
Specifying and Verifying
Fault-Tolerant Systems

Leslie Lamport
lamport@src.dec.com

and Stephan Merz
merz@src.dec.com

Digital Equipment Corporation
Systems Research Center

25 July 1994
minor correction: 14 October 1994

To appear in Proceedings of the Third International Symposium on Formal
Techniques in Real Time and Fault Tolerant Systems, held 19–23 September
1994 in Lübeck, Germany.

Specifying and Verifying
Fault-Tolerant Systems

Leslie Lamport and Stephan Merz

Digital Equipment Corporation, Systems Research Center

Abstract. We formally specify a well known solution to the Byzantine
generals problem and give a rigorous, hierarchically structured proof of
its correctness. We demonstrate that this is an engineering exercise, re-
quiring no new scientific ideas.

1 Introduction

Assertional verification of concurrent systems began almost twenty years ago
with the work of Ashcroft [4]. By the early 1980’s, the basic principles of for-
mal specification and verification of concurrent systems were known [10, 12, 19].
More precisely, we had learned how to specify and verify those aspects of a sys-
tem that can be expressed as the correctness of an individual execution. Fault-
tolerant systems are just one class of concurrent systems; they require no special
techniques.

The most important problems that remain are in the realm of engineering,
not science. Scientific ideas must be translated into engineering practice. We
describe here what we believe to be a suitable framework for an engineering
discipline of formal specification and verification.

The limited space provided by these proceedings, and the limited time and
patience of the authors, have forced us to choose a simple example—the spec-
ification and hierarchical verification of a well known fault-tolerant algorithm.
Our example is OM(1), the one-traitor “oral-message” solution to the Byzan-
tine generals problem [16]. In this problem, there is a collection of generals—a
commander and a set of lieutenants—who communicate with one another by
message. Any of the generals, including the commander, may be a traitor. The
commander must send an order to all the lieutenants so that (i) all loyal lieu-
tenants agree on the same order o, and (ii) if the commander is loyal, then o
is the order that she issued. Algorithm OM(1) satisfies these conditions if at
most one of the generals is a traitor. We augment the traditional statement of
the problem by requiring that all loyal generals choose their order within some
fixed time after the start of the algorithm. A solution to the Byzantine generals
problem lies at the heart of a fault-tolerant system in which faulty processors
can exhibit completely arbitrary behavior.

This algorithm was formally specified and verified in 1983, in an appendix
to a final report [20]. Even then, it was considered too straightforward an ex-
ercise to be worth writing up separately for publication. The specification and
verification of fault-tolerant algorithms is not rocket science, but it is still not

2

standard engineering practice. Most of the literature on verification concentrates
on the underlying formalism and ignores the problem of defining a language for
specifying real systems [11, 17, 18]. The literature on specification languages
generally ignores the problem of reasoning formally about specifications of real
systems [8, 9].

We address these practical issues by using existing tools: a precisely defined
specification language and a hierarchical proof method. Section 2 contains the
formal specifications of the problem and the algorithm. There are three specifi-
cations, a high-level problem specification, a mid-level specification of the algo-
rithm at roughly the level of detail provided in [16], and a low-level specification
that more realistically models message passing. Section 3 proves that each spec-
ification implements the next higher-level one. A correctness property of the
high-level specification is also proved. Section 4 discusses the specifications and
proofs.

2 The Formal Specifications

Our specifications are written in TLA+, a complete specification language based
on TLA, the Temporal Logic of Actions. The semantics of TLA is defined in
terms of states and behaviors. A state is an assignment of values to variables,
and a behavior is an infinite sequence of states. A TLA formula is interpreted
as a boolean function on behaviors.

In TLA, a system is modeled by choosing variables whose values describe the
system’s state, and an execution of the system is represented by a behavior. The
system is specified by a TLA formula that is true of a behavior iff (if and only
if) that behavior represents a correct execution of the system. A specification is
a mathematical formula with precisely defined semantics. The correspondence
between the real system and the mathematical formula lies in the interpretation
of the formula’s variables. The free variables of the specification represent the
system’s interface—the part of the system that is being specified. A description
of TLA and its proof rules can be found in [13]. However, we try to explain the
meaning of the TLA formulas in our specification well enough so they can be
read with no prior knowledge of TLA.

Some formalisms describe systems in terms of events (often called actions)
rather than states. An event in such a formalism corresponds to a change to the
value of an interface variable in a TLA specification. The basic method of writing
and reasoning about specifications is the same for event-based and state-based
formalisms.

TLA+ provides a language for writing TLA specifications. In addition to
the operators of TLA, it contains operators for defining and manipulating data
structures and syntactic structures for handling large specifications. The first
published description of TLA+ was in [15]. Since then, the following changes
have been made to the language: (i) explicit specification of sorts is no longer
required for definitions, (ii) the except construct (described below) has replaced
the earlier syntax for the same operator, (iii) single square brackets have replaced

3

double square brackets for record operators. (Record operators are not used
here.) All of these changes preceded work on this particular example.

Some formulas in the specifications have been annotated with boxed numbers,
such as 98 . A boxed number refers to the corresponding number in the margin of
the text, such as the one on this line, which marks the point where the formula 98

is explained.
Our specifications provide a crash course in TLA+, since they use almost

all the basic syntactic features of the language and many of its predefined op-
erators. Figures 21–23 at the end of this paper list all the syntactic constructs
and predefined operators of TLA+. Ones that are used in the specifications are
annotated with pointers to the places in the text where they are explained.

2.1 The High-Level Specification

The high-level specification appears in Figure 1. It begins with a module named
SpecParams . The module is the basic unit of a TLA+ specification. It is a col- 1

lection of declarations, definitions, assumptions, and theorems.
The import statement imports the contents of the modules FiniteSets and 2

Reals . This statement has almost the same effect as inserting the text of these
modules into module SpecParams . The only difference is that when another mod-
ule imports or includes module SpecParams , it does not obtain the definitions
that SpecParams imported from modules FiniteSets and Reals .

Module FiniteSets defines IsFiniteSet(S) to equal true iff S is a finite set. 3

The module Reals defines the set Real of real numbers, with the zero element
0 and the usual operators +, ∗, <, and ≤ on real numbers. Our specification
can be understood without knowing precisely how these imported operators
are defined. For the reader who wants to see the formal definitions, we include
module FiniteSets without further explanation in Figure 20, at the end of the
paper. We omit module Reals . (Starting with the predefined module Naturals
that defines the natural numbers, it takes fewer than fifty lines to define the set
Real and all the operators on real numbers used in our specification.)

Returning to module SpecParams , we next encounter a parameters state- 4

ment, which declares the module’s parameters. The parameters are the free sym-
bols of a module. All formulas defined in a module can be expressed in terms
of its parameters and the built-in operators of TLA+. There are two classes of
module parameters, constants and variables. Constants are the rigid variables of 5

temporal logic; they represent quantities that are unchanged during a behavior.
Variables are the flexible variables of temporal logic; they represent quantities
that can change during the course of a behavior. The constant parameters of the
specification are:

Cmdr The commander. 6

Lt The set of lieutenants.
Order The set of all possible orders.
Now0 The time at which the algorithm starts.
∆ The maximum length of time it can take for the loyal generals to decide

on their values.

4

module SpecParams 1

import FiniteSets, Reals 3

parameters Cmdr , Lt ,Order , Now0, ∆
6 : constant

status, ord ,now 7 : variable

assumption HiAssump 11 ∆
= ∧ (IsFiniteSet(Lt)) ∧ (Cmdr /∈ Lt)
∧ “?” /∈ Order
∧ Now0 ∈ Real
∧ (∆ ∈ Real) ∧ (0 < ∆)

Gen 13 ∆
= Lt ∪ {Cmdr}

Loyal(g) 13 ∆
= status[g] = “Loyal”

module HiLevel

import SpecParams, Reals, RealTime

LInit(g) 20 ∆
= ∧ status[g] ∈ {“Loyal”, “Traitor”}
∧ Loyal(g)⇒ (ord [g] = “?”)

CInit 18 ∆
= ∧ status[Cmdr] ∈ {“Loyal”, “Traitor”}
∧ Loyal(Cmdr)⇒ (ord [Cmdr] ∈ Order)

Fail(g) 19 ∆
= status′ [g] = “Traitor”

Choose(g) 21 ∆
= ∧ Loyal(g) ∧ (ord [g] = “?”)
∧ ord ′[g] ∈ Order
∧ ∀ h ∈ Gen : Loyal(h)′ ∧ (ord ′[h] �= “?”)⇒ (ord ′[g] = ord ′[h])
∧ unchanged status[g]

var(g) 18 ∆
= 〈ord [g], status[g]〉

CSpec 15 ∆
= CInit ∧✷[Fail(Cmdr)]var(Cmdr)

LSpec(g) 20 ∆
= ∧ LInit(g) ∧ ✷[Choose(g) ∨ Fail(g)]var(g)

∧ ✷(Loyal(g) ∧ (ord [g] = “?”)⇒ (now ≤ Now0 + ∆))

Spec 23 ∆
= ∧ CSpec
∧ ∀ g ∈ Lt : LSpec(g)
∧ (now = Now0)
∧ RT (〈ord , status 〉)

theorem
SpecGood 25 ∆

= Spec ⇒ ✷ ∀ g ∈ Gen :
Loyal(g) ∧ (Now0 + ∆ < now)
⇒ ∧ ord [g] ∈ Order
∧ ∀ h ∈ Gen : Loyal(h)⇒ (ord [g] = ord [h])

Fig. 1. The high-level specification.

5

The variable parameters are:

status For each general g, the value of status [g] will be the string “Loyal” or 7

“Traitor”, denoting whether or not the general is loyal. (Strings, denoted
by expressions of the form “ . . . ”, are a predefined data type of TLA+.)
The Byzantine generals problem is expressed in terms of which gener-
als are loyal. In the formal specification, the state must describe which
generals are loyal. Hence, we introduce the variable status .

ord For each general g, the value of ord [g] denotes the order chosen by general
g, or the string “?” if g has not yet chosen an order.

now The variable now will be a real number that denotes the current time.

In our informal discussion, we describe the values that variables will have in a
behavior that satisfies the specification. TLA is a typeless logic, which means that
a variable can assume any value. (More precisely, for any value v and variable x ,
there is a state in which the value of x is v .) Thus, when we say that the value
of status [g] will be a string, we mean that its value will be a string in every state
of every behavior that satisfies the specification we are about to describe.

The lines are primarily decorative, though the second one serves 8

to delimit the assumption section.
An assumption section asserts assumptions about constant parameters. In 9

this module, there is a single assumption named HiAssump, which is defined
to be the expression to the right of the ∆= . In general, the symbol ∆= denotes 10

that the identifier to its left is defined to equal the expression to its right. The
formula HiAssump is the conjunction of four assertions: 11

1. Lt (the set of lieutenants) is a finite set that does not contain Cmdr .
2. “?” is not a possible order.
3. Now0 is a real number.
4. ∆ is a positive real number.

TLA+ uses the notation that a list of expressions bulleted by ∧ denotes their 12

conjunction, and a list of expressions bulleted by ∨ denotes their disjunction.
Indentation is used to eliminate parentheses.

Following the assumption section is a section consisting of two definitions.
The constant operator Gen is defined to be the set of all generals—both the 13

lieutenants and the commander. The boolean operator Loyal is defined so that
Loyal(x) equals true iff status [x] equals “Loyal”, for any x . (We care about the
value of Loyal(x) only when x is an element of Gen.) Round parentheses denote
application of an operator to its argument (or arguments). The symbol Loyal by
itself, without an argument, is not a syntactically complete expression. Square
brackets denote function application. Both status and status [e] are syntactically
complete expressions that denote values, for any expression e.

