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1 A Brief and Rather Biased History of State-Based
Methods for Verifying Concurrent Systems

A large body of research on formal verification can be characterized as state-
based or assertional. A noncomprehensive overview of this line of research is
here. I mention only work that I feel had—or should have had—a significant
impact. The desire for brevity combined with a poor memory has led me to omit
a great deal of significant work.

1.1 From Floyd to Owicki and Gries, and Beyond

In the beginning, there was Floyd [18]. He introduced the modern concept of
correctness for sequential programs: partial correctness, specified by a pre- and
postcondition, plus termination. In Floyd’s method, partial correctness is proved
by annotating each of the program’s control points with an assertion that should
hold whenever control is at that point. (In a straight-line segment of code, an
assertion need be attached to only one control point; the assertions at the other
control points can be derived.) The proof is decomposed into separate verification
conditions for each program statement. Termination is proved by counting-down
arguments, choosing for each loop a variant function—an expression whose value
is a natural number that is decreased by every iteration the loop.

Hoare [22] recast Floyd’s method for proving partial correctness into a logi-
cal framework. A formula in Hoare’s logic has the form P{S}Q, denoting that
if the assertion P is true before initiation of program S, then the assertion Q
will be true upon S’s termination. Rules of inference reduce the proof of such a
formula for a complete program to the proof of similar formulas for individual
program statements. Hoare did not consider termination. Whereas Floyd con-
sidered programs with an arbitrary control structure (“flowchart” programs),
Hoare’s approach was based upon the structural decomposition of structured
programs.

Floyd and Hoare changed the way we think about programs. They taught
us to view a program not as a generator of events, but as a state transformer.
The concept of state became paramount. States are the province of everyday
mathematics—they are described in terms of numbers, sequences, sets, functions,
and so on. States can be decomposed as Cartesian products; data refinement is
just a function from one set of states to another. The Floyd-Hoare method works
because it reduces reasoning about programs to everyday mathematical reason-
ing. It is the basis of most practical methods of sequential program verification.

Ashcroft [8] extended state-based reasoning to concurrent programs. He gen-
eralized Floyd’s method for proving partial correctness to concurrent programs,
where concurrency is expressed by fork and join operations. As in Floyd’s method,
one assigns to each control point an assertion that should hold whenever con-
trol is at that point. However, since control can be simultaneously at multiple
control points, the simple locality of Floyd’s method is lost. Instead, the anno-
tation is viewed as a single large invariant, and one must prove that executing
each statement leaves this invariant true. Moreover, to capture the intricacies of
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interprocess synchronization, the individual assertions attached to the control
points may have to mention the control state explicitly.

Owicki and Gries [36] attempted to reason about concurrent programs by
generalizing Hoare’s method. They considered structured programs, with con-
currency expressed by cobegin statements, and added to Hoare’s logic the fol-
lowing proof rule:

{P1}S1{Q1}, . . . , {Pn}Sn{Qn}
{P1 ∧ . . . ∧ Pn} cobegin S1 ‖ . . . ‖ Sn coend {Q1 ∧ . . . ∧Qn}
provided {P1}S1{Q1}, . . . , {Pn}Sn{Qn} are interference-free

This looks very much like one of Hoare’s rules of inference that decomposes the
proof of properties of the complete program into proofs of similar properties of
the individual program statements. Unlike Ashcroft’s method, the assertions in
the Owicki-Gries method do not mention the control state.

Despite its appearance, the Owicki-Gries method is really a generalization of
Floyd’s method in Hoare’s clothing. Interference freedom is a condition on the
complete annotations used to prove the Hoare triples {Pk}Sk{Qk}. It asserts that
for each i and j with i �= j, executing any statement in Si with its precondition
true leaves invariant each assertion in the annotation of Sj . Moreover, Owicki
and Gries avoid explicitly mentioning the control state in the annotations only by
introducing auxiliary variables to capture the control information. This casting of
a Floyd-like method in Hoare-like syntax has led to a great deal of confusion [14].

Like Floyd’s method, the Owicki-Gries method decomposes the proof into
verification conditions for each program statement. However, for an n-statement
program, there are O(n2) verification conditions instead of the O(n) conditions
of Floyd’s method. Still, unlike Ashcroft’s method, the verification conditions
involve only local assertions, not a global invariant. I used to think that this made
it a significant improvement over Ashcroft’s method. I now think otherwise.

The fundamental idea in generalizing from sequential to concurrent programs
is switching from partial correctness to invariance. Instead of thinking only about
what is true before and after executing the program, one must think about what
remains true throughout the execution. The concept of invariance was introduced
by Ashcroft; it is hidden inside the machinery of the Owicki-Gries method. A
proof is essentially the same when carried out in either method. The locality
of reasoning that the Owicki-Gries method obtains from the structure of the
program is obtained in the Ashcroft method from the structure of the invariant.
By hiding invariance and casting everything in terms of partial correctness, the
Owicki-Gries method tends to obscure the fundamental principle behind the
proof.

Owicki and Gries considered a toy programming language containing only a
few basic sequential constructs and cobegin. Over the years, their method has
been extended to a variety of more sophisticated toy languages. CSP was handled
independently by Apt, Francez, and de Roever [6] and by Levin and Gries [31].
de Roever and his students have developed a number of Owicki-Gries-style proof
systems, including one for a toy version of ADA [20]. The Hoare-style syntax,
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with the concomitant notion of interference freedom, has been the dominant
fashion.

