
The Implementation of Reliable Distributed

Multiprocess Systems*

Leslie Lamport **

Massachusetts Computer Associates, Inc., 26 Princess Street,

Wakefield. Mass. 01880, USA

A method is described lor implementing any system by a

network of processes so it continues to function properly

despite the failure or malfunction of individual processes and

communication arcs; where "malfunction" means doing

something incorrectly, and "failure" means doing nothing.

The system is defined in terms of a sequential "user ma

chine", and a precise correctness condition for the Imple

mentation of this user machine is given. An algorithm lo im

plement the user machine in the absence of malfunctioning,

and a rigorous proof of its correctness, are given for a net

work of three processes with perfect clocks. The generaliza

tion to an arbitrary network of processes with imperfect

clocks is described. It is briefly indicaled how malfunctioning

can be handled by adding redundant checking to the imple

mentation and Including error detection and correction

mechanisms in the user machine.

Keywords: Computer networks, distributed computing,

reliable synchronization, system specification.

Leslie Lamport received a B.S. in ma-

mathematics from M.I.T., and an

M.A. and Ph.D in mathematics from

Brandcis University. He has worked

at the Mitre Corporation, Marlboro

College and Massachusetts Computer

Associates, and is currently at SRI

International. He has done reserach

in analytic partial differential equa

tions, and in various aspects of con

current processing. His current inter

ests include the theory of concurrent

processes, the foundations of tiuan-

tum mechanics, and applied oriental

philosophy.

* This research was supported by the Advanced Research

Projects Agency of the Department of Defense and by

Rome Air Development Center. It was monitored by

Rome Air Development Center under contract number

F30602-76-C-0094.

** Author's current address: Computer Science Laboratory.

SRI International, Menio Park, California 94025, USA

© North-IloHand Publishing Company

Computer Networks 2 (1978)95-114

I. Introduction

/./. Goals

By a distributed multiprocess system, we mean a

system composed of physically separated processes

which communicate with one another by sending

messages. We will describe an algorithm for imple

menting any system as a highly reliable distributed

multiprocess system. The reliability of such a system

involves two major goals.

Goal I, To enable the system to continue func

tioning despite the failure of one or more

processes or communication lines.

Goal 2. To enable the system to function correctly

despite the malfunctioning of one or more

processes or communication lines.

We say that a component "fails'1 when it com

pletely stops functioning. We say that it "malfunc

tions" if it continues to operate, but performs one or

more operations incorrectly. Tiie two goals are there

fore quite different. Our primary concern is Goal 1,

we will only briefly discuss Goal 2.

To illustrate the objective o"f our algorithm, con

sider an airline reservation system. Such a system is

usually implemented by using a single central com

puter to process the reservations. If that computer

fails or loses communication with the reservation sta

tions, then the system stops functioning. A special

case of our algorithm allows the system to be imple

mented with three computers at separate locations. It

will continue lo process reservations normally so long

as any two of the computers and the communication

lines joining (hem are functioning properly. The gen

eral algorithm allows an implementation by an arbi

trary network of computers, and enables the system

to continue operating so long as a large enough por

tion of the network is functioning properly.

We make no assumptions about what happens

when a process or communication line has failed. In

particular, we do not assume that a process can detect

that a communication line or another process has

failed. A process need not even detect its own failure,

but may at any time continue from the point in its

algorithm at which it had failed.

96 /,. Lamport /Reliable distributed multiprocess systems

It may be hard for the reader to appreciate the dif

ficulty of this problem if he has not tried to solve it

himself. For example, an obvious approach for an air

line reservation system with three computers is to

have each one vote on whether to grant a reservation,

and to require two "yes" votes for it to be granted.

However, suppose that three different requests for a

seat on the same flight are issued concurrently at dif

ferent sites, and there are only two seats left. Each

computer will vote "yes" on two of the requests, so it

is possible for all three reservations to receive two

"yes" votes and thus be granled-thereby overfilling

the flight. ' We hope that this example gives some

indication of how difficult the problem is.

What il means to achieve Goal 1 is a subtle ques

tion, and we know of no previous work which

approaches il rigorously. Correctness proofs of algo

rithms usually ignore questions of physical execution

time. However, the concept of failure is meaningless

without a notion of physical time. We can only tell

that a computer system has failed ("crashed") when

we have been waiting too long for a response. The

first part of this paper is devoted to defining exactly

what Goal 1 means.

Our primary aim is to describe and prove the cor

rectness of a general algorithm for achieving Goal 1.

However, we are faced with a dilemma. The general

algorithm is somewhat complicated, and a complete

discussion of it would be quite long. Moreover, a rig

orous analysis of any algorithm requires simplifying

assumptions. Were we to restrict ourselves to such an

analysis, we might give the impression that our algo

rithm is useless because it is based upon unrealistic

assumptions. However, a thorough discussion of im

plementation details would be unbearably long. We

have therefore chosen a compromise approach. We

will give a rigorous exposition only for a special case

of our algorithm, and will just sketch the general algo

rithm. We will also discuss how the algorithm can be

used as the basis for a reliable distributed system,

although many details will be omitted.

We wish to emphasize that we are concerned with

a practical method for implementing a system which

has already been specified. We will therefore discuss,

at least briefly, the most difficult implementation

problems. Space limitations have forced us to ignore

1 We are considering an idealized airline reservation system

in which Rights may not be overfilled. Allowing a flight to

be overfilled simplifies [his particular problem, but does

not lead to any useful general approach.

many problems whose solutions we felt to be straight

forward. It is inevitable that some things which seem

straightforward to us will not be obvious to some rea

ders. We can only assure the reader that we have tried

to discover all the problems that would arise in an

implementation, and have not knowingly hidden any

that we could not solve. Only an actual implementa

tion can determine if we have overlooked any diffi

cult ones.

The remainder of Section 1 is devoted to a precise

statement of Goals 1 and 2. In Section 2, we describe

and prove the correctness of our algorithm for a par

ticular network of processes containing idealized

clocks. In Section 3, we indicate how the algorithm

can be generalized to an arbitrary network oi pro

cesses with real clocks. Section 4 discusses how our

algorithm can be used as the basis for a practical total

system which satisfies Goals 1 and 2. An index of

symbols and special terms is included at the end of

the paper.

1.2. Logical specification of the system

1.2.!. The user machine

In order to prove that a system is implemented

correctly, we need a way of defining precisely what

the system is supposed to do. We consider the opera

tion of the system to consist of receiving commands

and generating responses. For example. Table 1 gives

some commands and possible responses that they

might generate in an airline reservation system.

Let us suppose for now that all the commands are

issued sequentially by a single user. We can then spec

ify the system by a state machine, which we call the

user machine. The user machine is defined by a set S

Table 1

Examples of commands and possible responses in an airline

reservation system

Command

1. Request 1 seat for Jones

on Flight 221 for 2/7/80.

2. Cancel reservation for

Smith on Flight 221 for

2/7/80.

3. How many seals are left

on Flight 123 for 2/7/80?

Response

1. Flight Tilled, Jones

placed on waiting list.

2. fa) Smith's reservation

cancelled,

(b) Jones moved from

waiting list onto

Right 221 for

2/7/80.

3. 27 seats left.

L. Lamport j Reliable distributed multiprocess systems 97

of possible slates, a set C of possible commands, a set

R of possible responses, and a mapping e: CXS-*

R X S. The relation e(C, S) a (R, S') means that exe

cuting the command Cwith the user machine in state

S produces the response R and changes the user ma

chine state to ,S\

Specifying a system by a user machine is a con

ceptually simple task. For example, a state for an air

line reservation system might consist of a set of

flights, where each flight consists of a flight number,

date, capacity, list of reservations granted, and wait

ing list. After specifying the sets of commands and

responses, it is in principle easy to define the mapping

e which specifics exactly what the airline reservation

system is supposed to do. More precisely, defining e is

a straightforward sequential programming problem.

As another example, we consider a distributed file

system. Defining the individual read and write opera

tions as user machine commands might be impracti

cal, for reasons which will become clear later. Instead,

the user machine could be employed only to acquire

and release files. The actual reading and writing of the

files would then be external to the system specified

by the user machine. The user machine state would

include a directory of the files, but not the contents

of the files themselves. The actual specification of

such a user machine is simple and of little interest.

As this example indicates, the user machine might

specify a synchronizing kernel of a larger system. The

relation of the user machine to the total system will

be discussed in Section 4. Now, we are only con

cerned with implementing the system which is speci

fied by a given user machine. The details of this user

machine do not concern us. We need only observe

that the user machine is deterministic and that its

action is defined for every command, state pair. (An

invalid command, such as requesting a seat on a non

existent flight, can simply produce an error message

response and leave the user machine state un

changed.)

u

s

E

R

S

Commands
. k.

