
1

TLA in Pictures
Leslie Lamport

Abstract—Predicate-action diagrams, which are similar to
standard state-transition diagrams, are precisely defined as
formulas of TLA (the Temporal Logic of Actions). We ex-
plain how these diagrams can be used to describe aspects of a
specification—and those descriptions then proved correct—
even when the complete specification cannot be written as
a diagram. We also use the diagrams to illustrate proofs.

Keywords—Concurrency, specification, state-transition di-
agrams, temporal logic.

I. Introduction

Pictures aid understanding. A simple flowchart is easier
to understand than the equivalent programming-language
text. However, complex pictures are confusing. A large,
spaghetti-like flowchart is harder to understand than a
properly structured program text.
Pictures are inadequate for specifying complex systems,

but they can help us understand particular aspects of a
system. For a picture to provide more than an informal
comment, there must be a formal connection between the
complete specification and the picture. The assertion that
the picture is a correct description of (some aspect of) the
system must be a precise mathematical statement.
We use TLA (the Temporal Logic of Actions) to specify

systems. In TLA, a specification is a logical formula de-
scribing all possible correct behaviors of the system. As an
aid to understanding TLA formulas, we introduce here a
type of picture called a predicate-action diagram. These di-
agrams are similar to the various kinds of state-transition
diagrams that have been used for years to describe sys-
tems, starting with Mealy and Moore machines [1], [2]. We
relate these pictures to TLA specifications by interpreting
a predicate-action diagram as a TLA formula. A diagram
denoting formula D is a correct description of a system
with specification S iff (if and only if) S implies D. We
therefore provide a precise statement of what it means for
a diagram to describe a specification.
We use predicate-action diagrams in three ways that we

believe are new for a precisely defined formal notation:
• To describe aspects of a specification even when it is
not feasible to write the complete specification as a
diagram.

• To draw different diagrams that provide complemen-
tary views of the same system.

• To illustrate formal correctness proofs.
Section II is a brief review of TLA; a more leisurely in-

troduction to TLA appears in [3]. Section III describes
predicate-action diagrams, using an n-input Muller C-
element as an example. It shows how diagrams are used to
describe aspects of a complete specification, and to provide
complementary views of a system. Section IV gives another
example of how predicate-action diagrams are used to de-
scribe a system, and shows how they are used to illustrate

a proof.

II. TLA

We now describe the syntax and semantics of TLA. The
description is illustrated with the formulas defined in Fig-
ure 1. (The symbol ∆= means equals by definition.)
We assume an infinite set of variables (such as x and

y) and a class of semantic values. Our variables are the
flexible variables of temporal logic, which are analogous to
variables in a programming language. TLA also includes
the rigid variables of predicate logic, which are analogous
to constant parameters of a program, but we ignore them
here. The class of values includes numbers, strings, sets,
and functions.
A state is an assignment of values to variables. A behav-

ior is an infinite sequence of states. Semantically, a TLA
formula is true or false of a behavior. Syntactically, TLA
formulas are built up from state functions using Boolean
operators (¬, ∧, ∨, ⇒ [implication], and ≡ [equivalence])
and the operators ′ and ✷, as described below. TLA also
has a hiding operator ∃∃∃∃∃∃, which we do not use here.
A state function is a nonBoolean expression built from

variables, constants, and constant operators. Semantically,
it assigns a value to each state—for example x+ 1 assigns
to state s one plus the value that s assigns to the vari-
able x. A state predicate (often called just a predicate) is
a Boolean expression built from variables, constants, and
constant operators such as +. Semantically, it is true or
false for a state—for example the predicate InitΦ is true of
state s iff s assigns the value zero to both x and y.
An action is a Boolean expression containing primed and

unprimed variables. Semantically, an action is true or false
of a pair of states, with primed variables referring to the
second state—for example, action M1 is true for 〈s, t〉 iff
the value that state t assigns to x equals one plus the value
that state s assigns to x, and the values assigned to y by
states s and t are equal. A pair of states satisfying an
action A is called an A step. Thus, an M1 step is one that
increments x by one and leaves y unchanged.
If f is a state function or state predicate, we write f ′

for the expression obtained by priming all the variables of
f . For example (x + 1)′ equals x′ + 1, and Init ′Φ equals
(x′ = 0)∧ (y′ = 0). For an action A and a state function v,

InitΦ
∆
= (x = 0) ∧ (y = 0)

M1
∆
= (x′ = x+ 1) ∧ (y′ = y)

M2
∆
= (y′ = y + 1) ∧ (x′ = x)

M ∆
= M1 ∨M2

Φ
∆
= InitΦ ∧ ✷[M]〈x, y〉 ∧ WF〈x, y〉(M1) ∧ WF〈x, y〉(M2)

Fig. 1. The TLA formula Φ describing a simple program that re-
peatedly increments x or y.

