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Author’s Abstract

A two-process algorithm is shown to be equivalent to an N-process one,
illustrating the insubstantiality of processes. A formal equivalence proof in
TLA (the Temporal Logic of Actions) is sketched.
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1 Introduction

Processes are often taken to be the fundamental building blocks of concur-
rency. A concurrent algorithm is traditionally represented as the composi-
tion of processes. We show by an example that processes are an artifact
of how an algorithm is represented. The difference between a two-process
representation and a four-process representation of the same algorithm is no
more fundamental than the difference between 2+ 2 and 14+ 14+ 14+ 1.

Our example is a fifo ring buffer, pictured in Figure 1. The ith input
value received on channel in is stored in buf[i—1 mod N], until it is sent on
channel out. Input and output may occur concurrently, but input is enabled
only when the buffer is not full, and output is enabled only when the buffer
is not empty.

Figure 2 shows a representation of the ring buffer as a two-process pro-
gram in a CSP-like language [2]. (We ignore CSP’s termination convention;
the loops are assumed never to terminate.) The variables p and ¢ record the
number of values received on channel in by the Receiver process and sent
on channel out by the Sender process, respectively. Declaring p and g to be
internal means that their values are not externally visible, so a compiler is
free to implement them any way it can, or to eliminate them entirely.

The intuitive meaning of this program should be clear to readers ac-
quainted with CSP. We will not attempt to give a rigorous meaning to the
program text. Programming languages evolved as a method of describing
algorithms to compilers, not as a method for reasoning about them. We do
not know how to write a completely formal proof that two programming-
language representations of the ring buffer are equivalent. In Section 2, we
represent the program formally in TLA, the Temporal Logic of Actions [5].
Figure 2 will serve only as an intuitive description of the TLA formula.

Figure 3 shows another representation of the ring buffer, where IsNext

purlo) [
mn buf[1] I:l out

R —

Figure 1: A ring buffer.



in, out : channel of Value

buf array 0 .. N—1 of Value
p, ¢ : internal Natural initially 0

- - ;
Receiver: x [P 79 #N = in?buf[pmod NJ;
pi=p+l

Sender - *-p—g#O — out!buf[gmodN];-

g:=g+1

Figure 2: The ring buffer, represented in a CSP-like language.

in, out : channel of Value
buf array 0 .. N—1 of Value

pp, gg : internal array 0 .. N—1 of {0, 1} initially 0
Buffer(i : 0..N—1) =
empty: IsNext(pp, i) — in? buf[i];
ppli] =1 - ppli];
full: IsNext(gg,i) — out!buf[i];

ggli] :== 1 — ggli]

Figure 3: Another representation of the ring buffer.
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Figure 4: The correspondence between values of pp and p, for N = 4.

is defined by

IsNext(r,i) = if i=0 then r[0] =
else r[i]

[N —1]
[i—1]

This is as an N-process program; the ith process, Buffer(i), reads and writes
buf[i]. Variables p and ¢ of the two-process program are replaced by arrays
pp and gg of bits. Array elements pp[i] and gg[i] are read and written by
process Buffer(i), and are read by process Buffer(i+1 mod N).

The two programs are equivalent because the values assumed by pp and
gg in the N-process program correspond directly to the values assumed by
p and ¢ in the two-process one. The correspondence between pp and p is
shown in Figure 4 for N = 4. A boxed number in the pp[i] column indicates
that IsNext(pp,i) equals TRUE. The correspondence between gg and g is
the same.

r
r

It is not hard to argue informally that the two programs are equivalent.
Formalizing this argument should be as straightforward as proving formally
that 222 4+ 222 equals 1114+ 1114+ 111 4+ 111. But, even if straightforward,
a completely formal proof of either result from first principles is not trivial.
In Section 3, we sketch a formal TLA proof that the two versions of the ring
buffer are equivalent.

2 The Algorithm in TLA

We now write the TLA formulas that describe the programs of Figures
2 and 3. The program texts do not tell us what liveness properties are



assumed. To make the example more interesting, we assume no liveness
properties for sending values on the in channel, but we require that every
value received in the buffer be eventually sent on the out channel. For the
two-process program, this means assuming fairness for the Sender, but not
for the Receiver. For the N-process program, it means assuming fairness for
the full action of each process, but not for the empty action.

The program texts also do not determine the grain of atomicity. For
simplicity, we assume that an entire guarded command is a single atomic
operation. Thus, evaluating a guard and executing the subsequent commu-
nication and assignment statements is taken to be an indivisible step.

We give an interleaving representation of the ring buffer—one in which
sending and receiving are represented by distinct atomic actions. In Sec-
tion 4, we describe how the specifications and proofs could be written in
terms of a noninterleaving representation that allows values to be sent and
received simultaneously.

We use the following notation: A is the set of natural numbers; Z,, is the
set {0,..., m—1}; square brackets denote function application; [S — T7] is
the set of functions with domain S and range a subset of T'; [i € S +— €] is the
function f with domain S such that f[i] = eforall i € S;[f EXCEPT ![i] = €]
is the function ]A” that is the same as f except ]A”[z] = e; angle brackets enclose
tuples; ¢[i] is the ith component of tuple ¢, so (v, w)[2] = w; and S\ T is
the set of elements in S that are not in 7.

A TLA formula is an assertion about behaviors, which are sequences
of states. Steps (pairs of successive states) in a behavior are described
by actions, which are boolean-valued expressions containing primed and
unprimed variables; unprimed variables refer to the old state and primed
variables refer to the new state. To describe CSP-style communication, we
represent a channel by a variable and represent the sending of a value by a
change to that variable. We define Channel( V') to be the set of legal values
of a channel of type V, and Comm(v, c) to be the action that represents
communicating a value v on channel ¢. The actual definitions, given below,
are irrelevant; we require only that a Comm(v, ¢) action changes ¢, if v € V

and ¢ € Channel (V).