•

Commands
1 ^

S

E

Q

U

E

N

C

E

R

Commands
^"

1.2.2. Multiple users

So far, we have pretended that all commands come

from a single user. We not consider the real case in

which there are a number of users who can issue com

mands concurrently. For example, each reservation

station of an airline reservation system might be a

separate user. To employ the user machine, it is

necessary to sequence the commands from the differ

ent users to form a single stream of commands, and

to distribute the responses to the appropriate users.

Logically, the system then appears as in fig. 1. We

emphasize that this is a logical description only.

Achieving Goal 1 requires that none of the boxes in

fig. I be implemented by a single component. Each of

the three logical functions - sequencer, user machine,

and distributor - - must be physically distributed

throughout the system.

We have to specify what correctness conditions the

sequencer and distributor must satisfy. We make the

following obvious and simple requirement for the

sequencer.

SC. If a command Cj is issued before a command C?,

then Cj must precede Co in the user machine's com

mand sequence.

A discussion of what "before" means in the hy

pothesis is beyond the scope of this paper, and we

must refer the reader to [1]. It is shown there that in

some cases neither command is issued before the

other, so condition SC does not completely specify

the sequencing of commands in the command stream.

Correctness of the distributor simply means that

responses are sent to the appropriate users. Note that

different parts of a single response may have to be

sent to different users. Implementing the distributor

is a straightforward problem in message routing, and

will not concern us. We will therefore ignore the dis

tributor, except for a brief mention in Section 4.3.4

of its role in achieving Goal 2.

Fig. 1. The logical system.

98 L. Lamport / Reliable distributed multiprocess systems

1.2.3. Response time

There is one crucial element tiial has so far been

left out of our discussion: time. Correctly executing

the user machine is not enough; we must also require

that a response be generated reasonably soon after a

command is issued. An airline reservation system is of

little use if it can take weeks to process a reservation.

We would therefore like to require that there be some

length of time A such that the response to a com

mand is generated within A seconds after the com

mand is issued. (For linguistic convenience, we use

the word "second" to denote an arbitrary unit of

time.)

Communication failure may make it impossible to

execute a particular command within A seconds after

it is issued. It turns out to be difficult for a system to

execute such a command later without either delay

ing the execution of other commands or violating

condition SC. We therefore introduce the possibility

of rejecting such a command, so it does not appear in

the user machine's command stream. Our logical sys

tem now appears as shown in fig. 2. The accepter

decides whether a command is accepted as input to

the user machine or is rejected. A command should

normally be accepted, and it should be rejected only

because of the failure of some physical components.

A precise correctness condition for the accepter must

depend upon the physical configuration of the sys

tem, and will be given in Section 1.4.

There should also be some provision for notifying

a user if his command is rejected, but we will ignore

this problem. Implementing such notification would

require only a simple addition to our algorithm.

Having introduced the accepter, we can now

require that the response to ever)' accepted command

be generated within A seconds after the command is

issued, for some fixed parameter A. The value of A

must depend upon the physical details of the system.

For any general algorithm, one can only express A in

terms of worst-case message transmission and

response times.

The "functioning" of the system mentioned in

Goal 1 can be defined by this requirement plus some

condition on when commands must be accepted.

Note that because we want to reglect the implementa

tion of the distributor, we merely require that the

response be generated within A seconds. We will not

worry about when it reaches the user(s).

1.3. Tfie physical system

Fig. 2 shows the logical specification of the sys

tem. We now describe the "physical" system of pro

cesses with which this logical system must be imple

mented. We assume a network composed of processes

and one-way communication lines, such as the one

shown in fig. 3. A process can communicate with a

neighboring process by sending messages over a com

munication line. This might represent sending mes

sages between two processes in a single computer via

the operating system, or between two computers on

different continents via satellite. The details of mes

sage transmission will not concern us.

In an airline reservation system, the bookkeepers

would be the computers which process reservations.

The users might be the reservation stations together

with any other processes that can issue commands or

receive responses; e.g., there might be a user process

at every airport that must know how many meals to

order for each flight.

1.4. Reliability

Goals I and 2 require that the system continue to

operate correctly despite the failure or malfunction

of some physical components. Equivalently, we

require that the system continue to operate correctly

so long as a large enough portion of the network of

Commands

Commands

Commands

ACCEPTER

Commands (USER \RKsponstv
MMACHINEI

Fig. 2. Logical system when commands may be rejected.

0

1

s

T

R

1

B

U

T

0

R

Responses

*
*

Responses

U

s

E

n

s

»

/„ Lamport / Reliable distributed multiprocess systems 99

Fig. 3. A sample physical system.

processes is functioning properly. Instead of consider

ing the entire network, it is convenient to restrict our

attention to the network of bookkeepers. This will

result in a correctness condition which is not com

pletely general, and which can be satisfied only under

special assumptions. What these assumptions are, and

how the condition can be generalized, are discussed in

Section 3.2.3.

Proper functioning of communication lines

between users and bookkeepers is needed to insure

that commands reach a bookkeeper soon enough -

i.e.. within 5 seconds of when they are issued, for

some 6. Since we are ignoring the problem of dis

tributing responses to the users, we can reformulate

Goals 1 and 2 as follows.

If a large enough subnetwork m of the network of

bookkeepers functions properly, then any command

issued at a time T which is received by any book

keeper in m before time T+8 will be accepted, and

will be executed by every bookkeeper in ttl before

time 7" +A.

Note that this condition explicitly mentions only

the network of bookkeepers, and depends upon the

configuration of user processes only through the

parameter 5, To state the condition more precisely,

we must define the exact hypothesis which the sub

network m must satisfy.

We begin with an intuitive discussion. At any time,

let an amoeba be a maximal strongly connected sub-

100 L. Lamport I Reliable distributed multiprocess systems

Ibl

Fig. 4. The movement of the amoeba.

network of the bookkeeper network which is func

tioning properly. ("Functioning properly" will be

defined in Section 1.5.) In fig. 4a, suppose that book

keeper Bs lias failed and that the communication

lines joining bookkeepers B3 and B4 have also failed.

Then the shaded part of the network is an amoeba.

As components fail and are repaired, an amoeba will

retract and extend "pseudopods". If the communica

tion lines between S3 and B4 are repaired, then the

amoeba will extend a pseudopod and appeal as the

shaded part of fig. 4b. If Bx now fails, then the

amoeba will retract a pseudopod and appear as in fig.

4c. The subnetwork m in the above condition is an

amoeba.

If the bookkeepers in an amoeba are to continue

executing the user machine, then the amoeba must be

large enough. In the network of fig. 4, an amoeba

containing only two bookkeepers cannot be allowed

to execute commands. Otherwise, there could be two

separate amoebas independently executing com

mands, and they could issue conflicting responses.

This cannot happen if we require the amoeba ttl to

contain three bookkeepers.

The above condition only considers a static

amoeba m, and does not consider the movement of

the amoeba. We require the additional hypothesis

that the amoeba not move around too quickly. If the

amoeba moves as in fig. 4, then we require that it

remain in the configuration of fig. 4b for some mini

mum length of time fl. It may not jump too quickly

from fig. 4a to fig. 4c. There must be enough time for

information to flow out of bookkeeper Z?2 before

bookkeepers B2. B$ and Ba, can operate the system by

themselves. Such a requirement seems necessary, but

space limitations do not permit a discussion of why

this is so.

Having seen that the amoeba should be large

enough and not move too quickly, we must now state

these requirements more precisely. We assume that

we have specified a set of majority graphs, where a

majority graph is a strongly connected subnetwork of

the bookkeeper network. We require only that any

two majority graphs have at least one bookkeeper in

common. The amoeba is "large enough" if it contains

a majority graph.

For the network of fig. 4, we take any three con

tiguous bookkeepers and the communication arcs

joining them to be a majority graph. For a similar ring

of four bookkeepers, we might choose three majority

graphs as follows: (\)Bh B2, (2) B2, B3. fi4 and (3)

B3, B4, Bx. In any actual implementation, the choice

of the majority graphs would depend upon the topol

ogy of the network, the reliability of the individual

components, and the transmission delays along the

various arcs.

In Section 1.5, we will define precisely what it

means for (all the components of) a majority graph to

be functioning properly during the time interval

[T, T'] — the interval from time T to time T'. The

hypothesis that the amoeba be large enough and not

move too quickly can then be restated as follows: at

any time there is a properly functioning majority

graph in, and some other majority graph ffl' must

begin functioning properly at least fi seconds before

m slops functioning properly. Letting To denote the

time at which the system is started initially, Goals 1

and 2 can be restated precisely as the following cor

rectness condition.

RC. For any time T: assume that there exist times

Th Tn with T0<Tj<... <Tn<T-Q, such that

there is a majority graph m,- which functions properly

L. Lamport / Reliable distributed multiprocess systems 101

during /T,-, TM + tt] (0<i<n) and a majority

graph m,, which functions properly during [Tn,
T + A/; and let Cbea command issued at time T.

(a) If C is received by some bookkeeper in mn before

T + 6, then it will be accepted.

(b) If C is accepted then it will be executed by every

bookkeepers in mn before T + A.

