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1 ACTION DEFINITIONS

For any n-tuple e of expressions, n-tuple v of variables, and
action A:

* A(e/v) denotes the formula obtained by substituting the e for
unprimed occurrences of v in A.

* A(e/v ′) denotes the formula obtained by substituting the e for
primed occurrences of v in A.

* A(e1/v,e2/v ′) denotes the obvious (simultaneous) substitution
for v and v ′.

For actions A and B, we define A ·B to be the action such that

s[[A ·B]]t ∆= ∃ r : s[[A]]r ∧ r[[B]]t

If v is the n-tuple of all variables occurring (primed or unprimed)
in A and B and w is an n-tuple of rigid variables that do not occur
free in A or B, then

A ·B = ∃ w : A(w/v ′) ∧ B(w/v)

For an action A, integer i > 0

Ai
∆= IF i = 1 THEN A

ELSE A ·Ai−1

A+ ∆= ∃ i > 0 : Ai

We would like to define A∗ to equal Id ∨ A+, where Id is the
identity relation. Unfortunately, Id isn ′t an action--it can ′t be
expressed by any finite formula. However, we can define Id
semantically by

s[[Id]]t
∆= (s = t)

From which we get

s[[A∗]]t ∆= (s = t) ∨ s[[A+]]t

Although A∗ by itself isn ′t an action, certain expressions
involving A∗ are actions. In particular, for any actions A and B,
and any predicate P, we can define

A∗ ·B ∆= B ∨ A+ ·B
B ·A∗ ∆= B ∨ B ·A+

A∗ ∧ P ′ ∆= P ∨ (A+ ∧ P ′)

(The semantic definition of A∗ makes the left-hand sides of these
definitions semantically equivalent to the right-hand sides.)

For any action A, the action A−1 is defined syntactically to be
the action obtained by interchanging primed and unprimed variables.
That is, if v is the tuple of all variables in A, then A−1 equals



2A(v/v ′,v ′/v). For example, (x ′ = x+1)−1 = (x = x ′+1).
Semantically,

s[[A−1]]t
∆= t[[A]]s

The following relations hold

(A ·B)−1 = (B−1) ·(A−1)
(A+)−1 = (A−1)+

(A∗)−1 = (A−1)∗ (in any action expression involving A∗)

2 THE REDUCTION THEOREM

A reduction theorem allows one to prove properties of a program
Π by reasoning about a simpler "reduced" program Πr. The
conclusion of such a theorem should be something like
Π ⇒ Πr , which implies that Π satisfies any property
satisfied by Πr.

In the standard reduction theorems, starting from Lipton ′s classic
1972 paper, the reduced program is obtained by replacing a
composite statement R;X;L with the atomic action 〈R;X;L〉,
where X is atomic. (Angle brackets 〈...〉 enclose an atomic
action.) To translate this into TLA, we first have to figure out
how to express R;X;L and 〈R;X;L〉.
In TLA, all forms of traditional statement composition are
represented by disjunction. If Ai is the TLA action corresponding
to program statement Si, then the TLA action corresponding to
S1;S2 is A1 ∨ A2. The fact that the disjunction represents
S1;S2 rather than S2;S-1 or S1 ‖ S2 (parallel composition) is
determined by how A1 and A2 modify the control state.

The atomic action 〈R;X;L〉 means execute R, then X, then L all
as a single action. Since X is atomic, the TLA counterpart of
executing X is just taking an X step. Since R is nonatomic, the
TLA counterpart of executing R is doing any number of R steps---and
similarly for L. Therefore, executing 〈R;X;L〉 corresponds to
taking an R∗ ·X ·L∗ step. But, an R∗ ·X ·L∗ step corresponds
to the execution of 〈R;X;L〉 only if it starts in an "initial"
state of R and ends in a "final" state of L. So, the TLA action
corresponding to 〈R;X;L〉 is

(initial state of R) ∧ R∗ ·X ·L∗ ∧ (final state of L) ′

The first conjunct is unnecessary because the reduced program
doesn ′t take any R steps--except as part of an atomic R∗ ·X ·L∗
step--so it can never reach an "internal" state of R. One of the
hypotheses of the reduction theorem is that, once control reaches
statement L, that statement can always be executed until it
finishes. In other words, an "internal" state of L is one in
which L is enabled. Hence, a final state of L has been reached
when L is not enabled, so the final conjunct can be written as
¬(Enabled L) ′.
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Putting all this together, we get the following correspondence:

Pgming-Language Version TLA Version
- - - - - - - - - - - - - - - - - -
original program next-state relation N
R;X;L R ∨ X ∨ L
〈R;X;L〉 R∗ ·X ·L∗ ∧ ¬(Enabled L) ′

reduced program = reduced next-state relation =
original pgm ∨ ∧ N
- R;X;L ∧ ¬(R ∨ X ∨ L)
+ 〈R;X;L〉 ∨ R∗ ·X ·L∗ ∧ ¬(Enabled L) ′

The conclusion of the reduction theorem doesn ′t assert that
Π ⇒ Πr; it ′s more complicated. Let v be the tuple of
all variables that actually occur in Π, and let w be a tuple of
"pretend" variables, that are different from the variables of v.
The theorem asserts that there are some pretend variables w such
that Π implies Πr with the actual varaibles v replaced
by the pretend variables w. In other words, the conclusion
asserts:

Π ⇒ ∃ w : Πr(w/v,w
′/v ′)

For this to be of any use, we need to know the relations between
the actual variables v and the pretend variables w. The assertion
is that one of the following holds:

* v = w : They ′re equal.