2

we define [A]v to equal A∨(v′ = v), so a [A]v step is either
an A step or a step that leaves the value of v unchanged.
Thus, a [M1]〈x,y〉 step is one that increments x by one and
leaves y unchanged, or else leaves the ordered pair 〈x, y〉
unchanged. Since a tuple is unchanged iff each component
is unchanged, a [M1]〈x,y〉 step is one that increments x by
one and leaves y unchanged, or else leaves both x and y
unchanged. We define 〈A〉v to equal A ∧ (v′ �= v), so an
〈M1〉〈x,y〉 step is an M1 step that changes x or y. Since an
M1 step leaves y unchanged, an 〈M1〉〈x,y〉 step is a step
that increments x by 1, changes the value of x, and leaves
y unchanged.
We say that an action A is enabled in state s iff there

exists a state t such that 〈s, t〉 is an A step. For example,
M1 is enabled iff it is possible to take a step that incre-
ments x by one, changes x, and leaves y unchanged. Since
x + 1 �= x for any natural number x, action 〈M1〉〈x,y〉 is
enabled in any state in which x is a natural number. If
∞ + 1 equals ∞, then 〈M1〉〈x,y〉 is not enabled in a state
in which x equals ∞.
A TLA formula is true or false of a behavior. A predicate

is true of a behavior iff it is true of the first state. An action
is true of a behavior iff it is true of the first pair of states.
As usual in temporal logic, if F is a formula then ✷F is
the formula meaning that F is always true. Thus, ✷Initφ

is true of a behavior iff x and y equal zero for every state in
the behavior. The formula ✷[M]〈x,y〉 is true of a behavior
iff each step (pair of successive states) of the behavior is a
[M]〈x,y〉 step.
Using ✷ and “enabled” predicates, we can define fairness

operators WF and SF. The weak fairness formula WFv(A)
asserts of a behavior that there are infinitely many 〈A〉v
steps, or there are infinitely many states in which 〈A〉v is
not enabled. In other words, WFv(A) asserts that if 〈A〉v
becomes enabled forever, then infinitely many 〈A〉v steps
occur. The strong fairness formula SFv(A) asserts that ei-
ther there are infinitely many 〈A〉v steps, or there are only
finitely many states in which 〈A〉v is enabled. In other
words, SFv(A) asserts that if 〈A〉v is enabled infinitely of-
ten, then infinitely many 〈A〉v steps occur.
The standard form of a TLA specification is Init ∧

✷[N]v ∧ L, where Init is a predicate, N is an action, v
is a state function, and L is a conjunction of fairness con-
ditions. This formula asserts of a behavior that (i) Init is
true for the initial state, (ii) every step of the behavior is an
N step or leaves v unchanged, and (iii) L holds. Formula
Φ of Figure 1 is in this form, asserting that (i) initially x
and y both equal zero, (ii) every step either increments x
by one and leaves y unchanged, increments y by one and
leaves x unchanged, or leaves both x and y unchanged, and
(iii) the fairness condition WF〈x, y〉(M1) ∧ WF〈x, y〉(M2)
holds. Formula WF〈x, y〉(M1) asserts that there are in-
finitely many 〈M1〉〈x,y〉 steps or 〈M1〉〈x,y〉 is infinitely
often not enabled. Since (i) and (ii) imply that x is
always a natural number, 〈M1〉〈x,y〉 is always enabled.
Hence, WF〈x, y〉(M1) implies that there are infinitely many
〈M1〉〈x,y〉 steps, so x is incremented infinitely often. Simi-
larly, WF〈x, y〉(M2) implies that y is incremented infinitely

E
n
v
i
r
o
n
m
e
n
t

C
-
E
l
e
m
e
n
t

in [1]

in [n]

out

✲

✲

... ✏

✑✒

✲�

Fig. 2. A Muller C-element.

often. Putting this all together, we see that Φ is true
of a behavior iff (i) x and y are initially zero, (ii) every
step increments either x or y by one and leaves the other
unchanged or else leaves both x and y unchanged, and
(iii) both x and y are incremented infinitely many times.
The formula Init ∧ ✷[N]v is a safety property [4]. It

describes what steps are allowed, but it does not require
anything to happen. (The formula is satisfied by a be-
havior satisfying the initial condition in which no variables
ever change.) Fairness conditions are used to specify that
something must happen.

