Such a behavior represents
an execution in which the clock has stopped. (As explained in Section 2.3,
a supplementary property is needed to ensure that the clock doesn’t stop.)
Since termination can always be represented as a system’s variables remaining
forever unchanged, we do not need finite behaviors. So, for simplicity, we
assume all behaviors are infinite.

6 GNI Revisited

A TLA formula is also an RTLA formula; so (12), which defines what it
means for P to satisfy GNI, is a TLA assertion if P and L are TLA formulas.
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Although (12) was written for systems P described in RTLA, we might
expect it also to be suitable for systems described in TLA. It isn’t. In
particular, we would expect Tiny to satisfy GNI, but we will show that its
TLA description (given below) does not satisfy (12). We then describe a
system Little that should satisfy GNI, but even its RTLA description does
not satisfy (12). That example leads us to replace (12) with a TLA formula
that corresponds to the usual event-based definition of GNI.

6.1 Tiny in TLA

To describe Tiny in TLA, we replace the definition of Q in Figure 1 by

Q
∆
= I ∧ 2[N ]〈in,out ,nin 〉 ∧ L

Also, the RTLA formula WF(N ) is not SI and must be replaced in the defini-
tion of L by WF〈in,out ,nin 〉(N ), whose definition can be found elsewhere [20].

We now show that the resulting TLA formula P does not satisfy (12),
where each xi is the list in i , out i of variables. Consider a behavior b in
which the variables x1 and x2 assume sequences s1, s2, . . . and t1, t2, . . . of
values that describe two behaviors b1 and b2 satisfying P . Suppose that
these sequences begin as follows where, for example, Pub(x2) indicates that
a step satisfies Pub(x2,nin) for some values of nin and nin ′.

Pub(x1) Sec(x1) Pub(x1)
x1 : s1 s2 s3 s4 . . .

Pub(x2) Sec(x2)
x2 : t1 t2 t2 t3 . . .

The lists x1 and x2 of variables represent the values of the variables in and
out in a behavior b that encodes behaviors b1 and b2. As allowed by the
TLA formula P , the values t2 of variables x2 do not change in the second
step of behavior b. Let’s also suppose that each of the Pub steps changes
the value of out , and each of the Sec steps changes the value of in.

For behavior b to satisfy (12), there must exist values for x3 representing
a behavior b3 that satisfies P , where the public part of the state (the value for
out) of x3 comes from x1 and the secret part (the value for in) comes from
x2. But in the third step of the behavior, the variables of x3 that represent
both in and out change, which is not allowed for a step of a behavior of
Tiny . Therefore, no such x3 exists, and behavior b does not satisfy (12). So
the RTLA definition (12) of P satisfying GNI is not satisfied for the TLA
formula P that represents Tiny . Our TLA definition of GNI will be satisfied
by the TLA formula P .
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6.2 System Little

Little is like Tiny , except instead of performing one Sec step between every
two Pub steps, Little can perform any number (including 0). The definition
of the Little state machine is obtained from the Tiny specification of Figure 1
by letting the Pub action set nin to an arbitrary natural number, and letting
the Sec action be enabled when nin 6= 0 and decrement nin by 1.

If we made just these changes, then there would be a problem in the
resulting description of Little. A Pub step that output the same value as
in the previous step (a step with out ′ = out) and set nin to 0 would be
leaving all the variables unchanged. It would represent the system doing
nothing—including producing no output—thus describing a system that
is not allowed to produce the same output value twice in a row without
performing a secret input. (This is not a problem for Tiny , in which the
value of nin changes whenever an output is produced.) To allow successive
Pub steps to output the same value, we include in out a bit that changes
with each Pub step, so the value of out is a pair 〈v , i 〉 with v in the set Val
and i in {0, 1}. Such a change to the description of Little is not needed for
inputs, since every Sec step changes nin; but we make the same change to
the value of in for consistency.

A TLA formula P that describes system Little is defined in Figure 2,
where ⊕ is the exclusive-or operator, p[2] equals the second element of an
ordered pair p, and Val × {i} is the set of ordered pairs 〈v , i 〉 with v in Val .

6.3 GNI in TLA

It is obvious how to convert Figure 2 to an RTLA description of Little, but
the result would not satisfy the RTLA formula (12) for essentially the same
reason that the TLA description of Tiny doesn’t. Choose the values of x1

and x2 representing behaviors b1 and b2 of Little shown here:

Pub(x1) Pub(x1) Sec(x1)
x1 : s1 s2 s3 s4 . . .

Pub(x2) Sec(x2) Pub(x2)
x2 : t1 t2 t3 t4 . . .

These behaviors are allowed by both the TLA and RTLA versions of Little.
In the second step, the value of out represented by x1 and the value of
in represented by x2 both change, so they both change for their values
represented by x3. But, like Tiny , Little allows no behavior in which a step
changes both in and out , so the required values for x3, which must describe
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I ∆
= in ∈ Val × {0}
∧ out ∈ Val × {0}
∧ nin = 0

N ∆
= Pub ∨ Sec

where Pub
∆
= nin = 0 ∧ nin ′ ∈ Nat
∧ out ′ ∈ Val × {out [2]⊕ 1}
∧ in ′ = in

Sec
∆
= nin 6= 0 ∧ nin ′ = nin − 1
∧ in ′ ∈ Val × {in[2]⊕ 1}
∧ out ′ = out

L ∆
= WF〈in,out ,nin 〉(N )

Q
∆
= I ∧ 2[N ]〈in,out ,nin 〉 ∧ L

P
∆
= ∃∃∃∃∃∃nin : Q

public
∆
= out

secret
∆
= in

Figure 2: The TLA Description of System Little

a behavior b3 of Little, do not exist. Hence, the RTLA version of Little does
not satisfy (12), the RTLA version of a system satisfying GNI.