The line ends the module. 14

The actual specification is contained in module HiLevel , which comes next.
This module imports the modules SpecParams , Reals , and RealTime.

6

The RealTime module is used to express real-time properties. It is essentially
the same module as in [15], which in turn used the definitions from [2].1 Speci-
fying real-time properties is an engineering problem that is solved by applying
standard methods. We will explain the operators in the RealTime module as
they appear in our specification. The module is given in Figure 20.

Importing SpecParams provides module HiLevel with the specification pa-
rameters and the definitions of Gen and Loyal . Importing SpecParams does not
import the modules FiniteSets and Reals that it in turn imports.

Instead of reading module HiLevel in sequence, we examine next the temporal
formula CSpec, which specifies the commander. This formula has the canonical15

form Init ∧ ✷[Next]v for a process specification2, where

Init is a predicate—a Boolean expression made from constants and variables. It
describes the initial state of the process’s variables.

Next is an action—a boolean expression made from constants, variables, and
primed variables. It describes all steps (pairs of successive states) that can
change the process’s variables. In an action, unprimed variables denote
values in the first (starting) state and primed variables denote values in the
second (final) state.

v is a state function—a nonboolean expression made from constants and vari-
ables. It is usually a tuple that describes all components of the process’s
state.

The formula [Next]v denotes Next ∨ (v ′ = v), so it represents a step that is16

either a Next step or one that leaves v (and hence all variables in the tuple v)
unchanged. The temporal operator ✷ means always, so Init ∧ ✷[Next]v is true17

for a behavior (infinite sequence of states) iff the first state satisfies Init and
every successive pair of states is either a Next step or leaves v unchanged.

The commander’s state is described by ord [Cmdr] and status [Cmdr], which
are the components of the tuple var(Cmdr). (In TLA+, tuples are enclosed in18

angle brackets 〈. . .〉.) The initial condition CInit asserts that

1. The commander’s status is either “Loyal” or “Traitor”.
2. If her status is “Loyal”, then her order is an element of Order . The symbol

⇒ denotes logical implication. It has lower precedence (binds more loosely)
than any other boolean operator.

The commander’s next-state relation is Fail(Cmdr), which asserts that the new19

value of status [Cmdr] is “Traitor”. This allows any step that ends in a state with
status [Cmdr] equal to “Traitor”. Such a step can change ord [Cmdr] to any value.
Thus, the formula CSpec is satisfied by any behavior that either (i) consists of
an infinite number of states with status [Cmdr] = “Loyal” and ord [g] = o, for
some o in Order , or (ii) starts with a finite (possibly empty) sequence of such

1 The definition of VTimer in the RealTime module of [15] contains a typographical
error; the correct definition appears in [2] and Figure 20.

2 Since real-time conditions are used to specify progress, there are no fairness condi-
tions in our processes.

7

states and ends with an infinite sequence of states in which status [Cmdr] equals
“Traitor” and ord [Cmdr] assumes completely arbitrary values.

The formula CSpec describes only the values assumed by ord [Cmdr] and
status [Cmdr]. It makes no assertion about any other part of the state—such as
the value of the variable now , or of ord [g] for g different from Cmdr , or of a
variable foo that might be introduced later.

The formula LSpec(g) is the specification of lieutenant g. It is the conjunction 20

of two formulas. The first asserts that LInit(g) holds initially and that each step
is a Choose(g) step, a Fail(g) step, or a step that leaves lieutenant g’s state
unchanged. The initial predicate LInit(g) asserts that (i) status [g] has a correct
value, and (ii) if g is loyal, then ord [g] equals “?”, denoting that g has not yet
chosen an order. A Choose(g) step is one in which 21

1. In the starting a state, g is loyal and has not yet chosen an order. (Any step
taken by a traitorous general can be interpreted as a Fail step.)

2. In the final state, g has chosen an order.
3. For every general h that, in the final state, is loyal and has chosen an order,

the order that h has chosen is the same as the one that g has chosen.
4. g’s status does not change, which by (1) implies that he is still loyal in the

final state. The formula unchanged f is an abbreviation for f ′ = f . 22

The second conjunct of LSpec(g) is of the form ✷P , for a predicate P . Such
a formula asserts of a behavior that P is true in every state. In this case, the
formula asserts that if g is loyal and has not chosen an order, then now is at
most Now0 +∆. In other words, it asserts that if now is greater than Now0 +∆
and g is loyal, then he must have chosen an order. Since we interpret now as the
current time, the second conjunct of LSpec(g) asserts that if g is loyal, then he
must choose an order by time Now0 + ∆.

The formula Spec is the complete high-level specification. It asserts 23

1. The commander’s specification CSpec.
2. The specification LSpec(g), for each lieutenant g.
3. now = Now0, which means that the current time initially (at the start of

the algorithm) equals Now0.
4. Formula RT (〈ord , status 〉). Module RealTime defines formula RT (v) to as- 24

sert that (a) now is a monotonically nondecreasing real number and (b) steps
that change now leave v unchanged. Thus, RT (〈ord , status 〉) asserts that
(a) now changes the way we expect time to change, and (b) ord and status
do not change when now does. Thus, in steps that change ord and status , the
value of now is the same in the initial and final state. Intuitively, this means
that we are considering changes to ord and status to happen instantaneously.

Formula Spec is the high-level specification. This means that we consider a be-
havior to represent a correct execution of the algorithm iff it satisfies Spec. A
specification is therefore a definition, and a definition cannot be right or wrong.
However, a specifications can fail to capture our intent. To gain confidence in a
specification, we can prove theorems about it. Such theorems usually have the

8

form Spec ⇒ Prop, which asserts that every behavior satisfying the specification
Spec also satisfies the property Prop. Module HiLevel asserts such a theorem,
named SpecGood . This theorem states that, in any behavior satisfying Spec, it25

is always the case that, for any general g, if g is loyal and the time is later than
Now0+∆, then g has chosen an order and his order is the same as that of every
other loyal general. In other words, every loyal general chooses an order by time
Now0 + ∆, and that order is the same as any other loyal general’s order. All
theorems are proved in Section 3.

2.2 The Mid-Level Specification

The mid-level specification describes Algorithm OM(1) of [16], an “oral-message”
Byzantine agreement algorithm that works in the presence of at most one traitor.
It is a two-round algorithm. In the first round, the commander sends her message
to all lieutenants. In the second round, each lieutenant relays the message he
received to all other lieutenants. A lieutenant chooses his order by applying a
majority function to the values that he has received. The only requirements on
this majority function are (i) if the same order o is received from all but one of
the other generals, then o is chosen, and (ii) all lieutenants use the same majority
function.

This informal description is essentially the one given in [16]. It contains sev-
eral tacit assumptions—for example, that every lieutenant receives a value in the
first round, even if the commander is a traitor. The formal specification makes
these assumptions explicit.

Module MidLevelParams of Figure 2 declares the following new parameters26

that are used in the mid-level specification.

rcvd For each lieutenant g, the order that g receives directly from the comman-
der is recorded in rcvd [g][g], and the relayed order that g receives from
each other lieutenant h is recorded in rcvd [g][h]. Thus, for each lieutenant
g, the value of rcvd [g] will be a function whose domain is the set Lt of
lieutenants. If lieutenant g is loyal, then before any orders have been sent,
rcvd [g][h] will equal “?”, for all lieutenants h.

Majority The majority function. More precisely, Majority is an operator with a
single argument. We care about the value of Majority(f) only when f is a
function from Lt to the set Order of orders.

δ The maximum delay between when an order is sent and when it is received.
This delay applies both to the sending of orders by the commander and to
the relaying of orders by the lieutenants. (The delay δ includes the time
needed to decide to send an order.)

ε The maximum time it takes a lieutenant to make a decision. In this spec-
ification, the only decision he has to make is to choose an order once he
has received all the relayed orders.

Assumption MidAssump makes the following assertion about the constant pa-27

rameters.

9

module MidLevelParams

import SpecParams, Reals
export 29 MidLevelParams, SpecParams, Reals

parameters rcvd 26 : variable

Majority(), δ, ε 26 : constant

assumption

MidAssump 27 ∆
= ∧ (δ ∈ Real) ∧ (ε ∈ Real) ∧ (2 ∗ δ + ε ≤ ∆)

∧ ∀ f ∈ [Lt → Order] 28 :
∧ Majority(f) ∈ Order
∧ ∀ o ∈ Order : (∃ h ∈ Lt : ∀ g ∈ Lt \ {h} : f [g] = o)

⇒ (Majority(f) = o)

Fig. 2. Module MidLevelParams.

1. δ and ε are real numbers such that 2 ∗ δ + ε is at most ∆.
2. For any function f that maps lieutenants to orders:

1. Majority(f) is an order.
2. If o is an order such that f [g] equals o for every lieutenant except some

lieutenant h, then Majority(f) equals o.
The expression [Lt → Order] denotes the set of all functions f with domain 28

Lt such that f [g] ∈ Order , for all g ∈ Lt .

The export statement causes the named definitions to be imported by any mod- 29

ule that imports MidLevelParams. A module name stands for all definitions from
that module. (Omitting the export statement would be equivalent to writing
export MidLevelParams .)

Module MidLevel in Figure 3 defines the formula Spec to be the mid-level
specification. It first imports two other modules. Importing MidLevelParams
imports all its parameters, including the ones it imported from SpecParams .

The include statement incorporates the definitions from module HiLevel , 30

with all defined symbols prefixed by “Hi .”; for example, a definition of Hi .var
is included that makes Hi .var(h) equal to 〈ord [h], status [h]〉. Parameters of an
included module are instantiated by expressions. In the absence of explicit in-
stantiation (described below), a parameter is instantiated by the symbol of the
same name. Thus, the parameter Cmdr of HiLevel is instantiated by Cmdr (a pa-
rameter of MidLevel , obtained via the import statement); the parameter ord of
HiLevel is instantiated by ord ; etc. When a module is included, its assumptions
(with the appropriate instantiations) must be provable from the assumptions
and definitions of the including module. Thus, assumption Hi .HiAssump, the
assumption of the included module HiLevel , must be provable from the assump-
tions and definitions of module MidLevel . This assumption follows trivially from
assumption HiLevel , which is imported from module MidLevelParams, which in
turn imports it from module SpecParams .

10

module MidLevel

import MidLevelParams, RealTime
include HiLevel as Hi 30

LInit(g) 32 ∆
= ∧ Hi .LInit(g)
∧ Loyal(g)⇒ (rcvd [g] = [h ∈ Lt �→ “?”])