III. Predicate-Action Diagrams

A. An Example

We take as an example a Muller C-element [5]. This is a
circuit with n binary inputs in [1], . . . , in [n] and one binary
output out , as shown in Figure 2. As the figure indicates,
we are considering the closed system consisting of the C-
element together with its environment. Initially, all the
inputs and the output are equal. The output becomes 0
when all the inputs are 0, and it becomes 1 when all the
inputs are 1. After an input changes, it must remain stable
until the output changes.
The behavior of a 2-input C-element and its environment

is described by the predicate-action diagram of Figure 3(a),
where C is defined by

C(i, j, k) ∆= (in [1] = i) ∧ (in [2] = j) ∧ (out = k)

The short arrows, with no originating node, identify the
nodes labeled C(0, 0, 0) and C(1, 1, 1) as initial nodes.
They indicate that the C-element starts in a state satis-
fying C(0, 0, 0) or C(1, 1, 1). The arrows connecting nodes
indicate possible state transitions. For example, from a
state satisfying C(1, 1, 1), it is possible for the system
to go to a state satisfying either C(0, 1, 1) or C(1, 0, 1).
More precisely, these arrows indicate all steps in which
the triple 〈in [1], in[2], out〉 changes—that is, transitions in
which at least one of in[1], in[2], and out changes. Steps
that change other variables—for example, variables repre-
senting circuit elements inside the environment—but leave
〈in [1], in[2], out〉 unchanged are also possible.
The predicate-action diagram of Figure 3(a) looks like a

standard state-transition diagram. However, we interpret
it formally not as a conventional state machine, but as the

3

(a) A predicate-action diagram.

C(0, 0, 0)

✎
✍

�
✌

C(1, 0, 0)

✎
✍

�
✌

C(0, 1, 0)

✎
✍

�
✌

C(1, 1, 0)

✎
✍

�
✌ C(1, 1, 1)

✎
✍

�
✌

C(0, 1, 1)

✎
✍

�
✌

C(1, 0, 1)

✎
✍

�
✌

C(0, 0, 1)

✎
✍

�
✌

✁
✁✕

❆
❆

❆
❆

✁
✁✕

✲ 	

✆✝

✲✞ ✁
✁✕

❆
❆

❆
❆

✁
✁✕

❅❅❘ ❅❅❘

(b) The corresponding TLA formula.

∧ C(0, 0, 0) ∨ C(1, 1, 1)

∧ ✷[C(0, 0, 0) ⇒ C(1, 0, 0)′ ∨ C(0, 1, 0)′]〈in [1],in[2],out〉
∧ ✷[C(1, 0, 0) ⇒ C(1, 1, 0)′]〈in [1],in[2],out〉

. . .

∧ ✷[C(0, 0, 1) ⇒ C(0, 0, 0)′]〈in [1],in[2],out〉

Fig. 3. Predicate-Action diagram of 〈in [1], in [2], out〉 for a 2-input C-element, and the corresponding TLA formula.

TLA formula of Figure 3(b).1 This formula has the form
Init ∧ ∧

o Fo, where Init is a state predicate and there is
one conjunct Fo for each node o. The predicate Init is
C(0, 0, 0) ∨C(1, 1, 1). Each Fo describes the possible state
changes starting from a state described by node o. For
example, the formula Fo for the node labeled C(1, 1, 0) is

✷[C(1, 1, 0) ⇒ C(1, 1, 1)′]〈in[1],in[2],out〉

A predicate-action diagram represents a safety property; it
does not include any fairness conditions.
Figure 3(a) is a reasonable way to describe a 2-input

C-element. However, the corresponding diagram for a 3-
input C-element would be quite complicated; and there is
no way to draw such a diagram for an n-input circuit. The
general specification is written directly as a TLA formula
in Figure 4. The array of inputs is represented formally
by a variable in whose value is a function with domain
{1, . . . , n}, where square brackets denote function applica-
tion. (Formally, n is a rigid variable—one whose value is
constant throughout a behavior.) We introduce two pieces
of notation for representing functions:

• [i ∈ S �→ e(i)] denotes the function f with domain S
such that f [i] equals e(i) for every i in S.

• [f except ![i] = e] denotes the function g that is the
same as f except that g[i] equals e.

The formulas defined in Figure 4 have the following inter-
pretation.

InitC A state predicate asserting that out is either 0 or
1, and that in is the function with domain {1, . . . , n}
such that in [i] equals out for all i in its domain.

Input(i) An action that is enabled iff in[i] equals out .
It complements in [i], leaves in[j] unchanged for j �= i,
and leaves out unchanged. (The symbol i is a param-
eter.)

Output An action that is enabled iff all the in[i] are dif-
ferent from out . It complements out and leaves in
unchanged.

1A list of formulas bulleted by ∧ or ∨ denotes their conjunction or
disjunction; ∧ and ∨ are also used as ordinary infix operators.