A description of Little should not satisfy an RTLA definition of GNI.
Satisfying GNI should imply that observing a system’s public events provides
no information about its secret events. However, the RTLA specification
implies that from behavior b2 in our example, an observer can see that a
secret input event occurred between the first two public output events, which
is potentially useful information. This information is observable for the same
reason RTLA does not consider a behavior described by an hour-minute-
second clock with the seconds hidden to be a behavior of an hour-minute
clock. That reason is the implicit assumption that a step is an observable
event, even if the step changes the values of no variables (perhaps because
any step takes an observable amount of time). With this assumption, from
behavior b2 in our example, the public Pub steps reveal the existence of the
secret Sec step.

While it doesn’t satisfy our RTLA definition of GNI, Little does satisfy
the usual event-based definition of GNI. Given any behaviors b1 and b2 of
Little, it’s easy to find a third behavior b3 that has the Pub events (changes
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to out) of b1 and the Sec events (changes to in) of b2. For example, suppose
b1 has an infinite number of Sec events. (The fairness condition L of P
implies only that it must have infinitely many Pub events.) Let b3 have a
sequence of Pub steps that change out the same as the Pub steps of b1 do,
but set nin to 1, so each Pub step is followed by one Sec step. Let the Sec
steps of b3 perform the same changes to in as the Sec steps of b2. Then b3

is a behavior of Little having the same Pub events as b1 and the same Sec
events of b2, as required to satisfy event-based GNI.

We now present a TLA formula defining GNI that is a state-based version
that corresponds to the event-based one. We do so by modifying (12), which
is a legal TLA formula if P and L are, but not the right one. Formula (12)
states how behavior b3 must be obtained by combining behaviors b1 and
b2. But in TLA, a behavior represents a film of a system execution. GNI is
about combining executions, not films.

Whatever we want to express in TLA about system executions must be
stated in terms of films of executions—including how to construct a film b3

from films b1 and b2. Formally, a film is a behavior. The way to make GNI
be about combining executions is to construct behavior b3 not by combining
behaviors b1 and b2, but by combining behaviors b̂1 and b̂2 of our choice
that describe the same executions as b1 and b2.

To translate this idea from behaviors to formulas, consider the formula
P(x1) in (12). A behavior b satisfies this formula iff the values that b assigns
to variables x1 constitute a behavior in which the system described by P is
satisfied when its variables are renamed to x1. Moreover, values b assigns
to other variables x̂1 constitute a behavior of the same execution as the
values b assigns to variables x1 iff b|〈x1〉 equals b|〈x̂1〉, which is equivalent

to the condition b |= x1 ∼ x̂1. To obtain b3 from a behavior b̂1 describing
the same execution as b1, we must replace public(x3) = public(x1) with
public(x3) = public(x̂1) for some x̂1 satisfying x1 ∼ x̂1. Applying the same
reasoning to x2, we get the following TLA definition of P satisfying GNI,
where x1, x2, x3, x̂1, and x̂2 are all different variables.

|= P(x1) ∧ P(x2) ⇒
∃∃∃∃∃∃ x̂1, x̂2,x3 : (x̂1 ∼ x1) ∧ (x̂2 ∼ x2) ∧ P(x3) ∧ L(x̂1, x̂2,x3)

where L(x̂1, x̂2,x3)
∆
= 2 ( public(x3) = public(x̂1)

∧ secret(x3) = secret(x̂2) )

(23)

This formula is an assertion about behaviors b in which the values of the list
of variables xi describe behavior bi (for i = 1,2,3), and the values of the list
of variables x̂i describe behavior b̂i .
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6.4 Aligning Films

Little does not satisfy the RTLA definition of GNI because there are films
b1 and b2 in which a step of b1 satisfying Pub and a step of b2 satisfying
Sec occur in corresponding frames. To show that Little satisfies the TLA
definition, we construct films b̂1 and b̂2 (of the same executions as b1 and
b2) in which every Pub step of b̂1 occurs in the same frames as a Pub step of
b̂2. We can achieve this by adding extra frames—steps that leave the values
of in, out , and nin unchanged. For example:

Pub(x1) Pub(x1) Sec(x1)
x1 : s1 s2 s3 s4 . . .

Pub(x2) Sec(x2) Pub(x2)
x2 : t1 t2 t3 t4 . . .

Pub(x̂1) Pub(x̂1) Sec(x̂1)
x̂1 : s1 s2 s2 s3 s4 . . .

Pub(x̂2) Sec(x̂2) Pub(x̂2)
x̂2 : t1 t2 t3 t4 . . .

To make Pub steps happen in corresponding frames of b̂1 and b̂2 by adding
frames to b1 and b2, the same number of Pub steps must occur in both
behaviors. Behaviors b1 and b2 do have the same number of Pub steps—
namely, ∞—because the supplementary property L of Little implies that
every behavior has infinitely many Pub steps.

The ability to match Pub steps in different films is an instance of a
general matching rule: For actions A and B , behaviors b, and disjoint lists
of variables x and y, if there are the same number (possibly ∞) of A(x) and
B(y) steps in b, then there exist values for x̂ and ŷ such that x ∼ x̂, y ∼ ŷ,
and a step is an A(x̂) step iff it is a B(ŷ) step.

To state the rule precisely, we need a temporal operator
#
= , where

b |= A
#
= B is true for actions A and B iff there are the same number of A

and B steps in b. However, A
#
= B is not SI if A or B could be satisfied

by a step that changes no variables, since adding such a step could change
whether the behavior has the same number of A and B steps. Just as we
apply 2 only to actions of the form [C ]v to ensure that TLA formulas are

SI, we apply
#
= only to actions of the form 〈C 〉v , an action defined to equal

C ∧ (v ′ 6= v) . A 〈C 〉v step is thus a C step that changes v . When applying
the rule, v is usually a tuple of variables and at least one of them is changed
by C , so C equals 〈C 〉v .
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The general rule we are using can now be stated as validity of the following
formula for all actions A(x) and B(y), where x and y are disjoint lists of
variables.

|= (〈A(x)〉〈x〉
#
= 〈B(y)〉〈y〉) ⇒

∃∃∃∃∃∃ x̂, ŷ : (x̂ ∼ x) ∧ (ŷ ∼ y) ∧2[〈A(x̂)〉〈x̂〉 ≡ 〈B(ŷ)〉〈ŷ〉]〈x̂, ŷ〉

(24)

We use this rule in Section 6.5 to verify that Little satisfies GNI.