Issue(g) 34 ∆
= ∧ Loyal(g) ∧ rcvd [g][g] = “?”
∧ ∃ o ∈ Order : ∧ rcvd ′[g] = [rcvd [g] except ![g] = o]

∧ Loyal(Cmdr)⇒ (o = ord [Cmdr])
∧ unchanged 〈ord [g], status[g]〉

Relay(g , h) 35 ∆
= ∧ Loyal(g) ∧ rcvd [g][h] = “?”
∧ ∃ o ∈ Order : ∧ rcvd ′[g] = [rcvd [g] except ![h] = o]

∧ Loyal(h)⇒ (o = rcvd [h][h])
∧ unchanged 〈ord [g], status[g]〉

Choose(g)
∆
= ∧ Loyal(g) ∧ ord [g] = “?”
∧ ∀ h ∈ Lt : rcvd [g][h] �= “?”
∧ ord ′[g] = Majority(rcvd [g])
∧ unchanged 〈rcvd [g], status[g]〉

Next(g) 33 ∆
= Issue(g) ∨ (∃ h ∈ Lt \ {g} : Relay(g , h)) ∨ Choose(g) ∨ Hi .Fail(g) 36

var(g)
∆
= 〈ord [g], rcvd [g], status[g]〉

LSpec(g)
∆
= ∧ LInit(g) ∧ ✷[Next(g)] 32var(g)

∧ ✷(Loyal(g) ∧ (rcvd [g][g] = “?”)⇒ (now ≤ Now0 + δ)) 37

∧ ∀ h ∈ Lt \ {g} :

✷(Loyal(g) ∧ (rcvd [g][h] = “?”)⇒ (now ≤ Now0 + 2 ∗ δ)) 37

∧ ∃∃∃∃∃∃ t : ∧ VTimer(t , Choose(g), ε, var(g))

∧ MaxTimer(t) 38

Spec 31 ∆
= ∧ Hi .CSpec
∧ ∀ g ∈ Lt : LSpec(g)
∧ now = Now0

∧ RT (〈ord , rcvd , status 〉)

OneTraitor 40 ∆
= ∃ h ∈ Gen : ∀ g ∈ Gen \ {h} : Loyal(g)

theorem
MidCorrect 40 ∆

= (✷OneTraitor) ∧ Spec ⇒ Hi .Spec

Fig. 3. Module MidLevel

11

Formula Spec is the specification of the mid-level algorithm. It is similar to 31

the specification Spec of module HiLevel , consisting of the conjunction of four
formulas that assert: (i) the specification Hi .CSpec of the commander included
from module HiLevel , (ii) formula LSpec(g), for every lieutenant g, (iii) now is
initially equal to Now0, and (iv) formula RT (〈ord , rcvd , status 〉). As explained in
Section 2.1, RT (〈ord , rcvd , status 〉) asserts that now behaves the way we expect
it to and that ord , rcvd , and status change instantaneously. The rest of the
specification involves the definition of LSpec(g), the specification of lieutenant g.
Formula LSpec(g) is the conjunction of four formulas, which we describe in turn.

The first conjunct of LSpec(g) has the canonical form Init ∧ ✷[Next]v ex- 32

plained in Section 2.1. The initial predicate LInit(g) asserts (i) the initial condi-
tion Hi .LInit(g) on status [g] and ord [g] and (ii) that rcvd [g] is a function with
domain Lt such that rcvd [g][h] equals “?” for every h in Lt . In general, the
construct [x ∈ S
→ exp(x)] denotes the function f with domain S such that
f [x] = exp(x) for all x in S . The next-state relation Next(g) is the disjunction 33

of four actions:

Issue(g) Represents the sending of an order by the commander to lieutenant g. 34

It is enabled iff g is loyal and rcvd [g][g] equals “?”, denoting that g
has not yet received an order from the commander. The action sets
rcvd [g][g] to an order that, if the commander is loyal, is actually her
order. The notation [f except ! [x] = exp] denotes a function f̂ that
is the same as f except that f̂ [x] equals exp.

∃ h ∈ Lt\{g} : Relay(g, h) Asserts that a Relay(g, h) step occurs, for some lieu- 35

tenant h other than g. Such a step represents the relaying of an order
from h to g. If h is loyal, then the relayed order is rcvd [h][h].

Hi .Fail(g) As described above, an action taken when g is or becomes a traitor. 36

It allows arbitrary changes to ord [g] and rcvd [g] (and all variables
other than status [g]).

Choose(g) The action in which g chooses his order by applying Majority to his
array rcvd [g] of relayed values.

The final three conjuncts of LSpec(g) place timing bounds on when g’s actions
must occur. The second conjunct asserts that (it is always true that) if g is loyal 37

and rcvd [g][g] equals “?”, then now is at most Now0 + δ. If g is loyal, rcvd [g][g]
equals “?” iff an Issue(g) step has not occurred. Thus, this conjunct asserts that,
if g is loyal, then an Issue(g) step must occur by time Now0 + δ. Similarly, the
third conjunct asserts that, if g is loyal, then a Relay(g, h) step must occur by
time Now0 + 2 ∗ δ.

The final conjunct of LSpec(g) places a timing bound on the Choose(g) ac-
tion, using the temporal formulas VTimer and MaxTimer , defined in module 38

RealTime. These formulas were introduced in [2] and used again in [15] as a
general method for specifying real-time bounds. If A is an action and v a state
function such that any A step changes v , and if t is a variable that does not
occur in A or v , then the formula VTimer(t ,A, ε, v) ∧ MaxTimer(t) asserts that
A cannot be enabled for more than ε time units before the next A step occurs.

12

The temporal existential quantifier ∃∃∃∃∃∃ t essentially hides the variable t . Thus, the 39

fourth conjunct of LSpec(g) asserts that, if lieutenant g is loyal, then a Choose(g)
step must occur within ε time units of when he has received an order from the
commander and from all other lieutenants.

Finally, the module asserts the correctness of the mid-level algorithm. The40

predicate OneTraitor asserts of a state that there is at most one traitorous
general. Theorem MidCorrect asserts that, for any behavior, if (i) there is always
at most one traitorous general and (ii) formula Spec holds, then formula Hi .Spec
holds. In other words, this theorem asserts that, in the presence of at most one
traitor, the mid-level specification implements the high-level specification.

2.3 The Low-Level Specification

In the mid-level specification, a value is transferred from the commander to a
lieutenant in a single step, and is relayed from one lieutenant to another in a
single step. In the low-level specification, we model the way values are transmit-
ted over communication channels. This requires adding timeouts to detect if a
traitorous general fails to send a message.

The specification uses module TimedChannel of Figure 4, which provides41

generic definitions for describing the transmission of values over a channel. This
module imports module Sequences to define operators on sequences. In TLA+,
an n-tuple 〈v1, . . . , vn 〉 is a function whose domain is the set {1, . . . ,n} of nat-42

ural numbers, where 〈v1, . . . , vn 〉[i] equals v i , for 1 ≤ i ≤ n. The Sequences
module represents sequences as tuples. The module is given without explanation
in Figure 20. It defines the usual operators Head , Tail , and ◦ (concatenation)
on sequences.

Module TimedChannel has two variable parameters:43

src The interface at the sender’s end of the channel. It will be a pair whose
first element is a sequence of values and whose second element is either 0
or 1.

dest The interface at the receiver’s end of the channel. It will be a pair whose
first element is a sequence of values and whose second element is either 0
or 1.

(The purpose of the second components of src and dest is explained below.) The
module has a single constant parameter τ , which is a real number that represents
the maximum time required to transmit one value.

The sending of a value v is initiated by a Send(v) step, which appends v44

to the tail of src[1] and complements src[2]—changing its value from 0 to 1 or
vice-versa. Receipt of the value v occurs with a Rcv(v) step, which is enabled iff
v is the head of the sequence dest [1]. A Rcv(v) step removes v from the head of
dest [1] and complements dest [2].

The transmission of a value from one end of the channel to the other is45

modeled by a Tmt step, which moves an element from the head of src[1] to the
tail of dest [1].

13

module TimedChannel 41

import Sequences, Reals, RealTime

parameters src, dest 43 : variable

τ 47 : constant

assumption Assump
∆
= (τ ∈ Real) ∧ (0 < τ)

Send(v) 44 ∆
= src′ = 〈src[1] ◦ 〈v 〉, 1− src[2]〉

Rcv(v) 44 ∆
= ∧ (dest [1] �= 〈 〉) ∧ (v = Head(dest [1]))
∧ dest ′ = 〈Tail(dest [1]), 1− dest [2]〉

Tmt 45 ∆
= ∧ src[1] �= 〈 〉
∧ src′ = 〈Tail(src[1]), src[2]〉
∧ dest ′ = 〈dest [1] ◦ 〈Head(src[1])〉, dest [2]〉

ext 48 ∆
= 〈src[2], dest [2]〉

Spec 46 ∆
= ∧ (src = 〈〈 〉, 0〉) ∧ ✷[Tmt ∨ ∃ v : Send(v)]src
∧ (dest = 〈〈 〉, 0〉) ∧ ✷[Tmt ∨ ∃ v : Rcv(v)]dest
∧ ∃∃∃∃∃∃ t : VTimer(t ,Tmt , τ, 〈src, dest 〉) ∧MaxTimer(t) 47

Fig. 4. Module TimedChannel .

Formula Spec is the specification of the timed channel. A behavior satisfies46

this formula iff the variables src and dest behave the way they should for a timed
channel. The formula has three conjuncts. The first describes the sequence of
values assumed by src. Initially, src[1] is the empty sequence and src[2] equals
0; every step that changes src is a Tmt step or a Send(v) step, for some v . The
second conjunct similarly describes the sequence of values assumed by dest . The
third conjunct asserts the real-time requirement. As explained in Section 2.2, the
conjunct asserts that Tmt cannot remain enabled for more than τ time units 47

before the next Tmt step occurs. Thus, this conjunct asserts that, when src[1]
is nonempty, values are moved from it to dest [1] at the rate of at least one every
τ time units.

We now come to ext , the pair consisting of the second components of src and 48

dest , and the explanation of what those second components are for. The channel
specification Spec allows arbitrary values to be sent “spontaneously”, and it
allows those values to be received at arbitrary times. This specification is used
by conjoining it with specifications of a sender and receiver that constrain when
Send and Rcv actions occur. The sender’s specification will describe when Send
actions can occur and what values they can send; the receiver’s specification will
describe when Rcv actions can occur. The sender’s and receiver’s specifications
must also allow the channel’s internal Tmt steps. They allow such steps by
allowing any step that leave ext unchanged; Spec implies that any such step
must be a Tmt step.

Module LowLevelParams in Figure 5 begins the specification of the low-level

14

module LowLevelParams

import SpecParams, MidLevelParams, Reals
export SpecParams, MidLevelParams, Reals, LowLevelParams, Hi, Mid, TC 52

parameters in, out , sent 49 : variable

τ 50 : constant

assumption LowAssump
∆
= (τ ∈ Real) ∧ (0 < τ) ∧ (τ + 3 ∗ ε ≤ δ)

include HiLevel as Hi
include MidLevel as Mid
include TimedChannel as TC (g ,h) with src ← out [g][h], dest ← in[h][g] 51

AllBut(func, g) 53 ∆
= [h ∈ Lt \ {g} �→ func[h]]

NotSent(g , h)
∆
= sent [g][h] = “No”

ext(g) 54 ∆
= [h ∈ Lt �→ TC (g , h).ext]

Fig. 5. Module LowLevelParams.

algorithm itself. The module imports the two higher-level . . .Params modules
and declares three new variable parameters:

in The state function in[h][g] represents the receiver’s end (dest) of the chan-49

nel from g to h.
out The state function out [g][h] represents the sender’s end (src) of the channel

from g to h.
sent The value of sent [g][h], which will be either “Yes” or “No”, records whether

or not general g has sent a value to lieutenant h. For each general g, sent [g]
will be a function with domain Lt .

The constant parameter τ has the same meaning as in module TimedChannel .50

The module next asserts assumption LowAssump, which relates τ to δ and
ε. The module also asserts assumptions HiAssump and MidAssump, which are
imported with modules SpecParams and MidLevelParams, respectively.

Module LowLevelParams then includes modules HiLevel and MidLevel , and
includes a parameterized copy of module TimedChannel . The latter include51

statement incorporates all the definitions from module TimedChannel prefixed
with “TC (g, h).”, and with the indicated instantiations of the parameters src
and dest . For example, it includes the definition

TC (g, h).Tmt ∆= ∧ out [g][h][1] �= 〈 〉
∧ out [g][h]′ = 〈Tail(out [g][h][1]), out [g][h][2]〉
∧ in[h][g]′ = 〈in[h][g][1] ◦ 〈Head(out [g][h][1])〉, in[h][g][2]〉

The export statement exports all these included definitions, as well as the ones52

15

from the imported modules and the definitions made in the LowLevelParams
module itself.