InitC
∆
= ∧ out ∈ {0, 1}

∧ in = [i ∈ {1, . . . , n}
→ out]

Input(i)
∆
= ∧ in[i] = out

∧ in′ = [in except ![i] = 1− in [i]]
∧ out ′ = out

Output
∆
= ∧ ∀i ∈ {1, . . . ,n} : in[i] �= out

∧ out ′ = 1− out
∧ in′ = in

Next
∆
= Output ∨ ∃ i ∈ {1, . . . ,n} : Input(i)

ΠC
∆
= InitC ∧ ✷[Next]〈in,out〉 ∧WF〈in,out〉(Output)

Fig. 4. A TLA specification of an n-input C-element.

Next An action that is the disjunction of Output and all
the Input(i) actions, for i ∈ {1, . . . , n}. Thus, a Next
step is either an Output step or an Input(i) step for
some input line i.

ΠC A temporal formula that is the specification of the
C-element (together with its environment). It asserts
that (i) InitC holds initially, (ii) every step is either
a Next step or else leaves 〈in , out〉 unchanged, and
(iii) Output cannot be enabled forever without an Out-
put step occurring. The fairness condition (iii) requires
the output to change if all the inputs have; inputs
are not required to change. (Since predicate-action
diagrams describe only safety properties, the fairness
condition is irrelevant to our explanation of the dia-
grams.)

The specification ΠC is short and precise. However, it is
not as reader-friendly as a predicate-action diagram. We
therefore use diagrams to help explain the specification,
beginning with the predicate-action diagram of Figure 5.
It is a diagram of the state function 〈in[i], out〉, meaning
that it describes transitions that change 〈in [i], out〉. It is
a diagram for the formula ΠC , meaning that it represents
a formula that is implied by ΠC . The diagram shows the
synchronization between the C-element’s ith input and its
output.
We can draw many different predicate-action diagrams

4

∧ in [i] = 0
∧ out =0

✛
✚

✘
✙

∧ in[i] = 1
∧ out =0

✛
✚

✘
✙

∧ in[i] = 1
∧ out =1

✛
✚

✘
✙

∧ in[i] = 0
∧ out =1

✛
✚

✘
✙

✡
✡✡✣ ❏

❏❏

✡
✡✡✢❏

❏❏

✲ ✛

Fig. 5. A predicate-action diagram of 〈in [i],out〉 for the specification
ΠC of an n-input C-element, where 1 ≤ i ≤ n.

in[i] = out
✗
✖

✔
✕ in [i] �= out

✗
✖

✔
✕✲

❥



Fig. 6. Another predicate-action diagram of 〈in [i],out〉 for ΠC , where
1 ≤ i ≤ n.

for the same specification. Figure 6 shows another diagram
of 〈in[i], out〉 for ΠC . It is simpler than the one in Figure 5,
but it contains less information. It does not indicate that
the values of in [i] and out are always 0 or 1, and it does
not show which variable is changed by each transition. The
latter information is added in the diagram of Figure 7(a),
where each transition is labeled with an action. The label
Input(i) on the left-to-right arrow indicates that a transi-
tion from a state satisfying in[i] = out to a state satisfying
in [i] �= out is an Input(i) step. This diagram represents
the TLA formula of Figure 7(b).
Even more information is conveyed by a predicate-action

diagram of 〈in , out〉, which also shows transitions that leave
in [i] and out unchanged but change in [j] for some j �= i.
Such a diagram is drawn in Figure 8(a). Figure 8(b) gives
the corresponding TLA formula.
There are innumerable predicate-action diagrams that

can be drawn for a specification. Figure 9 shows yet an-
other diagram for the C-element specification ΠC . Since
we are not relying on these diagrams as our specification,
but simply to help explain the specification, we can show as
much or as little information in them as we wish. We can

(a) A predicate-action diagram of 〈in [i],out〉.

in[i] = out
✗
✖

✔
✕ in [i] �= out

✗
✖

✔
✕✲

❥



Input(i)

Output

(b) The corresponding TLA formula.

∧ in[i] = out

∧ ✷[(in[i] = out) ⇒ Input(i) ∧ (in ′[i] �= out ′)]〈in [i],out〉
∧ ✷[(in[i] �= out) ⇒ Output ∧ (in′[i] = out ′)]〈in [i],out〉

Fig. 7. A more informative predicate-action diagram of 〈in[i], out〉
for ΠC , and the corresponding TLA formula.

(a) A predicate-action diagram of 〈in, out〉.

in[i] = out
✗
✖

✔
✕ in[i] �= out

✗
✖

✔
✕✲

❥



Input(i)

Output



∃ j �= i : Input(j)



∃ j �= i : Input(j)

(b) The corresponding TLA formula.