* L+(w/v ′) : Some sequence of L steps will convert the real
variables to the pretend ones.

* (R−1)+(w/v ′) : Some sequence of backwards R steps will convert
the real variables to the pretend ones.
(Equivelently, some sequence of R steps will
convert the pretend variables to the real ones.)

For this to hold, it ′s necessary that Π imply that if control
reaches L, then eventually L finishes. Since L finishing means
¬(Enabled L), this means that Π must imply ✷ ✸¬(Enabled L).
So, in the theorem, we include ✷ ✸¬(Enabled L) as a conjunct
of Π.

Now, for the hypotheses. Hypothesis 1 asserts that R ∨ X ∨ L
represents R;X;L (instead of L;R;X or (L ‖ X );R or ...) and that L
remains enabled until it ′s finished.

1(a) It ′s not possible to take an L step from an initial state
or a state in which an R or X step is possible.

(b) Only an X step can go from a state in which an L step is
impossible to one in which it ′s possible.

(c) Only an L step can disable L.
(d) R and X are disjoint. (The disjointess of R and X from



4L follows from hypothesis 1(a).)
(e) The statement R;X;L occurs in the original program.

Hypothesis 2 is the more interesting hypothesis, asserting
commutativity conditions on the actions.

2(a) The actions of R right commute with all program actions except
those of R;X;L. Action A right commutes with action B means
that if it ′s possible to take an A step followed by a B step,
then the same effect can be obtained by taking a B step
followed by an A step.

(b) The actions of L left commute with all program actions except
those of R;X;L.

Unfortunately, I don ′t have time now to go into the significance of
this theorem, and how it is used. Here ′s the precise statement of
the theorem.

REDUCTION THEOREM: Assume that N, R, X, L are actions, Init a
predicate, f a state function, and v an n-tuple of variables.

LET S
∆= R ∨ X ∨ L

M
∆= N ∧ ¬S

Nr
∆= M ∨ (R∗ ·X ·L∗ ∧ ¬(Enabled L) ′)

w
∆= an n-tuple of variables distinct from v.

IF
0. v includes all variables occurring in N, R, X, L, Init, or f.

1. (a) Init ∨ Enabled R ∨ Enabled X ⇒ ¬(Enabled L)
(b) ¬(Enabled L) ∧ [N]f ∧ ¬X ⇒ ¬(Enabled L) ′

(c) (Enabled L) ∧ [N]f ∧ ¬L ⇒ (Enabled L) ′

(d) ¬(R ∧ X)
(e) S ⇒ N

2. (a) R ·[M]f ⇒ [M]f ·R
(b) [M]f ·L ⇒ L ·[M]f

THEN
Init ∧ ✷[N]f ∧ ✷ ✸¬(Enabled L) ⇒

∃ w : ∧ Init(w/v) ∧ ✷[Nr(w/v, w ′/v ′)]f(w/v)
∧ ✷((v = w) ∨ L+(w/v ′) ∨ (R−1)+(w/v ′))

This theorem is of the form

Π ⇒ ∃ w : Πr
To prove the theorem, one must construct a refinement mapping--a
tuple of state functions w such that

Π ⇒ Πr
To define w, we first construct a history variable h and
prophesy variable p as follows:

* h equals v unless control is in the middle of R, in which case it



5is a tuple of values such that it ′s possible to get from a state in
which v = h to a state in which v has its current value by doing a
sequence of R steps. The variable h remembers what the value of v
was before execution of R began, except it changes its memory so it
can pretend that no actions of the rest of the program occurred.

* p equals v unless control is at or inside L, in which case it is
a sequence of values for v that can be produced from v ′s current
value by finishing the execution of L. The variable p predicts what
L is going to do, changing its prediction to account for actions
taken by the rest of the program.

We then define w to equal h if control is in R, the last
element of the sequence p if control is in L, and v otherwise.

PROOF OF REDUCTION THEOREM
NOTATION:
Assume v an n-tuple of variables.

For any n-tuple of values q and r and action A:

q.A.r
∆= A(q/v,r/v ′).