The difference between Goals 1 and 2 lies in the

type of behavior we assume for the part of the net

work which is not functioning properly. Note that

RC implies that if two majority graphs mn and m'n are

functioning properly during [Tn,T+A], then the

command C will be executed by the bookkeepers in

both mn and m'n before T + A if it is received by a

bookkeeper in either one before T + 5 . Hence, RC is a

precise statement of the preceding intuitive condition

if the amoeba is defined to be the union of all prop

erly functioning majority graphs.

If the hypothesis of RC becomes false for some

time f, then it will remain false for all later times. In

other words, RC says nothing about recovery if the

failure of too many components causes the entire sys

tem to fail. In this case, we would like the system to

resume operating after enough components are once

again functioning properly. This problem is discussed

in Section 4.4.

1.5. Proper functioning

As we have already indicated, proper functioning

means doing the correct thing within a specified

length of time. A transmission arc is functioning

properly if messages are transmitted correctly over it

with a small enough delay. A bookkeeper is function

ing properly if it responds correctly and quickly

enough to an event. In our algorithm, the only types

of event to which a bookkeeper must respond are the

receipt of a message and its own clock reaching a cer

tain time. It will respond only by sending a message.

It is convenient to include the response time as part

of the transmission delay of that message, and to pre

tend that the bookkeeper responds instantly. We then

get the following condition for a majority graph m to

be functioning properly during the time interval

[ThT2].

PF1. For every time T in [Th T2J:

(a) For every bookkeeper B in ttl: D responds cor

rectly and instantaneously to any event occurring

in it at time T.

. (b) For every arc a in m: if T + 5a < T% then a mes

sage sent over a at time T is received correctly

before time T + 8a.

We emphasize that the instantaneous response of

condition (a) is purely a matter of convention, and

does not represent any physical assumption.

PF1 is a definition, not an assumption. We do not

assume thai a message sent over a will be received

within 6Q. seconds of when it is sent. If it is not, then

the arc is defined not to be functioning properly. The

5a are fixed parameters. Since response times and

transmission delays will vary statistically with time,

the choice of the 8a determines how likely it is for

the majority graph to be functioning properly.

Increasing the 5a increases the reliability of the ma

jority graph. For example, we can make 5a large

enough to allow time for several retransmissions of a

garbled message, thereby increasing the probability

that PFl(b) holds. However, the values of 6Q appear

in our algorithm, and increasing them will also

increase the system response time A. The choice of

the 5a therefore involves a tradeoff between reliabil

ity and response time.

To simplify the exposition, we will describe our

algorithm in terms of knowledge rather than book

keeper states. We say that a bookkeeper "knows"

some fact when it has received enough information to

enable it to deduce that fact. We will not bother to

describe the actual algorithm for determining the

bookkeeper's state of knowledge.. We assume an oper

ation whereby a bookkeeper broadcasts information

to all other bookkeepers. Since a bookkeeper need

not receive any information it already knows, the

actual messages sent in broadcasting information will

depend upon each bookkeeper's knowledge of what

the other bookkeepers know. In order to avoid the

details of how information is broadcast, we supple

ment condition PF1 with the following condition.

PF2. For any time T during [Tj, T2 - ej and any

bookkeepers Bj and St in BI: any information being

broadcast which either originates at or reaches Bj at

time T will reach B2 before time T + e.

We have introduced a new parameter e. For an

appropriate implementation of the broadcasting

mechanism in terms of message transmission, e will be

a function of the 5Q, and condition PF2 will follow

from PF1. The value of e does not appear in our algo-

ritlim, so it is just a descriptive parameter which

allows us to find worst-case bounds for A and fi.

Note that PF2 introduces requirements on how infor-

102 L. Lamport f Reliable distributed multiprocess systems

illation must be routed in any implementation of the

broadcast mechanism.

We define proper functioning of the majority

graph m during [Tx, T2] to mean that PF1 and PF2

hold. This definition completes our specification of

condition RC. Our task is to find an algorithm satis

fying RC for some values of A and Q. These values

wi!! be functions of e and the 5Q.

We must point out that there are more implemen

tation details hidden in PF2 than meet the eye. An

example of the information that will be broadcast is

the sequence CT of all accepted user machine com

mands issued on or before time T. At first glance, this

appears to be an impractically large amount of infor

mation to transmit. However, CT will already have

been broadcast for some earlier time T'. Therefore,

the only new information to be transmitted is the

sequence of accepted commands issued between T

and T, which will usually consist of at most one com

mand. Hence, at second glance, there seems to be no

problem.

Unfortunately, there is still a problem when

restarting a failed bookkeeper, or updating one that

has lost communication with the amoeba. Broadcast

ing CT to a recently revived bookkeeper requires

sending it all accepted commands issued from the

time it failed until T. This means that if the book

keeper is in m, then PF2 will not be satisfied for a

reasonable value of e until that bookkeeper has

received all the information which was broadcast

while it was not functioning. Had we not introduced

PF2, the time needed to update a failed bookkeeper

would have to be included in H. We will make some

general remarks in Section 4.4 about restarting a

failed bookkeeper, but space limitations preclude any

detailed discussion of the problem.

2. A special case

2.1. Assumptions

In Section 2, we describe an algorithm for the sim

plest non-trivial case: the complete network of three

bookkeepers shown in fig. 3. Each pair of bookkeep

ers Bh B2 and the arcs joining them form a majority

graph which we denote by Wlt B2). For convenience,

we assume that all the 5a are the same, and are equal

toS.

Our objective is to achieve Goal 1, so we assume

that no malfunction occurs. A failed bookkeeper

need never respond to an event, and a failed transmis

sion line may lose a message or delay it arbitrarily

long. However, we assume that if a bookkeeper does

respond then it responds correctly, and if a message is

transmitted then it is received correctly. Malfunction

ing will be discussed in Section 4.3.

Our algorithm requires that each bookkeeper and

user process have a clock which keeps physical time.

For our special case, we assume that these are ideal

clocks which are perfectly synchronized with one

another, and which keep exact time. Hence, at any

time T, each clock will have the value T. The case of

real clocks will be considered in Section 3.2.

2.2. The synchronizer

Our assumption of perfect clocks makes it easy to

implement the synchronizer of fig. 2. When a user

process issues a command, it attaches to it a time-

stamp equal to the current time (which it reads from

its clock). We let T.C denote the command Cwith

the timestamp T. The user issues the command by

sending the message "T.C to one or more bookkeep

ers.

The synchronizer is implemented by letting the

command T.C precede the command T':C' in the

user machine's command sequence if T<T'. If

T=T\ then we assume some method for defining

which of the two commands comes first. The method

can be arbitrary, but all bookkeepers must indepen

dently make the same choice. We then have a total

ordering of all commands, which is precisely what the

synchronizer must produce. Condition SC is satisfied

because we are assuming perfect clocks.

We let CT denote the set of all accepted user ma

chine commands T'.C' with T' < T. In order to exe

cute a user machine command, it is sufficient (but

not always necessary) for a bookkeeper to know the

complete sequence of user commands up to and

including that command. Hence, a bookkeeper can

execute an accepted command T.C when it knows

C . Our task is to insure that all the bookkeepers in

the amoeba know CT before time T + A. We assume

that the time To is before any commands are issued,

so CT° is empty.

2.3. The algorithm

The basic idea of our algorithm is to have each

bookkeeper vote on whether to accept or reject a

command. A command is accepted if and only if it

L Lamport / Reliable distributed multiprocess systems 103

receives two acceptance votes. To satisfy RC, we

must design a voting algorithm so that if (Bh B2) is

functioning properly, then fij and B2 will be able to

decide by themselves whether a command is accepted

or rejected. This means avoiding the situation in

which one of them has voted to accept a command,

the other has voted to reject it, and they do not know

how the third bookkeeper voted. Such a deadlock is

avoided by the following rule for casting acceptance

votes.

ARL

(a) If a bookkeeper receives a "T:C" message from a

user process before time T + 5, then it:

(i) votes to accept the command T:C, and

(ii) sends an "I vote to accept T:C" message to

each other bookkeeper.

(b)If a bookkeeper receives an "I vote to accept

T:C" message before time T + 2b, then it:

(i) votes to accept the command T:C, and

(ii) broadcasts T:C and the fact that it was

accepted.

Rule AR1 states when a bookkeeper will vote to

accept a command. Il therefore implies which com

mands the bookkeeper will vole to reject. It is neces

sary for the bookkeeper explicitly to cast these rejec

tion votes. At time T+28, the bookkeeper will no

longer vote to accept any command timeslamped on

or before T. It can thus send messages to the other

bookkeepers at time T +25 stating that it is now

voting to reject any command timestamped on or

before T which it has not already voted to accept. (In

this way, it can vote to reject commands it does not

even know about.) To describe tliis in terms of broad

casting information, we let Vq denote the set of all

commands timestamped on or before T which book

keeper B has voted to accept. We then make the fol

lowing rule for casting rejection votes. [Part (b) of

the rule will be given later.]