∧ in[i] = out

∧ ✷

[
(in [i] = out) ⇒(∨ Input(i) ∧ (in ′[i] �= out ′)

∨ (∃ j �= i : Input(j)) ∧ (in ′[i] = out ′)

)]
〈in,out〉

∧ ✷

[
(in [i] �= out) ⇒(∨ Output ∧ (in ′[i] = out ′)

∨ (∃ j �= i : Input(j)) ∧ (in ′[i] �= out ′)

)]
〈in,out〉

Fig. 8. A predicate-action diagram of 〈in , out〉 for ΠC , and the
corresponding TLA formula, where 1 ≤ i ≤ n.

in[i] = out
✗
✖

✔
✕ in[i] �= out

✗
✖

✔
✕✲

❥



in ′[i] = 1− in[i]

out ′ = 1− out

 

Fig. 9. Yet another predicate-action diagram of 〈in , out〉 for ΠC .

draw multiple diagrams to illustrate different aspects of a
system. Actual specifications are written as TLA formulas,
which are much more expressive than pictures.

B. A Formal Treatment

B.1 Definition

We first define precisely the TLA formula represented by
a diagram. Formally, a predicate-action diagram consists
of a directed graph, with a subset of the nodes identified as
initial nodes, where each node is labeled by a state pred-
icate and each edge is labeled by an action. We assume
a given diagram of a state function v and introduce the
following notation.

N The set of nodes.
I The set of initial nodes.
E(n) The set of edges originating at node n.
d(e) The destination node of edge e.
Pn The predicate labeling node n.
Ee The action labeling edge e.

The formula ∆ represented by the diagram is defined as
follows.

Init∆
∆= ∃n ∈ I : Pn

An
∆= ∃ e ∈ E(n) : Ee ∧ P ′

d(e)

∆ ∆= Init∆ ∧ ∀n ∈ N : ✷[Pn ⇒ An]v

When no explicit label is attached to an edge e, we take
Ee to be true. When no set of initial nodes is explicitly

5

indicated, we take I to be N . With the usual convention
for quantification over an empty set, An is defined to equal
false if there are no edges originating at node n.

B.2 Another Interpretation

Another possible interpretation of the predicate-action
diagram is the formula ∆̂, defined by

∆̂ ∆= Init∆ ∧ ✷[∃n ∈ N : Pn ∧ An]v

This is perhaps a more obvious interpretation—especially
if the diagram is viewed as a description of a next-state
relation. We now show that ∆ always implies ∆̂, and that
the converse implication holds if the predicates labeling the
nodes are disjoint.

(A) ∆ implies ∆̂.
Proof : A simple invariance proof, using rule INV1 of [3,
Figure 5, page 888], shows that ∆ implies ✷(∃n ∈ N : Pn).
We then have:

∆ ∆= Init∆ ∧ ∀n ∈ N : ✷[Pn ⇒ An]v
≡ Init∆ ∧ ✷([∃n ∈ N : Pn]v)

∧ ∀n ∈ N : ✷[Pn ⇒ An]v
[because ∆ implies ✷(∃n ∈ N : Pn)]

≡ Init∆ ∧ ✷[(∃n ∈ N : Pn)
∧ ∀n ∈ N : (Pn ⇒ An)]v

[because ✷ distributes over conjunction and ∀, and
[X]v ∧ ∀n ∈ N : [Yn]v is equivalent to
[X ∧ ∀n ∈ N : Yn]v]

⇒ Init∆ ∧ ✷[∃n ∈ N : Pn ∧ An]v
[by predicate logic, since B ⇒ C implies ✷[B]v ⇒ ✷[C]v]

∆= ∆̂

(B) If ¬(Pm∧Pn) holds for all m, n in N with m �= n, then
∆̂ implies ∆.
Proof : By propositional logic, the hypothesis implies

(∃n ∈ N : Pn ∧ An) ⇒ (∀n ∈ N : Pn ⇒ An)

The result then follows from simple temporal reasoning,
essentially by the reverse of the string of equivalences and
implication used to prove (A).

We usually label the nodes of a predicate-action diagram
with disjoint predicates, in which case (A) and (B) imply
that the interpretations ∆ and ∆̂ are equivalent. Diagrams
with nondisjoint node labels may occasionally be useful; ∆
is the more convenient interpretation of such diagrams.

C. Proving a Predicate-Action Diagram

Saying that a diagram is a predicate-action diagram for
a specification Π asserts that Π implies the formula ∆ rep-
resented by the diagram. Formula Π will usually have the
form InitΠ ∧ ✷[M]u ∧ L, where L is a fairness condition.
Formula ∆ equals Init∆ ∧ ∀n ∈ N : ✷[Pn ⇒ An]v. To
prove Π ⇒ ∆, we prove:
1. InitΠ ⇒ Init∆

2. InitΠ ∧ ✷[M]u ⇒ ✷[Pn ⇒ An]v, for each node n.

The first condition is an assertion about predicates; it is
generally easy to prove. To prove the second condition,
one usually finds an invariant Inv such that InitΠ ∧ ✷[M]u
implies ✷Inv , so Π implies ✷[M∧ Inv]u. The second con-
dition is then proved by showing that [M ∧ Inv]u implies
[Pn ⇒ An]v, for each node n. Usually, u and v are tu-
ples and every component of v is a component of u, so
u′ = u implies v′ = v. In this case, one need show only
that M∧Inv implies [Pn ⇒ An]v, for each n. By definition
of An, this means proving

Pn ∧M∧ Inv ⇒ (∃m ∈ E(n) : Em ∧ P ′
d(m)) ∨ (v′ = v)

for each node n. This formula asserts that an M step
that starts with Pn and Inv true and changes v is an Em

step that ends in a state satisfying Pd(m), for some edge m
originating at node n.