‖ f ‖ ∆= Choose m : dom f = [0 .. m]

For any action A:

f//A//v
∆= ∧ ‖ f ‖ ∈ Nat

∧ dom f = [0 .. ‖ f ‖ ]
∧ ∀ i ∈ [0 .. ‖ f ‖ ] : f[i] an n-tuple of values
∧ ∀ i ∈ [1 .. ‖ f ‖ ] : f[i-1].A.f[i]

LEMMA 1: Let A and B be actions whose free variables are among the
variables of v, let q be an n-tuple of values, and assume f//A//v.

(a) If A ·B ⇒ B ·A and f[ ‖ f ‖ ].B.q, then there exists g
such that

(i) ‖ g ‖ = ‖ f ‖
(ii) g//A//v
(iii) f[0].B.g[0]
(iv) g[ ‖ g ‖ ] = q

(b) If B ·A ⇒ A ·B and q.B.f[0], then there exists g
such that

(i) ‖ g ‖ = ‖ f ‖
(ii) g//A//v,
(iii) g[ ‖ g ‖ ].B.f[ ‖ f ‖ ]
(iv) g[0] = q

Proof of (a): By induction on ‖ f ‖ .
1. Case ‖ f ‖ = 0.

Pf: Trivial. Take ‖ g ‖ = 0 and g[0] = q.

2. Induction step:
Assume: Lemma true for ‖ f ‖ = m ∧ ‖ f ‖ = m+1
2.1. f[m].A.f[m+1] and f[m+1].B.q.



6Pf: By hypothesis and assumption m+1 = ‖ f ‖ .
2.2. Choose n-tuple r such that f[m].B.r and r.A.q.

Pf: 2.1 and hypothesis that AB ⇒ BA.

2.3. Let d
∆= [i ∈ [0 .. m] �→ f[i] ]. Then

‖ d ‖ = m, d//A//v and d[ ‖ d ‖ ].B.r.
Pf: Follows immediately from the definition of d, the
assumption f//A//v, and the assumption 2.2.

2.4. Choose e such that e//A//v, d[0].B.e[0], and e[ ‖ e ‖ ] = r.
Pf: 2.3 and induction hypothesis.

2.5. QED

Pf: Let g
∆= [i ∈ [0 .. m+1] �→ IF i = m+1 THEN q

ELSE e[i] ]
Then g//A//v follows from e//A//v, e[m] = r (by 2.4)
and r.A.q (by 2.2).
f[0].B.g[0] follows from d[0].B.e[0], since d[0] = f[0]
and g[0] = e[0].
g[ ‖ g ‖ ] = q follows from the definition of g.

Proof of (b): similar.

LEMMA 2: Let v be a tuple containing all variables in A, u, and P.
Then

|= ✷[A]u ∧ ✸P ⇒ ∃ f : ∧ f//[A]u//v
∧ ∀ i ∈ [0 .. ‖ f ‖ -1] : ¬f[i].P
∧ f[0] = v
∧ f[ ‖ f ‖ ].P

Assume: σ |= |= ✷[A]u ∧ ✸P
Prove: ∃ f : σ |= ∧ f//[A]u//v

∧ ∃ i ∈ [0 .. ‖ f ‖ -1] : ¬f[i].P
∧ f[0] = v
∧ f[ ‖ f ‖ ].P

1. ∀ i ∈ Nat : σi[[ [A]u ]]σi+1
Pf: Assumption σ |= ✷[A]u.

2. ∀ i ∈ Nat : σi[[v]].[A]u.σi+1[[v]]
Pf: 1 and assumption v includes all variables free in A and u.

3. Let n = minimum {i : σi.P}. Then n ∈ Nat.
Pf: Assumption that σ |= ✸P.

4. QED
Pf: Choose f = [i ∈ [0 .. n] �→ σi[[v]] ].
Then f//[A]u//v follows from 2 and 3.

LEMMA 3: Let v include all free variables of A and B.
If (a) f//A ∨ B//v and (b) |= B ·A ⇒ A ·B
Then there exists g and h such that

(i) g//A//v
(ii) h//B//v
(iii) f[0] = g[0] ∧ f[ ‖ f ‖ ] = h[ ‖ h ‖ ] ∧ g[ ‖ g ‖ ] = h[0]

Proof Sketch: This is a straightforward induction argument,
moving all the "A actions" in f to the left.