Although these methods have been reasonably successful at verifying simple
algorithms, they have been unsuccessful at verifying real programs. I do not
know of a single case in which the Owicki-Gries approach has been used for the
formal verification of code that was actually compiled, executed, and used. I don’t
expect the situation to improve any time soon. Real programming languages are
too complicated for this type of language-based reasoning to work.

1.2 Temporal Logic

The first major advance beyond Ashcroft’s method was the introduction by
Pnueli of temporal logic for reasoning about concurrent programs [38]. I will
now describe Pnueli’s original logic.

Formulas in the logic are built up from state predicates using Boolean con-
nectives and the temporal operator ✷. A state predicate (called a predicate for
short) is a Boolean-valued expression, such as x + 1 > y, built from constants
and program variables.

The semantics of the logic is defined in terms of states, where a state is
an assignment of values to program variables. An infinite sequence of states is
called a behavior; it represents an execution of the program. (For convenience,
a terminating execution is represented by an infinite behavior in which the final
state is repeated.) The meaning [[P ]] of a predicate P is a Boolean-valued function
on program states. For example, [[x+1 > y]](s) equals true iff one plus the value
of x in state s is greater than the value of y in state s. The meaning [[F ]] of a
formula F is a Boolean-valued function on behaviors, defined as follows.

[[P ]](s0, s1, . . . )
∆= [[P ]](s0), for any state predicate P .

[[F � G]](s0, s1, . . . )
∆= [[F ]](s0, s1, . . . ) � [[G]](s0, s1, . . . ), for any Boolean

operator �.
[[✷F ]](s0, s1, . . . )

∆= ∀n : [[F ]](sn, sn+1, . . . )

Intuitively, a formula is an assertion about the program’s behavior from some
fixed time onwards. The formula ✷F asserts that F is always true—that is, true
now and at all future times. The formula ✸F , defined to equal ¬✷¬F , asserts
that F is eventually true—that is, true now or at some future time. The formula
F ❀ G (read F leads to G), defined to equal ✷(F ⇒ ✸G), asserts that if F ever
becomes true, then G will be true then or at some later time.

To apply temporal logic to programs, one defines a programming-language
semantics in which the meaning [[Π ]] of a program Π is a set of behaviors. The
assertion that program Π satisfies temporal formula F , written Π |= F , means
that [[F ]](σ) equals true for all behaviors in [[Π ]]. Invariance reasoning is expressed
by the following Invariance Rule.

{I}S {I}, for every atomic operation S of Π
Π |= I ⇒ ✷I
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The Ashcroft and Owicki-Gries methods, and all similar methods, can be viewed
as applications of this rule.

Although the Invariance Rule provides a nice formulation of invariance, tem-
poral logic provides little help in proving invariance properties. The utility of
temporal logic comes in proving liveness properties—properties asserting that
something eventually happens. Such properties are usually expressed with the
leads-to operator ❀.

To prove liveness, one needs some sort of fairness requirement on the exe-
cution of program statements. Two important classes of fairness requirements
have emerged: weak and strong fairness. Weak fairness for an atomic operation
S means that if S is continuously enabled (capable of being executed), then S
must eventually be executed. Strong fairness means that if S is repeatedly en-
abled (perhaps repeatedly disabled as well), then S must eventually be executed.
These requirements can be expressed by the following proof rules.

Weak Fairness: P ⇒ S enabled, {P}S {Q}
Π |= (✷P ) ❀ Q

Strong Fairness: P ⇒ S enabled, {P}S {Q}
Π |= (✷✸P ) ❀ Q

A method for proving liveness properties without temporal logic had been
proposed earlier [25]. However, it was too cumbersome to be practical. Temporal
logic permitted the integration of invariance properties into liveness proofs, using
the following basic rule:

Π |= P ❀ Q, Π |= Q⇒ ✷Q

Π |= P ❀ ✷Q

The use of temporal logic made proofs of liveness properties practical. The basic
method of proving F ❀ G is to find a well-founded collection H of formulas
containing F and prove, for each H in H, that Π |= H ❀ (J ∨G) holds for some
J ≺ H [37]. This generalizes the counting-down arguments of Floyd, where the
variant function v corresponds to taking the set {v = n : n a natural number}
for H.

1.3 Unity

Chandy and Misra recognized the importance of invariance in reasoning about
concurrent programs. They observed that the main source of confusion in the
Owicki-Gries method is the program’s control structure. They cut this Gordian
knot by introducing a toy programming language, called Unity, with no con-
trol [11]. Expressed in terms of Dijkstra’s do construct, all Unity programs have
the following simple form.

do P1 → S1 . . . Pn → Sn od

Fairness is assumed for the individual clauses of the do statement.
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The idea of reasoning about programs by translating them into this form
had been proposed much earlier by Flon and Suzuki [17]. However, no-one had
considered dispensing with the original form of the program.

For reasoning about Unity programs, Chandy and Misra developed Unity
logic. Unity logic is a restricted form of temporal logic that includes the formulas
✷P and P ❀ Q for predicates P and Q, but does not allow nested temporal
operators. Chandy and Misra developed proof rules to formalize the style of
reasoning that had been developed for proving invariance and leads-to properties.
Unity provided the most elegant formulation yet for these proofs.

2 An Even Briefer and More Biased History of
State-Based Specification Methods for Concurrent Systems

In the early ’80s, it was realized that proving invariance and leads-to properties
of a program is not enough. One needs to express and prove more sophisticated
requirements, like first-come-first-served scheduling. Moreover, the standard pro-
gram verification methods required that properties such as mutual exclusion be
stated in terms of the implementation. To convince oneself that the properties
proved actually ensured correctness, it is necessary to express correctness more
abstractly.