AR2. (a) When a bookkeeper B knows both (i) that a

command T:C has been issued, and (ii) Vq, then it

broadcasts Vg.

Of course, bookkeeper B knows V$ at time

7"+25, If a command has already been accepted,

then it no longer matters whether or not B voted lo

accept it. Hence, ifB knows that the command T:C'

has been accepted, then it may omit it from the set

V'b which it broadcasts. (The fact that T':C was

accepted has already been broadcast according to rule

ARl(b).)

Let Clri'r2l denote CT2-CT*, the set of all

accepted commands 7':Cwith Tt < T<T2. Similarly,

we define K^7"1-7"2' to equal V^2 - V\\. We first
prove the following result. ,

Proposition 1. Assume that each bookkeeper obeys

rules ARI and AR2(a), and that the majority graph m

functions properly during [Th T + 2h +2e], where

(a) If any bookkeeper in m votes to accept the com

mand T:C, then it will be accepted.

(b) If the command T:C is accepted, then every book

keeper in m will know C'ThT^ before time

T+2B +2e.

Proof. Let m = {BlrB2), let T'.C be any command

with 7", < T' < T._ and suppose that 5, votes to

accept T':C'. It can do so only by rule ARI, so we

consider the following two cases.

Case (i)\ Bl votes to accept T':C by ARl(a). In

this case, B^ will send an "/ vote to accept T'.C'"

message to B2 before T' + 5. By PFI, B2 will receive

that message before T + 26. By ARI(b), B2 will then

also vote to accept T'-C, so it will be accepted. Rule

ARl(b) also implies that B2 will then broadcast the

fact that T':C is accepted, so PF2 implies that B}

and B2 will both know that T':C' is accepted before

T' + 25 + e. Since B1 and B2 both learn about the

command T'.C' before 7*'+ 25, AR2(a) and PF2 im

ply that they will both know V%1 and V.q2 before

T + 25 + e.

Case (ii). 5, votes to accept T'.C by ARl(b). This

implies that B^ broadcasts the fact that T':C is

accepted before T + 2b, so PF2 implies that B2

learns this fact before T + 25 + e. By rule AR2(a),

B2 must therefore broadcast V% before T + 25 + e;

so by PF2, Bi learns VTB^ before 7"(+ 25 + 2e. More
over, by AR2(a)(, Bx broadcasts V%2 at time T + 25,
so B2 knows K£j before T + 25 + c.

In both cases, T:C' is accepted. Letting T:C'~

T:C, tin's proves part (a). Moreover, we have also

proved that for any command T\C' in Kjj ''
U V[J^T]: (1) fij and B2 will know that T':C has
been accepted before T + 25 + e, and (2) B^ and B2

will both know VlJi;T i U V*Ji>T ' before T + 25 +
"1 "2

2e. But since a command cannot be accepted without

an acceptance vote from either fl, or B2, each book

keeper knows that C|ri'r| C V\fi-T] U V^>T\

so tins proves part (b). D

104 L Lamport / Reliable distributed multiprocess systems

Proposition 1 essentially slates that the amoeba is

large enough if it contains a majority graph. However,

it does not permit the amoeba to move around. The

problem is that rules ARl and AR2(a) only generate

messages when a command is issued. If a bookkeeper

does not hear from the other bookkeepers, it could

be either because of a failure or because no com

mands were issued. We must introduce new rules to

remedy this,

First, we augment rule AR2(a) so a bookkeeper

casts its rejection votes at least once every t seconds,

where r>25 + e is a new system parameter.2

Increasing r will decrease the number of messages

that must be sent when there is no activity, but it will

also increase the value of O in condition RC.

AR2. (b) For every time T: a bookkeeper B must

broadcast Vg before time T + r for some T' > T.

Rule AR2(b) allows us to prove the following

result.

Proposition 2. Assume thai each bookkeeper obeys

rules ARl and AR2, and thai a majority graph ffl

functions properly during jTj, T' + r + ej, where

Tj < T. Then every bookkeeper in m knows C' h '

before T + t + e.

Proof. Let m = (Bh B2), and let T' be the earliest

time such that Ti<T*< Tand V^'-T] U V[Z'-T] iis
empty. If T' > Tu then Proposition 1 implies that B]

and B2 both know C17"'-7"1 before 7n' + 26 + 2e<

T + T + e. If T'-Tu then they trivally know

C1' l'T ', since it is empty by definition. They will
also know that c'7'1^ is empty, and thus know
C|7"i'r|, when they know KJJ, U VTBr But AR2(b)
and the hypothesis that PF2 holds implies that this

will occur before T+T + e. D

Finally, we add the following rule to assure that

knowledge of CT is broadcast,

AR3. For every time T: a bookkeeper broadcasts CT

as soon as it knows it.

We will not bother to write the precise rule for

when a bookkeeper knows CT. We merely observe

that a bookkeeper knows C if it knows C ' and

■ The dependence of t on e seems to contradict our earlier

statement that the algorithm is independent of the value

of e. However, the constraint thai r > 25 + e is introduced

only to simplify our expressions of A and n as functions

of e. This constraint should hold in any practical imple

mentation.

C' li™. We can now prove the correctness of our
algorithm. (Remember that we are assuming that

there may only be failures, but not malfunctions.)

Theorem. A network of three bookkeepers obeying

rules ARl -3 satisfies condition RC with A = 25 + 2e,

and $1 = t + 2e.

Proof. Part (a) of RC follows immediately from rule

ARl(a) and part (a) of Proposition I. We now prove

part (b). We can obviously assume that m,^m,-+1.

We first show that for each /' = 0, ...,n: every book

keeper in m;- knows CTi before Tj + r + 2e. The proof

is by induction on /. Since CT° is empty by defini

tion, the result is trivial for /= 0. Assume that it is

true for all /</, with 1 </<«. Let mj_l = (/?,, B2)

and n)j = (B2, B3). By the induction hypothesis, B2

knows C7"/-! before 7)_j +r + 2e. By Proposition 2,

B2 knows C[TJ-i<TJ] before 7/ + r + e. This implies
that B2 knows CTi before maximum (7}_, +r + 2e,

Tj + t + e)< Tj + t + 2e. Thus, we need only show

that B3 knows CTi before 7) + r + 2ff. We consider
two cases.

Case (i): /= 1 or 7)_, < 7) - e. In this case, B2

knows both CTi-i and C^Ti-^'Ti\ and thus knows
Cri, before Tj + r + e. Rule 3 thus implies that B2

broadcasts CTi before 7) + 7 + e, so the hypothesis of

RC and PF2 imply that B3 learns CTi before 7) + 7 +

26.

Case fiij: /> 1 and 7)_] > 7) —e. In this case, (he

hypothesis of RC implies that m/_2 functions prop

erly during [7}_2, Tj+r + e]. By the induction hy

pothesis, each bookkeeper in niy_2 knows CTi~2

before 7)_2 + 7 + 2e, and hence by Proposition 2

knows C7/ before maximum (Tj_2 + r + 2e, Tj + r +

e)<Tj + T + 2e. But ffly_2 =£ mj_i ^ mf implies that

B3 is in ttly_2, completing the induction proof.

Letting / = n, we have thus shown that each book

keeper in mn knows CT" before time Tn + Q < T.

Proposition 1 implies that each bookkeeper in mtl

knows ClT»-T] before T+ A. Hence, each book
keeper in m,, knows CT, and will therefore execute

T:C, before T+ A. Q

2.4. Discussion of the algorithm

It is an interesting feature of our algorithm that a

bookkeeper never asks whether a transmission line or

another bookkeeper is functioning properly — or even

whether it is itself functioning properly, It just

blindly follows the rules, confident that condition RC

/,. Lamport I Reliable distributed multiprocess systems 105

will be satisfied. It is easy to detect "dead" compo

nents which do nothing for a long period of time, and

some mechanism for detecting them should be

included so they can be repaired. However, this is an

implementation detail which does not concern us.

The impor'.ant fact is that transient failures, such as

lost messages, do not have to be delected. (Of course,

in the implementation of the broadcasting mecha

nism, a process must keep trying to send information

until it learns that it was received.)

Stating our rules in terms of broadcasting informa

tion simplified the analysis of the algorithm. How

ever, to understand the actual behavior of the algo

rithm, we must consider how it is implemented in

terms of message sending. To do this without intro

ducing a mass of uninteresting details, we make two

simplifying assumptions: (1) every message is eventu

ally received, and (2) messages sent over any single

arc are received in the same order as they are sent.

The first assumption eliminates the need for special

procedures to restart a failed bookkeeper, and the

second assumption avoids having to keep track of

message numbers.

Implementation of rules ARI-3 under these

assumptions is straightforward, and the details will be

left to the reader. We merely mention that such an

implementation has the following properties.

(i) Broadcasting V% is done by having B send any

message to the other bookkeepers timestamped

on or later than T + 25.

(ii) Broadcasting CT involves sending the message '7

have already notified you of all accepted com

mands timestamped on or before T."