6.5 Verifying That Little Satisfies GNI

To show that Little satisfies GNI, we must show that the TLA formula P
that describes Little satisfies (23), where each of the variable lists xi and
x̂i comprises two variables representing in and out. Let Pi equal P (xi), and
for the other defined quantities like Q that also depend on nin, let Qi equal
Q(xi, nini). Expanding the definitions of P1 and P2, (23) becomes

|= ( ∃∃∃∃∃∃nin1 : Q1 ) ∧ ( ∃∃∃∃∃∃nin2 : Q2 ) ⇒
∃∃∃∃∃∃ x̂1, x̂2,x3 : (x̂1 ∼ x1) ∧ (x̂2 ∼ x2) ∧ P3 ∧ L(x̂1, x̂2,x3)

where L(x̂1, x̂2,x3)
∆
= 2 ( public3 = public(x̂1)

∧ secret3 = secret(x̂2) )

(25)

By predicate logic reasoning, (25) is equivalent to

|= Q1 ∧ Q2 ⇒
∃∃∃∃∃∃ x̂1, x̂2,x3 : (x̂1 ∼ x1) ∧ (x̂2 ∼ x2) ∧ P3 ∧ L(x̂1, x̂2,x3)

(26)

Instead of verifying (26), we will verify a condition that implies (26). The
definition of ∼ implies that x̂i ∼ xi follows from x̂i, ŷ ∼ xi, y for any variables
y and ŷ . Therefore, (26) is implied by:

|= Q1 ∧ Q2 ⇒
∃∃∃∃∃∃ x̂1, n̂in1, x̂2, n̂in2,x3 :

(x̂1, n̂in1 ∼ x1,nin1) ∧ (x̂2, n̂in2 ∼ x2,nin2) ∧ P3 ∧ L(x̂1, x̂2,x3)

(27)

Verifying (27) verifies (26), which verifies that Little satisfies GNI.
Recall that for every behavior b1 and b2, we must align the Pub steps. Ob-

serve that because every behavior satisfying Q has infinitely many Pub steps,

Q1 ∧Q2 implies 〈Pub(x1, nin1)〉〈x1,nin1 〉
#
= 〈Pub(x2, nin2)〉〈x2,nin2 〉. We can

thus apply (24), substituting Pub for both A and B . A Pub step changes
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out , which implies 〈Pub(xi,nin i)〉〈xi,nin1 〉 equals Pub(xi,nin i). Therefore,
instantiating (24) yields:

|= Q1 ∧Q2 ⇒
∃∃∃∃∃∃ x̂1, n̂in1, x̂2, n̂in2 : (x̂1, n̂in1 ∼ x1,nin1) ∧ (x̂2, n̂in2 ∼ x2,nin2)

∧2[Pub(x̂1, n̂in1) ≡ Pub(x̂2, n̂in2)]〈x̂1,n̂in1,x̂2,n̂in2 〉

(28)

By predicate logic reasoning, (28) implies that to verify (27), it suffices to
verify:

|= Q1 ∧Q2 ∧ (x̂1, n̂in1 ∼ x1,nin1) ∧ (x̂2, n̂in2 ∼ x2,nin2)

∧ 2[Pub(x̂1, n̂in1) ≡ Pub(x̂2, n̂in2)]〈x̂1,n̂in1,x̂2,n̂in2 〉
⇒ (∃∃∃∃∃∃x3 : P3 ∧ L(x̂1, x̂2,x3))

(29)

Because Q is SI, which is expressed in rule (21), x̂i, n̂in i ∼ xi,nin i implies
that Q i is equivalent to Q(x̂i, n̂in i). So, we can verify (29) by verifying

|= Q(x̂1, n̂in1) ∧Q(x̂2, n̂in2)

∧2[Pub(x̂1, n̂in1) ≡ Pub(x̂2, n̂in2)]〈x̂1,n̂in1,x̂2,n̂in2 〉
⇒ (∃∃∃∃∃∃x3 : P(x3) ∧ L(x̂1, x̂2,x3))

(30)

Comparing this with the RTLA version (14) of GNI, we see that we have
used the freedom the TLA version provides to replace the films x1 and x2

with equivalent films x̂1 and x̂2 and used rule (24) to add the hypothesis
2[Pub(x̂1) ≡ Pub(x̂2)]〈x̂1,x̂2 〉 that synchronizes the two films.

By substituting xi and nin i for x̂i and n̂in i , expanding the definition of
P3, and predicate logic, (30) becomes

|= Q1 ∧Q2 ∧2[Pub1 ≡ Pub2]〈x1,nin1,x2,nin2 〉 ⇒
(∃∃∃∃∃∃x3,nin3 : Q3 ∧ L(x1,x2,x3))

(31)

We show in Section 7 that this method of reducing verification of (23) to
verification of (31) by using rule (24) also works for other hyperproperties
that, like GNI, assert for variables x the existence of values for variables x̂
with x̂ ∼ x that satisfy some condition.