Channel(V)

Comm(v, ¢)

VXZQ
' ={v,1-¢[2])

42
42

The TLA formula I1; that represents the two-process program is defined in
Figure 5. We now explain that definition.



Type?2 2 A p,gEN
A buf € [Zy — Value]
A in, out € Channel( Value)

UnB(i) = [j € Zy\{i} ~ buf[j]]
Rev 2 Ap—yg #+ N

Ap'=p+1

A Comm(buf'[p mod NJ, in)

A UNCHANGED (g, out, UnB(p mod N))
Snd ES p—g#0

ANg'=g+1

A Comm(buf[g mod N], out)

A UNCHANGED (p, buf,in)
b, 2 A a Type?2

A (p=0) AB[Rcv]() bufin)

A(g=0)A D[Snd](g,out) A WF(g,out)(Snd)
I, 2 dp,g: d,

Figure 5: The TLA formula Il representing the two-process program.

A list of expressions bulleted by A denotes their conjunction; indentation
is used to eliminate parentheses. If formula F' is written as such a list, then
F.iis its ith conjunct—for example, Rcv.2is p’ = p+1. A similar convention
is used for disjunctions.

The state predicate Type2 asserts that each variable has the correct
type. (The array variable buf of the programming language representation
becomes a variable whose value is a function.) The type declarations of the
two-process program are represented by the TLA formula O7Type2, which
asserts that Type2 equals TRUE in all states of the behavior.

Action Snd describes a step of the Sender process; it can occur only
when p — g # 0, and it increments g by 1, communicates buf[g mod N] on
channel out, and leaves p, buf, and in unchanged (UNCHANGED v is defined
to equal v = v). Similarly, action Rcv describes a step of the Receiver
process. The conjunct Recv.3 asserts that the value buf’[p mod N] (the new
value of buf[p mod N]) is communicated on channel in. The state function
UnB(i7) is defined so that, if it is unchanged, then buf[j] is unchanged for
all j # i. Thus, Rev asserts that the new value of buf[p mod N] is the
value communicated on channel in, and that buf[j] remains unchanged for
all 7 # p mod N.



Formula ®5.2 describes the Receiver process. It asserts that p is initially
0, and that every step is a Rcv step or leaves p, buf, and in unchanged ([A4],
is defined to equal AV (v = v)). Steps that leave p, buf, and in unchanged
represent steps of the Receiver’s environment—either steps of the Sender
or steps of the entire program’s environment. The conjunct ®5.3 similarly
represents the Sender process. The formula WF<g70ut>(Snd) asserts weak
fairness of the Snd action. In general, WF,(A) asserts that if action (A),
(defined to equal A A (v" # v)) remains continuously enabled, then an (A4),
step must eventually occur.

Formula @5 is the conjunction of the specifications of the two processes
with the formula asserting type correctness. It describes the two-process
program with p and ¢ visible. The complete program specification Il is
obtained by hiding p and g. In logic, hiding means existential quantification;
in temporal logic, flexible variables (distinct from rigid variables like N) are
hidden with the temporal existential quantifier 3.

The conjunct OType2 of ®5 makes type correctness an explicit part of
the specification. We put type-correctness assumptions in our specifications
to make them as much like Figures 2 and 3 as possible. However, to avoid
errors, it is usually better to let type correctness be a consequence of the
specification. We could rewrite @, as follows to eliminate the conjunct
O7Type2. The conjunct OType2.1 is already redundant because it is implied
by ®5.2 A ®5.3. We can eliminate O7Type2.3 by making Type2.3 part of
the initial condition, since Type2.3 A ®3.2 A ®5.3 implies OType2.3. (The
proof requires the fact that ¢ € Channel(V) and Comm(v,c) imply ¢ €
Channel(V).) We can eliminate O7Type2.2 in the same way, if we modify
Rev so it leaves the domain of buf unchanged.

The TLA formula Ily that represents the N-process program is defined
in Figure 6. There are two things in this definition that merit further ex-
planation. First, we introduce an array ctl to represent the control state.
The value of ctl[i] equals “empty” if control in process Buffer(i) is at the
point labeled empty, and it equals “full” if control is at full. Second, we
introduce an action NotProc(i) that has no obvious counterpart in Figure 3
or in Il;. The specifications of the two processes in Figure 2 are especially
simple because each variable is changed by an action of only one of the
processes. For example, a step of the Sender’s environment can be char-
acterized as any step that leaves g and out unchanged. We can think of
g and out as belonging to the Sender. In the N-process program, pp|i],
gg[i], and ctl[i] belong to Buffer(i). However, in and out don’t belong to
any single process; they can be changed by a step of any of the N pro-



TypeN

Fill(i)

Empty (i)

NotProc (i)

varN
0N

1N

1>

e (>

1>

A pp,gg € [Zn — Z2]

ctl € [Zy — {“empty”, “full”}]

buf € [Zy — Value]

in, out € Channel( Value)

ctl[i] = “empty”

IsNext(pp, i)

ctl’ = [etl EXCEPT ![i] = “full”]
pp" = [pp EXCEPT ![i] =1 — pp[i]]
Comm(buf'[i], in)

UNCHANGED (gg, out, UnB(i))
ctl[i] = “full”