Finally, the module makes three definitions. If func is a function with domain 53

Lt , then AllBut(func, g) is the restriction of func to the domain Lt \ {g}, the
set of all lieutenants other than g. The state function ext(g) is the array of ext 54

tuples for each channel interface at lieutenant g. Thus, a step that leaves ext(g)
unchanged allows Tmt steps for all the channels to and from g, but allows no
Send or Rcv actions on those channels.

The definitions of the predicates and actions used in the final specification
appear in module LowLevelActions of Figure 6. (Normally, one would combine
this module with module LowLevel ; we have split the specification to keep each
module less than one page long.)

The section following the import statement specifies the initial predicate 55

CInit and next-state action CNext of the commander. (The heading is a com-
ment, distinguished by its upright font.) The commander can either do a Hi .Fail
step (any step that ends with status [Cmdr] = “Traitor”) or send her order to
some lieutenant g with a CSend(g) step. A CSend(g) step is enabled iff the
commander is loyal and has not yet sent her order to g; it sends the order and
changes sent [g] to indicate that the order was sent.

The next section defines the initial condition and the normal actions for a 56

lieutenant. The Issue and Relay actions represent the receipt of an order from
the commander or another lieutenant, respectively. The Send action is the one
in which a lieutenant sends an order on a channel.

The following section gives the definitions of a lieutenant’s two timeout ac- 57

tions. An IssueTimeout(g) step can occur if lieutenant g has not received an
order from the commander by time Now0 + τ + 2 ∗ ε. A RelayTimeout(g, h)
step can occur if g has not received a relayed order from lieutenant h by time
Now0 +2 ∗ τ +5 ∗ ε. These timeouts are needed to ensure progress if a traitorous
general fails to send an order.

Action LNext(g) is the next-state action of lieutenant g. 58

Finally, module LowLevel in Figure 7 imports the preceding two modules and
defines the complete low-level specification Spec.

The state functions cvar and lvar(g) are the tuples of variables of the com- 59

mander and lieutenant g, respectively.
The formula EMax (g,A) asserts that action A cannot be enabled for more 60

than ε time units before the next A step occurs (assuming that an A step changes
lvar(g)).

Formula CSpec is the commander’s specification. The second conjunct asserts 61

that, for every lieutenant g, a CSend(g) step must occur within ε seconds of
when it becomes enabled. If the commander is loyal, then action CSend(g) is
enabled initially and remains enabled until she sends g her order. Thus, the
second conjunct asserts that a loyal commander must send her order to every
lieutenant within ε time units of the start of the algorithm.

Formula LSpec(g) is the specification of lieutenant g. The last four conjuncts 62

express the requirements that, if loyal, he must execute each of his actions within

16

module LowLevelActions

import LowLevelParams, RealTime

CInit
∆
= ∧ Hi .CInit
∧ Loyal(Cmdr)⇒ (sent [Cmdr] = [h ∈ Lt �→ “No”])

The commander. 55

CSend(g)
∆
= ∧ Loyal(Cmdr) ∧NotSent(Cmdr , g)
∧ TC (Cmdr , g).Send(ord [Cmdr])
∧ sent ′[Cmdr] = [sent [Cmdr] except ![g] = “Yes”]
∧ unchanged 〈in[Cmdr],AllBut(out [Cmdr], g), ord [Cmdr],

status[Cmdr]〉
CNext

∆
= Hi .Fail(Cmdr) ∨ ∃ g ∈ Lt : CSend(g)

LInit(g)
∆
= ∧ Mid .LInit(g)
∧ Loyal(g)⇒ (sent [g] = [h ∈ Lt �→ “No”])

Lieutenant g. 56

Issue(g)
∆
= ∧ Loyal(g) ∧ (rcvd [g][g] = “?”)
∧ ∃ o ∈ Order : ∧ TC (Cmdr , g).Rcv(o)

∧ rcvd ′[g] = [rcvd [g] except ![g] = o]
∧ unchanged 〈ord [g], AllBut(in[g],Cmdr), out [g], status[g], sent [g]〉

Send(g , h)
∆
= ∧ Loyal(g) ∧ (rcvd [g][g] �= “?”) ∧NotSent(g , h)
∧ TC (g ,h).Send(rcvd [g][g])
∧ sent ′[g] = [sent [g] except ![h] = “Yes”]
∧ unchanged 〈ord [g], rcvd [g], in[g],AllBut(out [g], h), status[g]〉

Relay(g , h)
∆
= ∧ Loyal(g) ∧ (rcvd [g][h] = “?”)
∧ ∃ o ∈ Order : ∧ TC (h, g).Rcv(o)

∧ rcvd ′[g] = [rcvd [g] except ![h] = o]
∧ unchanged 〈ord [g], AllBut(in[g], h), out [g], status[g], sent [g]〉

Choose(g)
∆
= Mid .Choose(g) ∧ unchanged 〈in[g], out [g]〉

IssueTimeout(g)
∆
= ∧ Loyal(g) ∧ (rcvd [g][g] = “?”)
∧ Now0 + τ + 2 ∗ ε < now
∧ ∃ o ∈ Order : rcvd ′[g] = [rcvd [g] except ![g] = o]
∧ unchanged 〈ord [g], in[g], out [g], status[g], sent [g]〉

Timeout actions. 57

RelayTimeout(g , h)
∆
= ∧ Loyal(g) ∧ (rcvd [g][h] = “?”)
∧ Now0 + 2 ∗ τ + 5 ∗ ε < now
∧ ∃ o ∈ Order : rcvd ′[g] = [rcvd [g] except ![h] = o]
∧ unchanged 〈ord [g], in[g], out [g], status[g]〉

LNext(g) 58 ∆
= ∨ Issue(g) ∨ Choose(g) ∨ IssueTimeout(g)
∨ ∃ h ∈ Lt \ {g} : Send(g , h) ∨ Relay(g , h) ∨ RelayTimeout(g , h)
∨ Hi .Fail(g)

Fig. 6. Module LowLevelActions.

17

module LowLevel

import LowLevelParams, LowLevelActions

cvar
∆
= 〈ord [Cmdr], ext(Cmdr), status[Cmdr], sent [Cmdr]〉 State functions. 59

lvar(g)
∆
= 〈ord [g], rcvd [g], ext(g), status[g], sent [g]〉

EMax(g , A) 60 ∆
= ∃∃∃∃∃∃ t : VTimer(t , A, ε, lvar(g)) ∧MaxTimer(t)

Temporal formulas.

CSpec 61 ∆
= ∧ CInit ∧✷[CNext]cvar
∧ ∀ g ∈ Lt : EMax(Cmdr , CSend(g))

LSpec(g) 62 ∆
= ∧ LInit(g) ∧ ✷[LNext(g)]lvar(g)

∧ EMax(g , Issue(g))
∧ EMax(g , IssueTimeout(g))
∧ EMax(g ,Choose(g))
∧ ∀ h ∈ Lt \ {g} : ∧ EMax(g ,Send(g , h))

∧ EMax(g ,Relay(g , h))
∧ EMax(g ,RelayTimeout(g , h))

Spec 63 ∆
= ∧ CSpec
∧ ∀ g ∈ Lt : LSpec(g)
∧ ∀ g , h ∈ Gen : TC (g ,h).Spec
∧ now = Now0

∧ RT (〈ord , rcvd , in, out , status, sent 〉)

theorem LowCorrect
∆
= Spec ⇒ Mid .Spec

Fig. 7. Module LowLevel .

18

ε time units of when he can.
Finally, the complete specification Spec has five conjuncts: (i) the specifica-63

tion of the commander, (ii) the specifications of the lieutenants, (iii) the specifi-
cations of all the communication channels, (iv) the specification of the starting
time, and (v) the usual RT formula.

3 The Proofs

We now describe how the theorems asserted in the specifications above are
proved. The key to moving proofs from the realm of mathematics into engi-
neering practice is hierarchical structuring. We use the method of structuring
proofs introduced in [14]. The conventions used in this method are described as
they appear.

A hierarchically structured proof is a sequence of steps, each with a proof. The
proof of a step is either a short paragraph or calculation, or else a hierarchically
structured proof. The idea is to make the unstructured “leaf” proofs sufficiently
easy to check that they are highly unlikely to be wrong. We indicate how proofs
of our theorems are carried down to the level at which each leaf proof consists of
simple expansion of definitions and propositional logic. Such simple proofs are
easy to check mechanically; most steps in our proofs can be checked with the
TLP verification system [7].

3.1 Proof of Theorem SpecGood

Figure 8 is the high-level proof of theorem SpecGood , consisting of the level-one
steps and the proof of the final step. The Let construct introduces definitions
local to the proof. We use a hierarchical numbering convention for denoting parts
of formulas, adding numbers to bulleted lists of conjuncts and disjuncts. Thus,
Inv(g, h).3 is the formula Loyal(g) ∧ (ord [g] . . . ∆). We extend this convention
to quantified formulas, so if F is the formula ∃ x : P(x), then F (y) denotes the
formula P(y). We use this convention for formulas defined in the specifications
even when the conjuncts and disjuncts are not explicitly numbered. Thus, with
the definition if Issue from module MidLevel (Figure 3), Issue(h).2(p).1 denotes
the formula rcvd ′[h] = [rcvd [h] except ! [h] = p].

Theorem SpecGood is of the form Spec ⇒ ✷P , for a state predicate P . If Spec
were of the canonical form Init∧✷[N]v , then this would be a completely standard
proof using the method first described by Ashcroft [4]: find a state predicate I
(the invariant) such that (i) Init implies I , (ii) I implies P , and (iii) I ∧ [N]v
implies I ′. (This TLA formulation of the proof method is more transparent than
its original description as a method for reasoning about programs.) Since Spec is
written as the conjunction of formulas in canonical form, along with formulas of
the form ✷Q , our proof involves a simple generalization of Ashcroft’s method.

The Q.E.D. in step 〈1〉5 stands for the goal to be proved—in this case, the
theorem itself. In the proof, curly braces enclose the justification of the impli-
cation or equivalence. Each step in this chain of implications and equivalence
follows from simple substitution and application of standard rules.

19

Let: Good(g)
∆
= Loyal(g) ∧ (Now0 + ∆ < now)

⇒ ∧ ord [g] ∈ Order
∧ ∀ h ∈ Gen : Loyal(h)⇒ (ord [g] = ord [h])

Theorem Spec ⇒ ✷(∀ g ∈ Gen : Good(g))

Let: Inv(g , h)
∆
= 1.∧ Loyal(g)⇒ ord [g] ∈ Order ∪ {“?”}

2.∧ Loyal(g) ∧ Loyal(h) ∧ (ord [g] �= “?”) ∧ (ord [h] �= “?”)
⇒ (ord [g] = ord [h])

3.∧ Loyal(g) ∧ (ord [g] = “?”)⇒ (now ≤ Now0 +∆)

CInv
∆
= Loyal(Cmdr)⇒ (ord [Cmdr] ∈ Order)

〈1〉1. Assume: g , h ∈ Lt
Prove: LSpec(g) ∧ LSpec(h) ⇒ ✷Inv(g , h)

〈1〉2. Assume: g ∈ Lt
Prove: LSpec(g) ∧ CSpec ⇒ ✷Inv(g ,Cmdr)

〈1〉3. CSpec ⇒ ✷CInv

〈1〉4. CInv ∧ (∀ g ∈ Lt : ∀ h ∈ Gen : Inv(g , h))⇒ (∀ g ∈ Gen : Good(g))

〈1〉5. Q.E.D.