We verify that Little satisfies (31) in the same way we verified that Tiny
satisfies (14): We rewrite

Q1 ∧Q2 ∧2[Pub1 ≡ Pub2]〈x1,nin1,x2,nin2 〉(32)

in the form of a state machine description. This rewriting is more complicated
than it was for Tiny because: (i) there is the additional third conjunct in (32),
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and (ii) the TLA definition of Q(xi, nin i ) has the term 2[N (xi,nin i)]〈xi,nini 〉
instead of 2N (xi,nin i) . Let v equal 〈in, out , nin 〉. Expanding the definition
of P and rearranging the terms, (32) becomes

(I1 ∧ I2) ∧ (2[N 1]v1 ∧2[N 2]v2 ∧2[Pub1 ≡ Pub2]〈v1,v2 〉) ∧ (L1 ∧ L2)

To transform this to a standard TLA state machine description, we write the
shaded expression as 2[M]〈v1,v2 〉 for a next-state action M. Using the rule
that 2 distributes over ∧ and remembering that [A]u equals A ∨ (u ′ = u),
we see that we can let M equal

((N 1 ∧N 2) ∨ (N 1 ∧ (v ′2 = v2)) ∨ (N 2 ∧ (v ′1 = v1)) ∧ (Pub1 ≡ Pub2)

Expanding the definition of N and using the facts that Pub implies (¬Sec)∧
(v ′ 6= v) and Pub1 ≡ Pub2, we can rewrite this formula as

(Pub1 ∧ Pub2)
∨ (Sec1 ∧ Sec2) ∨ (Sec1 ∧ (v ′2 = v2)) ∨ (Sec2 ∧ (v ′1 = v1))

which is the next-state action of a state machine with variables x1, nin1, x2,
and nin2. Having rewritten (32) as a TLA description of a state machine,
verifying (31) is a standard problem of verifying that a state machine satisfies
a property. Its verification uses the same refinement mapping used for Tiny .

Here is a summary of what we have just done. Using (28), we reduced
verifying that Little satisfies GNI to verifying (31). By rewriting (32) as a
TLA description of a state machine, we reduced verifying (31) to a standard
verification problem for which the TLA+ tools were designed. TLC, the
TLA+ model checker, easily checks the rewritten version of (31) for models
that substitute a small set of values for Val and bound the value of nin
(by substituting a small set {0, . . . ,n} for Nat). TLAPS, the TLA+ proof
checker, can easily check a proof of (31) without the liveness condition L3 of
P3; features needed to allow TLAPS to check liveness proofs are currently
being implemented. For a complete verification, we should also check two
more things: our rewriting of (32), which we did using TLAPS, and the two
hypotheses we used to obtain (28). The first hypothesis, that every behavior
of Little has infinitely many Pub steps, was checked by TLC on a small
model. The second, that 〈Pub 〉v equals Pub, is easily checked by TLAPS.
The complete TLA+ specifications, including proofs, are available on the
Web [22].
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6.6 Verifying That Tiny Satisfies GNI in TLA

Section 4.3 explains how to verify that the RTLA description of Tiny satisfies
the RTLA version of GNI. Essentially the same verification used there shows
that the TLA description of Tiny satisfies the TLA version of GNI. For the
TLA verification, we do exactly what we did for Little, except using action
N instead of Pub. With the subscripting notation and definition of v as
〈in, out ,nin 〉 from Section 6.5, formula (32) then becomes:

Q1 ∧ Q2 ∧ 2[N 1 ≡ N 2]〈v1,v2 〉(33)

Expanding the definitions of Q and L, temporal logic reasoning shows that
(33) is equivalent to:

(I1 ∧ I2) ∧ 2[N 1 ∧N 2]〈v1,v2 〉 ∧ (WFv1(N 1) ∧ WFv2(N 2))(34)

This is the formula one would obtain from (15) by turning an RTLA descrip-
tion of a state machine into a TLA one. We then verify (23) using the same
refinement mapping and essentially the same verification as for the RTLA
version of Tiny . The TLA+ formalizations are on the Web [22].

We obtained the TLA proof that Tiny satisfies GNI from its RTLA
proof in Section 4.3 by replacing Q(x1) ∧ Q(x2) with (33). This same
transformation from an RTLA proof to a TLA proof works for any RTLA
proof that a system satisfies the RTLA definition of GNI.

7 PharOS and Observational Determinism

PharOS is a system in which multiple agents communicate by asynchronous
message passing subject to real-time constraints on message-delivery time and
on when actions may be performed. (It has been commercialized under the
name Asterios R©.) A goal of the system is determinacy—that the behavior of
any agent is independent of the scheduling of agent actions. Azaiez et al. [4]
proved that a high-level model of the system satisfies this goal. Their proof
combined state-based and semantic behavioral reasoning, relating the two
by adding an auxiliary variable to record the system’s complete execution.

Determinacy in PharOS is an instance of a well-known security condition,
observational determinism (OD). We show here how applying our approach
can avoid the need for semantic behavioral reasoning, allowing a purely
state-based proof.
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7.1 Observational Determinism

Zdancewic and Myers [34] formulated OD as the assertion that any two
system behaviors with the same initial value of public are “equivalent”.
Equivalent would mean public-stuttering equivalent4 if every behavior took
the same number (possibly ∞) of public steps. That a system P satisfies
OD would then be expressed by:

|= P(x1) ∧ P(x2) ∧ (public(x1) = public(x2)) ⇒
∃∃∃∃∃∃ x̂1, x̂2 : x1 ∼ x̂1 ∧ x2 ∼ x̂2 ∧ 2(public(x̂1) = public(x̂2))

(35)

Zdancewic and Myers consider only finite behaviors, for which they define
equivalence to mean that the sequence of public steps of one of the behaviors
is a prefix of the sequence of public steps of the other. The easiest way
to express this condition in TLA is to posit a state predicate term that is
true iff the system has terminated—that is, iff the system can take no more
state-changing steps. In that case, OD is obtained from (35) by replacing
the shaded formula with

term(x̂1) ∨ term(x̂2) ∨ (public(x̂1) = public(x̂2))

7.2 The PharOS Proof

If we define public to be the state state[a] of an agent a, then determinacy for
PharOS asserts that OD is satisfied for every agent a. Azaiez et al. proved
this condition for an arbitrary agent a. They described PharOS in TLA+

and checked their proof with TLAPS.
For their proof, they added to the TLA+ system description an auxiliary

variable whose value is the sequence of all previous system states. They
proved that if b is the sequence of states of an arbitrary infinite PharOS
behavior, then the values of state[a] recorded in the auxiliary variable for a
system behavior with the same initial state as b is always state[a]-stuttering
equivalent to their values in some finite prefix of b.