IsNext(gg, 1)

ctl’ = [etl EXCEPT ![i] = “empty”]
99" = [gg BxcepT ![i] = 1 — gg[i]]
A Comm/(bufi], out)

A UNCHANGED (pp, in, buf)

A UNCHANGED (ppl[i], gg[i], ctl[i], buf[i])
A IsNext(pp,i) = UNCHANGED in

A IsNext(gg,i) = UNCHANGED out

(pp, g9, ctl, buf, in, out)

A OTypeN

AYi € Zy i A (pplil = ggli] = 0) A (ctl[i] = “empty”)
A O[Fill(i) Vv Empty(i) V NotProc(i)]yarn
A WE oy (Empty(i))

App, gg, ctl : dx

>>>> >> > > > > > > >

Figure 6: The TLA formula Iy representing the N-process program.



cesses. The variable in belongs to Buffer(i) only when IsNext(pp, i) equals
TRUE, and out belongs to Buffer(i) only when IsNexzt(gg, i) equals TRUE.
Action NotProc(i) characterizes steps of Buffer(i)’s environment, which is
allowed to change in when IsNext(pp,i) equals FALSE, and to change out
when IsNext(gg, i) equals FALSE. The subscript in O[. . .],4.n allows steps of
the entire program’s environment that leave all the variables unchanged. It
is semantically superfluous, since NotProc(i) already allows such steps, but
the syntax of TLA requires some subscript.

3 The Proof

We now give a hierarchically structured proof that Il; and Iy are equiva-
lent [4]. The proof is completely formal, meaning that each step is a mathe-
matical formula. English is used only to explain the low-level reasoning. The
entire proof could be carried down to a level at which each step follows from
the simple application of formal rules, but such a detailed proof is more suit-
able for machine checking than human reading. Our complete proof, with
“Q.E.D.” steps and low-level reasoning omitted, appears in Appendix A.

The correctness of the algorithm rests on simple properties of integers
and of the mod operator. We need the following lemma, where the bit array
Rep(m) used to represent the integer m is defined by

Rep(m) = [i€ Zy—if i < mmod 2N < i+ N then 1 else 0]

The lemma is proved in Appendix B. We assume throughout that N is a
positive integer.
Lemma 1l If m € N and i € Zy, then

1. IsNext(Rep(m),i)= (i = m mod N)

2. IsNext(Rep(m),i) =
Rep(m + 1) = [Rep(m) EXCEPT ![i] =1 — Rep(m)[i]]

m)
m)

For temporal reasoning, we use the following TLA rules from Figure 5 of [5].



la.
b.
2a.
b.

3.
4.

Theorem II, = Iy
&, = oY
Dy = U
@Y = App, gg, ctl : B
oY = 3Ap,g : B
o = ofy
Q.E.D.
Proor: I, dAp, g : B}

step la and the definition of II2

Ap,g,pp, g9, ctl : @5 step 2a
Ap,g,pp, g9, ctl - O} step 3
App, g9, ctl,p,g : BX  simple logic
App, g9, ctl = BY step 2b

Iy

step 1b and the definition of Ily

Figure 7: The high-level structure of the proof.

(This version of TLA2 generalizes the one in [5].)

The high-level structure of the proof is shown in Figure 7. The proofs of
steps 1-3, and the definitions of &%,
following sections.

3.1

Formulas ®5 and ®} are defined in Figure 8. They can be thought of as
uniprocess versions of the two algorithms. We obtained them by rewriting
®, and Oy as formulas with a single next-state relation, instead of as the

STL2. FOF = F

STL4.

F=G

OF = O¢G
INVL. IA[N,=T
]/\D[N]f:>D[

TLAZ2.

PANMies:

STL3. -0OOF = OF
STL5. FO(FAG) = (BF)A(OG)

INV2. +OI = (O[N]; = O[N ATAI)

[Aily) = Q@AI[Bly

0P A (Vi€ S :O4y,) = 0QADO[B],

Step 1: Removing the Process Structure

conjunction of processes.

la. &y = ®Y

Proor: Given below.

Step la is proved as follows.

la.1. Type2 = ([Rev](p buf,in) A [Snd]( g oury = [Rev V Snd]yara)

N @b, and @lﬁl, are given in the



var? (p,g,buf,in, out)

e (e

oY A OType?2
Ap=0)A(g=0)
A O[Rev V Snd]yare
A WF<g70ut>(Snd)
dY = A OTypeN

AVie Zy : (ppli]l = gg[i] = 0) A (cti[i] = “empty”)
AO[Fi € Zy : Fill(i) Vv Empty(i)]vary
AYi€Zn : WEyn (Empty(i))

Figure 8: Formulas ®4 and ®f;.

la.2. OType2 = (A[Rev](p buf,iny A BLSN] (g 0ur) = O[Rev V Snd]yars)
ProOF: Step la.l and rule TLA2.

la.3. Q.E.D.
ProoF: Step 1a.2 and the definitions of ®5 and ®}.

Step la.l is proved by showing that Type2 implies

[Rcv](p,buf,m) A [Snd](g,out)
= by definition of [A]y
A Rev V ({p, buf,in) = (p, buf, in))
A Snd vV ({g,out) = (g, out))
by propositional logic
V Rev A ((g, out) = (g, out))
V Snd A ({p,buf,in) = (p, buf,in))

V Recv A Snd
V ({g,out) = (g,out)) A ({p,buf,in) = (p, buf, in))
= V Rcv Rcv implies (g, out)' = (g, out)
V Snd Snd implies {p, buf,in)' = {p, buf, in)
V FALSE Type2 A Rcv implies p’ # p, and Snd implies p’ = p
V var2 = var2 (vi, . om)Y ={(v1,..,vm)iff (v =vi)A.. A (v = vm)

[Rev V Snd]yars by definition of [A]y

All of the nontemporal steps in our proof can be reduced to this kind of
algebraic manipulation. From now on, we just sketch such proofs and leave
the detailed calculations to the reader.