7PROOF OF THEOREM

1. Let h be a variable distinct from the variables in v, and let

Fh
∆= [i ∈ [0 .. 0] �→ v]

Gh
∆= CASE

R → [i ∈ [0 .. ‖ h ‖ +1]
�→ IF i = ‖ h ‖ +1 THEN v ′ ELSE h[i] ]

X → [i ∈ [0 .. 0] �→ v ′]
¬(R ∨ X) → IF ‖ h ‖ = 0

THEN [i ∈ [0 .. 0] �→ v ′]
ELSE Choose q : ∧ ‖ q ‖ = ‖ h ‖

∧ q//R//v
∧ h[0].[M]f.q[0]∧ q[ ‖ q ‖ ] = v ′

H
∆= h = Fh ∧ ✷[h ′ = Gh](v,h)

Ih
∆= 1.∧ h//R//v

2.∧ h[ ‖ h ‖ ] = v
3.∧ ‖ h ‖ > 0 ⇒ ¬(Enabled L)

Then H defines h to be a history variable for
Init ∧ ✷[N]f ∧ ✷ ✸(Enabled L), and

|= Init ∧ ✷[N]f ∧ H ⇒ ✷Ih

Pf: It ′s obvious that H defines h to be a history variable.

We now prove |= Init ∧ ✷[N]f ∧ H ⇒ ✷Ih.

<2>1. (h = Fh) ⇒ Ih

Pf: Immediate from def of Fh and Ih.

<2>2. [h ′ = Gh](v,h) ∧ [N]f ∧ Ih ⇒ Ih ′

<3>1. (h ′ = Gh) ∧ [N]f ∧ Ih ⇒ Ih ′

Assume: (h ′ = Gh) ∧ [N]f ∧ Ih

Prove: Ih ′

<4>1. Case R.

<5>1. Ih ′.1
Pf: Immediate from the definition of Gh, the

assumption Ih.1, and the definition of h ′//R//v.
<5>2. Ih ′.2

Pf: Immediate.

<5>3. Ih ′.3
<6>1. ¬(Enabled L)

Pf: Hypothesis 1(a) and R [Case <4>]
<6>2. ¬X

Pf: Hypotehsis 1(d) and R [Case <4>]
<6>3. QED

Pf: <6>1, <6>2, R, and Hypothesis 1(e).
<4>2. Case X

Pf: Immediate from definition of Gh, since
h ′//R//v is vacuous when ‖ h ′ ‖ = 0.



8<4>3. Case ¬(R ∨ X) ∧ ‖ h ‖ = 0.

Pf: Immediate from definition of Gh, since
h ′//R//v is vacuous when ‖ h ′ ‖ = 0.

<4>4. Case ¬(R ∨ X) ∧ ‖ h ‖ > 0.
<5>1. ¬L

Pf: ‖ h ‖ > 0 (Case <4> assumption) and Ih.3.
<5>2. [M]f

Pf: [N]f ∧ ¬(R ∨ X) [Case <4>] ∧ ¬L (<5>1)
<5>3. h[ ‖ h ‖ |].[M]f.v

′

Pf: <5>2 and Ih.2.
<5>4. ∃ q : ∧ ‖ q ‖ = ‖ h ‖

∧ q//R//v
∧ h[0].[M]f.q[0]
∧ q[ ‖ q ‖ ] = v ′

Pf: By Part (a) of Lemma 1, using Ih.1, <5>3,
and Hypothesis 2(a).

<5>5. (a) ‖ h ′ ‖ = ‖ h ‖
(b) h ′//R//v
(c) h ′[ ‖ h ′ ‖ ] = v ′

Pf: <5>4 and def of Gh.
<5>6. ¬(Enabled L) ⇒ ¬(Enabled L) ′

Pf: ¬X [Case <4>], [N]f [Assumption <3>], and
hypothesis 1(b).

<5>7. QED

Pf: Ih ′.1 and Ih ′.2 follow from <5>5 (b) and (c),

and Ih ′.3 follows from Ih.3, <5>5(c) and <5>6.

<3>2. (v,h) ′ = (v,h) ∧ [N]f ∧ Ih ⇒ Ih ′

Pf: Immediate, since hypothesis 0 implies that v and h

are only variables that occur in Ih.

<3>3. QED
Pf: <3>1 and <3>2.

<2>3. QED
Pf: <2>1, <2>2, and TLA rule INV

2. Let p be a variable distinct from h and the variables in v, and
let

Ip
∆= 1.∧ p//L//v

2.∧ p[0] = v
3.∧ ¬p[ ‖ p ‖ ].(Enabled L)

Gp
∆= CASE

L → [ i ∈ [0 .. ‖ p ‖ ′+1]
�→ IF i = 0 THEN v ELSE p ′[i-1] ]

¬(Enabled L) → [i ∈ [0 .. 0] �→ v]
¬L ∧ (Enabled L) →

Choose q : ∧ ‖ q ‖ = ‖ p ′ ‖
∧ q//L//v



9∧ q[ ‖ q ‖ ].[M]f.p
′[ ‖ p ′ ‖ ]

∧ q[0] = v

P
∆= ✷Ip ∧ ✷[p = Gp](p,v)

Then P defines p to be a prophecy variable for
Init ∧ ✷[N]f ∧ ✷ ✸¬(Enabled L) ∧ H.

<2>1. p does not occur unprimed in Gp.
Pf: trivial.

<2>2. p does not occur free in
Init ∧ ✷[N]f ∧ ✷ ✸¬(Enabled L) ∧ H.