Suppose that a command is sent to only one book

keeper. A naive count indicates that our algorithm

generates 26 messages between the bookkeepers in

order to execute the command. By eliminating mes

sages containing unnecessary information, and com

bining the messages generated by rules ARl(b) and

AR2(a), one finds that at most 14 messages need to

be sent. This is still a large number. However, only

four of these messages contain the command T.C; the

rest contain only the timestamp T plus a few bits of

information. Hence, the total amount of information

being sent is not very large. The total number of mes

sages can be reduced by combining several messages

(generated by different commands or by other activ

ity) into a single message. This allows one to decrease

the total number of messages at the cost of increasing

e (because information is buffered instead of being

sent immediately), thereby increasing the system's

response time A. A more thorough discussion of such

implementation details is beyond the scope of this

paper.

3. The general algorithm

3.1. An arbitrary network

We have considered our algorithm in detail for the

special case of a three bookkeeper network. We now

describe how it can be generalized to a collection of

majority graphs in an arbitrary network. We use the

same basic idea of having each bookkeeper vote on

whether or not to accept a command. The obvious

generalization of requiring two acceptance votes is to

let a command be accepted if and only if every book

keeper in some majority graph votes to accept it.

Voting rule AR1 must therefore be generalized, but

we have stated rules AR2 and AR3 in a sufficiently

general form so they do not have to be changed.

Rule AR1 was designed so that if one bookkeeper

in a properly functioning majority graph votes to

accept a command, then that command will be

accepted. We must generalize AR] so that this prop

erty holds for an arbitrary network. This is done as

follows. If a bookkeeper B] receives a command T.C

from a user before time T + 8, then it initiates a cas

cade of voting messages. Each message in the cascade

is of the form "Bi and B2 and... and Bk have voted

to accept T:C". which is sent by bookkeeper B^. If

bookkeeper 5^+1 receives this message early enough,

then il votes to accept T.C. If the set of bookkeepers

/?i, ...,5fc+1 does not contain all the bookkeepers in

some majority graph, then 5/f+1 continues the cascade

by sending the message "Z?j and ... and Bk+i have

voted to accepted T.C" to one or more other book

keepers. The rules for generating this cascade must be

such that for any majority graph m, proper function

ing of m will guarantee acceptance of the command if

any singie bookkeeper in m votes to accept it.

As an example, we consider the five bookkeeper

ring of fig. 4 in which any three adjacent bookkeepers

and the arcs joining them form a majority graph.

Fig. 5 defines the message cascade generated by a

command T:C arriving at bookkeeper Bx, where u

denotes has (have) voted to accept. Each solid circle

represents the casting of an acceptance vote. Let 5Q

be the parameter defined by PF1 for the arc a from

B\ to B2 ■ Bookkeeper B2 casts its acceptance vote

106 L. Lamport j Reliable distributed multiprocess systems

Fig. 5. A voting message cascade.

and sends its "Z?j and B2 0 T:C" messages if it

receives the message "B^ v T:C" before time T+& +

Sa. Similarly, Z?3 votes to accept T:Cif it receives the

message *1j31 and Bi\)T:C" before 7"+5+5a + 5(j,

where 0is the arc from B2 to S3,

Observe that if B^ votes to accept the command,

then the proper functioning of any of the three ma

jority graphs containing B] guarantees that it will be

accepted. Moreover, suppose that the majority graph

composed of B2, B3, and 54 is functioning properly,

and the "fij uT:C" message reaches B2 before r +

5 + 5a. Then the command will be accepted regardless

of whether Bx is functioning properly. (The proper

generation and transmission of the "#] v T:C" mes

sage could have been a fluke.)

There will be a similar message cascade for each of

the other four bookkeepers. If the same command

may be sent to more than one bookkeeper, then how

a bookkeeper will respond to a message from one cas

cade may be changed by the receipt of a message

from another cascade initiated by the same com

mand. The idea is simple but the details are compli

cated.

The generalization of rule ARl(b) is simple. As

soon as a bookkeeper learns that the command T:C

has been accepted, it broadcasts T.C and the fact that

it was accepted to all other bookkeepers. In the cas

cade of fig. 5,BS or BA will know that T:C has been

accepted when it casts its acceptance vote. Book

keeper Bx will know that T:C has been accepted if it

receives the two incoming messages to the dashed

node of fig. 5. Note that these two messages are

needed to insure that some bookkeeper learns of

T:Cs acceptance in case £3 and BA have failed.

One can define a message cascade for an arbitrary

network, and state the conditions it must satisfy in

terms of the set of majority graphs. One can then give

a precise generalization of rule AR1, and prove the

correctness of the resulting algorithm by proving the

appropriate generalizations of the propositions and

/,. Lamport / Reliable distributed multiprocess systems 107

theorem of Section 2.3. However, this requires devel

oping quite a bit of formalism, and is rather tedious.

If the reader understands the basic idea, then for any

given network and collection of majority graphs he

should be able to design a suitable message cascade

and prove that the resulting algorithm satisfies condi

tion RC.

3.2. Real clocks

So far, our algorithm has been described in terms

of perfect clocks, all ticking in unison at precisely the

correct rate. However, real clocks are not perfect, and

they run at only approximately the same rate. To

keep tiie times indicated by different clocks from

drifting arbitrarily far apart, there must be some

method for synchronizing them. Moreover, real

clocks can malfunction. 3 We want the system to

function correctly despite the malfunctioning of indi

vidual clocks. We discuss the problem of using real

clocks in stages: first discussing how clocks are syn

chronized, then considering successively less perfect

clocks.

3.2.L Synchronizing the clocks

Let Cj(T) denote the time indicated by process fs

clock at real time T. For convenience, we assume that

the clock is continuously advanced by some mecha

nism at the rate dC,<T)/dT. (A discrete clock can be

thought of as a continuous one in which there is an

error of up to \ tick when reading it.) For a perfect

clock, i\Cj(T)!dT always equals 1.

The method for synchronizing clocks was dis

cussed at lengtfi in [1]. Whenever a process sends a

message, il affixes to it a timcslamp containing the

current value of its clock. If a process receives a mes

sage witli a timestamp later than the current value of

its clock, then it advances its clock (discontinuously)

to read later than that timestamp. We say that the

clock Cj is functioning properly if \dCj(T)/dT - 11 is

less than some fixed parameter k, and the algorithm

for discontinuously advancing C,- is executed cor

rectly.

It is shown in [1] that if clocks are synchronized

in this way, then our method of ordering commands

3 Strictly speaking, a malfunctioning clock is one which

ticks at the wrong time, thereby ticking at an incorrect

rate; while a failed clock is one which docs not tick at all,

so its rate of ticking is zero. We can regard a failed clock

as one which is malfunctioning in a special way.

by their timestamps satisfies condition SC of Section

1.2.2. We also derived in [1] the following bound on

how far apart the readings of different clocks could

become. Assume that:

(i) Every clock functions properly,

(ii) For every arc, at least once every a seconds some

message is transmitted over that arc witli an un

certainty in its transmission delay of at most £

seconds.

(iii) For every pair of processes, there is a path from

one to the other containing at most D arcs.

Then the following approximate inequality holds for

all i, j and T.

\Ct(T) - C,(T)\ < D{2ko (3-

3.2.2. Almost perfect clocks

We now assume that clocks never malfunction, so

we can use the above synchronization method and

obtain the inequality (3-1) for some very small value

of k. (In practice, one can easily obtain clocks for

which k < 10~6.) In other words, we assume that even

if a process fails, its clock keeps running. The param

eter o represents the maximum "down time" of any

process or transmission line. We assume that no is

small — at most of the same order of magnitude as £.

Then (3-1) gives a reasonably small upper bound on

the amount by which any two processes1 clocks can

differ. It is then easy to modify our algorithm as fol

lows to compensate for this difference.

For the three bookkeeper case, we use (3-1) to

find quantities §' and 5" with 5 <5' <5" such that

for all processes / and /(including user processes) and

all T, the following relations hold.

C)(T) + 25' 2b (3-2)

If we restate our rules in the obvious way in terms of

clock times, replace 6 by 5' in rule AR1, and replace

t by (1 - k)t in rule AR2(b), then it can be shown

that the propositions and theorem of Section 2.3

hold with 5 replaced by 5". Note that condilions

PF1, PF2 and RC are stated entirely in terms of

actual times, not clock times. A correctness condition

stated in terms of clock times can be satisfied by sim

ply stopping all the clocks.

The algorithm for an arbitrary network can be sim

ilarly modified to work for clocks satisfying our

assumption. It is a straightforward generalization of

108 L. Laivport / Reliable distributed multiprocess systems

the method used for three bookkeepers, and will not

be discussed.