The proof of step 1b is similar to that of step la, but it is a bit more
difficult because it requires an invariant InvN, which asserts that the arrays

10



pp and gg are representations of natural numbers.
InoN = (3meN : pp=Rep(m)) A (3m €N : gg= Rep(m))

1b. &y = Y
1b.la. &N = OlnuvN
b. &% = OlnuN
ProOOF: Described below.
1b.2. TypeN A InuN =
[Fi€ Zy: Fill(i) v Empty ()] yary =
Vi€ Zy : [Fil(i) v Empty(i) V NotProc(i)]varn
ProoF: If ¢ # 7, then TypeN implies that Fill(i) A Fill(j), Empty(i) A
Empty(j), and Fill(i) A Empty(j) are all false; and TypeN A InuN implies
Fill(i) = NotProc(j) and Empty(i) = NotProc(j). By Lemma 1.1,
TypeN A InuN implies (Vi € Zy : NotProc(i)) = (varN’' = varN).
1b.3. OTypeN A OInuN =
O[3i € Zx : Fill(i) V Empty(i)]vary =
Vi€ Zy  Q[Fll(i) V Empty(i) V NotProc(i)]varn
ProOF: Step 1b.2 and rule TLA2.
b4 QE.D.
ProoF: Steps 1b.1 and 1b.3 and the definitions of ®n and @Y.

Steps 1b.1a and 1b.1b are standard invariance properties; 1b.1la is proved as
follows.

1b.1a &N = OlnuvN

1b.la.l TypeN A (Vi € Zx : ppli] = gg[i] = 0) = InuN
PrOOF: Rep(0) =[i € Zy — 0]

1b.1a.2 A InuN
A [TypeN A (Vi € Zy : Fill(i) V Empty(i) V NotProc(i))]varn
= InvN'
1b.1a.2.1. InuN A TypeN A (i € Zy) A Fill(i) = InuN’
1b.1a.2.2. InuN A TypeN A (i € Zy) A Empty(i) = InuN’
1b.1a.2.3. InuN A TypeN A (Vi € Zy : NotProc(i)) = InuN'
1b.1a.2.4. InuN A (varN' = varN) = InuN'
1b.1a.2.5. Q.E.D.

PrOOF: Steps 1b.1a.2.1-1b.1a.2.4.

1b.1a.3. A TypeN A (Vi € Zy : pp[i] = g9[i] = 0)
A OTypeN
A QN € Zy: Fill(i) v Empty(i) V NotProc(i)]varn
= OInuN
PrOOF: Steps 1b.1a.1 and 1b.1a.2 and rules INV1 and INV2.

11



1b.1a4. Q.E.D.
PROOF: Step 1b.1a.3 and rule TLA2, since (Vi:[A;]y) =[Vi: Aily.

Steps 1b.1a.2.1 and 1b.1a.2.2 are proved using Lemma 1.2; steps 1b.1a.2.3
and 1b.1a.2.4 follow because their hypotheses imply pp’ = pp and g¢' = gg.
As indicated in the appendix, the proof of step 1b.1b is similar.

3.2 Step 2: Adding History Variables

Formulas &4 and @lﬁ] are defined in Figure 9, which also defines their safety
parts, ®5° and @1&5. We obtained ®% by adding pp, gg, and ctl as history
variables to ®4; and we obtained @lﬁ] by adding p and g as history variables
to ®. In general, adding an auxiliary variable @ to a formula F' means
writing a formula F'® such that F = da : F*. A history variable is an
auxiliary variable that records information from previous states. It is added
by using the following lemma, which can be deduced from the results in [1].
Step 2 is easily proved by repeated application of this lemma.

Lemma 2 (History Variable) If h and h' do not occur in Init, A;, B;,
v, or f, and I/ does not occur in g;, for allt € I and j € J, then

Init A OF3iel : A, A (Vjed : WE,(B)))
=3dh: AInit AN(h=f)
ADOEFiel : AN (h/ = gi)](h,v)
ANYjed : WE,(B;)

3.3 Step 3: Equivalence of ®} and oY%

In the two-process algorithm, p and g are the actual internal variables, while
pp, g9, and ctl are history variables. The situation is reversed in the N-
process algorithm. Step 3 involves showing that the history variables of one
algorithm behave like the internal variables of the other. Its proof uses the
following formulas, where Inv will be shown to be an invariant of both ®}
and @1&.

IsFull(g,p,i) = ImeN : (g <m < p)A (i =mmod N)

Inv = A pp = Rep(p)
A 99 = Rep(g)
Actl=T[i € Zy — if IsFull(g, p,i) then “full” else “empty”]

ANO<p—-g<N

The high-level structure of the proof is:

12



Init

Type

var

HRcv

HSnd

(e e

1>

>

Ap=g=20
App=gg=1[i€Zyw0]
A ctl =[i € Zy — “empty”]
Type2 N\ TypeN

(pp, g9, ctl, p, g, buf, in, out)

A Rev

A pp' = [pp EXCEPT ![p mod N]=1— pp[p mod NJ]
A ctl’ = [etl EXCEPT ![p mod N| = “full”]

A UNCHANGED gg

A Snd

A 99" = [gg9 EXCEPT ![g mod N] =1 — gg[g mod N]]
A ctl’ = [etl EXCEPT ![g mod N] = “empty”]
A UNCHANGED pp