Proof: Spec ⇒ {By the definition of Spec.}
CSpec ∧ (∀ g , h ∈ Lt : LSpec(g) ∧ LSpec(h))

⇒ {By 〈1〉1, 〈1〉2, and 〈1〉3.}
✷CInv ∧ (∀ g , h ∈ Lt : ✷Inv(g , h) ∧✷Inv(g ,Cmdr))

≡ {By the temporal logic rule that ✷ distributes over conjunction.}
✷(CInv ∧ (∀ g , h ∈ Lt : Inv(g , h) ∧ Inv(g ,Cmdr))

⇒ {〈1〉4, the definition of Gen, and the temporal logic rule
(P ⇒ Q) � (✷P ⇒ ✷Q).}

✷(∀ g ∈ Gen : Good(g))

Fig. 8. The high-level structure of the proof of theorem SpecGood

To finish the proof, we must now prove statements 〈1〉1–〈1〉4. The proof of
〈1〉4 involves simple predicate logic and will not be discussed. The proofs of
〈1〉1, 〈1〉2, and 〈1〉3 are similar; we consider only 〈1〉1.

The first-level proof of 〈1〉1 appears in Figure 9. The rule that underlies the
proof is that proving I ∧ A ⇒ I ′ allows us to infer I ∧ ✷A ⇒ ✷I , where I is
a predicate and A an action. This is an RTLA [13] rule, where RTLA is a logic
that is like TLA except that ✷A is an RTLA formula for any action A, not just
for actions A of the form [N]v . In RTLA, temporal quantification (the operator
∃∃∃∃∃∃) can be applied only to a TLA formula, not to an arbitrary RTLA formula.
All TLA proof rules are valid for RTLA.

To complete the proof of 〈1〉1, we must prove 〈2〉1 and 〈2〉2. Step 〈2〉1 follows
from the definitions by simple predicate logic. The proof of 〈2〉2 is shown in
Figure 10. The proof goal is first transformed into an Assume/Prove form, so
the new goal becomes simply Inv(g, h)′. Inside the proof, these four assumptions
are referred to as assumption 〈2〉:1–〈2〉:4.

Since Inv(g, h) is the conjunction of the formulas Inv(g, h).1, Inv(g, h).2,
and Inv(g, h).3, the next level of the proof (steps 〈3〉1–〈3〉4) is immediate. The

20

〈1〉1. Assume: g , h ∈ Lt
Prove: LSpec(g) ∧ LSpec(h)⇒ ✷Inv(g , h)

Let: T (g)
∆
= Loyal(g) ∧ (ord [g] = “?”)⇒ (now ≤ Now0 + ∆)

〈2〉1. LInit(g) ∧ LInit(h) ∧ T (g)⇒ Inv(g , h)

〈2〉2. ∧ Inv(g , h)
∧ [Choose(g) ∨ Fail(g)]var(g) ∧ [Choose(h) ∨ Fail(h)]var(h)

∧ T (g)′

⇒ Inv(g , h)′

〈2〉3. Q.E.D.

Proof:
LSpec(g) ∧ LSpec(h)
⇒ {By definition of LSpec and T .}
∧ LInit(g) ∧ LInit(h)
∧ ✷[Choose(g) ∨ Fail(g)]var(g) ∧✷[Choose(h) ∨ Fail(h)]var(h)

∧ ✷T (g)

⇒ {Using the RTLA rule � ✷P ≡ P ∧✷P ′, for any predicate P .}
∧ LInit(g) ∧ LInit(h) ∧ T (g)
∧ ✷[Choose(g) ∨ Fail(g)]var(g) ∧✷[Choose(h) ∨ Fail(h)]var(h)

∧ ✷T (g)′

⇒ {By 〈2〉1.}
∧ Inv(g , h)
∧ ✷[Choose(g) ∨ Fail(g)]var(g) ∧✷[Choose(h) ∨ Fail(h)]var(h)

∧ ✷T (g)′

⇒ {Using the rule that ✷ distributes over ∧.}
∧ Inv(g , h)
∧ ✷([Choose(g) ∨ Fail(g)]var(g) ∧ [Choose(h) ∨ Fail(h)]var(h) ∧ T (g)′)

⇒ {By 〈2〉2 and the RTLA Rule (I ∧ A⇒ I ′) � (I ∧ ✷A⇒ ✷I), for
any predicate I and action A.}

✷Inv(g , h)

Fig. 9. The high-level structure of the proof of step 〈1〉1 from Figure 8.

21

〈2〉2. ∧ Inv(g , h)
∧ [Choose(g) ∨ Fail(g)]var(g) ∧ [Choose(h) ∨ Fail(h)]var(h)

∧ T (g)′

⇒ Inv(g , h)′

Proof: By propositional logic, it suffices to:
Assume: 1. Inv(g , h)

2. [Choose(g) ∨ Fail(g)]var(g)

3. [Choose(h) ∨ Fail(h)]var(h)

4. T (g)′

Prove: Inv(g , h)′

〈3〉1. Inv(g , h).1′

Proof: By definition of Inv(g , h).1′ and propositional logic, it suffices to:
Assume: Loyal(g)′

Prove: ord ′[g] ∈ Order ∪ {“?”}
〈4〉1. Case: unchanged var(g)

Proof: Assumption 〈2〉:1, Case Assumption 〈4〉, and the definition of Inv , since
unchanged var(g) implies ord ′[g] = ord [g].

〈4〉2. Case: Choose(g)
Proof: Case Assumption 〈4〉, since Choose(g).2

∆
= ord ′[g] ∈ Order .

〈4〉3. Case: Fail(g)
Proof: Case Assumption 〈4〉 and Assumption 〈3〉 lead to a contradiction, since
Fail(g) implies ¬Loyal(g)′ by definition of Fail and Loyal .

〈4〉4. Q.E.D.
Proof: By propositional logic from 〈4〉1, 〈4〉2, 〈4〉3, and Assumption 〈2〉:2,
since [A]v

∆
= A ∨ (unchanged v).

〈3〉2. Inv(g , h).2′

〈3〉3. Inv(g , h).3′

〈3〉4. Q.E.D.

Proof: 〈3〉1, 〈3〉2, 〈3〉3, and the definition of Inv .

Fig. 10. The proof of step 〈2〉2 from Figure 9.

proof of 〈3〉1 is given; the proofs of 〈3〉2 and 〈3〉3 are analogous.
The goal, Inv(g, h).1′ is deduced from assumptions 〈2〉:1 and 〈2〉:2. Since

assumption 〈2〉:2 is a disjunction, we do a proof by cases. The statement Case: S
is equivalent to Assume: S, Prove: Q.E.D.

3.2 Proof of Theorem MidCorrect

Theorem MidCorrect asserts that (✷OneTraitor) ∧ Spec implies Hi .Spec. It is
trivial to prove that Spec implies Hi .Spec.1 and Hi .Spec.3, so the problem is prov-
ing Hi .Spec.2 and Hi .Spec.4. Proving Hi .Spec.2 requires proving Hi .LSpec(g).1
and Hi .LSpec(g).2 for each lieutenant g.

The high-level structure of the proof of theorem MidCorrect appears in Fig-
ure 11. Steps 〈1〉2 and 〈1〉4 prove Hi .LSpec(g).1 and Hi .LSpec(g).2, respectively,
and 〈1〉5 proves Hi .Spec.4. Steps 〈1〉1 and 〈1〉3 establish useful invariants.

22

Theorem (✷OneTraitor) ∧ Spec ⇒ Hi .Spec

Let: Inv(g , l)
∆
= Loyal(g)⇒

1.∧ (Domain rcvd [g] = Lt)
2.∧ (rcvd [g][l] �= “?”)⇒ (rcvd [g][l] ∈ Order)
3.∧ Loyal(Cmdr) ∧ (rcvd [g][g] ∈ Order)

⇒ (rcvd [g][g] = ord [Cmdr])
4.∧ Loyal(l) ∧ (rcvd [g][l] ∈ Order)⇒ (rcvd [g][l] = rcvd [l][l])
5.∧ (ord [g] �= “?”)⇒ ∧ ord [g] = Majority(rcvd [g])

∧ ∀ h ∈ Lt : rcvd [g][h] �= “?”

TInv(g)
∆
= 1.∧ now ∈ Real

2.∧ Loyal(g) ∧ (ord [g] = “?”) ∧ (∀ h ∈ Lt : rcvd [g][h] �= “?”)
⇒ (now ≤ Now0 + 2δ + ε)

〈1〉1. Assume: g , l ∈ Lt
Prove: Hi .CSpec ∧ LSpec(g) ∧ LSpec(l)⇒ ✷Inv(g , l)

〈1〉2. Assume: g ∈ Lt
Prove: ✷OneTraitor ∧ LSpec(g) ∧ (∀ h, l ∈ Lt : ✷Inv(h, l))⇒ Hi .LSpec(g).1

〈1〉3. Assume: g ∈ Lt
Prove: (now = Now0) ∧ RT (〈ord , rcvd , status 〉) ∧ LSpec(g)

∧ (∀ h ∈ Lt : ✷Inv(g , h))⇒ ✷TInv(g)

〈1〉4. Assume: g ∈ Lt
Prove: LSpec(g) ∧✷TInv(g)⇒ Hi .LSpec(g).2

〈1〉5. RT (〈ord , rcvd , status 〉)⇒ RT (〈ord , status 〉)
〈1〉6. Q.E.D.

〈2〉1. (✷OneTraitor) ∧ Spec ⇒ Hi .Spec.1
Proof: Trivial, since Spec.1 is the same as Hi .Spec.1.

〈2〉2. (✷OneTraitor) ∧ Spec ⇒ Hi .Spec.2
Proof: By 〈1〉1–〈1〉4 and the definitions of Spec and Hi .Spec, since Spec.2 equals
∀ l ∈ Lt : LSpec(l), and Hi .Spec.2 equals ∀ g ∈ Lt : Hi .LSpec(g).

〈2〉3. (✷OneTraitor) ∧ Spec ⇒ Hi .Spec.3
Proof: Trivial, since Spec.3 is the same as Hi .Spec.3.

〈2〉4. (✷OneTraitor) ∧ Spec ⇒ Hi .Spec.4
Proof: By 〈1〉5 and the definitions of Spec and Hi .Spec.

〈2〉5. Q.E.D.
Proof: 〈2〉1–〈2〉4 and the definition of Hi .Spec.

Fig. 11. The high-level structure of the proof of theorem MidCorrect

23

〈1〉2. Assume: g ∈ Lt
Prove: (✷OneTraitor) ∧ LSpec(g) ∧ (∀ h, l ∈ Lt : ✷Inv(h, l))

⇒ Hi .LSpec(g).1
〈2〉1. LInit(g)⇒ Hi .LInit(g)

Proof: By definition of LInit(g).

〈2〉2. OneTraitor ′ ∧ (∀ h, l ∈ Lt : Inv(h, l) ∧ Inv(h, l)′) ∧ [Next(g)]var(g)

⇒ [Hi .Choose(g) ∨Hi .Fail(g)]Hi.var(g)

. . .

〈2〉3. Q.E.D.

Proof:
(✷OneTraitor) ∧ LSpec(g) ∧ (∀ h, l ∈ Lt : ✷Inv(h, l))
⇒ {By definition of LSpec(g).}

(✷OneTraitor) ∧ LInit(g) ∧✷[Next(g)]var(g) ∧ (∀ h, l ∈ Lt : ✷Inv(h, l))
⇒ {By simple RTLA reasoning.}

LInit(g) ∧✷(OneTraitor ′

∧ (∀ h, l ∈ Lt : Inv(h, l) ∧ Inv(h, l)′) ∧ [Next(g)]var(g))
⇒ {By 〈2〉1, 〈2〉2 and simple RTLA reasoning.}

Hi .LInit(g) ∧✷[Hi .Choose(g) ∨Hi .Fail(g)]Hi.var(g)

⇒ {By definition of Hi .LSpec(g)}
Hi .LSpec(g).1.