3.2.3. Monotonic clocks

We now consider clocks which can malfunction by

running at arbitrary rates. However, we assume that

they always increase monotonically and never run

backwards. We want the system to function correctly

so long as a large enough portion of the network of

processes function properly, where proper function

ing includes the proper functioning of its processes'

clocks. Since the proper functioning of input pro

cesses' clocks is important, we cannot prove a correct

ness condition such as RC which only assumes the

proper functioning of bookkeepers. Condition RC

must be modified to require that the command Cbe

issued by a user process in some properly functioning

network containing the majority graph ff\u. The idea

is straightforward, and we will omit the details.

Simply modifying RC does not solve our problem.

The difficulty caused by malfunctioning clocks is

illustrated by the following example. Suppose that in

the three bookkeeper case all the bookkeepers are ini

tially functioning properly, and the following sce

nario occurs.

l.B1 receives a command timestamped 7": C which it

votes to accept, and sends an "/ vote to accept

T:C"message to B2 and B3.

2.£3's clock malfunctions by jumping ahead, and it

sends some message timestamped 7'' » T to B2.

3. B2 receives B^'s message (before receiving fij's) and

advances its clock to T', thereby implicity voting

to reject T'.C.

4.53 fails (perhaps shut down by a malfunction

detector).

We then have the situation in which B{ lias voted to

accept T'.C, B2 has voted to reject it, and B3 has

failed before informing the other bookkeepers of its

vote. Hence, Bx and B2 will not know if T:C is

accepted until B3 is repaired.

A rather complicated modification to our algo

rithm is needed to enable it to cope with malfunc

tioning clocks. It requires each bookkeeper to main

tain several clocks. These clocks all run at the same

rate, but they have different rules for synchronizing

witli other processes' clocks. We indicate how this can

be done in the three bookkeeper case. To avoid

having to modify condition RC. we make the simpli

fying assumption that each user process communi

cates with only one bookkeeper, and its clock is per

fectly synchronized with that bookkeeper's clock.

(For example, the user process and the bookkeeper

could be located at the same site, and use the same

physical clock.) Each bookkeeper £,- has one clock Ct

which it uses in applying rule ARl(a), and a clock C*

wluch it uses in applying rule ARl(b) to messages

from bookkeeper Bk. Instead of (3-2), we then need

the following relations to hold for all k and T when

ever Bj and Bj are in a properly functioning majority

graph.

C!(T+5)<CI(T) + 5' ,

These relations can be maintained despite the mal

functioning of the third bookkeeper's clock by syn

chronizing all the clocks as before except for the fol

lowing case. If i^j^k, then bookkeeper Bj does

not advance C\ immediately after receiving a later

limestamp from Bk. Instead, it sends a message to Bj

timestamped according to Cj and waits for 25(1 +«)

seconds before advancing C\.

The precise details of how this is done are beyond

the scope of this paper. We intend to discuss the

method in a more general context in a later paper.

3.2.4. Non-mono tonic clocks

Finally, we consider the case in which a malfunc

tioning clock need not increase monotonically, but

may jump backwards. This creates no problem In syn

chronizing the clocks. Only clocks which run too fast

cause trouble; clocks which run slow are harmless.

However, when a bookkeeper's clock jumps back

wards, it means that the bookkeeper has forgotten

the clock's previous higher reading. This is likely to

imply that the bookkeeper has also forgotten about

other actions it had taken. For example, it might have

voted to reject certain commands by rule AR2. A

backward running clock could cause it to vote to

accept commands it had previously voted to reject.

Such a lapse of memory must be treated as a book

keeper malfunction. Malfunctions will be discussed in

Section 4.3.

4. The total system

We have described an algorithm for implementing

a given user machine which achieves Goal 1, We now

want to consider how this algorithm can be used as

part of a reliable total system. Since different systems

L, Lamport / Reliable distributed multiprocess systems 109

will vary widely in their details, our discussion will be

limited to a few general observations.

4.1. The user machine clock

User machine commands are executed in order of

increasing timestamp. This allows us to define an

abstract user machine clock such that the command

T.C is executed at user machine time T. For conve

nience, we assume that the time T is an integer. We

define the user machine clock lo be part of the user

machine stale, and let t(S) denote (he lime of state S.

The execution mapping e defined in Section 1.2.1 is

then restricted by the condition that e(T:C, S) =

(R,S') only if T= t(S) = t(S'). I.e.. a command is

executed only when its timestamp equals the user

machine time, and its execution does not change the

user machine time.

We also define a mapping i: S-*S XR such that if

t(S) = (S',R), then t(S) = t(S)+\. The mapping/

specifies what happens when the user macliine clock

ticks. If the user machine is in the state S at time

t(S), then i(S) = (S', R) means that at time t(S) + 1

the user machine goes into state S' and generates the

response R. (R will usually be null.) We have thereby

introduced the possibility of the user machine per

forming a spontaneous action at a certain time. For

example, we can define / for an airline reservation sys

tem so that all unconfirmed reservations are automat

ically cancelled 24 h before the scheduled departure

time.

Such spontaneous user machine actions may be

necessary for the entire system lo achieve Goal 1. In a

distributed file system, Goal 1 may require that a

failed user not tie up any files. Proper functioning of

a user machine with ordinary acquire and release

commands does not suffice, since a user could acquire

a file and fail without releasing it. The user machine

must be designed so that a file is automatically

released at some fixed time after it is acquired.

Suppose we require that a bookkeeper always wait

until time T+ A (on its clock) before performing any

user machine action at user machine time T. With per

fect clocks, we then know thai every bookkeeper in a

properly functioning majority graph executes Ihe user

machine in real time so that the user machine's clock

reads precisely A seconds less than the correct time,

For the case of almost perfect clocks discussed in Sec-

4 We must modify AR2(a) so that the bookkeeper B also

broadcasts k£ when it knows that a spontaneous user ma

chine action should take place at time T.

tion 3.2.2, the different bookkeepers will execute the

user machine in almost perfect synchrony - at any

moment, the discrepancy in their clock readings will

be less than some constant.

4.2. Queries

Each bookkeeper must maintain its own copy of

the user machine state. Multiple copies of data can

reduce transmission costs by having each user access

the nearest copy. We have required that a user ma

cliine command be executed by every bookkeeper.

This was necessary because a command might change

the user machine state. However, there are certain

commands, called queries, which cannot change the

user machine state. The airline reservation system

command '7/ow many seats are left on Flight 123 for

2/7/80?" is an example of a query. A query need

only be processed by a single bookkeeper. In general,

the use of multiple bookkeepers can reduce transmis

sion costs only if most data transmission is the result

of queries.

We list three ways In which a bookkeeper can han

dle queries. The choice of which to use will depend

upon the needs of the particular system.

l.The query can be given a timestamp T, and the

response based upon the user machine state at time

T. For example, the query might be "12:01 PM

1/31/80: How many seats are left on Right 123

for 2/7/80?" The response would then be "27 seats

left", meaning that there were 27 seats left at user

machine time 12:01 PM 1/31/80. Note, however,

that a response lo the query T.Q by time T + A

cannot be guaranteed unless the other bookkeepers

are informed that a query was issued at time T. If

the query is received after the bookkeeper has for

gotten what the user machine state was at time T,

then it must be rejected.

2. The query can be issued without a timestamp, and

the response based upon the latest user machine

state which the bookkeeper knows. For example,

the query "How many seats are left. . .?" issued at

12:01 PM on 1/31/80 might generate the response

"At 11:59 AM 1/31/80 there were 29 seats left."

Unlike method 1, the response can be generated as

soon as the query is received. The query need never

be rejected.

3. The query can be issued without a timestamp, and

the response based upon the latest information

available to the bookkeeper. For example, suppose

the bookkeeper receives the query "How many

110 L. Lamport / Reliable distributed multiprocess systems

seats arc left?" at 12:04 PM 1/31/80 (on its

clock); it knew that there were exactly 29 seats left

at user machine time 11:59 AM; and it had

received commands timestamped between 11:59

AM and 12:03 PM requesting two seats. It could

guess that those commands would be accepted and

there would probably be no further commands

timestamped before 12:03 requesting seats on that

flight. It would then respond as follows: "There

are probably 27 seats left as of 12:03 PM 1/31/

80." As with method 2, the response can be issued

when the query is received, and no query need be

rejected.

4.3. Goal 2: malfunction and security

The use of multiple bookkeepers introduces con

siderable redundancy. We would like this redundancy

to prevent the malfunctioning of individual book

keepers or transmission lines from causing errors.

However, without further precautions, multiple book

keepers could mean multiple sources of error. Rather

than restricting ourselves to bookkeepers errors, we

will consider the larger problem of making the total

system satisfy Coal 2.

The execution of commands proccdes in three log

ical steps: (1) the user transmits a command to the

user machine, (2) the user machine executes the com

mand, and (3) the response is transmitted to the

user(s). This leads to three possible types of error: (1)

incorrect input command, (2) incorrect user machine

execution, and (3) incorrect transmission of the

response. These three types of error will be consid

ered separately. First, however, we discuss the rela

tion between Goal 2 and security.