A OType

A Init

A O[HRecv VvV HSnd]yqr

(1)1215 A WF(g,out) (Snd)

= A Fill(i)
Ap =p+1
A UNCHANGED ¢

HEmpty(i) = A Empty(i)

1>

1>

Ng' =g+1
A UNCHANGED p
A OType

A Inat
AO[Fie Zy « HFill(i)V HEmpty(i)]var

OYS A (Vie Zy + WEF v (Empty(i)))

Figure 9: Formulas ®} and ®l.
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3. o = ol

3.1a. Type A Inv = (HRev = 37 € Zy : HFill(i))

b. Type A Inv = (HSnd = 3i € Zy : HEmpty(i))
3.2. [Type A Inv A (HRev V HSnd)]yer =

[Type A Inv A (Fi € Zy « HFll(1) vV HEmpty(i)]var

3.3a. @15 = Onv

b. <I>}1{IS = Olnv
3.4. OIS = @l
35. OhvA®Y = (WF(g outy(Snd) = (Vi € Zn : WF yarn(Empty(i))))
3.6. Q.E.D.

ProoF: Immediate from steps 3.3-3.5.

Steps 3.1 and 3.2 are (nontemporal) action formulas. They make it intu-
itively clear why the two transformed formulas are equivalent. Step 3.1a is
proved as follows.

3.1a. Type A Inv = (HRev = 37 € Zy : HFill(i))
3.1a.1 Type A Inv = (HRcv = HFill(p mod N))
3.1a.1.1. Type Alnv = ((p— g # N) = (ctl[p mod N] = “empty”))
PrOOF: Arithmetic reasoning and the definition of IsFull.
3.1a.1.2. Type A Inv = IsNext(pp, p mod N)
Proor: Lemma 1.1.
3.1a.1.3. Q.E.D.
ProOOF: Steps 3.1a.1.1 and 3.1a.1.2, and the definitions of
HRev and HFWl.
3.1a.2 Type A Inv = (HFill(p mod N) = (31 € Zx : HFill(7)))
ProOF: By Lemma 1.1, Type A Inv implies IsNext(pp, p mod N) and
—IsNext(pp, i), if t € Zy and i # (p mod N).
3.12.3 Q.E.D.
PrOOF: Steps 3.1a.1 and 3.1a.2.

As indicated in the appendix, the proof of 3.1b is analogous. Step 3.2 follows
easily from step 3.1.

Step 3.3 asserts that Inv is an invariant of both formulas; its proof is a
standard invariance argument.

3.3a. @15 = Onv
b. &% = Olnv
3.3.1. Init = Inv
ProOF: Rep(0) equals [i € Zy — 0] and IsFull(0,0,{) = FALSE, for
all e € Zp.

14



3.3.2a. Inv A [Type A (HRcv V HSnd)]yar = Inv’
b. Inv A[Type A (i € Zx : HFll(7) v HEmpty(i))|var = Inv’
ProOF: Given below.
3.33. Q.ED.
ProOF: Steps 3.3.1 and 3.3.2, and rules INV1 and INV2.

Step 3.3.2 asserts that the next-state actions leave Inv invariant. The proof
of 3.3.2a is:

3.3.2a. Inv A[Type A (HRcv V HSnd))yar = Inv’
3.3.2a.1 Inv A Type A HRcv = Inv’
ProoF: Assume Inv A Type A HRcv. Then Inv.l’ is immediate
because p’ = p and pp’ = pp; Inv.2' follows from Lemma 1.2;

Inv.4" follows from Inv.4, since HRev implies p’ = p+ 1, ¢’ = g,
and p — g # N; and Inv.3’ holds because

IsFull(g', p', 1) by definition of HRcv
IsFull(g,p+1,1)
= by definition of IsFull
AmeN : (g<m<p+1)A(i =mmod N)
= by Rcv.1 and Inv.4
if i = pmod N then TRUE else IsFull(g,p, 1)
3.3.2a.2 Inv A Type A HSnd = Inv’
ProOOF: Similar to the proof of 3.3.2a.1.
3.3.2a.3 Inv A (var’ = var) = Inv’
ProoF: Immediate.
3.3.2a.4 Q.E.D.
PrOOF: Steps 3.3.2a.1-3.3.2a.3.

Step 3.3.2b follows from steps 3.3.2a and 3.2. This completes the proof of
step 3.3.

Steps 3.4 and 3.5, assert the equivalence of the safety and liveness parts
of the formulas, respectively. Step 3.4 follows from 3.3 and

OType A Olnv =
O[HRcv V HSnd]yor = 0[3i € Zy = HFill(i) vV HEmpty(i)]yar

which follows from step 3.2 and rule TLA2. Step 3.5 has the following
high-level proof.
3.5. Olnv A O = (WF(g oury(Snd) = (Vi € Zy : WFyarn (Empty(i))))

3.5.1. Olnv A OF =
(Vi € Zny : WFyorv (Empty(1))) = WFyorn(37 € Zx : Empty(i))
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3.5.2. Olnv A OType AOQ[HRcv V HSnd]yar =
WEF (g oury(Snd) = WF oy (3 € Ziv - Empty(i))
3.5.3. Q.E.D.
PrOOF: Steps 3.5.1 and 3.5.2.