In their proof of OD, b is a constant—a representation of a complete,
infinite behavior. To define b, they wrote a constant formula (one containing
no system variables) that captures the semantics of the system’s TLA+

specification. Theirs is thus a “hybrid” proof, combining TLA reasoning
with semantic behavioral reasoning.

The description of PharOS allows terminating behaviors. We can handle
terminating agents using term as described above, but there’s no need. The

4 Recall that public-stuttering equivalent is defined on page 15 of Section 5.1.
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sequence of an agent’s steps of a terminating behavior of PharOS is a prefix
of its steps in a nonterminating behavior, so satisfying OD for nonterminating
behaviors implies that OD is satisfied for terminating behaviors. We simplify
the proof by assuming a fairness condition that requires agents never to
terminate.

With this non-termination assumption, we can verify that PharOS satisfies
OD the same way we verified that Little satisfies GNI. Neither semantic
reasoning nor auxiliary variables are required. We verified that Little satisfies
(23) by applying rule (24) to show that it suffices to verify (31). In the same
way, verifying that PharOS satisfies (35) can, by applying (24), be reduced
to verifying

|= P(x1) ∧ P(x2) ∧ (public(x1) = public(x2))

∧ 2[Pub(x1) ≡ Pub(x2)]〈x1,x2 〉 ⇒ 2(public(x1) = public(x2))

(36)

where P is the TLA+ model of PharOS and Pub describes the steps taken
by the given agent. Just as in the verification that Little satisfies GNI,
the left-hand side of (36) can be rewritten as a TLA description of a state
machine. Verification then becomes the standard problem of verifying that
a formula is an invariant of a state machine. This can be done without
constructing a complete behavior or adding an auxiliary variable as in [4].

8 Some Other Hyperproperties

GNI and OD are just two of the security conditions discussed in the literature
that are hyperproperties. We now consider how a few more security conditions
and some other hyperproperties can be expressed in TLA. All other finitary
hyperproperties we have seen can be handled in similar ways. Unlike GNI
and OD, the examples considered here do not use the ∼ operator. This
operator is used in GNI (23) and OD (35) to allow replacing the “films” x1

and x2 with films x̂1 and x̂2 of the same executions, but properly aligned.
The ∼ operator is not needed to align films in these other examples.

8.1 Nonin(ter)ference

GNI was preceded by a security policy called noninterference (NI) proposed
by Goguen and Meseguer [17] as a condition on execution by two classes of
users. NI was stated in terms of an automaton that executes commands,
some of which belong to a set PC of public commands. The value of a
state function we will call public equals the output of the most recently
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executed public command. We formulate NI as a state machine with a fixed
initial state and a state function cmd equal to the name of the most recent
command.

NI asserts that executing any sequence of commands produces the same
values of public as executing the subsequence consisting of only the com-
mands in PC . Goguen and Meseguer assumed commands are deterministic,
meaning that any sequence of commands produces a unique execution. This
assumption allows us to state NI as the following two equivalent conditions,
where K is the assertion that behavior b2 executes the subsequence of the
commands executed by behavior b1 consisting only of commands in PC :5

• Every pair of system behaviors b1 and b2 that satisfy K produce the
same values of public.

• For every system behavior b1 there exists a behavior b2 satisfying K
that produces the same values of public as b1.

These two conditions on behaviors yield different TLA formulations of what
it means for a system P to satisfy NI:

|= P(x1) ∧ P(x2) ∧K ⇒ 2(public(x1) = public(x2))(37)

|= P(x1) ⇒ ∃∃∃∃∃∃x2 : P(x2) ∧K ∧2(public(x1) = public(x2))(38)

They are equivalent under the assumption that commands are deterministic,
but differ when commands are nondeterministic. Condition (37) more closely
resembles Goguen and Meseguer’s original formulation of NI, while (38)
generalizes to handle nondeterministic commands.

Note that the ∼ operator is not needed in (37) because K asserts that
the films x1 and x2 are properly aligned. It is not needed in (38) because
K implies that x1 and x2 can be aligned by adding frames to x2, which is
allowed by the ∃∃∃∃∃∃ operator. The ∼ operator was needed in GNI (23) and OD
(35) to allow replacing the “films” x1 and x2 with films x̂1 and x̂2 of the
same executions, but properly aligned.

Noninference (NF) is a security condition that generalizes NI to allow
nondeterministic commands. Mantel stated a version of NF in terms of event
sequences [25]. His version can be represented in terms of states the way we

5 K is defined by: ξ(x)
∆
= 〈x′〉 6= 〈x〉

K
∆
= 2[ ( ξ(x1) ∧ (cmd(x1)′ ∈ PC )⇒ ξ(x2) )

∧ ( (ξ(x2)⇒ ξ(x1) ∧ (cmd(x2)′ = cmd(x1)′)
∧ (cmd(x2)′ ∈ PC ) ) ]〈x1,x2〉
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represented GNI, where an event is represented by a state change. We add a
state function secret whose values are changed by executing commands not in
PC . All commands in a behavior being commands in PC is then equivalent
to secret having the same value throughout the behavior. Mantel’s version of
NF is then described by (38) when K is the assertion that secret(x2) never
changes, expressed in TLA as:

2[secret(x2)′ = secret(x2)]〈x2 〉

This version of (38) is satisfied by Little, but not by Tiny .
McClean [27] proposed a version of NF in terms of state sequences that

can also be expressed in terms of the state function secret . It is obtained
from (38) by replacing K with the assertion that secret(x2) always equals a
fixed constant λ—an assertion expressed in TLA as 2(secret(x2) = λ).