Fig. 12. The proof of step 〈1〉2 from Figure 11, with the proof of 〈2〉2 elided.

Step 〈1〉1 is an invariance proof of the kind we have already seen in the proof
of theorem SpecGood . Its proof is omitted.

We consider now the proof of 〈1〉2, which appears in Figure 12. The key step
is 〈2〉2, whose proof is in Figure 13. Since Hi .var(g) is a subtuple of var(g), it is
obvious that unchanged 〈var(g)〉 implies unchanged 〈Hi .var(g)〉. The proof
demonstrates that every step of the mid-level specification, which is a Next(g)
step, is a [Hi .Choose(g) ∨ Hi .Fail(g)]Hi.var(g) step—that is, a step allowed by
the high-level specification. (This is sometimes called proving step simulation.)

Formally, the first level in the proof of 〈2〉2 is a case split on the disjuncts
of [Next(g)]var(g). The only hard case is Choose(g), which we prove implies
Hi .Choose(g). (In other words, we prove that a mid-level Choose(g) step im-
plements a high-level Hi .Choose(g) step.) The next-level proof of this case is
obtained by separately proving Hi .Choose(g).1, . . . , Hi .Choose(g).4. The only
hard parts are steps 〈4〉2 and 〈4〉3. The proof of 〈4〉2 is given in Figure 14; the
proof of 〈4〉3 is omitted.

Step 〈1〉3 is a property of the same form as theorem SpecGood . However,
there is a temporal quantifier ∃∃∃∃∃∃ in LSpec(g). Figure 15 indicates how this quan-
tifier is handled. We first define LSpecT (g, t) to be LSpec(g) with the quantifier
removed, and define the invariant TInvT (g, t).3 The heart of the proof, step
〈2〉1, asserts an ordinary invariance property with no temporal quantifiers; its
proof is omitted. Steps 〈2〉3 and 〈2〉4 show how the quantifier is “put back into

3 If r and s are elements of Real , then r ≤ t ≤ s means (t ∈ Real)∧ (r ≤ t)∧ (t ≤ s).

24

〈2〉2. OneTraitor ′ ∧ (∀ h, l ∈ Lt : Inv(h, l) ∧ Inv(h, l)′) ∧ [Next(g)]var(g)

⇒ [Hi .Choose(g) ∨ Hi .Fail(g)]Hi.var(g)

Proof: By propositional logic, it suffices to:
Assume: 1. OneTraitor ′

2. ∀ h, l ∈ Lt : Inv(h, l) ∧ Inv(h, l)′

3. [Next(g)]var(g)

Prove: [Hi .Choose(g) ∨ Hi .Fail(g)]Hi.var(g)

〈3〉1. Case: Issue(g)
Proof: By definition, Issue(g).3 equals unchanged Hi .var(g).

〈3〉2. Case: ∃ h ∈ Lt \ {g} : Relay(g , h)
Proof: By propositional logic, it suffices to prove that (h ∈ Lt) ∧ Relay(g , h)
implies unchanged Hi .var(g), which follows from the definitions of Relay(g , h)
and Hi .var(g).

〈3〉3. Case: Choose(g)
〈4〉1. Loyal(g) ∧ (ord [g] = “?”)

Proof: Choose(g).1, which holds by Case Assumption 〈3〉.
〈4〉2. ord ′[g] ∈ Order

. . .
〈4〉3. ∀ h ∈ Gen : Loyal(h)′ ∧ (ord ′[h] �= “?”)⇒ (ord ′[g] = ord ′[h])

. . .
〈4〉4. unchanged status[g]

Proof: Choose(g).4, which holds by Case Assumption 〈3〉.
〈4〉5. Q.E.D.

Proof: 〈4〉1–〈4〉4 imply Hi .Choose(g).
〈3〉4. Case: Hi .Fail(g)

Proof: Immediate.
〈3〉5. Case: unchanged var(g)

Proof: By definition, Hi .var(g) is a subsequence of var(g).
〈3〉6. Q.E.D.

Proof: 〈3〉1–〈3〉5 and the definition of Next(g).

Fig. 13. The proof of step 〈2〉2 from Figure 12, with the proofs of 〈4〉2 and 〈4〉3 elided.

25

〈4〉2. ord ′[g] ∈ Order
〈5〉1. rcvd [g] ∈ [Lt → Order]
〈6〉1. Domain rcvd [g] = Lt

Proof: 〈4〉1 and Inv(g , g).1, which holds by Assumption 〈1〉 and Assumption
〈2〉:2.

〈6〉2. ∀ h ∈ Lt : rcvd [g][h] �= “?”
Proof: Choose(g).2, which holds by Assumption 〈3〉.

〈6〉3. ∀ h ∈ Lt : rcvd [g][h] ∈ Order
Proof: 〈6〉2 and Inv(g , h).2, which holds by 〈4〉1, Assumption 〈1〉, and As-
sumption 〈2〉:2.

〈6〉4. Q.E.D.
Proof: 〈6〉1 and 〈6〉3.

〈5〉2. Q.E.D.
Proof: Choose(g).3 (which holds by Assumption 〈3〉), 〈5〉1, and Assumption
MidAssump.2.

Fig. 14. The proof of step 〈4〉2 from Figure 13.

the formula” using simple reasoning. Formally, we are using the following two
rules, which are valid if x does not occur free in G:

F (x) ⇒ G

(∃∃∃∃∃∃ x : F (x)) ⇒ G

� (∃∃∃∃∃∃x : F (x) ∧ G) ≡ (∃∃∃∃∃∃x : F (x)) ∧ G

This proof strategy will be familiar to anyone who has done rigorous proofs in
ordinary first-order logic.

The proof of step 〈1〉4 is a simple matter of deducing (✷P1) ∧ (✷P2) ∧
(✷P3) ⇒ ✷Q from P1 ∧ P2 ∧ P3 ⇒ Q , where ✷P1 and ✷P2 are LSpec(g).2
and LSpec(g).3, respectively. The proof of step 〈1〉5 uses the same basic strategy
as the proof of 〈1〉2, but is much simpler. The formal proofs of these steps are
omitted.

3.3 Proof of Theorem LowCorrect

The high-level proof of theorem LowCorrect appears in Figure 16. As in the
proof of theorem MidCorrect , we first prove the implication with the quantifiers
removed from the hypothesis, and then add the quantifiers in the final step.

The proof of the final step, 〈1〉6, is shown in Figure 17. To prove step 〈2〉2,
we use the same reasoning as before to add the quantifiers. The proof of step
〈2〉3 makes use of a TLA proof rule that is analogous to the rule

� (∀ y : ∃ x : F (x)) ≡ (∃ x : ∀ y : F (x (y)))

of higher-order logic. In a formalism like TLA+ that includes set theory, functions
are ordinary values, and this rule can be stated in first-order logic as

� (∀ y ∈ S : ∃ x : F (x)) ≡ (∃ x : ∀ y ∈ S : F (x [y]))

26

〈1〉3. Assume: g ∈ Lt
Prove: (now = Now0) ∧ RT (〈ord , rcvd , status 〉) ∧ LSpec(g)

∧ (∀ h ∈ Lt : ✷Inv(g , h))⇒ ✷TInv(g)

Let: LSpecT (g , t)
∆
= LSpec(g).1 ∧ LSpec(g).2 ∧ LSpec(g).3 ∧ LSpec(g).4(t)

TInvT (g , t)
∆
=

1.∧ now ∈ Real
2.∧ Loyal(g) ∧ (ord [g] = “?”) ∧ (∀ h ∈ Lt : rcvd [g][h] �= “?”)

⇒ (now ≤ t ≤ Now0 + 2δ + ε)
〈2〉1. (now = Now0) ∧ RT (〈ord , rcvd , status 〉) ∧ LSpecT (g , t)

∧ (∀ h ∈ Lt : ✷Inv(g , h))⇒ ✷TInvT (g , t)
. . .

〈2〉2. (now = Now0) ∧ RT (〈ord , rcvd , status 〉) ∧ LSpecT (g , t)
∧ (∀ h ∈ Lt : ✷Inv(g , h))⇒ ✷TInv(g)

Proof: 〈2〉1 and simple temporal reasoning, since TInvT (g , t) implies TInv(g).
〈2〉3. (∃∃∃∃∃∃ t : (now = Now0) ∧ RT (〈ord , rcvd , status 〉) ∧ LSpecT (g , t)

∧ (∀ h ∈ Lt : ✷Inv(g , h)))⇒ ✷TInv(g)
Proof: 〈2〉2, since t does not occur free in ✷TInv(g).

〈2〉4. Q.E.D.
Proof: 〈2〉3, since
∃∃∃∃∃∃ t : ∧ (now = Now0) ∧ RT (〈ord , rcvd , status 〉)

∧ LSpecT (g , t)
∧ ∀ h ∈ Lt : ✷Inv(g , h))

≡ {By definition of LSpecT .}
∃∃∃∃∃∃ t : ∧ (now = Now0) ∧ RT (〈ord , rcvd , status 〉)

∧ LSpec(g).1 ∧ LSpec(g).2 ∧ LSpec(g).3 ∧ LSpec(g).4(t)
∧ ∀ h ∈ Lt : ✷Inv(g , h)

≡ {Because t occurs free only in LSpecT (g).4.}
∧ (now = Now0) ∧ RT (〈ord , rcvd , status 〉)
∧ LSpec(g).1 ∧ LSpec(g).2 ∧ LSpec(g).3 ∧ ∃∃∃∃∃∃ t : LSpec(g).4(t)
∧ ∀ h ∈ Lt : ✷Inv(g , h)

≡ {By definition of LSpec.}
∧ (now = Now0) ∧ RT (〈ord , rcvd , status 〉)
∧ LSpec(g)
∧ ∀ h ∈ Lt : ✷Inv(g , h)

Fig. 15. The proof of 〈1〉3 from Figure 11, with the proof of 〈2〉1 elided.

27

Theorem Spec ⇒ Mid .Spec

Let: qt , ct , t1, t2, t3, t4, t5, t6 : variable

TEMax(t , g ,A)
∆
= VTimer(t ,A, ε, lvar(g)) ∧MaxTimer(t)

CSpecT
∆
= 1.∧ CInit ∧✷[CNext]cvar

2.∧ ∀ g ∈ Lt : TEMax(ct [g], Cmdr , CSend(g))

LSpecT (g)
∆
= 1.∧ LInit(g) ∧ ✷[LNext(g)]lvar(g)

2.∧ TEMax(t1[g], g , Issue(g))
3.∧ TEMax(t2[g], g , IssueTimeout(g))
4.∧ TEMax(t3[g], g ,Choose(g))
5.∧ ∀ h ∈ Lt \ {g} :

∧ TEMax(t4[g][h], g ,Send(g , h))
∧ TEMax(t5[g][h], g ,Relay(g , h))
∧ TEMax(t6[g][h], g ,RelayTimeout(g , h))

TCSpecT (g , h)
∆
= TC (g , h).Spec.1 ∧ TC (g ,h).Spec.2

∧TC (g , h).Spec.3(qt [g][h])

CInv(g)
∆
= . . .

LInv(g , h)
∆
= . . .