IV. Illustrating Proofs

In TLA, there is no distinction between a specification
and a property; they are both formulas. Verification means
proving that one formula implies another. A practical, rel-
atively complete set of rules for proving such implications
is described in [3]. We show here how predicate-action dia-
grams can be used to illustrate these proofs. We take as our
example the same one treated in [3], that the specification
Ψ defined in Section IV-A below implies the specification
Φ defined in Section II above.

A. Another Specification

We define a TLA formula Ψ describing a program with
two processes, each of which repeatedly loops through the
sequence of operations P (sem); increment ; V (sem), where
one process increments x by one and the other increments
y by one. Here, P (sem) and V (sem) denote the usual op-
erations on a semaphore sem. To describe this program
formally, we introduce a variable pc that indicates the con-
trol state. Each process has three control points, which we
call “a”, “b”, and “g”. (Quotes indicate string values.)
We motivate the definition of Ψ with the three predicate-

action diagrams for Ψ in Figure 10. In these diagrams, the
predicate PC (p, q) asserts that control is at p in process 1
and at q in process 2. Figure 10(a) shows how the control
state changes when the P (sem), V (sem), and increment
actions are performed. Variables other than pc not men-
tioned in an edge label are left unchanged by the indicated
steps—for example, steps described by the edge labeled
x′ = x + 1 leave y and sem unchanged—but this is not
asserted by the diagram. The next-state action N is writ-
ten as the disjunction N1 ∨ N2 of the next-state actions
of each process; and each Ni is written as the disjunction
αi ∨ βi ∨ γi. Figure 10(b) illustrates this decomposition.
Finally, the predicate-action diagram of Figure 10(c) de-
scribes how the semaphore variable sem changes.
To write the specification Ψ, we let pc be a function with

domain {1, 2}, with pc[i] indicating where control resides
in process i. The formula PC (p, q) can then be defined by

PC (p, q) ∆= (pc[1] = p) ∧ (pc[2] = q)

6

(a)

PC (“a”, “a”)

�
✒

✏
✑

PC (“b”, “a”)

�
✒

✏
✑

PC (“a”, “b”)

�
✒

✏
✑

PC (“g”, “a”)

�
✒

✏
✑

PC (“a”, “g”)

�
✒

✏
✑

✲x′ = x+ 1

✟✟✟✟✟✯P (sem)

	
✆

✞

❘

V (sem)

✲
y′ = y + 1

❍❍❍❍❍❥P (sem) 	
✆✝

✒

V (sem)

✲

(b)

PC (“a”, “a”)

�
✒

✏
✑

PC (“b”, “a”)

�
✒

✏
✑

PC (“a”, “b”)

�
✒

✏
✑

PC (“g”, “a”)

�
✒

✏
✑

PC (“a”, “g”)

�
✒

✏
✑

✲β1

✟✟✟✟✟✯α1

	
✆

✞

❘

γ1

✲
β2

❍❍❍❍❍❥α2 	
✆✝

✒

γ2

✲

(c)

sem = 1

✗
✖

✔
✕ sem = 0

✗
✖

✔
✕✲

❥



α1 ∨ α2

γ1 ∨ γ2


β1 ∨ β2

Fig. 10. Three predicate-action diagrams of 〈x, y, pc, sem〉 for Ψ.

The semaphore actions P and V are defined by

P (sem) ∆= ∧ 0 < sem
∧ sem ′ = sem − 1

V (sem) ∆= sem ′ = sem + 1

Missing from Figure 10 are a specification of the initial val-
ues of x and y, which we take to be zero, and a fairness con-
dition. One could augment predicate-action diagrams with
some notation for indicating fairness conditions. However,
the conditions that are easy to represent with a diagram
are not expressive enough to describe the variety of fairness
requirements that arise in practice. The WF and SF formu-
las, which are expressive enough, are not easy to represent
graphically. So, we have not attempted to represent fair-
ness in our diagrams. We take as the fairness condition for
our specification Ψ strong fairness on the next-state action
Ni of each process. The complete definition of Ψ appears
in Figure 11.