We first consider step 3.5.1. When writing TLA specifications, one often has
to choose between asserting fairness of 47 V...V A,, and asserting fairness
of each action A4;. The choice becomes a matter of taste when the resulting
specifications are equivalent. This is the case if, whenever one of the A;
becomes enabled, a step of no other A; can occur before the next A; step.
For weak fairness, the equivalence is a consequence of the following result,
which can be derived from the TLA proof rules of [5].
Lemma 3 If
ENABLED (A;), A OInv AO[N A =A;], = O-ENABLED (A;),
foralli,j €5 with i # j, then
OInv A ON], = (WF,(3ie S : A) = (VielS: WF,(A))))
We use this lemma to prove step 3.5.1.
3.5.1. Olnv A OES =
(Vi€ Zy : WF v (Empty(i))) = WFyern (3 i € Zn 2 Empty(i)))
35.1.1. % = 0O[Fi € Zy : Full(i) vV Empty(i)]vary
ProoF: TLA2, since HFill(i) = Fill(i) and HEmpty(i) = Empty(i).
3.50.1.2. N1 € Zy
A IsNext(gg, 1)
A O(Inv A Type)
AO[(3j € Zy : Fill(y) vV Empty(j)) A ~Empty(i)]varn
= OIsNext(gg, i)
ProoOF: By rules INV1 and INVZ2, since
Inv A Type A (Fill(j§) V Empty(5)) A 2 Empty(i)
implies g¢' = gg, for all 1,7 € Zy.
35.1.3. A (i,j € Zn) A (i £ )
A ENABLED { Empty(i))varn
A O(Inv A Type)
AO[(Fk € Zy : Fill(k) v Empty(k)) A= Empty(i)]vary
= O-ENABLED {Empty () )varn

PROOF: Step 3.5.1.2 and rule STL4, since ENABLED ( Empty(i))yarn
implies IsNext(gg, 1), and Lemma 1.1 implies

Inv A Type A IsNext(gg, i) = —IsNext(gyg, j)
for all 1,5 € Zy with ¢ # .
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3.5.1.4. Q.E.D.

ProOOF: Steps 3.5.1.1 and 3.5.1.3, and Lemma 3.

Finally, we prove 3.5.2, which completes the proof of the theorem.

3.5.2. Olnv AOType AO[HRev V HSnd] yar =
WE (g out) (Snd) = WF oo (3i € Zy : Empty(1))

3.5.2.1.

3.5.2.2.

3.5.2.3

3.5.24

Inv A Type A [HRcv V HSnd]yqr =
<Snd><gyout> =(3i € Zy : Empty(i))varn
Proo¥: By steps 3.1b and 3.2, since Inv A Type A [HRcv V HSnd]yar
implies (Snd )4 oury = HSnd, and
Inv A Type A[i € Zy = HFl(i) v HEmpty(i)]var
implies (3¢ € Zn : Empty (i) pary = (30 € Zn : HEmpty(i)).
Olnv A OType A OQ[HRcv V HSnd] yar =
OO(Snd )( g oury = O(Fi € Zy + Empty(i) )varn
Proo¥: Olnv A OType A OQ[HRcv V HSnd] yar
= by 3.5.2.1 and rules STL5 and TLA2, since (A)y = —[-A]y
O[=5nd](g,0uty = D[~ 31 € Zn - Empty(i)]vary
—0[=5nd]( g oury = O[3 i € Zn : Empty(i)]vary
by rules STL3, STL4, and STL5
O-0[-Snd](g,0uty = O-8[= 3¢ € Zy : Empty(i)]varn
= since & = 0=
OCa[=9nd]( 4 oury = OO=[=Ti € Zx - Empty(i)]vary
= since (A)y = ~[-A]y
OO(Snd ) (g,0uty = OX(F1 € Zi : Empty(i)) )vary
Olnv A OType A OQ[HRcv V HSnd] yar =
OO=ENABLED (Snd ) (g4 out) =
OO-ENABLED (31 € Zx : Empty(i)))varn
ProoF: Rules STL2 (which implies F = OF), STL4, STL5, and
TLA2, since by 3.5.2.1, Inv A Type A [HRcv V HSnd],qr implies
ENABLED (Snd )( g oury = ENABLED (34 € Zy : Empty(i)) )vary

Q.E.D.

PRrROOF: Steps 3.5.2.2 and 3.5.2.3, since WF,(A) is defined to equal
OOG-ENABLED (A4}, V OO(A),.

=
=

4 Further Remarks

We have proved the equivalence of two different representations of the ring
buffer. This is not just an intellectual exercise; the ability to transform an
algorithm into a completely different form is important for applying formal
methods to real systems. Going from the two-process version to the N-
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process one reduces the internal state of each process from an unbounded
number (p or g) to three bits (pp[i], gg[i], and ctl[i]). As explained in [3],
such a transformation enables us to apply model checking to unbounded-
state systems.

In retrospect, it is not surprising that programs with different numbers
of processes can be equivalent. Multiprocess programs are routinely exe-
cuted on single-processor computers by interleaving the execution of their
processes. The transformation of ®3 and ®n to ®§ and P can be viewed
as a formal description of this interleaving.

Using an interleaving representation makes the proof of equivalence a
bit simpler, but it is not necessary. The equivalence of noninterleaving
representations can be proved as follows. Let RevNI and SndNI be the ac-
tions obtained from Rcv and Snd by removing the UNCHANGED conjuncts
and adding the conjunct UNCHANGED UnB(p mod N) to RcvNI. Replac-
ing Recv and Snd with RcoNI and SndNI in the definition of Il yields a
noninterleaving representation of the two-process program. Similarly, we
get a noninterleaving representation of the N-process program by replacing
Fill(i) and Empty(i) with actions FillNI(i) and EmptyNi(i) that have no
UNCHANGED conjuncts except the one for UnB(i). In the proof of equiva-
lence, formula ®% is changed by replacing its next-state action Recv V Snd
with RevV .SndV (RevNIASndNI), and @y is changed by replacing its next-
state action with 37 € Zy : Fill(i) vV Empty (i) V (FillNI (i) A EmptyNI (7).
Formulas ®% and @lﬁ] are obtained by adding history variables to the new
versions of ®5 and ®F. The proof of equivalence is the same as before,
except we have to consider the next-state actions’ extra disjuncts. These
disjuncts represent the simultaneous sending and receiving of values.