〈1〉1. CSpec ⇒ Mid .Hi .CSpec
〈1〉2. Assume: g ∈ Lt

Prove: ∧ CSpecT ∧ LSpecT (g)
∧ TCSpecT (Cmdr , g)
∧ (now = Now0) ∧ RT (〈ord , rcvd , in, out , status, sent 〉)
⇒ ✷CInv(g)

〈1〉3. Assume: 1. g , h ∈ Lt
2. g �= h

Prove: ∧ LSpecT (g) ∧ LSpecT (h)
∧ TCSpecT (g , h)
∧ (now = Now0) ∧ RT (〈ord , rcvd , in, out , status, sent 〉)
∧ ✷CInv(g)
⇒ ✷LInv(g , h)

〈1〉4. Assume: g ∈ Lt
Prove: LSpec(g) ∧ ✷CInv(g) ∧ ✷(∀ h ∈ Lt \ {g} : LInv(h, g))

⇒ Mid .LSpec(g)
〈1〉5. RT (〈ord , rcvd , in, out , status 〉)⇒ RT (〈ord , rcvd , status 〉)
〈1〉6. Q.E.D.

Fig. 16. The high-level proof of theorem LowCorrect.

(The range S is needed because the domain of a function must be a set.) If the
ordinary existential quantifier ∃ is replaced by the temporal quantifier ∃∃∃∃∃∃ , the
rule remains sound in general only if S is finite.4

We now return to the high-level proof of the theorem. The proof of step
〈1〉1 is simple and is omitted. The proofs of 〈1〉2 and 〈1〉3 are straightforward

4 The rule is unsound for an infinite set S because ∃∃∃∃∃∃ is defined so ∃∃∃∃∃∃ x : F is invariant
under stuttering. It is sound for the operator ∃∃∃∃∃∃ of Manna and Pnueli [18], which
does not preserve invariance under stuttering.

28

〈1〉6. Q.E.D.
〈2〉1. ∧ CSpec

∧ CSpecT
∧ ∀ g ∈ Lt : LSpecT (g)
∧ ∀ g , h ∈ Gen : TCSpecT (g , h)
∧ RT (〈ord , rcvd , in,out , status, sent 〉)
∧ now = Now0

⇒ Mid .Spec
Proof: 〈1〉1–〈1〉5 and the definition of Mid .Spec.

〈2〉2. ∧ CSpec
∧ ∃∃∃∃∃∃ ct : CSpecT
∧ ∃∃∃∃∃∃ t1, t2, t3, t4, t5, t6 : ∀ g ∈ Lt : LSpecT (g)
∧ ∃∃∃∃∃∃ qt : ∀ g , h ∈ Gen : TCSpecT (g , h)
∧ RT (〈ord , rcvd , in,out , status, sent 〉)
∧ now = Now0

⇒ Mid .Spec
Proof: 〈2〉1, since ct occurs only in CSpecT , t1, t2, t3, t4, t5, and t6 occur only
in LSpecT (g), and qt occurs only in TCSpecT (g , h).

〈2〉3. 1. (∃∃∃∃∃∃ ct : CSpecT) ≡ CSpec
2. (∃∃∃∃∃∃ t1, t2, t3, t4, t5, t6 : ∀ g ∈ Lt : LSpecT (g)) ≡ ∀ g ∈ Lt : LSpec(g)
3. (∃∃∃∃∃∃ qt : ∀ g , h ∈ Gen : TCSpecT (g , h)) ≡ ∀ g , h ∈ Gen : TC (g ,h).Spec

Proof: Lt is finite by assumption HiAssump.1 from module SpecParams (im-
ported via module MidLevel), and ∃∃∃∃∃∃ x : ∀ v ∈ S : F (x [v]) is equivalent to
∀ v ∈ S : ∃∃∃∃∃∃ x : F (x), for any finite set S and temporal operator F ().

〈2〉4. Q.E.D.
Proof: 〈2〉2, 〈2〉3, and the definition of Spec.

Fig. 17. The proof of step 〈1〉6 from Figure 16.

invariance arguments. The invariants, CInv(g) and LInv(g, h), are defined in
Figure 18. Because the invariants are a bit long, the proofs of 〈1〉2 and 〈1〉3 are
rather tedious; they are omitted.

Step 〈1〉4 introduces a new problem—proving an implication whose conclu-
sion contains a ∃∃∃∃∃∃ . We now examine its proof, which is outlined in Figure 19.

Step 〈2〉1 is an implication of the form we’ve seen before. The major part
of its proof consists of proving step simulation. The proof is straightforward but
tedious, taking about two pages.

Steps 〈2〉2 and 〈2〉3 have the form ✷P ⇒ ✷Q , which is proved by showing
that P implies Q . These proofs are easy.

Step 〈2〉4 is where the ∃∃∃∃∃∃ appears in the conclusion. In first-order logic, one
proves that F (x) implies ∃ y : G(x , y) by instantiating y—that is, finding an
expression h(x) such that F (x) implies G(x , h(x)). The same technique is used
with the temporal quantifier ∃∃∃∃∃∃ , where the instantiation is called a refinement
mapping [1]. To prove 〈2〉4, we must instantiate the timer variable t used to
express the timing constraint on Mid .Choose. The instantiation is simple—we
instantiate t with the timer variable for the low-level Choose action. Step 〈3〉1

29

Let: r(g , h)
∆
= if rcvd [g][h] = “?” then 〈 〉

else 〈rcvd [g][h]〉
c(g , h)

∆
= in[h][g][1] ◦ out [g][h][1]

cOrd(g)
∆
= r(g , g) ◦ c(Cmdr , g)

lOrd(g , h)
∆
= r(g , h) ◦ c(h, g)

CInv(g)
∆
=

1.∧ Loyal(Cmdr) ∧ Loyal(g)⇒
∨ (cOrd(g) = 〈 〉) ∧NotSent(Cmdr , g)
∨ (cOrd(g) = 〈ord [Cmdr]〉) ∧ ¬NotSent(Cmdr , g)

2.∧ Loyal(g) ∧ (rcvd [g][g] = “?”)⇒ ∀ h ∈ Lt : NotSent(g , h)
3.∧ Loyal(Cmdr) ∧ NotSent(Cmdr , g)⇒ (now ≤ ct [g] ≤ Now0 + ε)
4.∧ Loyal(g) ∧ Loyal(Cmdr) ∧ (out [Cmdr][g][1] �= 〈 〉)

⇒ (now ≤ qt [Cmdr][g] ≤ Now0 + τ + ε)
5.∧ Loyal(g) ∧ Loyal(Cmdr) ∧ (in[g][Cmdr][1] �= 〈 〉)

⇒ (now ≤ t1[g] ≤ Now0 + τ + 2 ∗ ε)
6.∧ Loyal(g) ∧ (rcvd [g][g] = “?”) ∧ (Now0 + τ + 2 ∗ ε < now)

⇒ (now ≤ t2[g] ≤ Now0 + τ + 3 ∗ ε)
7.∧ now ∈ Real

LInv(g , h)
∆
=

1.∧ Loyal(g) ∧ Loyal(h)
⇒ ∨ (lOrd(h, g) = 〈 〉) ∧ NotSent(g , h)
∨ (lOrd(h, g) = 〈rcvd [g][g]〉) ∧ ¬NotSent(g , h)

2.∧ Loyal(g) ∧ (rcvd [g][g] �= “?”) ∧NotSent(g , h)
⇒ (now ≤ t4[g][h] ≤ Now0 + τ + 4 ∗ ε)

3.∧ Loyal(g) ∧ Loyal(h) ∧ (out [g][h][1] �= 〈 〉)
⇒ (now ≤ qt [g][h] ≤ Now0 + 2 ∗ τ + 4 ∗ ε)

4.∧ Loyal(g) ∧ Loyal(h) ∧ (in[h][g][1] �= 〈 〉)
⇒ (now ≤ t5[h][g] ≤ Now0 + 2 ∗ τ + 5 ∗ ε)

5.∧ Loyal(h) ∧ (rcvd [h][g] = “?”) ∧ (now > Now0 + 2 ∗ τ + 5 ∗ ε)
⇒ (now ≤ t6[h][g] ≤ Now0 + 2 ∗ τ + 6 ∗ ε)

Fig. 18. The invariants for the proof of theorem LowCorrect.

30

〈1〉4. Assume: g ∈ Lt
Prove: LSpec(g) ∧ ✷CInv(g) ∧ ✷(∀ h ∈ Lt \ {g} : LInv(h, g))

⇒ Mid .LSpec(g)

〈2〉1. LSpec(g).1 ∧ ✷CInv(g) ∧ ✷(∀ h ∈ Lt \ {g} : LInv(h, g))
⇒ Mid .Init(g) ∧ ✷[Mid .Next(g)]Mid.var(g)

. . .
〈2〉2. ✷CInv(g)⇒ ✷(Loyal(g) ∧ (rcvd [g][g] = “?”)⇒ (now ≤ Now0 + δ))

. . .
〈2〉3. ✷LInv(h, g)⇒ ✷(Loyal(g) ∧ (rcvd [g][h] = “?”)⇒ (now ≤ Now0 + 2 ∗ δ))

. . .
〈2〉4. ✷[LNext(g)]lvar(g) ∧ EMax(g , Choose(g))

⇒ ∃∃∃∃∃∃ t : VTimer(t ,Mid .Choose(g), ε,Mid .var(g)) ∧MaxTimer(t)
〈3〉1. ✷[LNext(g)]lvar(g) ∧VTimer(t , Choose(g), ε, lvar(g))

⇒ VTimer(t , Mid .Choose(g), ε,Mid .var(g))
. . .

〈3〉2. ∧ ✷[LNext(g)]lvar(g)

∧ VTimer(t ,Choose(g), ε, lvar(g)) ∧MaxTimer(t)
⇒ ∃∃∃∃∃∃ t : VTimer(t ,Mid .Choose(g), ε,Mid .var(g)) ∧MaxTimer(t)

Proof: 〈3〉1.
〈3〉3. ∧ ✷[LNext(g)]lvar(g)

∧ ∃∃∃∃∃∃ t : VTimer(t ,Choose(g), ε, lvar(g)) ∧MaxTimer(t)
⇒ ∃∃∃∃∃∃ t : VTimer(t ,Mid .Choose(g), ε,Mid .var(g)) ∧MaxTimer(t)

Proof: 〈3〉2, since t does not occur free in ✷[LNext(g)]lvar(g) or ∃∃∃∃∃∃ t :
〈3〉4. Q.E.D.

Proof: 〈3〉2 and the definition of EMax(g ,Choose(g)).
〈2〉5. Q.E.D.

Proof: 〈2〉1–〈2〉4 and the definition of Mid .LSpec(g).

Fig. 19. The proof of step 〈1〉4 from Figure 16, with most steps elided.

has a familiar form, since VTimer(. . .) has the form Init ∧✷[Next]v ; its proof is
simple.

The one remaining step in the high-level proof of the theorem is 〈1〉5. It is
easy, and is omitted.

4 Discussion

Because the algorithm and its informal specification were well understood, writ-
ing the formal specifications was a straightforward exercise. As expected, we
discovered small mistakes in the initial versions while writing the proofs. Our
specifications were not subject to mechanical checking, so they probably still con-
tain typographical errors. We would like to say that any such errors are minor,
but with modern text editors and typesetting systems, one careless keystroke
can produce major mistakes.

We have used a specification style different from our customary one. We usu-
ally write interleaving specifications, in which events in different processes are

31

represented by separate steps [3]. Here, we have written noninterleaving spec-
ifications that allow individual steps which represent actions in two or more
processes. For example, the formula Spec of module MidLevel allows behaviors
in which a single step is both an Issue(g) step of lieutenant g and a Relay(h, g)
step of a different lieutenant h. Writing noninterleaving specifications introduced
no new problems.

Writing the proofs was also a straightforward exercise. As is typical when
reasoning about real time, our specifications are safety properties; there are no
liveness properties. When proving safety properties, creativity is required only in
finding the invariants. With practice, writing invariants becomes second nature.
The rest of the proof is a standard process of applying simple TLA proof rules and
using the structure of the formulas to decompose the resulting proof obligations.