B. An Illustrated Proof

The proof of Ψ ⇒ Φ is broken into the proof of three
conditions:
1. InitΨ ⇒ InitΦ

2. InitΨ ∧ ✷[N]w ⇒ ✷[M]〈x,y〉

3. Ψ ⇒ WF〈x,y〉(Mi), for i = 1, 2
We illustrate the proofs of conditions 2 and 3 with the
predicate-action diagram of 〈x, y, sem , pc〉 for Ψ in Fig-
ure 12, where Q is defined by

Q i(p, q)
∆= ∧ PC (p, q)

∧ sem = i
∧ (x ∈ Nat) ∧ (y ∈ Nat)

and Nat is the set of natural numbers.
First, we must show that the diagram in Figure 12

is a predicate-action diagram for Ψ. This is easy using
the definition in Section III-B.1; no invariant is needed.
For example, the condition to be proved for the node la-
beled Q0(“b”, “a”) is that an N step that starts with
Q0(“b”, “a”) true is anM1 step (one that increments x and
leaves y unchanged) that makes Q0(“g”, “a”) true. This
follows easily from the definitions of Q and N , since an N
step starting with PC (“b”, “a”) true must be a β1 step.
To prove condition 2, it suffices to prove that every step

allowed by the diagram of Figure 12 is a [M]〈x,y〉 step. The
steps not shown explicitly by the diagram are ones that
leave w unchanged. Such steps leave 〈x, y〉 unchanged, so
they are [M]〈x,y〉 steps. The actions labeling all the edges
of the diagram imply [M]〈x,y〉, so all the steps shown ex-

7

InitΨ
∆
= ∧ pc = [i ∈ {1, 2}
→ “a”]

∧ (x = 0) ∧ (y = 0)
∧ sem = 1

αi
∆
= ∧ (pc[i] = “a”) ∧ (0 < sem)

∧ pc′ = [pc except ![i] = “b”]
∧ sem ′ = sem − 1
∧ 〈x, y〉′ = 〈x, y〉

γi
∆
= ∧ pc[i] = “g”

∧ pc′ = [pc except ![i] = “a”]
∧ sem ′ = sem + 1
∧ 〈x, y〉′ = 〈x, y〉

β1
∆
= ∧ pc[1] = “b”

∧ pc′ = [pc except ![1] = “g”]
∧ x′ = x+ 1
∧ 〈y, sem〉′ = 〈y, sem〉

β2
∆
= ∧ pc[2] = “b”

∧ pc′ = [pc except ![2] = “g”]
∧ y′ = y + 1
∧ 〈x, sem〉′ = 〈x, sem〉

Ni
∆
= αi ∨ βi ∨ γi

N ∆
= N1 ∨ N2

w
∆
= 〈x, y, sem, pc〉

Ψ
∆
= InitΨ ∧ ✷[N]w ∧ SFw(N1) ∧ SFw(N2)

Fig. 11. The specification Ψ.

Q1(“a”, “a”)

�
✒

✏
✑

Q0(“b”, “a”)

�
✒

✏
✑

Q0(“a”, “b”)

�
✒

✏
✑

Q0(“g”, “a”)

�
✒

✏
✑

Q0(“a”, “g”)

�
✒

✏
✑

✲M1

✟✟✟✟✟✯〈x, y〉′ = 〈x, y〉

	
✆

✞

❘

〈x, y〉′ = 〈x, y〉

✲
M2

❍❍❍❍❍❥〈x, y〉′ = 〈x, y〉 	
✆✝

✒

〈x, y〉′ = 〈x, y〉

✲

Fig. 12. Another predicate-action diagram of 〈x, y, sem, pc〉 for Ψ.

plicitly by the diagram are also [M]〈x,y〉 steps. This proves
condition 2.
We now sketch the proof of condition 3. To prove

WF〈x,y〉(Mi), it suffices to show that infinitely many
〈Mi〉〈x,y〉 steps occur. We first observe that each of the
predicates labeling a node in the diagram implies that ei-
ther 〈N1〉w or 〈N2〉w is enabled. The fairness condition
of Ψ then implies that a behavior cannot remain forever
at any node, but must keep moving through the diagram.
Hence, the behavior must infinitely often pass through
the Q1(“a”, “a”) node. The predicate Q1(“a”, “a”) implies
that both 〈N1〉w and 〈N2〉w are enabled. Hence, the fair-
ness condition SFw(N1) ∧ SFw(N2) implies that infinitely
many 〈N1〉w steps and infinitely many 〈N2〉w steps must
occur. Action 〈N1〉w is enabled only in the three nodes of
the top loop. Taking infinitely many 〈N1〉w steps is there-
fore possible only by going around the top loop infinitely
many times, which implies that infinitely many M1 steps
occur, each starting in a state with Q0(“b”, “a”) true. Since
Q0(“b”, “a”) implies x ∈ Nat , an M1 step starting with
Q0(“b”, “a”) true changes x, so it is an 〈M1〉〈x,y〉 step.
Hence, infinitely many 〈M1〉〈x,y〉 steps occur. Similarly,
taking infinitely many 〈N2〉w steps implies that infinitely
many 〈M2〉〈x,y〉 steps occur. This completes the proof of
condition 3.
Using the predicate-action diagram does not simplify the

proof. If we were to make the argument given above rigor-
ous, we would go through precisely the same steps as in the
proof described in [3]. However, the diagram does allow us

to visualize the proof, which can help us to understand it.