A specification is an abstract statement of what it means for a system to be
correct. A specification is not very satisfactory if one has no idea how to prove
that it is satisfied by an implementation. Hence, a specification method should
include a method for proving correctness of an implementation. Often, one views
an implementation as a lower-level specification. Verification then means proving
that one specification implements another.

2.1 Axiomatic Specifications

In an axiomatic method, a specification is written as a list of properties. Formally,
each property is a formula in some logic, and the specification is the conjunction
of those formulas. Specification L implements specification H iff (if and only if)
the properties of L imply that the properties of H are satisfied. In other words,
implementation is just logical implication.

The idea of writing a specification as a list of properties sounds marvelous.
One can specify what the system is supposed to do, without specifying how it
should do it. However, there is one problem: in what language does one write
the properties?

After Pnueli, the obvious language for writing properties was temporal logic.
However, Pnueli’s original logic was not expressive enough. Hence, researchers
introduced a large array of new temporal operators such as ©F , which asserts
that F holds in the next state, and F U G, which asserts that F holds until
G does [33]. Other methods of expressing temporal formulas were also devised,
such as the interval logic of Schwartz, Melliar-Smith, and Vogt [39].
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Misra has used Unity logic to write specifications [35]. However, Unity logic
by itself is not expressive enough; one must add auxiliary variables. The auxil-
iary variables are not meant to be implemented, but they are not formally dis-
tinguished from the “real” variables. Hence, Unity specifications must be viewed
as semi-formal.

2.2 Operational Specifications

In an operational approach, a specification consists of an abstract program writ-
ten in some form of abstract programming language. This approach was advo-
cated in the early ’80s by Lam and Shankar [24] and others [26]. More recent
instances include the I/O automaton approach of Lynch and Tuttle [32] and
Kurki-Suonio’s DisCo language [23].

An obvious advantage of specifying a system as an abstract program is that
while few programmers are familiar with temporal logic, they are all familiar
with programs. A disadvantage of writing an abstract program as a specification
is that a programmer is apt to take it too literally, allowing the specification of
what the system is supposed to do bias the implementor towards some particular
way of getting the system to do it.

An abstract program consists of three things: a set of possible initial states,
a next-state relation describing the states that may be reached in a single step
from any given state, and some fairness requirement. The next-state relation is
usually partitioned into separate actions, and the fairness requirement is usually
expressed in terms of these actions. To prove that one abstract program Π1

implements another abstract program Π2, one must prove:

1. Every possible initial state of Π1 is a possible initial state of Π2.
2. Every step allowed by Π1’s next-state relation is allowed by Π2’s next-state

relation—a condition called step simulation. To prove step simulation, one
first proves an invariant that limits the set of states to be considered.

3. The fairness requirement of Π1 implies the fairness requirement of Π2. How
this is done depends on how fairness is specified.

Thus far, most of these operational approaches have been rather ad hoc. To my
knowledge, none has a precisely defined language, with formal semantics, and
proof rules. This is probably due to the fact that an abstract program is still a
program, and even simple languages are difficult to describe formally.

The Unity language has also been proposed for writing specifications. How-
ever, it has several drawbacks as a specification language:

– It provides no way of defining nontrivial data structures.
– It has no abstraction mechanism for structuring large specifications. (The

procedure is the main abstraction mechanism of conventional languages.)
– It lacks a hiding mechanism. (Local variable declarations serve this purpose

in conventional languages.)
– It has a fixed fairness assumption; specifying other fairness requirements is

at best awkward.
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2.3 Finite-State Methods

An important use of state-based methods has been in the automatic verification
of finite-state systems. Specifications are written either as abstract programs or
temporal-logic formulas, and algorithms are applied to check that one specifica-
tion implements another. This work is discussed by Clarke [12], and I will say
no more about it.

3 What We Have Learned

History serves as a source of lessons for the future. It is useful to reflect on
what we have (or should have) learned from all this work on specification and
verification of concurrent programs.

3.1 Not Sequential vs. Concurrent, but Functional vs. Reactive

Computer scientists originally believed that the big leap was from sequentiality
to concurrency. We thought that concurrent systems needed new approaches
because many things were happening at once. We have learned instead that, as
far as formal methods are concerned, the real leap is from functional to reactive
systems.

A functional system is one that can be thought of as mapping an input to
an output. (In the Floyd/Hoare approach, the inputs and outputs are states.) A
behavioral system is one that interacts in more complex ways with its environ-
ment. Such a system cannot be described as a mapping from inputs to outputs;
it must be described by a set of behaviors. (A temporal-logic formula F specifies
the set of all behaviors σ such that [[F ]](σ) equals true.)

Even if the purpose of a concurrent program is just to compute a single output
as a function of a single input, the program must be viewed as a reactive system
if there is interaction among its processes. If there is no such interaction—for
example, if each process computes a separate part of the output, without com-
municating with other processes—then the program can be verified by essentially
the same techniques used for sequential programs.

I believe that our realization of the significance of the reactive nature of
concurrent systems was due to Harel and Pnueli [21].

3.2 Invariance Under Stuttering

A major puzzle that arose in the late ’70s was how to prove that a fine-grained
program implements a coarser-grained one. For example, how can one prove that
a program in which the statement x := x+ 1 is executed atomically is correctly
implemented by a lower-level program in which the statement is executed by
separate load, add, and store instructions? The answer appeared in the early
’80s: invariance under stuttering [27].