4.3.1. Security

A system is secure if it is very difficult to cause it

to perform an unauthorized operation or to divulge

information without authorization. 5 To get the sys

tem to perform an unauthorized operation, a ''knave1'

must cause some part of the system to perform incor

rectly - in other words, he must generate a malfunc

tion. The only difference between knavery and ordi

nary malfunctioning is that a knave may cause mis

behavior which would be unlikely to occur because of

5 We ignore the problem of insuring that the performance

of an authorized operation cannot cause a security viola

tion. Strictly speaking, that is a problem of program cor-

rectness and not of security.

natural malfunctioning. Hence, the only difference

between preventing unauthorized operations and

achieving Goal 2 is the class of errors one tries to han

dle. Although they may require drastically different

implementations, the two problems are conceptually

the same. For example, transmission errors can be

detected by introducing redundancy into the mes

sages. However, ordinary redundancy checks offer no

protection against a knave trying to intercept and

modify a message. To guard against knavery, the

redundancy check must be a cryptographic message

authentification mechanism, as discussed in [2].

Preventing the unauthorized divulging of informa

tion is a different problem. Whereas redundancy can

help prevent unauthorized operations, the fact that

multiple copies of the information are needed makes

it harder to guard that information. Each copy must

be guarded just as if it were the only one, so no new

techniques are required. We will therefore not discuss

this problem.

4.3.2. Incorrect input commands

An error can occur in an input command, or a spu

rious command can be generated, by a malfunction in

either (i) a user process, (ii) a transmission line, or

(iii) a bookkeeper. For example, a malfunctioning

bookkeeper could generate an "1 vote to accept T:C"

message for a non-existent command T:C. The latter

two sources of error are handled by adding redun

dancy to the commands, so that an erroneous com

mand has a high probability of being recognized. The

user machine is designed so that an erroneous com

mand does nothing more than generate the appropri

ate response to report the error.

Note that all bookkeepers must use the same algo

rithm for recognizing erroneous commands. This

means that to foil a knavishly malfunctioning book

keeper, knowledge of the authentication algorithm

must not allow one to forge a command easily. Such

an algorithm has recently been proposed in [5J.

Redundancy checking cannot prevent an incorrect

command from being generated by a user process,

because the correct redundancy can be added to an

erroneous command. Guarding against this possibility

requires separate, redundant commands issued by dif

ferent users. The user machine can be designed so

that certain critical operations arc performed only

after the appropriate commands have been issued by

several different users within some fixed length of

time. The introduction of incorrect commands to

execute such a critical operation would then require

L. Lamport / Reliable distributed multiprocess systems 111

the simultaneous malfunction of several user pro

cesses.

4.3.3. Incorrect user machine execution

Each bookkeeper separately simulates the execu

tion of the user machine. A malfunctioning book

keeper obviously cannot be expected to perform this

simulation correctly. However, we must prevent it

from causing the other bookkeepers to make errors.

More precisely, we want to guarantee that every

bookkeeper in a properly functioning majority graph

will correctly execute user machine commands

despite the malfunctioning of bookkeepers or trans

mission lines outside that majority graph.

To illustrate the nature of the problem, consider

the following scenario for the three bookkeeper case

in which bookkeepers Bl and B2 are functioning

properly but S3 is malfunctioning.

l./?3 sends an '7 vote to accept T\C message tofij,

but not to Z?2.

2.B1 receives B$s message, voles to accept T.C, and

broadcasts the fact that T.C is accepted (by

ARl(b)).

3. B2, not having heard about T.C, implicitly votes at

time T + 25 to reject it.

4. B3 (incorrectly executing AR2(b)) sends B2 a mes

sage stating that it voted to Teject T\C.

5.(a)B2 receives B^s message stating that T.C is

accepted.

(b) B2 receives i?3's message stating that it voted to

reject T.C. and concludL's I hat 7":Cis rejected

because it received Iwo rejection votes.

At this point, B2 knows that there has been a mal

function. However, if Bj persists in telling B\ that it

voted to accept T.C and telling B2 that it voted to

reject T:C, then there is no way for B2 to decide

whether it is Z?, or B3 that is malfunctioning. Simi

larly, 5, will not know whether B2 or fl3 is malfunc

tioning.

To solve this problem, we first recognize that the

information transmitted between bookkeepers can all

be expressed in terms of acceptance and rejection

votes. In the above example, the information thai

7:Cis accepted (broadcast by Bx) was based upon the

votes by 5, and fi3 to accept T.C. We can then intro

duce the following rules for the bookkeepers to fol

low.

MR1. All information is transmit fed by sending

acceptance and rejection votes, rather than

being summarized in any way. For example.

the message "B} and B? u T:C" in the cascade

of fig. 5 includes the actual votes generated by

B,andB2.

MR2. Each bookkeeper redundantly encodes its votes

in such a way that it is highly improbably for

the malfunctioning of a transmission line or

another bookkeeper to generate a correctly

encoded incorrect vote. For simplicity, we con

sider such a highly improbable event to be im

possible.

MR3. A bookkeeper ignores any information or

voting message containing a vote which is incor

rectly encoded.

MR4. If a bookkeeper receives validly encoded accep

tance and rejection votes for the same com

mand by the same bookkeeper, then it ignores

the rejection vote.

The reader can verify that if the bookkeepers obey

rules MR1-MR4, then Propositions 1 and 2 of Sec

tion 2.3 hold regardless of malfunctions outside of

the properly functioning majority graph m (provided

that the other assumptions of Section 2 still hold).

An analogous result will also be true for the more

general algorithms mentioned in Section 3. Proposi

tions I and 2 imply that the bookkeepers in ffl know

C'7"1'7"' soon enough. The obvious next step is to

insure that they also know C7"1. Unfortunately, this is

not possible for the following reason. By MR4, a mal

functioning bookkeeper can change a rejection vote

on some old command T':C' to an acceptance vote.

If T < 7", and the bookkeepers in m originally knew

that T:C' was rejected, then the changed vote might

leave them unable to decide whether T'.C' is rejected

or accepted. 6 The solution to this problem is to

insure that the following condition is satisfied for

some parameter i .

CC If T2>Tj + t', then C/T'-T^ by itself deter

mines the user machine, state at time T2 - regardless

of what commands are in CT].

Note that CC is a condition on the command

issued by the users. We will describe in Section 4.4

how this condition can be achieved. It is easy to see

that CC together with Propositions 1 and 2 of Section

2.3 imply that RC is satisfied. A careful analysis

3 It is tempting simply to ignore such a late acceptance

vote. However, we know of no reasonable way to insure

that if one bookkeeper ignores it then the others will too.

112 L. Lamport / Reliable distributed multiprocess systems

reveals that if CC holds and the bookkeepers obey

rules MRI-MR4, AR1 and AR2, then RC holds (for

three bookkeepers with perfect clocks) with A = 25 +

2e and Q, = maximum (r, t') + 2e - even with mal

functioning components. A similar result holds for

the more general algorithm. Thus, Goals 1 and 2 have

been achieved.

4.3.4. Incorrect responses

Proper functioning of a majority graph obviously

cannot prevent a malfunctioning bookkeeper or trans

mission line from generating incorrect responses.

These incorrect responses must be detected by the

user process receiving them. This requires redundancy

in the implementation of the distributor - i.e., the

user should receive (he same response from more than

one bookkeeper. The idea is simple, and we will not

discuss it further.

4.4. Recovery from failure and malfunction

We have described how to implement the system

so it continues to operate correctly as long as enough

components function properly. No system can oper

ate correctly if too many of its components fail or

malfunction. However, the system should be able to

resume correct operation after enough components

have resumed functioning properly. Incorrect opera

tion of the system defined by a user machine can be

of two types:

1. System failure: the user machine does not execute

commands,

2.System malfunction: a user process receives an

incorrect response.

As an example of system failure in our three book

keeper algorithm, suppose that all communication

arcs between bookkeepers fail. Then 5, could vote to

accept a command 7:C while B2 votes to reject it. We

want B{ and B2 to be able to execute user machine

commands if communication between them is

restored. However, the algorithm of Section 2.3 does

not insure this, since they may be unable to execute

any more commands until ihey learn it T.C is

accepted, which requires that communication with

B3 be restored.

As an example of system malfunction, suppose

that a malfunction of #j causes it to execute a user

machine command incorrectly, and thereby get an

incorrect version of the user machine state. Having an

incorrect version of the user machine state can cause

it to generate incorrect responses even after it has

resumed functioning properly. If these incorrect

responses are generated after bookkeeper £3 fails,

then there may be no way to determine that it is52's

responses that are the correct ones.

The solution to the recovery problem lies in having

a special user process called an auditor. To indicate

what the auditor does, let us first suppose that the

user machine state contains only a small amount of

information. The auditor would issue a query to

determine the user machine state at time T\. By

examining the responses from several bookkeepers, it

tries to decide what the correct state was. If it cannot

decide, then it asks a higher level (probably human)

auditor for help. If it decides that the state was Slt

then at time T2 il issues the following checkpoint

command: "T^: the state at Tj was Sj". Executing

this checkpoint command sets the user machine state

to the value it would have if all the other commands

in c' 1j72' were executed starting with the user ma

chine state equal to S\. If the auditor issues such

checkpoint commands frequently enough, then con

dition CC of Section 4.3.3 will be satisfied.