Writing this kind of proof is an exercise in organizing a complex structure. It
is very much like programming; it is completely different from what mathemati-
cians do when they write proofs. All the steps in our proof are mathematically
trivial. Hierarchically structured proofs are long and tedious, but they are the
only kind of hand proofs that can be trusted. There are no shortcuts. Short
proofs are short because they gloss over details that have to be checked to avoid
errors.

These proofs are amenable to mechanical verification. Most steps can be
checked with the TLP verification system [7]. However, for this type of rea-
soning, which cannot be checked by finite-state methods, mechanical theorem
proving still seems to be considerably more work than writing a hand proof. The
hierarchical proof style makes it possible to reduce the probability of errors in
hand proofs to an acceptable level.

Our specifications are written in TLA+. The flexibility of TLA+ is indicated
by the ease with which real-time properties are expressed, even though the lan-
guage has no special primitives for time. We use the same RealTime module for
specifying Byzantine generals that was used in [15] for specifying a gas burner.
This kind of flexibility and modularity are characteristic of an engineering dis-
cipline.

Our proofs use the logic TLA. They are completely formal. Although most
of the lower-level steps were omitted, the parts that we did present in detail
show that all the proofs can be carried out to the level of simple propositional
reasoning. The proofs are seamless. The theorems to be proved are mathematical
formulas, and at each step we are proving a mathematical formula. There is no
switching from programs to logic; there is no appeal to semantic understanding.
Hierarchically decomposing a large problem into smaller ones by the use of simple
mathematical rules is characteristic of an engineering discipline.

We believe that formal specification and proof is now feasible for high-level
designs of real systems. They are not yet feasible for reasoning at the level of
executable code, except in special applications or for small parts of a system. It
may appear that it is difficult to reason about code because our specifications
are logical formulas rather than programs. However, the primary issue is not one
of language but of complexity. It is hard to reason about real programs because

32

they are complicated. Formal reasoning is generally applied only to concurrent
programs written in toy languages like CSP [8] and Unity [5]. A program in a
toy language is no closer to a real program than is a TLA formula. Further work
is needed before formal reasoning about executable code becomes routine.

References

1. Mart́ın Abadi and Leslie Lamport. The existence of refinement mappings. Theo-
retical Computer Science, 82(2):253–284, May 1991.

2. Mart́ın Abadi and Leslie Lamport. An old-fashioned recipe for real time. Research
Report 91, Digital Equipment Corporation, Systems Research Center, 1992. An
earlier version, without proofs, appeared in [6, pages 1–27].

3. Mart́ın Abadi and Leslie Lamport. Conjoining specifications. Research Report
118, Digital Equipment Corporation, Systems Research Center, 1993. To appear
in ACM Transactions on Programming Languages and Systems.

4. E. A. Ashcroft. Proving assertions about parallel programs. Journal of Computer
and System Sciences, 10:110–135, February 1975.

5. K. Mani Chandy and Jayadev Misra. Parallel Program Design. Addison-Wesley,
Reading, Massachusetts, 1988.

6. J. W. de Bakker, C. Huizing, W. P. de Roever, and G. Rozenberg, editors. Real-
Time: Theory in Practice, volume 600 of Lecture Notes in Computer Science.
Springer-Verlag, Berlin, 1992. Proceedings of a REX Real-Time Workshop, held
in The Netherlands in June, 1991.

7. Urban Engberg, Peter Grønning, and Leslie Lamport. Mechanical verification of
concurrent systems with TLA. In Computer-Aided Verification, Lecture Notes
in Computer Science, Berlin, Heidelberg, New York, June 1992. Springer-Verlag.
Proceedings of the Fourth International Conference, CAV’92.

8. C. A. R. Hoare. Communicating Sequential Processes. Series in Computer Science.
Prentice-Hall International, London, 1985.

9. Reino Kurki-Suonio. Operational specification with joint actions: Serializable
databases. Distributed Computing, 6(1):19–37, 1992.

10. Simon S. Lam and A. Udaya Shankar. Protocol verification via projections. IEEE
Transactions on Software Engineering, SE-10(4):325–342, July 1984.

11. Simon S. Lam and A. Udaya Shankar. Specifying modules to satisfy interfaces: A
state transition system approach. Distributed Computing, 6(1):39–63, 1992.

12. Leslie Lamport. Specifying concurrent program modules. ACM Transactions on
Programming Languages and Systems, 5(2):190–222, April 1983.

13. Leslie Lamport. The temporal logic of actions. Research Report 79, Digital Equip-
ment Corporation, Systems Research Center, December 1991. To appear in ACM
Transactions on Programming Languages and Systems.

14. Leslie Lamport. How to write a proof. Research Report 94, Digital Equipment
Corporation, Systems Research Center, February 1993. To appear in American
Mathematical Monthly.

15. Leslie Lamport. Hybrid systems in TLA+. In Robert L. Grossman, Anil Nerode,
Anders P. Ravn, and Hans Rischel, editors, Hybrid Systems, volume 736 of Lec-
ture Notes in Computer Science, pages 77–102, Berlin, Heidelberg, 1993. Springer-
Verlag.

33

16. Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantine generals
problem. ACM Transactions on Programming Languages and Systems, 4(3):382–
401, July 1982.

17. Nancy Lynch and Mark Tuttle. Hierarchical correctness proofs for distributed
algorithms. In Proceedings of the Sixth Symposium on the Principles of Distributed
Computing, pages 137–151. ACM, August 1987.

18. Zohar Manna and Amir Pnueli. The Temporal Logic of Reactive and Concurrent
Systems. Springer-Verlag, New York, 1991.

19. Jayadev Misra and K. Mani Chandy. Proofs of networks of processes. IEEE Trans-
actions on Software Engineering, SE-7(4):417–426, July 1981.

20. Peter G. Neumann and Leslie Lamport. Highly dependable distributed systems.
Technical report, SRI International, June 1983. Contract Number DAEA18-81-G-
0062, SRI Project 4180.

34

module FiniteSets 3

import Naturals

HasCardinality(n,S)
∆
= let Q

∆
= {i ∈ Nat : i < n}

in ∧ n ∈ Nat
∧ ∃ f ∈ [Q → S] :

∧ ∀ s ∈ S : ∃ q ∈ Q : f [q] = s
∧ ∀ q1, q2 ∈ Q : (f [q1] = f [q2])⇒ (q1 = q2)

IsFiniteSet(S)
∆
= ∃ n ∈ Nat : HasCardinality(n, S)

module Sequences 42

import Naturals

OneTo(n)
∆
= {i ∈ Nat : (1 ≤ i) ∧ (i ≤ n)}

Len(s)
∆
= choose n : (n ∈ Nat) ∧ (Domain s) = OneTo(n)

Head(s)
∆
= s[1]

Tail(s)
∆
= [i ∈ OneTo(Len(s) − 1) �→ s[i + 1]]

(s) ◦ (t) ∆
= [i ∈ OneTo(Len(s) + Len(t)) �→ if i ≤ Len(s) then s[i]

else t [i − Len(s)]]

module RealTime

import Reals

parameters now : variable
∞ : constant

assumption

InfinityUnReal
∆
= ∞ /∈ Real

RT (v) 24 ∆
= ∧ now ∈ Real
∧ ✷[∧ now ′ ∈ {r ∈ Real : now < r}

∧ v ′ = v]now

VTimer(x ,A, δ, v)
∆
= ∧ x = if Enabled 〈A〉v then now + δ

else ∞
∧ ✷[x ′ = if (Enabled 〈A〉v)′

then if 〈A〉v ∨ ¬Enabled 〈A〉v then now ′ + δ
else x

else ∞]〈x ,v 〉
MaxTimer(x)

∆
= ✷[(x �=∞)⇒ (now ′ ≤ x)]now

MinTimer(x ,A, v)
∆
= ✷[A⇒ (now ≥ x)]v

Fig. 20. The modules FiniteSets, Sequences, and RealTime.

35

assumption Begins a sequence of assumptions that must be true of the constant
parameters when the module is included in another module. 9

constant Specifies a parameter’s sort. 5

definitions Begins a sequence of definitions. This keyword may be omitted or replaced
by one of the keywords action, boolean, constant, predicate, state function,
temporal, or transition function to denote the sort of the symbols being defined.

export Specifies definitions visible to importing and including modules. 29

import Appends parameters, assumptions, definitions, and theorems of another
module. 2

include . . . as . . . with Appends definitions, assumptions (as theorems), and theo-
rems of another module, with instantiations for its parameters. 30 51

module Begins a module. 1

parameters Declares the free parameters of a module. 4

theorem Begins a sequence of theorems. (They must be provable from the module’s
assumptions and the rules of first-order logic, set theory, and TLA.)

variable Specifies a parameter’s sort. 5

∆
= Defines an operator. 10

A mostly meaningless decoration that ends the scope of an assumption
or theorem section. 8

Marks the end of a module. 14

Fig. 21. The syntactic keywords and symbols of TLA+.

Predicate and Action Operators
p′ [p true in final state of step]

[A]e [A ∨ (e ′ = e)] 16

〈A〉e [A ∧ (e ′ �= e)]
Enabled A [An A step is possible]

unchanged e [e ′ = e] 22

A · B [Composition of actions]

Temporal Operators

✷F [F is always true] 17

✸F [Eventually: ¬✷¬F]
WFe(A) [Weak fairness: ✷✸〈A〉e ∨✷✸¬Enabled A]
SFe(A) [Strong fairness: ✷✸〈A〉e ∨✸✷¬Enabled A]
F ❀ G [Leads to: ✷(F ⇒ ✸G)]
∃∃∃∃∃∃ x : F [Temporal existential quantification (hiding).] 39

Fig. 22. The nonconstant operators of TLA+.

36

Logic
true false ∧ ∨ ¬ ⇒ ≡
∀ x : p ∃ x : p ∀ x ∈ S : p ∃ x ∈ S : p
choose x : p [Equals some x satisfying p]

Sets
= �= ∈ /∈ ∪ ∩ ⊆ \ [set difference]
{e1, . . . , en} [Set consisting of elements ei]
{x ∈ S : p} [Set of elements x in S satisfying p]
{e : x ∈ S} [Set of elements e such that x in S]
Subset S [Set of subsets of S]
union S [Union of all elements of S]

Functions

f [e] [Function application] 13

Domain f [Domain of function f]

[x ∈ S �→ e] [Function f such that f [x] = e for x ∈ S] 32

[S → T] [Set of functions f with f [x] ∈ T for x ∈ S] 28

[f except ![e1] = e2] [Function f̂ equal to f except f̂ [e1] = e2]
34

[f except ![e] ∈ S] [Set of functions f̂ equal to f except f̂ [e] ∈ S]

Records
e.x [The x -component of record e]
[x1 �→ e1, . . . , xn �→ en] [The record whose x i component is ei]
[x1 : S1, . . . , xn : Sn] [Set of all records with x i component in S i]
[r except !.x = e] [Record r̂ equal to r except r̂ .x = e]
[r except !.x ∈ S] [Set of records r̂ equal to r except r̂ .x ∈ S]

Tuples

e[i] [The i th component of tuple e]

〈e1, . . . , en 〉 [The n-tuple whose i th component is ei]
42

S1 × . . .× Sn [The set of all n-tuples with i th component in S i]

Miscellaneous

“c1 . . . cn” [A literal string of n characters] 7

if p then e1 else e2 [Equals e1 if p true, else e2]
case p1 → e1, . . . , pn → en [Equals ei if pi true]

let x1
∆
= e1 . . . xn

∆
= en in e [Equals e in the context of the definitions]

∧ p1

. . .
∧ pn

[the conjunction p1 ∧ . . . ∧ pn] ∨ p1

. . .
∨ pn

[the disjunction p1 ∨ . . . ∨ pn]
12

Fig. 23. The constant operators of TLA+.