A temporal formula F is said to be invariant under stuttering if, for any
behavior σ, adding finite state-repetitions to σ (or removing them from σ) does
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not change the value of [[F ]](σ). (The definition of what it means for a set of
behaviors to be invariant under stuttering is similar.)

To understand the relevance of stuttering invariance, consider a simple spec-
ification of a clock that displays hours and minutes. A typical behavior allowed
by such a specification is the sequence of clock states

11:23, 11:24, 11:25, . . .

We would expect this specification to be satisfied by a clock that displays hours,
minutes, and seconds. More precisely, if we ignore the seconds display, then
the hours/minutes/seconds clock becomes an hours/minutes clock. A typical
behavior of the hours/minutes/seconds clock is

11:23:57, 11:23:58, 11:23:59, 11:24:00, . . .

and ignoring the seconds display converts this behavior to

11:23, 11:23, 11:23, 11:24, . . .

This behavior will satisfy the specification of the hours/minutes clock if that
specification is invariant under stuttering.

All formulas of Pnueli’s original temporal logic are invariant under stuttering.
However, this is not true of most of the more expressive temporal logics that
came later.

3.3 The Definitions of Safety and Liveness

The informal definitions of safety and liveness appeared in the ’70s [25]: a safety
property asserts that something bad does not happen; a liveness property as-
serts that something good does happen. Partial correctness is a special class
of safety property, and termination is a special class of liveness property. Intu-
itively, safety and liveness seemed to be the fundamental way of categorizing
correctness properties. But, this intuition was not backed up by any theory.

A more precise definition of safety is: a safety property is one that is true for
an infinite behavior iff it is true for every finite prefix [4]. Alpern and Schneider
made this more precise and defined liveness [5]. They first defined what it means
for a finite behavior to satisfy a temporal formula: a finite behavior ρ satisfies
formula F iff ρ can be extended to an infinite behavior that satisfies F . Formula
F is a safety property iff the following condition holds: F is satisfied by a behavior
σ iff it is satisfied by every finite prefix of σ. Formula F is a liveness property iff it
is satisfied by every finite behavior. Alpern and Schneider then proved that every
temporal formula can be written as the conjunction of a safety and a liveness
property. This result justified the intuition that safety and liveness are the two
fundamental classes of properties.

In a letter to Schneider, Gordon Plotkin observed that, if we view a temporal
formula as a set of behaviors (the set of behaviors satisfying the formula), then
safety properties are the closed sets and liveness properties are the dense sets in
a standard topology on sequences. The topology is defined by a distance function
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in which the distance between sequences s0, s1, . . . and t0, t1, . . . is 1/(n + 1),
where n is the smallest integer such that sn �= tn. Alpern and Schneider’s result
is a special case of the general result in topology that every set can be written
as the intersection of a closed set and a dense set.

3.4 Fairness is Machine Closure

Fairness and concurrency are closely related. In an interleaving semantics, con-
current systems differ from nondeterministic sequential ones only through their
fairness requirements. However, for many years, we lacked a precise statement
of what constitutes a fairness requirement. Indeed, this question is not even ad-
dressed in a 1986 book titled Fairness [19]. The topological characterization of
safety and liveness provided the tools for formally characterizing fairness.

Let C(F ) denote the closure of a property F—that is, the smallest safety
property containing F . (In logical terms, C(F ) is the strongest safety property
implied by F .) The following two conditions on a pair of properties (S, L) are
equivalent.

S = C(S ∧ L)
S is a safety property, and every finite behavior satisfying S is a prefix of an
infinite behavior satisfying S ∧ L.

A pair of properties satisfying these conditions is said to be machine closed. (Es-
sentially the same concept was called “feasibility” by Apt, Francez, and Katz [7].)

Fairness means machine closure. Recall that a program can be described by an
initial condition, a next-state relation, and a fairness requirement. Let S be the
property asserting that a behavior satisfies the initial condition and next-state
relation, and let L be the property asserted by the fairness requirement. Machine
closure of (S, L) means that a scheduler can execute the program without having
to worry about “painting itself into a corner” [7]. As long as the program is
started in a correct initial state and the program’s next-state relation is obeyed,
it always remains possible to satisfy L. This condition characterizes what it
means for L to be a fairness requirement. So-called fair scheduling of processes
is actually a fairness requirement iff the pair (S, L) is machine closed, for every
program in the language.

In most specification methods, one specifies separately a safety property S
and a liveness property L. Machine closure of (S, L) appears to be an important
requirement for a specification. The lack of machine closure means that the live-
ness property L is actually asserting an additional safety property. This usually
indicates a mistake, since one normally intends S to include all safety properties.
Moreover, the absence of machine closure is a potential source of incompleteness
for proof methods [1].

3.5 Hiding is Existential Quantification

An internal variable is one that appears in a specification, but is not meant
to be implemented. Consider the specification of a memory module. What one
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must specify is the sequence of read and write operations. An obvious way to
write such a specification is in terms of a variable M whose value denotes the
current contents of the memory. The variable M is an internal variable; there is
no requirement that M be implemented.

Advocates of axiomatic specifications denigrated the use of internal variables,
claiming it leads to insufficiently abstract specifications that bias the implemen-
tation. Advocates of operational specifications, which rely heavily on internal
variables, claimed that the use of internal variables simplifies specifications.