Indivisible state changes are an abstraction; executing an operation of a
real program takes time. In TLA, we can represent the concurrent execution
of program operations either as successive steps, or as a single step. Which
representation we choose is a matter of convenience, not philosophy. We
have found that interleaving representations are usually, but not always,
more convenient than noninterleaving ones for reasoning about algorithms.

A proof that two algorithms are equivalent can be turned into a deriva-
tion of one algorithm from the other. Our proof yields the following deriva-
tion, where each equivalence is obtained from the indicated proof step(s).

Iy = A :p,g:dY 1la
Ap, g, pp, 99, ctl = BY 2a
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Ap,g,pp, 99, ctl : P4 AOInv 3.3a
App,gg,ctl,p, g : @lﬁ] A OInv 3.4 and 3.5

App, g9, ctl,p,g - B 3.3b
= dp,g: ¥ 2b
= dp,g: OL AOIN 1b.1b
= dp,g: &y AOInvN 1b.3
= Iy 1b.1a

Our derivation uses rules of logic to rewrite formulas. In process algebra [6],
analogous transformations are performed by applying algebraic laws. It
would be interesting to compare a process-algebraic proof of equivalence of
the two ring-buffer programs with our TLA proof.

A  Proof of the Theorem

Theorem II, = Iy

la. @5 = BY
la.1. Type2 = ([Rev](p bug,iny A [Snd]( g oury = [Rev V Snd]yara)
la.2. OType2 = (O[Rcv](p buf,iny A BLSNd] (g 0ut) = O[Rev V Snd]yars)
1b. @y = OY
1b.la. &N = OlnuvN
1b.la.l TypeN A (Vi€ Zx @ ppli] = gg[i] = 0) = InuN
1b.1a.2 A InuN
A [TypeN A (Vi € Zy : Fill(i) v Empty(i) V NotProc(i))]varn
= InvN'
1b.1a.3. A TypeN A (Vi € Zxn : ppli] = gg[i] = 0)
A OTypeN AQ[Vi € Zy : Fill(i) V Empty(i) V NotProc(i)]varn
= O/nuN
1b.1b. @F = OlnvN
1b.db.1. TypeN A (Vi € Zy : ppl[i] = g9[t] = 0) = InoN
1b.1b.2. A InvN
A [TypeN A (Fi € Zy : Fill(i) VvV Empty(i)]varn
= InvN'
1b.1b.3. A TypeN A (Vi € Zy : pp[i] = gg[i] = 0)
A OTypeN AQ[Fi € Zy Fill(i) v Empty(i)]vary
= InvN'
1b.2. TypeN A InuN =
[Fi€ Zy: Fill(i) v Empty ()] yary =
Vi€ Zy : [Fil(i) v Empty(i) V NotProc(i)]varn
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1b.3. OTypeN A OInuN =
O[3i € Zx : Fill(i) V Empty(i)]vary =
Vi€ Zy  Q[Fll(i) V Empty(i) V NotProc(i)]varn

. ®Y = App, gg, ctl - B

oY = 3dp,g: By
b = ofy
3.1a. Type A Inv = (HRev = 37 € Zy : HFill(i))
3.1a.1 Type A Inv = (HRcv = HFill(p mod N))
3.1a.1.1. TypeAInv = ((p—g # N) = (etl[p mod N] = “empty”))
3.1a.1.2. Type A Inv = IsNext(pp,p mod N)
3.1a.2 Type A Inv = (HFill(p mod N) = (3¢ € Zx : HFill(i))
3.1b. Type A Inv = (HSnd =31 € Zy : HEmpty(i))
3.1b.1 Type A Inv = (HSnd = HEmpty(g mod N)
3.1b.1.1. Type AInv = ((p — g # 0) = (ctl[g mod N] = “empty”))
3.1b.1.2. Type A Inv = IsNext(gg, g mod N)
3.1b.1 Type A Inv = (HEmpty(p mod N) = (3i € Zy : HEmpty(i))
3.2. [Type A Inv A (HRev V HSnd)]yer =
[Type A Inv A (Fi € Zy « HFll(1) vV HEmpty(i)]var
3.3a. @15 = Onv
b. &% = Olnv
3.3.1. Imt = Inv
3.3.2a. Inv A [Type A (HRcv V HSnd)]yar = Inv’
3.3.2a.1 Inv A Type A HRcv = Inv’
3.3.2a.2 Inv A Type A HSnd = Inv’
3.3.2a.3 Inv A (var’ = var) = Inv’
3.3.2b. Inv A [Type A (3i € Zxn = HFill(i) v HEmpty(i))]var = Inv’
3.4. OIS = @l
35. OhvA®Y = (WF(g outy(Snd) = (Vi € Zn : WF yarn(Empty(i))))
3.5.1. Olnv A OF =
(Vi€ Zn : WFyarn (Empty(2))) = WFyarn (30 € Ziv : Empty(i))
3.5.1.1. <I>}1{IS = 0[3i € Zy : Fill(i) VvV Empty(i)]varn
35.1.2. A1 € Zy
A IsNext(gg, 1)
A O(Inv A Type)
AO[(3j € Zy : Fill(y) vV Empty(j)) A ~Empty(i)]varn
= OIsNext(gg, i)
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3.5.1.3. A (4,5 € Zn) A (i £ 5)
A ENABLED ( Empty (1)) vary
A O(Inv A Type)
A O[3k € Zy : Fill(k) v Empty(k)) A = Empty(i)]vary
= O-ENABLED { Empty(j) Yvarn
3.5.2. Olnv A OType AO[HRecv V HSnd]yar =
WEF (g oury(Snd) = WF ooy (31 € Zyv = Empty(i))
3.5.2.1. Inv A Type A [HRev V HSnd] yar =
<Snd><gyout> =(3i € Zy : Empty(i))varn
3.5.2.2. Olnv A OType A O[HRcv V HSnd]yqr =
OO(Snd ) (g,0uty = OX(Fi € Zy = Empty(i)))varn
3.5.2.3 Olnv A OType AO[HRcv V HSnd]yar =
OO=ENABLED (Snd ) (g4 out) =
OO-ENABLED (36 € Zx @ Empty(i)) )vary