Pf: trivial.

<2>3. [N]f ∧ Ip ′ ∧ (p = Gp) ⇒ Ip

Assume: [N]f ∧ Ip ′ ∧ (p = Gp)
Prove: Ip

<3>1. Case L
<4>1. p//L//v

<5>1. For i ∈ [2 .. ‖ p ‖ ] : p[i-1].L.p[i]
Pf: By Ip ′.1 and def of Gp.

<5>2. For i ∈ p[0].L.p[1]
Pf: By Ip ′.2, which implies p ′[0] = v ′,
def of Gp, which implies p[0] = v and p[1] = p ′[0],
and L [Case <3>].

<5>3. QED
Pf: Immediate from <5>1, <5>2, def of Gp and,
Ip ′.1.

<4>2. p[0] = v
Pf: Immediate from the definition of Gp.

<4>3. ¬p[ ‖ p ‖ ].(Enabled L)
By Ip ′.3, since the def of Gp implies
p[ ‖ p ‖ ] = p ′[ ‖ p ′ ‖ ].

<4>4. QED
Pf: <4>1 - <4>3.

<3>2. Case ¬(Enabled L)
Pf: Immediate from def of Gp and Ip.

<3>3. Case ¬L ∧ (Enabled L)
<4>1. ¬(X ∨ R)

Pf: Enabled L [Case <3>] and Hypothesis 1(a).
<4>2. [M]f

Pf: ∧ [N]f [Assumption <2>]
∧ ¬L [Case <3>]
∧ ¬(X ∨ R) [<4>1.]

<4>3. v.[M]f.p
′[0]

Pf: <4>2 and Ip ′.3
<4>4. ∃ q : ∧ ‖ q ‖ = ‖ p ′ ‖

∧ q//L//v
∧ q[ ‖ q ‖ ].[M]f.p

′[ ‖ p ′ ‖ ]
∧ q[0] = v

Pf: <4>3, Hypothesis 2(b), and part (b) of Lemma 1.



10<4>5. (a) p//L//v
(b) p[ ‖ p ‖ ].[M]f.p

′[ ‖ p ′ ‖ ]
(c) p[0] = v
Pf: <4>4 and def of Gp.

<4>6. ¬(Enabled L) ′ ∧ [M]f ⇒ ¬(Enabled L)
Pf: Hypothesis 1(c), since [M]f ⇒ [N]f ∧ ¬L.

<4>7. ¬p[ ‖ p ‖ ].(Enabled L).
Pf: <4>5(b) and <4>6.

<4>8. QED
Pf: <4>5(a), <4>5(c), and <4>7.

<2>4. Init ∧ ✷[N]f ∧ ✷ ✸¬(Enabled L) ⇒ ✷(∃ p : Ip)
<3>1. |= ✷[N]f ∧ ✸¬(Enabled L) ⇒ ∃ p : Ip

<4>1. |= ✷[N]f ∧ ✸¬(Enabled L) ⇒
∃ g : ∧ g//[N]f//v

∧ ∀ i ∈ [0 .. ‖ g ‖ -1] : g[i].(Enabled L)
∧ g[0] = v
∧ ¬g[ ‖ g ‖ ].(Enabled L)

Pf: Lemma 2.
<4>2. |= ✷[N]f ∧ ✸¬(Enabled L) ⇒

∃ g : ∧ g//[M]f ∨ L//v
∧ ∀ i ∈ [0 .. ‖ g ‖ -1] : g[i].(Enabled L)
∧ g[0] = v
∧ ¬g[ ‖ g ‖ ].(Enabled L)

Pf: <4>1 and Hypothesis 1(a), since
[N]f ∧ ¬R ∧ ¬X = [M]f ∨ L.

<4>3. |= ✷[N]f ∧ ✸¬(Enabled L) ⇒
∃ q, t : ∧ q//L//v ∧ t//[M]f//v

∧ q[0] = v ∧ q[ ‖ q ‖ ]=t[0]
∧ ¬t[ ‖ t ‖ ].(Enabled L)

Pf: <4>2 and Lemma 3.
<4>4. |= ✷[N]f ∧ ✸¬(Enabled L) ⇒

∃ q, t : ∧ q//L//v ∧ t//[M]f//v
∧ q[0] = v ∧ q[ ‖ q ‖ ]=t[0]
∧ ¬q[ ‖ q ‖ ].(Enabled L)

Pf: <4>3, since Hypothesis 1(c) implies
t//[M]f//v ∧ ¬t[ ‖ t ‖ ].(Enabled L)

⇒ ¬t[0].(Enabled L).
<4>5. QED

Pf: Immediate, from <4>4.

<3>2. QED
Pf: <3>1 and simple temporal logic reasoning.