An operational specification consists of an abstract program, and one can
describe such a program by a temporal logic formula. The temporal logic rep-
resentation of an operational specification differs formally from an axiomatic
specification only because some of its variables are internal. If those internal
variables can be formally “hidden”, then the distinction between operational
and axiomatic specification vanishes.

In temporal logic, variable hiding is expressed by existential quantification. If
F is a temporal formula, then the formula ∃∃∃∃∃∃x : F asserts that there is some way
of choosing values for the variable x that makes F true. This is precisely what it
means for x to be an internal variable of a specification F—the system behaves
as if there were such a variable, but that variable needn’t be implemented, so its
actual value is irrelevant.

The temporal quantifier ∃∃∃∃∃∃ differs from the ordinary existential quantification
operator ∃ because ∃∃∃∃∃∃ asserts the existence of a sequence of values—one for each
state in the behavior—rather than a single value. However, ∃∃∃∃∃∃ obeys the usual
predicate calculus rules for existential quantification. The precise definition of
∃∃∃∃∃∃ that makes it preserve invariance under stuttering is a bit tricky [28]; the
definition appears in Figure 5 of Section 5.3.

The quantifier ∃∃∃∃∃∃ allows a simple statement of what it means to add an aux-
iliary variable to a program. Recall that Owicki and Gries introduced auxiliary
variables—program variables that are added for the proof, but that don’t change
the behavior of the program. If F is the temporal formula that describes the pro-
gram, then adding an auxiliary variable v means finding a new formula F v such
that ∃∃∃∃∃∃v : F v is equivalent to F .

3.6 Specification Methods that Don’t Work

Knowing what doesn’t work is as important as knowing what does. Progress is
the result of learning from our mistakes.

The lesson I learned from the specification work of the early ’80s is that
axiomatic specifications don’t work. The idea of specifying a system by writing
down all the properties it satisfies seems perfect. We just list what the system
must and must not do, and we have a completely abstract specification. It sounds
wonderful; it just doesn’t work in practice.

After writing down a list of properties, it is very hard to figure out what
one has written. It is hard to decide what additional properties are and are
not implied by the list. As a result, it becomes impossible to tell whether a
specification says all that it should about a system. With perseverance, one can
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write an axiomatic specification of a simple queue and convince oneself that
it is correct. The task is hopeless for systems with any significant degree of
complexity.

To illustrate the complexity of real specifications, I will show you a small
piece of one. The specification describes one particular view of a switch for a
local area network. Recall that in an operational specification, one specifies a
next-state relation by decomposing it into separate actions. Figure 1 shows the
specification of a typical action, one of about a dozen. It has been translated into
an imaginary dialect of Pascal. The complete specification is about 700 lines. It
would be futile to try to write such a specification as a list of properties.

3.7 Specification Methods that Work for the Wrong Reason

The specification methods that do work describe a system as an abstract pro-
gram. Unfortunately, when computer scientists start describing programs, their
particular taste in programming languages comes to the fore.

Suppose a computer scientist wants to specify a file system. Typically, he
starts with his favorite programming language—say TEX. He may modify the
language a bit, perhaps by adding constructs to describe concurrency and/or
nondeterminism, to get Concurrent TEX. We might not think that TEX is a
very good specification language, but it is Turing complete, so it can describe
anything, including file systems. In the course of describing a system precisely,
one is forced to examine it closely—a process that usually reveals problems. The
exercise of writing the specification is therefore a great success, since it revealed
problems with the system. The specifier, who used TEX because it was his favorite
language, is led to an inescapable conclusion: the specification was a success
because Concurrent TEX is a wonderful language for writing specifications.

Although Concurrent TEX, being Turing complete, can specify anything,
there are two main problems with using it as a specification language.

First, one has to introduce a lot of irrelevant mechanism to specify something
in Concurrent TEX. It is hard for someone reading the specification to tell how
much of the mechanism is significant, and how much is there because TEX lacks
the power to write the specification more abstractly. I know of one case of a
bus protocol that was specified in a programming language—Pascal rather than
TEX. Years later, engineers wanted to redesign the bus, but they had no idea
which aspects of the specification were crucial and which were artifacts of Pascal.
For example, the specification stated that two operations were performed in a
certain order, and the engineers didn’t know if that order was important or was
an arbitrary choice made because Pascal requires all statements to be ordered.

The second problem with Concurrent TEX is more subtle. Any specification
is an abstraction, and the specifier has a great deal of choice in what aspects of
the system appear in the abstraction. The choice should be made on the basis of
what is important. However, programming languages inevitably make it harder
to describe some aspects of a system than others. The specifier who thinks in
terms of a programming language will unconsciously choose his abstractions
on the basis of how easily they can be described, not on the basis of their
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ACTION LinkCellArrives(l : Link, p : P) :

LOCAL lState := inport[p].lines[l] ;

lc := Head(lState.in) ;

vv := lState.vcMap[lc.v] ;

incirc := inport[p].circuits[vv] ;

ww := lState.vcMap[lc.ack] ;

noRoom := lState.space = 0 ;

toQ := incirc.enabled ;

AND NOT incirc.stopped

AND NOT incirc.discard

AND NOT incirc.cbrOnly

AND NOT noRoom ;

ocirc := outport[p].circuits[ww] ;

outq := CHOOSE qq : qq IN incirc.outPort ;

iStart := NOT ocirc.discardC

AND ocirc.balance = 0

AND NOT ocirc.startDis ;