The purpose of the checkpoint is to insure that

knowledge of C^1'3"2' allows a bookkeeper to deter

mine the user machine state at time T2- If the user

machine state contains too much information, then

this is not practical. However, the auditor can issue

commands such that knowledge of c'Tl'T2' allows a

bookkeeper to deduce the user machine state at time

T2 with a very high probability of being correct. Let

F be some hash coding function on the user machine

state. The auditor can issue the following, more gen

eral type of checkpoint command: "7V the state Sat

Tj satisfied F(Sj= Sf\ If a bookkeeper's version of

the user machine state at time 7", is Sx and F(Sl) =

S{. Then the bookkeeper assumes that Sj is the cor

rect version. Otiierwise, the auditor must locate the

error in that bookkeeper's version and correct it by

executing appropriate user machine commands. Space

limitations preclude a discussion of the details of how

this can be done,

It is clear that this type of checkpointing can also

be used in restarting a failed bookkeeper. The prob

lem of a malfunctioning auditor is handled by the use

of multiple auditors as discussed in Section 4.3.2.

This also protects against auditor failure. In practice,

there would probably be an auditor at the same phys

ical location as each bookkeeper, being executed by

the same computer.

By insuring that condition CC is met, the auditors

L. Lamport / Reliable distributed multiprocess systems 113

can eliminate the need for rules AR2(b) and AR3 of

Seclion 2.3. Auditor commands can be executed fre

quently enough that AR2(b) is automatically implied

by AR2(a). The information which bookkeepers send

to each other by AR3 is replaced by the information

they send to the auditors.

The introduction of auditors may seem to be an ad

hoc approach. However, it is actually a natural appli

cation of the idea of a sequential user machine. Error

handling procedures should be designed along with

the ordinary system operations, and not added as an

afterthought. By making it part of the user machine,

error handling can be designed to meet the specific-

needs of the individual system. In a banking system,

one would want a discrepancy of several dollars

between bookkeepers and a discrepancy of several

million dollars to be handled in different ways. So

phisticated error handling procedures are feasible

because they are written for the simple sequential

user machine rather than the complex network of

concurrently operating physical processes.

4.5. Efficiency

Our task has been to implement a very reliable sys

tem, and we have not worried about the efficiency of

the solution. With our algorithm, executing a com

mand takes a fairly long time and requires the trans

mission of many messages. In practice, the details of

the specific system will permit optimizations to im

prove the efficiency of the implementation. However,

the cost of achieving such a high degree of reliability

will still be prohibitive for many systems. For exam

ple, it would probably not be feasible to implement a

real airline reservation system in the way we have

described. In this case, we musl be content with a less

reliable system. Errors and transient failures will have

to be tolerated, so long as the system can recover

gracefully from them.

Even though the system is not expected to be per

fectly reliable, we still want to be sure that it satisfies

some reliability conditions. This means that we musl

state precisely what reliability conditions it should

satisfy, and guarantee that the implementation does

satisfy these conditions. To do this, we can first

define the execution of the system in terms of a spe

cial user machine called the kernel machine, whose

only users are the auditor processes introduced in

Section 4.4. We can then use our algorithms to imple

ment a very reliable kernel machine.

To illustrate this approach, suppose that we wish

to implement an airline reservation system with com

puters at three sites. A more efficient but less reliable

system is obtained by having only one of the com

puter actively processing reservations, while the other

two act as backup and periodically receive updating

messages from the active computer. The state of the

kernel machine would define which computer is the

currently active one. A failure or malfunction of the

active computer would be detected by the auditors,

which would then issue kernel machine commands to

activate one of the backup computers. The details of

how this is done are non-trivial. However, the reli

ability of the resulting algorithm can be analyzed

because il is defined in terms of a sequential kernel

machine whose reliability properties are known. The

efficiency of the kernel machine's implementation is

of little concern, since kernel machine commands are

executed infrequently.

In general, our algorithm will be practical only

when commands other than queries are issued infre

quently. If that is not true for the entire system, then

we must define a system kernel for which it is true.

We can then use our algorithm to implement a very

reliable kernel. In the above implementation of an air

line reservation system, each computer continually

queries the kernel machine to find out which is the

active computer; but commands to change the kernel

machine state are infrequent. In the distributed file

system discussed in Section 1.2.1, the kernel machine

handled only the less frequent operations of acquiring

and releasing files, but not the operations of reading

and writing the files.

5. Conclusion

Our goal has been a method for implementing a

reliable system with a network of independent pro

cesses. We have concentrated on the problem of fail

ure, and discussed malfunctioning only briefly. The

problem is difficult because no special assumptions

were made about how a component can fail. Making

such assumptions can allow simpler, more efficient

solutions, For example, several earlier papers have

assumed that communication lines never fail and that

a failed process is restarted at a specified point in its

algorithm [3,4]. What we have done is to show that

the problem can be solved without this kind of

assumption.

Experience has taught us that multiprocess algo

rithms are difficult to write, and tend to have subtle

114 L. Lamport / Reliable distributed multiprocess systems

time-dependent errors. No such algorithm can be

believed without a rigorous proof of its correctness.

We must be especially careful with distributed multi

process algorithms, since we are less familiar with

them. It would be foolhardy to try constructing a

reliable distributed multiprocess system without

basing it upon an algorithm which has been proved

correct. Yet. rigorous correctness proofs for complex

multiprocess algorithms seem unfeasible at present.

Our solution to this problem was to define the sys

tem, including error detection and recovery mecha

nisms, in terms of a sequential user machine. We can

not overemphasize the importance of this approach.

By reducing the design of the system to a sequential

programming problem, we achieved an enormous sim

plification.

We have described how the user machine can be

reliably implemented in the presence of component

failure with a distributed multiprocess system. Many

important details have been omitted for lack of space.

Our algorithm can be defined precisely, and a rigor

ous correctness proof can be given. We have tried to

indicate how this is done by considering the special

case of a three bookkeeper network with perfect

clocks. The algorithm for larger networks and real

clocks is more complicated, but it is still simple

enough to allow a rigorous correctness proof.

Our algorithm requires that all bookkeepers simu

late the execution of the user machine. In most real

systems, all the processes will not be performing the

same function, so they will do more than just execute

the identical user machine operations. However, any

system will require some synchronizing kernel to

enable the processes to form a single coherent system.

It is tiiis synchronizing kernel which would be

defined by the user machine. The harmonious cooper

ation of the bookkeeper processes can then be

achieved because they will execute the same user ma

chine operations in (approximate) synchrony.

Index (reference is lo section number)

6, 1.4,2.1

5a. 3.5

6,1.5

k, 3.2.1

t,2.3

-r', 4.3.3

A, 1.2.3, 1.4

a, 1.4

e, 1.2.1

i, 4.1

t(S),4A

2.1

C, 1.2.1

,, 3.2.1

CT, 2.2
C^Ti-T2 1,2.3
R, 1.2.1

S, 1.2.1

7-0,1.4.2.2

T:€, 2.2

[T, r], 1.4

/
accepter, 1.2.3

amoeba, 1.4

auditor, 4.4

bookkeeper, 1.3

broadcast, 1.5

checkpoint, 4.4

command, 1.2.1

Condition CC, 4.3.3

Conditions PF1-2, 1.5

Condition RC, 1.4

Condition SC, 1.2.2

distributor, 1.2.2

failure, 1.1, 4.4

Goals 1-2, 1.1

kernel, 1.2.1

kernel machine, 4.5

knave, 4.3.1

majority graph, 1.4

malfunction, 1.1,4.3.1,4.4

message cascade, 3.1

proper functioning, 1.5

query, 4.2

response, 1.2.1

Rules AR1-3, 2.3

Rule Ml-4, 4.3.3

second. 1,2.3

security, 4.3.1

sequencer, 1.2.2

timestamp, 2.2

user, 1.2.1, 1.2.2.1.3

user machine, 1.2.1

user machine clock, 4.1

References

[1] L. Lamport, Time, clocks and the ordering of events in a

distributed system, Massachusetts Computer Associates,

Inc., CA-7603-2911, March 29, 1976, to appear in

Comm. ACM.

[2] W. Diffle and M. Hellnian, Privacy and authentication: an

introduction to cryptography, to appear in Proceedings

of thell-EE.

[3] B. Lampson and H. Slurgis, Crash recovery in a distrib

uted dala storage system, to appear in Comm. ACM.

[4] C. Ellis, A robust algorithm for updating duplicate data

bases, Proceedings of the Second Berkeley Workshop on

Distributed Data Management and Computer Networks,

May, 1977.

[5] R.L. Rivest, A. Shamir and L. Adleman, A method for

obtaining digital signatures and public-key cryptosystcms,

Comm. ACM 21 (1978) 120.