<2>5. Init ∧ ✷[N]f ∧ ✷ ✸¬(Enabled L)
⇒ ✷ ✸({p : Ip} is finite)

<3>1. ¬(Enabled L) ⇒ (Ip = (p = [i ∈ [0 .. 0] �→ v]))
Pf: Def of p//L//v and Ip.

<3>2. QED
Pf: By <3>1, ¬(Enabled L) ⇒ Cardinality({p : Ip}) = 1.

<2>6. QED



11Pf: <2>1-<2>5.

LET w
∆= IF Enabled L THEN p[ ‖ p ‖ ]

ELSE h[0]

F
∆= F(w/v), for any formula F.

3. |= Init ∧ ✷[N]f ∧ H ∧ P ⇒ Init ∧ [Nr]f
<2>1. Init ∧ h = Fh ⇒ Init

Pf: Hypothesis 1(a) and definitions of w and Fh.

<2>2. ∧ Ih ∧ Ih ′ ∧ Ip ∧ Ip ′

∧ [N]f ∧ [h ′ = Gh](v,h) ∧ [p = Gp](v,p)
⇒ [Nr]f

Assume: 1. Ih ∧ Ih ′ ∧ Ip ∧ Ip ′

2. [N]f
3. [h ′ = Gh](v,h)
4. [p = Gp](v,p)

Prove: [Nr]f
<3>1. Case R

<4>1. ¬(Enabled L)
Pf: Hypothesis 1(a).

<4>2. ¬(Enabled L) ′

Pf: <4>1, Hypothesis 1(d) and Hypothesis 1(b).
<4>3. w ′ = w

Pf: Assumption <2>.3, def of Gh, def of w, and
<4>1 and <4>2.

<4>4. QED
Pf: <4>3 and hypothesis 0 imply f ′ = f.

<3>2. Case X
<4>1. w = h[0]

Pf: Hypothesis 1(a) and def of w.
<4>2. w.R∗.v

Pf: Ih [Assumption <2>.1] and <6>1.
<4>3. v ′.L∗.w ′ ∧ ¬(Enabled L) ′.w ′

<5>1. Case (Enabled L) ′

<6>1. w ′ = p ′[ ‖ p ′ ‖ ]
Pf: (Enabled L) ′ [Case <5>] and def of w.

<6>2. QED
Pf: Ip ′ [Assumption <2>.1 and <2>.3] and <6>1.

<5>2. Case ¬(Enabled L) ′

<6>1. w ′ = v ′

Pf: Case <5> and def of w.
<6>2. QED

Pf: <6>1, since q.L∗.q holds for any q.
<5>3. QED

Pf: <5>1 and <5>2.
<4>4. v.X.v ′

Pf: Case <3>.
<4>5. w.(R∗ ·X ·L∗ ∧ ¬(Enabled L) ′.w ′
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<4>6. QED

Pf: By <4>5, since R∗ ·X ·L∗ ⇒ Nr.
<3>3. Case L

<4>1. w = p[ ‖ p ‖ ]
Pf: Def of w, Case <3>.

<4>2. p[ ‖ p ‖ ] = p ′[ ‖ p ′ ‖ ]
Pf: p = Gp and def of Gp.

<4>3. w ′ = w
<5>1. Case (Enabled L) ′

<6>1. w ′ = p ′[ ‖ p ′ ‖ ]
Pf: Case <5> and def of w.

<6>2. QED
Pf: <6>1, <4>2, and <4>1.

<5>2. Case ¬(Enabled L) ′

<6>1. ‖ h ‖ = 0

Pf: Ih.3 and Case <3>.
<6>2. h ′[0] = v ′

Pf: <6>1, L [Case <3>], hypothesis 1(a),

h ′ = Gh, and def of Gh.
<6>3. w ′ = v ′

Pf: <6>2, Case <5>, and def of w.
<6>4. ‖ p ′ ‖ = 0

Pf: Ip ′.1, Ip ′.2, and ¬(Enabled L) ′ [case <5>].
<6>5. p ′[ ‖ p ′ ‖ ] = v ′

Pf: Ip ′.2 and <6>4.
<6>6. QED

Pf: <6>3, <6>5, <4>2, and <4>1.
<5>3. QED

Pf: <5>1 - <5>2.
<4>4. QED

Pf: <4>3, since w ′ = w ⇒ f ′ = f
by hypothesis 0.

<3>4. Case [N]f ∧ ¬S
<4>1. Case ¬(Enabled L)

<5>1. ¬(Enabled L) ′

Pf: Hypothesis 1(b) and Case <4>
<5>2. w = h[0] ∧ w ′ = h ′[0].