BEGIN

IF lState.in /= < > AND NOT inport[p].cellArr

THEN IF incirc.discard OR noRoom

THEN inport[p].circuits[vv].cells.body :=

CONCAT(inport[p].circuits[vv].cells.body,

RECORD body := lc.body ;

from := TRUE) END ;

IF toQ

THEN inport[p].circuits[vv].cells.queued := TRUE;

IF NOT incirc.queued

THEN inport[p].outportQ[outq] :=

CONCAT(inport[p].outportQ[outq], vv);

IF noRoom

THEN inport[p].lines[l].space :=

inport[p].lines[l].space - 1 ;

inport[p].lines[l].in :=

Tail(inport[p].lines[l].in) ;

inport[p].cellArr := TRUE ;

IF NOT ocirc.discardC

THEN outport[p].circuits[ww].balance :=

outport[p].circuits[ww].balance + 1 ;

outport[p].circuits[ww].sawCred := TRUE

ELSE outport[p].circuits[ww].sawCred := FALSE

IF iStart THEN outport[p].delayL.StartDL :=

RECORD w := ww ;

p := ocirc.inPort END

END

Fig. 1. One small piece of a real specification, written in pseudoPascal.
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importance. For example, no matter how important the fairness requirements of
a system might be, they will not appear in the specification if the language does
not provide a convenient and flexible method of specifying fairness.

Computer scientists tend to be so conscious of the particular details of the
language they are using, that they are often unaware that they are just writing
a program. The author of a CCS specification [34] will insist that he is using
process algebra, not writing a program. But, it would be hard to state formally
the difference between his CCS specification and a recursive program.

4 Other Methods

So far, I have discussed only state-based methods. There are two general ways
of viewing an execution of a system—as a sequence of states or as a collec-
tion of events (also called actions). Although some of the formalisms I have
mentioned, such as I/O automata, do consider a behavior to be a sequence of
events rather than states, their way of specifying sequences of events are very
much state-based. State-based methods all share the same assertional approach
to verification, in which the concept of invariance plays a central role.

Event-based formalisms include so-called algebraic approaches like CCS [34]
and functional approaches like the method of Broy [9, 10]. They attempt to
replace state-based assertional reasoning with other proof techniques. In the
algebraic approach, verification is based on applying algebraic transformations.
In the functional approach, the rules of function application are used.

I have also ignored state-based approaches based on branching-time temporal
logic instead of the linear-time logic described above [15]. In branching-time
logic, the meaning of a program is a tree of possibilities rather than a set of
sequences. The formula ✷F asserts that F is true on all branches, and ✸F
(defined to be ¬✷¬F ) asserts that F is true on some branch. While ✷ still
means always, in branching-time logic ✸ means possibly rather than eventually.
A branching-time logic underlies most algebraic methods.

Comparisons between radically different formalisms tend to cause a great
deal of confusion. Proponents of formalism A often claim that formalism B is
inadequate because concepts that are fundamental to specifications written with
A cannot be expressed with B. Such arguments are misleading. The purpose of
a formalism is not to express specifications written in other formalism, but to
specify some aspects of some class of computer systems. Specifications of the
same system written with two different formalisms are likely to be formally
incomparable.

To see how comparisons of different formalisms are misleading, let us consider
the common argument that sequences are inadequate for specifying systems, and
one needs to use trees. The argument goes as follows. The set of sequences that
forms the specification in a sequence-based method is the set of paths through
the tree of possible system events. Since a tree is not determined by its set of
paths, sequences are inadequate for specifying systems. For example, consider
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the following two trees.

✔
✔✔

❚
❚❚

a

b c

✔
✔✔

❚
❚❚

a a

b c

The first tree represents a system in which an a event occurs, then a choice is
made between doing a b event or a c event. The second tree represents a system
that chooses immediately whether to perform the sequence of events 〈a, b〉 or the
sequence 〈a, c〉. Although these trees are different, they both have the same set of
paths—namely, the two-element set {〈a, b〉, 〈a, c〉}. Sequence-based formalisms
are supposedly inadequate because they cannot distinguish between these two
trees.

This argument is misguided because a sequence-based formalism doesn’t have
to distinguish between different trees, but between different systems. Let us
replace the abstract events a, b, and c by actual system events. First, suppose
a represents the system printing the letter a, while b and c represent the user
entering the letter b or c. The two trees then become

✔
✔✔

❚
❚❚

print a

enter b enter c

✔
✔✔

❚
❚❚

print a print a

enter b enter c

In the first tree, after the system has printed a, the user can enter either b or c.
In the second tree, the user has no choice. But, why doesn’t he have a choice?
Why can’t he enter any letter he wants? Suppose he can’t enter other letters
because the system has locked the other keys. In a state-based approach, the
first system is described by a set of behaviors in which first a is printed and the
b and c keys are unlocked, and then either b or c is entered. The second system
is described by a set of behaviors in which first a is printed and then either the
b key is unlocked and b is entered or else the c key is unlocked and c is entered.
These two different systems are specified by two different sets of behaviors.

Now, suppose events a, b, and c are the printing of letters by the system.
The two trees then become

✔
✔✔

❚
❚❚

print a

print b print c

✔
✔✔

❚
❚❚

print a print a

print b print c

The first tree represents a system that first prints a and then chooses whether
to print b or c next. The second represents a system that decides which of the
sequences of letters to print before printing the first a. Let us suppose the system
makes its decision by tossing a coin. In a state-based approach, the first system
is specified by behaviors in which the coin is first tossed, then two letters are
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printed. The second system is specified by behaviors in which first a is printed,
then the coin is tossed, and then the second letter is printed. These are two
different systems, with two different specifications.