8.2 Possibilistic Noninterference

Zdancewic and Myers [34] formulate a generalization of noninterference to
handle non-deterministic commands; we call it possibilistic noninterference
(PN). They expressed PN in a state-based model with a “public state”
described by a state function public. PN is satisfied by a system iff, for every
possible system behaviors b1 and b2 such that public has the same value in
the initial states of b1 and b2, there is a system behavior b3 having the same
initial state as b2 and the same values of public as b1 in all states.

Zdancewic and Myers’s definition of PN is based on a model in which a
state sequence represents an execution rather than a film of an execution.
For a clock in which public is the value of the hour and minute, in this model
observing only public reveals that the clock is also counting seconds because
that same value of public appears in multiple successive states. Even though
this definition is based on a model that is not SI, we can write a (SI) TLA
formula asserting that a system satisfies it by restricting how the system is
described.

The restriction is that for a system step to be considered observable, it
must change the value of some state function. For PN, this means that the
sequences of values for public can differ in two behaviors because of changes
only to a variable that doesn’t affect the value of public. We can then
represent the definition of PN with behaviors b1, b2, and b3 that represent
films by adding the requirement that b1 and b3 are aligned so that their
states change at the same time. (There is no need to align b2 with b1 and
b3 because only the initial state of b2 is mentioned in the definition, so
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no further alignment is required and the ∼ operator is not needed.) The
assertion that the system P satisfies PN is then:

|= P(x1) ∧ P(x2) ∧ (public(x1) = public(x2)) ⇒
∃∃∃∃∃∃x3 : P(x3) ∧ K ∧ (〈x2 〉 = 〈x3 〉) ∧ 2(public(x1) = public(x3))

(39)

where the alignment condition K is defined by

K
∆
= 2[(〈x1 〉′ 6= 〈x1 〉) ≡ (〈x3 〉′ 6= 〈x3 〉)]〈x1,x3 〉

It is not hard to see that Tiny and Little both satisfy (39). Given behaviors
b1 and b2 of either system, the behavior b3 obtained by simply replacing the
first state of b1 with the first state of b2 is also a behavior of that system. To
verify (39) for these two systems, we expand the definitions of P and verify:

|= Q(x1,nin1) ∧ Q(x2,nin2) ∧ (public(x1) = public(x2)) ⇒
∃∃∃∃∃∃x3 : P(x3) ∧ K ∧ (〈x2 〉 = 〈x3 〉) ∧ 2(public(x1) = public(x3))

(40)

We verify this by adding an auxiliary variable h to Q(x1,nin1) to obtain
Qh such that Q(x1,nin1) is equivalent to ∃∃∃∃∃∃ h : Qh(x1,nin1, h) and then
verifying:

|= Qh(x1,nin1, h) ∧ Q(x2,nin2) ∧ (public(x1) = public(x2)) ⇒
∃∃∃∃∃∃x3 : P(x3) ∧ K ∧ (〈x2 〉 = 〈x3 〉) ∧ 2(public(x1) = public(x3))

We can let h equal 1 in the initial state and be set to 0 by the next-state
action of Qh . The refinement mapping is defined so that the values of
variables x3 equal the values of x2 if h = 1 and the values of x1 if h = 0.

Tiny satisfies (39), but that doesn’t mean it satisfies PN. Formula (39)
represents PN only under the assumption that every observable step changes
the system’s state, and Tiny allows steps we consider observable that change
only nin—steps that represent input or output of the same value twice in
a row—and nin is a hidden variable, not part of the system state. What
satisfying (39) means in this case does not concern us.

8.3 Input/Output Hyperproperties

Besides describing security conditions, hyperproperties have been used to
express relations between the input and output of a system that starts with
an input, produces an output, and halts. For example, monotonicity is a
hyperproperty asserting that if the input of behavior b1 is less than the input
of b2, then the output of b1 is less than that of b2.

In state-based representations of systems, such input/output relations
can be expressed in terms of state functions inp and outp, where the input
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is the value of inp in the initial state and the output is the value of outp in
the final state. Letting term be a state predicate that is true iff the system
has terminated, monotonicity for a system P is expressed as:

|= P(x1) ∧ P(x2) ∧ (inp(x1) < inp(x2)) ⇒
2(term(x1) ∧ term(x2)⇒ (outp(x1) < outp(x2)))

TLA provides a good way for verifying such a condition, especially if the
system P involves concurrency. The ∼ operator does not appear because
this condition involves only initial and terminal states, so no alignment of
the films is required.

8.4 Some Problematic Security Conditions

Most of the examples of hyperproperties we have examined concern security.
We know of only one class of security conditions for which the TLA formula
is significantly more complicated than the ones we have described here. The
conditions in that class stipulate that adding one or more events to the
middle of a system execution produces a possible system execution. One
example is the perfect security property (PSP) defined by Zakinthinos and
Lee [33]. Expressing such a condition by replacing events with command
executions, as in NI, is not hard. A TLA statement of PSP asserts the
existence of a variable whose value indicates when the extra commands are
being added. However, it might be easier to state and verify the condition
by using auxiliary variables, as was done in the original PharOS verification.

9 Preservation Under Refinement

If we verify that a system P satisfies a hyperproperty and P is refined by
another system S , then we would like S also to satisfy that hyperproperty.
When that is the case for all S and P , we say that the hyperproperty is
preserved under refinement.

Thus far, the systems and the properties they satisfy have been expressed
in terms of the same (free) variables. This makes refinement the same as
implementation: A system S refines a system P iff S implies P , which
means the set of behaviors allowed by S is a subset of the set allowed by P .
Whether a hyperproperty is preserved under refinement can be seen from its
definition. A hyperproperty described in the form of (1) is preserved under
refinement if every ∀∃ is ∀ . When described as in (7), that means k = j ,
so P does not appear to the right of the ⇒. This is the case handled by
previous work using self composition. The special case k = j = 1 implies
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that ordinary properties are preserved under refinement, since P satisfying
property L means |= P(x)⇒ L(x) . When k > j , the most we can say is that
P satisfying (7) implies that S also satisfies (7) if S and P are equivalent.