B Proof of Lemma 1

Lemma 1l If m € N and i € Zy, then
1. IsNext(Rep(m),i)= (i = m mod N)

2. IsNext(Rep(m),i) =
Rep(m + 1) = [Rep(m) EXCEPT ![i] =1 — Rep(m)[i]]

1. Rep(m 4+ 1) = [Rep(m) EXCEPT ![m mod N]=1— Rep(m)[m mod N]]
1.1. CasE: (m+1) mod 2N = (m mod 2N) + 1
Proor: It suffices to prove that
Rep(m + 1)[j] = if j = m mod N then 1 — Rep(m)[j]
else Rep(m)[j]
for any j € Zn. The proof follows.
1.I.1. (j=mmod N)=(j = m mod 2N) V (j + N = m mod 2N)
ProoOF: Simple number theory.
1.1.2. If 5 = m mod N, then
(J<l4+(mmod2N)<j+N)=-(<mmod2N <j+ N)
ProoOF: Step 1.1.1 and simple arithmetic.
1.1.3. If j # m mod N then
(J<l4+(mmod2N)<j+N)=(j <mmod2N <j+ N)
ProoOF: Step 1.1.1 and simple arithmetic.
1.1.4. Q.E.D.
Proo¥: By 1.1.2, 1.1.3, and the definition of Rep.
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1.2. CasE: (m+1) mod 2N # (m mod 2N) + 1
ProoF: The case assumption implies m mod 2N = 2N — 1, which implies
Rep(m) =[ieZyw— if i=N —1 then 0 else 1]
Rep(m+1) = [i € Zy — 0]
1.3. Q.E.D.
PrOOF: Steps 1.1 and 1.2.
. IsNext(Rep(m),7) = (i = m mod N)
The proof is by induction on m.
2.1. CasE: m =0
ProoF: Rep(0) = [j € Znv — 0] and IsNext(Rep(0),i) = (¢« = 0), for
1€ ZN.
2.2. AssUME: IsNext(Rep(m),i) = (i = m mod N)
PrOVE: IsNext(Rep(m +1),7) = (i = m + 1 mod N)
The result is trivial if N = 1. We assume N > 1.
2.2.1. (i = m mod N) = (IsNext(Rep(m + 1),1) = ~IsNext(Rep(m), i))
PrOOF: { = m mod N implies IsNext(Rep(m + 1), 1)
= by defimtion of IsNext
if i =0 then Rep(m + 1)[0] = Rep(m + 1)[N — 1]
else Rep(m+ 1)[i] # Rep(m + 1)[i — 1]
= by step 1
if i =0 then 1 — Rep(m)[0] = Rep(m)[N — 1]
else 1 — Rep(m)[i] # Rep(m)[i — 1]
= —IsNext(Rep(m), 1)
2.2.2. (i = m+1mod N) = (IsNext(Rep(m+1),1) = —IsNext(Rep(m), i))
PrROOF: i = m + 1 mod N implies IsNext(Rep(m + 1), 1)
= by defimtion of IsNext
if i =0 then Rep(m + 1)[0] = Rep(m + 1)[N — 1]
else Rep(m+ 1)[i] # Rep(m + 1)[i — 1]
= by step 1, since N > 1 implies m + 1 mod N # m mod N
if i =0 then Rep(m)[0] =1 — Rep(m)[N — 1]
else Rep(m)[i] # 1 — Rep(m)[i — 1]
= —IsNext(Rep(m), 1)
223. (i#mmod N)A (i #m+1mod N) =
IsNext(Rep(m + 1), 1) = IsNext(Rep(m), 1)
ProOF: The hypothesis implies IsNext(Rep(m + 1), i)
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by definition of IsNext
if i =0 then Rep(m + 1)[0] = Rep(m + 1)[N — 1]
else Rep(m+ 1)[i] # Rep(m + 1)[i — 1]
= by step 1
if i =0 then Rep(m)[0] = Rep(m)[N — 1]
else Rep(m)[i] # Rep(m)[i — 1]
= IsNext(Rep(m), i)
2.24. Q.E.D.
ProoF: By 2.2.1-2.2.3 and the induction assumption.
2.3 Q.E.D.
ProoOF: By steps 2.1 and 2.2 and mathematical induction.
3. IsNext(Rep(m), i) = (Rep(m + 1) = [Rep(m) EXCEPT ![i] = 1 — Rep(m)[i]])
Proor: Immediate from steps 1 and 2.
4. Q.E.D.
PrOOF: Steps 2 and 3.
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