Pf: <5>1, Case <4>, and def of w.
<5>3. QED

<6>1. Case ‖ h ‖ = 0
<7>1. ‖ h ′ ‖ = 0 ∧ h ′[0] = v ′

Pf: Case <6>, ¬S [Case <3>], h ′ = Gh,

and def of Gh.
<7>2. v = h[0]

Pf: Case <6> and Ih.2.
<7>3. w = v ∧ w ′ = v ′

Pf: <5>2, <7>1, and <7>2.
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Pf: <7>3 and Case <3>.
<7>5. QED

Pf: <7>4, since [N ∧ ¬S]f ⇒ [Nr]f.
<6>2. Case ‖ h ‖ > 0

<7>1. h[0].[M]f.h
′[0]

Pf: h ′ = Gh, def of Gh, ¬S [Case <3>]
and Case <6>.

<7>2. w.[M]f.w
′

Pf: <7>1 and <5>2.
<7>3. QED

Pf: <7>2, since [M]f ⇒ [Nr]f.
<6>3. QED

Pf: <6>1 and <6>2.

<4>2. Case (Enabled L)
<5>1. (Enabled L) ′

Pf: Hypothesis 1(c) and Case <4>.
<5>2. w = p[ ‖ p ‖ ] ∧ w ′ = p ′[ ‖ p ′ ‖ ]

Pf: <5>1, Case <4>, and def of w
<5>3. p[ ‖ p ‖ ].[M]f.p

′[ ‖ p ′ ‖ ]
Pf: p = Gp, def of Gp, ¬S [Case <3>] and
Enabled L [Case <4>].

<5>5. w.[M]f.w
′

Pf: <5>2 and <5>3.
<5>6. QED

Pf: <5>5, since [M]f ⇒ [Nr]f.

<4>3. QED
Pf: <4>1 and <4>2.

<3>5. QED
Pf: <3>1 - <3>-4

<2>3. QED
Pf: <2>1, <2>2, 1, 2, and simple TLA reasoning.

4. |= Init ∧ ✷[N]f ∧ H ∧ P ⇒ ✷ ∨ w = v
∨ w.R+.v
∨ v.L+.w)

<2>1. Ip ∧ (Enabled L) ⇒ v.L+.w
Assume: Ip ∧ (Enabled L)
Prove: v.L+.w
<3>1. w = p[ ‖ p ‖ ]

Pf: Def of w and Assumption <2>.
<3>2. v = p[0]

Pf: Ip.2.
<3>3. p[0].L+.p[ ‖ p ‖ ]

Pf: Ip.1.
<3>4. QED

Pf: <3>1 - <3>3.
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Assume: Ih ∧ ¬(Enabled L) ∧ ‖ h ‖ > 0
Prove: w.R+.v

<3>1. w = h[0]
Pf: Def of w and Assumption <2>.

<3>2. v = h[ ‖ h ‖ ]

Pf: Ih.2.
<3>3. h[0].R+.h[ ‖ h ‖ ]

Pf: Ih.1 and assumption ‖ h ‖ > 0
<3>4. QED

Pf: <3>1 - <3>3.

<2>3. Ih ∧ ¬(Enabled L) ∧ ‖ h ‖ = 0 ⇒ w = v

Assume: Ih ∧ ¬(Enabled L) ∧ ‖ h ‖ = 0
Prove: w = v

<3>1. w = h[0]
Pf: Def of w and Assumption <2>.

<3>2. v = h[ ‖ h ‖ ]

Pf: Ih.2.
<3>3. QED

Pf: <3>1, <3>2, and assumption ‖ h ‖ = 0.

<2>4. QED

Pf: <2>1 - <2>3, since Ih ⇒ ‖ h ‖ ∈ Nat.

5. |= Init ∧ ✷[N]f ∧ H ∧ P ⇒
∃ w : ∧ Init(w/v) ∧ ✷[Nr(w/v,w

′/v ′)]f(w/v)
∧ ✷(v = w ∨ w.R+.v ∨ v.L+.w)

Pf: 4 and simple logic.

6. |= ∃ p : ∃ h : Init ∧ ✷[N]f ∧ H ∧ P ⇒
∃ w : ∧ Init(w/v) ∧ ✷[Nr(w/v,w

′/v ′)]f(w/v)
∧ ✷(v = w ∨ w.R+.v ∨ v.L+.w)

Pf: 5 and simple logic.

7. |= Init ∧ ✷[N]f ∧ ✷ ✸¬(Enabled L) ⇒
∃ w : ∧ Init(w/v) ∧ ✷[Nr(w/v,w

′/v ′)]f(w/v)
∧ ✷(v = w ∨ w.R+.v ∨ v.L+.w)

Pf: 7, 1, 2, and Theorems about history and prophecy variables.