V. Conclusion

We have described three uses of diagrams that we believe
are new for diagrams with a precise formal semantics:

• To describe particular aspects of a complex specifica-
tion with a simple diagram. An n-input C-element
cannot be specified with a simple picture. However,
we explained the specification with diagrams describ-
ing the synchronization between the output and each
individual input.

• To provide complementary views of the same system.
Diagrams (b) and (c) of Figure 10 look quite different,
but they are diagrams for the same specification.

• To illustrate proofs. The disjunction of the predicates
labeling the nodes in Figure 12 equals the invariant I
of the proof in Section 7.2 of [3]. The diagram provides
a graphical representation of the invariance proof.

TLA differs from traditional specification methods in two
important ways. First, all TLA specifications are inter-
preted over the same set of states. Instead of assigning
values just to the variables that appear in the specifica-
tion, a state assigns values to all of the infinite number
of variables that can appear in any specification. Second,
TLA specifications are invariant under stuttering. A for-
mula can neither require nor rule out finite sequences of
steps that do not change any variables mentioned in the
formula. (The state-function subscripts in TLA formulas
are there to guarantee invariance under stuttering.)

8

These two differences lead to two major differences be-
tween traditional state-transition diagrams and predicate-
action diagrams. In traditional diagrams, each node repre-
sents a single state. Because states in TLA assign values to
an infinite number of variables, it is impossible to describe
a single state with a formula. Any formula can specify
the values of only a finite number of variables. To draw
diagrams of TLA formulas, we let each node represent a
predicate, which describes a set of states. In traditional di-
agrams, every possible state change is indicated by an edge.
Because TLA formulas are invariant under stuttering, we
draw diagrams of particular state functions—usually tuples
of variables.

TLA differs from most specification methods because it
is a logic. It uses simple logical operations like implication
and conjunction instead of more complicated automata-
based notions of simulation and composition [6]. Every-
thing we have done with predicate-action diagrams can be
done with state-transition diagrams in any purely state-
based formalism. However, conventional formalisms must
use some notion of homomorphism between diagrams to
describe what is expressed in TLA as logical implication.

Most formalisms employing state-transition diagrams are
not purely state-based, but use both states and events.
Nodes represent states, and edges describe input and out-
put events. The meaning of a diagram is the sequence of
events it allows; the states are effectively hidden. In TLA,
there are only states, not events. Systems are described in
terms of changes to interface variables rather than in terms
of interface events. Variables describing the internal state
are hidden with the existential quantifier ∃∃∃∃∃∃ described in [3].
Changes to any variable, whether internal or interface, can
be indicated by node labels or edge labels. Hence, a purely
state-based approach like TLA allows more flexibility in
how diagrams are drawn than a method based on states
and events.

References

[1] G. H. Mealy, “A method for synthesizing sequential circuits,” Bell
System Technical Journal, vol. 34, pp. 1045–1079, Sept. 1955.

[2] E. F. Moore, “Gedanken-experiments on sequential machines,”
in Automata Studies (C. E. Shannon and J. McCarthy, eds.),
pp. 129–153, Princeton, New Jersey: Princeton University Press,
1956.

[3] L. Lamport, “The temporal logic of actions,” ACM Trans. Pro-
gramming Languages and Systems, vol. 16, pp. 872–923, May
1994.

[4] B. Alpern and F. B. Schneider, “Defining liveness,” Information
Processing Letters, vol. 21, pp. 181–185, Oct. 1985.

[5] C. Mead and L. Conway, Introduction to VLSI Systems, ch. 7.
Reading, Massachusetts: Addison-Wesley, 1980.

[6] M. Abadi and L. Lamport, “Conjoining specifications,” Research
Report 118, Digital Equipment Corporation, Systems Research
Center, 1993. To appear in ACM Transactions on Programming
Languages and Systems.

Leslie Lamport Leslie Lamport attended the
Bronx High School of Science, where he took
a course in mechanical drawing. He later re-
ceived a Ph.D. in mathematics from Bran-
deis University, where he studied the propa-
gation of singularities in the Cauchy problem
for analytic partial differential equations. Since
1985, he has been a member of Digital Equip-
ment Corporation’s Systems Research Labora-
tory, where he has written several biographical
sketches.