In practice, we often want to show that a system P is refined by a system
S described at a lower level of abstraction, so P and S can have different
free variables. For example, P might describe characters displayed on a
screen, and S might describe the screen as an array of pixels. It makes
no sense to say that a statement about pixels refines a statement about
characters. What does make sense is to say that S refines P under a given
correspondence between pixels and characters. A more complex example is if
P describes a system in which processes communicate by sending messages
over point-to-point channels, while S splits those messages into packets that
are sent over a packet-switching network.

The idea that a system S refines a system P described at a higher level
of abstraction is expressed formally using an interface refinement, which is
a property relating the (free) variables of S and those of P . We define S
refines P under the interface refinement I to mean

|= S (w) ∧ I (w,x) ⇒ P(x)(41)

where I must satisfy:

|= S (w) ⇒ ∃∃∃∃∃∃x : I (w,x)(42)

Condition (42) asserts that every behavior of S corresponds under I to some
behavior, and (41) asserts that it is a behavior of P .6

In general, I may be written as a state machine. As we have seen, the
conjunction of two state machines can be written as a state machine, so
verifying (41) reduces to the problem of one state machine implying another.
A simple instance is when I (w,x) is 2(x = g(w)), in which case (41) is
equivalent to

|= S (w)⇒ P(g(w))(43)

and we say S refines P under interface refinement mapping g.
Mathematically, (43) is the same condition that arises if the variables of

P are regarded as hidden and we are given the refinement mapping g under
which S (w) must imply ∃∃∃∃∃∃x : P(x) . This form of I handles the example of
refining a screen that displays characters with one displaying pixels, where
g(w) specifies the screen of characters that corresponds to the screen of pixels

6Broy [8] proposed an equivalent formalization of interface refinement in terms of event
streams.
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described by w. However, I would probably have to be a state machine for
the example of refining messages by packets.

It would be nice if all hyperproperties were preserved under interface
refinement. If P satisfies (7), we would like (41) and (42) to imply that S
does too. However, since S and P may have different free variables, we can’t
use the same formulas K and L in (7) for S as for P . We have to specify the
formulas KS and LS for which S should satisfy (7).

For refinement under an interface refinement mapping g, there are natural
candidates for KS and LS :

KS(w1, . . . ,wj)
∆
= K (g(w1), . . . ,g(wj))

LS (w1, . . . ,wk)
∆
= L(g(w1), . . . ,g(wk))

When k = j , if P satisfies (7) then (43) implies that S satisfies (7) with
these definitions of KS and LS . However, these natural definitions of KS

and LS might not be useful definitions. For example, P satisfying GNI says
something useful about a system’s security only if the values of secret and
public together specify the values of all the free variables of P . However, the
values of secret(x) and public(x) can specify the values of the free variables
x of P(x) without secret(g(w)) and public(g(w))), which appear in KS and
LS , specifying the values of the free variables w of S (w).

For arbitrary KS and LS , the assumptions needed to conclude from P ,
K , L satisfying (7) that S , KS , and LS satisfy it are (42) and:

|= I (w,x) ⇒ (S (w) ≡ P(x))

|= P(x) ⇒ ∃∃∃∃∃∃w : I (w,x)

|= S (w1), . . . ,S (wj) ∧ K S (w1, . . . ,wj)
∧ I (w,x1) ∧ . . . ∧ I (w,xj) ⇒ K (x1, . . . ,xj)

|= P(x1) ∧ . . . ∧ P(xk) ∧ K (x1, . . . ,xj) ∧ L(x1, . . . ,xk)
∧ I (w1,x1) ∧ . . . ∧ I (wj,xk) ⇒ LS (w1, . . . ,wk)

For the special case of (7) with j = k , we can replace the shaded conditions
with (41).

10 Discussion

10.1 Prior Work

Prior work has used temporal logic to verify that systems satisfy security
conditions without expressing the conditions as hyperproperties. Huisman
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et al. [18] formulated observational determinism in both CTL∗ and the
polyadic modal µ-calculus. They experimented with model checkers for
both logics. Alur et al. [3] defined a class of trees that are suitable for
capturing observational indistinguishability. Information flow properties
can be described using temporal logics, including CTL and the µ-calculus,
interpreted on these trees. Algorithms for model checking formulas in these
logics were also given. Finkbeiner et al. [12] defined new logics by adding
a modal operator to characterize certain information flows. They explored
the complexity of model checking these logics and developed a fragment of
one logic that is both expressive enough to describe non-interference and
observational determinism and for which model checking is efficient. Balliu [5]
used a linear time temporal epistemic logic with a past operator to express
information flow properties, including GNI. TLA has also been used to verify
that a system satisfies a particular hyperproperty. PharOS (Section 7) was
one example; Wayne [32] also independently used TLA in this way.

Clarkson et al. [9] were the first to introduce a temporal logic for describ-
ing a general class of hyperproperties. Their linear-time logic, HyperLTL,
expresses finitary hyperproperties, as described by (1). They built a proto-
type model checker based on nondeterministic Büchi automata for a subset
of HyperLTL formulas that includes ∀∃ -hyperproperties. It was improved
using alternating Büchi automata by Finkbeiner et al. [14] with the MCHy-
per model checker. These model checkers for HyperLTL are completely
automatic, but the inherent complexity of handling temporal existential
quantification means that they are not practical for hyperproperties de-
scribed by instances of (7) actually containing an ∃∃∃∃∃∃ (i.e., when k > j ).
Coenen et al. [11] enhanced MCHyper to handle ∀∃ -hyperproperties more
efficiently, based on a game-theoretic metaphor. In effect, they partially
automated construction of the refinement mappings used by TLA; complete
automation was also possible in some cases. More efficient model checkers
can also be built to handle specialized classes of hyperproperties efficiently.
For example, Finkbeiner et al. [13] built one for a particular class called
quantitative hyperproperties.