Finally, suppose that the system’s coin is internal and not observable. In a
state-based method, one hides the state of the coin. With the coin hidden, the
resulting two sets of behaviors are the same. In a state-based method, the two
specifications are equivalent. But, the two systems are equivalent. If the coin
is not observable, then there is no way to observe any difference between the
systems.

Arguments that compare formalisms directly, without considering how those
formalisms are used to specify actual systems, are useless.

5 A Brief Advertisement for My Approach to
State-Based Verification and Specification of Concurrent
Systems

I claim that axiomatic methods of writing specification don’t work, and that
operational methods are unsatisfactory because they require a complicated pro-
gramming language. The resolution of this dilemma is to combine the best of
both worlds—the elegance and conceptual simplicity of the axiomatic approach
and the expressive power of abstract programs. This is done by writing abstract
programs as mathematical formulas.

5.1 The Power of Formal Mathematics

Mathematicians tend to be fairly informal, inventing notation as they need it.
Many computer scientists believe that formalizing mathematics would be an
enormously difficult undertaking. They are wrong. Everyday mathematics can
be formalized using only a handful of operators. The operators ∧, ¬, ∈, and
choose (Hilbert’s ε [30]) are a complete set. In practice, one uses a larger set of
operators, such as the ones in Figure 2. These operators should all be familiar,
except perhaps for choose, which is defined by letting choose x : p equal an
arbitrary x such that p is true, or an unspecified value if no such x exists.
Among the uses of this operator is the formalization of recursive definitions, the
definition

fact [n : N] ∆= if n = 0 then 1 else n ∗ fact [n−1]

being syntactic sugar for

fact ∆= choose f : f = [n ∈ N �→ if n = 0 then 1 else n · f [n−1] ]

As an example of how easy it is to formalize mathematical concepts with these
operators, Figure 3 shows the definition of the Riemann integral, assuming only
the sets N of natural numbers and R of real numbers, and the usual operators +,
∗, <, and ≤. This is a completely formal definition, written in a language with a
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∧ ∨ ¬ ⇒ [implication] ∀ ∃
= �= ∈ /∈ ∅ ∪ ∩ ⊆ \ [set difference]
{e1, . . . , en} [Set consisting of elements ei]

{x ∈ S : p} [Set of elements x in S satisfying p]

{e : x ∈ S} [Set of elements e, for all x in S]

2S [Set of subsets of S]⋃
S [Union of all elements of S]

〈e1, . . . , en〉 [The n-tuple whose ith component is ei]

S1 × . . . × Sn [Set of n-tuples with ith component in Si]

choose x : p [Hilbert’s ε operator]

f [e] [Function application]

dom f [Domain of the function f ]

[S → T ] [Set of functions with domain S and range subset of T ]

[x ∈ S �→ e] [Function f such that dom f = S and f [x] = e for x ∈ S]

if p then e1 else e2

Fig. 2. Operators for formalizing mathematics.

precise syntax and semantics. For greater readability, some of the operators have
been printed in conventional mathematical notation. In the actual language, one
would have to write something like Int(a, b, f) rather than

∫ b

a f . The language
uses the convention that a list of formulas bulleted with ∧ or ∨ denotes the
conjunction or disjunction of the formulas, and indentation is used to eliminate
parentheses.

5.2 Specifying Programs with Mathematical Formulas

Consider the following simple program.

program Increment
var x, y initially 0
cobegin x := x+ 1 y := y + 1 coend

To specify this program, we must specify its initial condition, next-state relation,
and fairness requirements. The initial condition Init is obvious:

Init ∆= (x = 0) ∧ (y = 0)
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{m . . . n} ∆
= {i ∈ N : (m ≤ i) ∧ (i ≤ n)}

seq(S)
∆
=

⋃ { [{1 . . . n} → S] : n ∈ N}
len(s)

∆
= choose n : (n ∈ N) ∧ (dom s = {1 . . . n})

R+ ∆
= {r ∈ R : 0 < r}

|r| ∆
= if r < 0 then −r else r

n :N∑
m

f
∆
= if n < m then 0 else f [n] +

n−1∑
m

f

Pb
a(δ)

∆
= { p ∈ seq(R) :

∧ (p[1] = a) ∧ (p[len(p)] = b)

∧ ∀ i ∈ {1 . . . len(p)−1} : ∧ if a ≤ b then p[i] ≤ p[i+1]

else p[i+1] ≤ p[i]

∧ |p[i+1] − p[i]| < δ }

Spf
∆
=

len(p)−1∑
1

[ i ∈ N �→ (p[i+1]− p[i]) ∗ ( f [ p[i] ] + f [ p[i+1] ] ) / 2 ]

∫ b

a
f

∆
= choose r : ∧ r ∈ R

∧ ∀ ε ∈ R+ : ∃ δ ∈ R+ : ∀ p ∈ Pb
a(δ) : | r − Spf | < ε

Fig. 3. The definition of the Riemann integral.