8. QED
Pf: Immediate from 7, since

w.R+.v = v.(R−1)+.w = (R−1)+(w/v ′)
v.L+.w = L+(w/v ′)

The following corollary asserts that the conjunct ✷ ✸¬(Enabled L)
isn ′t needed for proving safety properties, if L satisfies
the extra hypothesis

3. From any state in which L is enabled, it ′s possible to
perform a terminating execution of L--i.e., to reach a final
state of L by taking L steps.
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The precise statement is:

COROLLARY: With the hypotheses of the Reduction Theorem, assume that

3. Init ∧ ✷[N]f ⇒ ✷(Enabled (L∗ ∧ ¬(Enabled L) ′)

and let Π be any safety property. If

|= ∃ w : ∧ Init(w/v) ∧ ✷[Nr(w/v,w
′/v ′)]f(w/v)

∧ ✷((v = w) ∨ L+(w/v ′) ∨ (R−1)+(w/v ′))
⇒ Π

then

|= Init ∧ ✷[N]f ⇒ Π

Proof of Corollary: The corollary follows easily from:

LEMMA. If Init ∧ ✷[N]f ⇒ ✷(Enabled (N∗ ∧ P ′)), then
(Init ∧ ✷[N]f, ✷ ✸P) is machine closed.

3 WIN AND SIN

The relation between the actual and pretend variables in the
Reduction Theorem can be stated in terms of the predicate
transformers win (weakest invariant) and sin (strongest invariant).
These predicate transformers can be defined in the following
equivalent ways, where A is an action, f a state function, and P a
predicate, and a predicate I is an invariant of an action N iff
N ∧ I ⇒ I ′ holds.

win:
* win(A, P) is the weakest invariant of A that implies P.

(That is, win(A, P) is an invariant of A, and for
any invariant I of A, if I ⇒ P then I ⇒ win(A, P).)

* s[[win(A, P)]] = ∀ t : s[[A∗]]t ⇒ t[[P]]

* win(A, P) = ¬Enabled (A∗ ∧ ¬P ′)

sin:
* sin(A, P) is the strongest invariant of A implied by P.

(That is, sin(A, P) is an invariant of A and for
any invariant I of A, if P ⇒ I then sin(A, P) ⇒ I.)

* s[[sin(A, P)]] = ∃ t : t[[P]] ∧ t[[A∗]]s

* sin(A, P) = Enabled ((A−1)∗ ∧ P ′)

* sin(A, P) = ¬win(A−1, ¬P)

PROPOSITION: If the A is an action, v an n-tuple of variables that
includes all free variables of A, and w an n-tuple of variables
distinct from the ones in v, then
(a) sin(A ∧ (w ′ = w), v = w) = (w = v) ∨ (A−1)+(w/v ′)
(b) win(A ∧ (w ′ = w), v = w) = (w = v) ∨ A+(w/v ′)

Proof: Let
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∆= B(r/v,t/v ′)

(r,s).[[B]].(t,u)
∆= B(r/v,s/w,t/v ′,u/w ′)

Proof of (a):
(v,w).sin(A ∧ w ′=w, v=w)

= (v,w).Enabled((A ∧ w ′=w)−1∗ ∧ v ′=w)
= (v,w).(∃ (u,r) : [[(A ∧ w ′=w)−1∗ ∧ v ′=w]].(u,r)
= ∃ (u,r) : (v,w).[[(A ∧ w ′=w)−1∗ ∧ v ′=w]].(u,r)
= ∃ (u,r) : ∧ (v,w).[[(A ∧ w ′=w)−1∗]].(u,r)

∧ (v,w).[[v ′=w]].(u,r)
= ∃ (u,r) : (v,w).[[(A ∧ w ′=w)−1∗]].(u,r) ∧ u = w
= ∃ r : (v,w).[[(A ∧ w ′=w)−1∗]].(w,r)
= ∃ r : (w,r).[[(A ∧ w ′=w)∗]].(v,w)
= ∃ r : ∨ (w,r).[[(v,w) ′=(v,w)]].(v,w)

∨ (w,r).[[(A ∧ w ′=w)+]].(v,w)
[def of A∗]

= ∃ r : (w = v ∧ r = w) ∨ (w,r).[[A+ ∧ (w ′=w)+]].(v,w)
[w not free in A ⇒ (A ∧ (w ′=w))+ = A+ ∧ (w ′=w)+]

= ∃ r : ∨ w = v ∧ r = w
∨ (w,r).[[A+]](v,w) ∧ (w,r).[[(w ′=w)+]].(v,w)

= ∃ r : ∨ w = v ∧ r = w
∨ w.[[A+]].v ∧ r = w

= (w = v) ∨ w.[[A+]].v
= (w = v) ∨ v.[[(A−1)+]].w
= (w = v) ∨ (A−1)+(w/v ′)

Proof of (b) is analogous.

It follows from the proposition that the conclusion of the
Reduction Theorem can be written as:

|= Init ∧ ✷[N]f ∧ ✷ ✸¬(Enabled L) ⇒
∃ w : ∧ Init(w/v) ∧ ✷[Nr(w/v,w

′/v ′)]f(w/v)
∧ ✷ ∨ sin(R ∧ (w ′ = w), v = w)

∨ win(L ∧ (w ′ = w), v = w)