10.2 Contributions

Prior work on verifying hyperproperties using self-composition handled hyper-
properties of the form (3). One of our contributions is using self-composition
to handle arbitrary finitary hyperproperties. This is feasible because TLA
can easily describe a system as a formula. Given a refinement mapping for
each ∃∃∃∃∃∃ , we can verify the TLA formula expressing that a system satisfies
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an arbitrary finitary hyperproperty. Moreover, we know that refinement
mappings can be found for instances of (7) that seem to arise in industry.
We have no experience with the TLA formulas that arise for other classes of
finitary hyperproperties, and we haven’t seen any realistic examples of such
hyperproperties.

Another contribution is the observation that stuttering insensitivity (SI)
facilitates the treatment of security conditions in a state-based formalism. It
has long been known that SI simplifies verifying implementation, so an hour-
minute-second clock naturally implements an hour-minute clock. For that
purpose, SI could have been avoided by requiring systems to allow explicitly
described stuttering steps and considering those additional behaviors to be
additional executions. But formulating event-based definitions of GNI and
some other security conditions in terms of states led us to define the temporal
operator ∼, and we could write a simple rule for reasoning about ∼ only
because TLA satisfies SI. This provides further evidence for the value of SI
in formalisms for describing systems.

Perhaps our most important contribution is showing how tools that have
been developed through two decades of industrial experience can be used
to verify that systems satisfy a large class of hyperproperties. TLA+ and
its tools have been used in the design and verification (mainly by model
checking) of systems ranging from multi-core processor chip caches [7] to
real-time operating systems [31] to large-scale cloud infrastructure [28]. This
provides reason to hope that the approach we have described can work for
real systems.
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and Helmut Seidl. Model checking information flow in reactive systems.
In Viktor Kuncak and Andrey Rybalchenko, editors, Verification, Model
Checking, and Abstract Interpretation - 13th International Conference,
VMCAI, volume 7148 of Lecture Notes in Computer Science, pages
169–185. Springer, 2012.

[13] Bernd Finkbeiner, Christopher Hahn, and Hazem Torfah. Model
checking quantitative hyperproperties. CoRR, abs/1905.13514, 2019.
http://arxiv.org/abs/1905.13514.

[14] Bernd Finkbeiner, Markus N. Rabe, and César Sánchez. Algorithms for
model checking HyperLTL and HyperCTL∗. In Daniel Kroening and
Corina S. Pasareanu, editors, Computer Aided Verification - 27th Inter-
national Conference, CAV, volume 9206 of Lecture Notes in Computer
Science, pages 30–48. Springer, 2015.

[15] Nissim Francez. Product properties and their direct verification. Acta
Informatica, 20:329–344, 1983.

[16] Nissim Francez. Fairness. Texts and Monographs in Computer Science.
Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1986.

[17] J. A. Goguen and J. Meseguer. Security policies and security models.
In 1982 IEEE Symposium on Security and Privacy, pages 11–20, 1982.

[18] Marieke Huisman, Pratik Worah, and Kim Sunesen. A temporal logic
characterisation of observational determinism. In 19th IEEE Com-
puter Security Foundations Workshop, (CSFW-19 2006), 5-7 July
2006, Venice, Italy, page 3. IEEE Computer Society, 2006. https:

//doi.org/10.1109/CSFW.2006.6.

[19] Leslie Lamport. The temporal logic of actions. ACM Transactions on
Programming Languages and Systems, 16(3):872–923, May 1994.

[20] Leslie Lamport. Specifying Systems. Addison-Wesley, Boston, 2003.
Also available on the Web via a link at http://lamport.org.

[21] Leslie Lamport and Stephan Merz. Prophecy made simple. To appear
soon on arXiv and elsewhere on the web.

37

https://arxiv.org/abs/2005.07425
https://arxiv.org/abs/2005.07425
http://arxiv.org/abs/1905.13514
https://doi.org/10.1109/CSFW.2006.6
https://doi.org/10.1109/CSFW.2006.6
http://lamport.org


[22] Leslie Lamport and Fred B. Schneider. Specifications for Verifying Hy-
perproperties with TLA. Web page. https://lamport.azurewebsites.
net/tla/hyperproperties/hyper.html.

[23] Nancy Lynch and Mark Tuttle. Hierarchical correctness proofs for
distributed algorithms. In Proceedings of the Sixth Symposium on the
Principles of Distributed Computing, pages 137–151. ACM, August 1987.

[24] Zohar Manna and Amir Pnueli. Temporal verification of reactive systems
- safety. Springer, 1995.

[25] Heiko Mantel. Possibilistic definitions of security—An assembly kit. In
Proceedings of the 13th IEEE Computer Security Foundations Workshop,
CSFW ’00, Cambridge, England, UK, July 3-5, 2000, pages 185–199.
IEEE Computer Society.

[26] Daryl McCullough. Noninterference and the composability of security
properties. In Proceedings of the 1988 IEEE Conference on Security
and Privacy, SP’88, pages 177–186.

[27] John McLean. A general theory of composition for trace sets closed
under selective interleaving functions. In 1994 IEEE Computer Society
Symposium on Research in Security and Privacy, Oakland, CA, USA,
May 16-18, 1994, pages 79–93.

[28] Chris Newcombe, Tim Rath, Fan Zhang, Bogdan Munteanu, Marc
Brooker, and Michael Deardeuff. How amazon web services uses formal
methods. Communications of the ACM, 58(4):66–73, April 2015.

[29] Amir Pnueli. The temporal logic of programs. In Proceedings of the
18th Annual Symposium on the Foundations of Computer Science, pages
46–57. IEEE, November 1977.

[30] Marcelo Sousa and Isil Dillig. Cartesian Hoare logic for verifying k-safety
properties. In Proceedings of the 37th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI ’16, pages
57–69, 2016.

[31] Eric Verhulst, Raymond T. Boute, José Miguel Sampaio Faria, Bernard
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