The next-state relation is described by a formula relating the old and new values
of the variables. For program Increment , there are two possibilities: either x
is incremented by 1 and y is unchanged, or y is incremented by 1 and x is
unchanged. Letting unprimed variables denote old values and primed variables
denote new values, the next-state relation N is defined by

N ∆= ∨ (x′ = x+ 1) ∧ (y′ = y)
∨ (y′ = y + 1) ∧ (x′ = x)

Formula N defines a relation between a pair of states. Such a formula is called
an action. Formally, the meaning [[N ]] of action N is a Boolean-valued function
on pairs of states, where [[N ]](s, t) equals true iff formula N holds when x and
y are replaced by the values of x and y in state s, and x′ and y′ are replaced by
the values of x and y in state t. We can generalize ordinary temporal logic to
include actions by defining [[A]], for any action A, to be true of a sequence iff it
is true of the first pair of states:

[[A]](s0, s1, . . . )
∆= A(s0, s1)

Ignoring fairness for now, the obvious way to specify program Increment is by
the formula Init ∧✷N , which asserts of a behavior that the initial state satisfies
Init and every step (successive pair of states) satisfies N . However, this formula
is not invariant under stuttering. To obtain invariance under stuttering, we allow
steps that leave x and y unchanged. The assertion that x and y are unchanged
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can be expressed as 〈x, y〉′ = 〈x, y〉, where v′ denotes the expression v with all
variables primed. Defining

[N ]v
∆= N ∨ (v′ = v)

we can specify program Increment (with no fairness requirement) by the formula
Init ∧✷[N ]〈x, y〉. This formula allows not only finite numbers of stuttering steps,
but also infinite stuttering. It is satisfied by a behavior in which, after some finite
number of steps, x and y stop changing. These behaviors must be ruled out by
the fairness requirement.

Without knowing the semantics of cobegin, we cannot infer from the pro-
gram text what the fairness requirement for program Increment should be. We
make the requirement that both x and y should be incremented infinitely often.
Since infinitely often is expressed in temporal logic by ✷✸, the obvious way to
express this requirement is

✷✸(x′ = x+ 1) ∧ ✷✸(y′ = y + 1)

However, it’s a bad idea to write arbitrary temporal formulas as the fairness
requirement, since that can easily lead to specifications that are not machine
closed. We now show how to write machine-closed fairness requirements.

For any action A, we define Enabled A to be the predicate that is true of a
state iff an A step is possible starting in that state. The semantic definition is

[[Enabled A]](s) ∆= ∃ t : [[A]](s, t)
We then define weak and strong fairness for an action A to assert that if A
remains continuously enabled (weak fairness) or repeatedly enabled (strong fair-
ness), then an A step must eventually occur. The precise definitions are

WF(A) ∆= ✷✸¬(Enabled A) ∨ ✷✸A
SF(A) ∆= ✸✷¬(Enabled A) ∨ ✷✸A

However, there is one problem with these definitions: the formulas WF(A) and
SF(A) are not invariant under stuttering. The proper definitions are the follow-
ing, where 〈A〉v is defined to equal A ∧ (v′ �= v), so an 〈A〉v step is an A step
that changes v.

WFv(A) ∆= ✷✸¬(Enabled 〈A〉v) ∨ ✷✸ 〈A〉v
SFv(A) ∆= ✸✷¬(Enabled 〈A〉v) ∨ ✷✸ 〈A〉v

Usually, v is the tuple of all variables and A is defined so any A step changes v,
making 〈A〉v equal to A.

We can finish the specification of program Increment by adding weak fairness
requirements for the actions of incrementing x and incrementing y. The complete
specification Π appears in Figure 4. Formula Π has the canonical form of a
specification: Init ∧✷[N ]v ∧L, where Init is the initial predicate, N is the next-
state action, v is the tuple of all relevant variables, and L is the conjunctions
of formulas of the form WFv(A) and/or SFv(A).1 It can be shown that if each
1 More generally, the formula may be preceded by quantifiers ∃∃∃∃∃∃ to hide internal
variables.
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action A implies the next-state action N , then the pair (Init ∧ ✷[N ]v, L) is
machine closed [2].

Init
∆
= (x = 0) ∧ (y = 0)

X ∆
= (x′ = x+ 1) ∧ (y′ = y)

Y ∆
= (y′ = y + 1) ∧ (x′ = x)

N ∆
= X ∨ Y

Π
∆
= Init ∧ ✷[N ]〈x, y〉 ∧ WF〈x, y〉(X ) ∧ WF〈x, y〉(Y)

Fig. 4. The complete specification Π of program Increment .

5.3 TLA

Syntax and Semantics
I have augmented everyday mathematics with some new operators to get a kind
of mathematics called the Temporal Logic of Actions (TLA for short). These
new TLA operators can all be expressed in terms of ′ (prime), ✷, and ∃∃∃∃∃∃. The
syntax and formal semantics of TLA are given in Figure 5. Missing from that
figure are the syntax and semantics of state functions and actions (the 〈st fcn〉s
and 〈action〉s of the figure). State functions and actions are written using the op-
erators of Figure 2; their semantics are the semantics of everyday mathematics,
which can be found in any standard treatment of set theory [40]. Since reason-
ing about programs requires reasoning about data structures, any verification
method must have everyday mathematics embedded within it in some form.

The analog of Figure 5 for a programming language would be a complete
syntax and semantics of every part of the language except expressions. I know
of no programming language, except perhaps Unity, with as simple a semantics
as TLA. Moreover, because TLA is mathematics, it has an elegance and power
unmatched by any programming language.

Proofs
In a mathematical approach, there is no distinction between programs, specifica-
tions, and properties. They are all just mathematical formulas. Implementation
is implication. Program Π satisfies specification or property S iff every behav-
ior that satisfies Π also satisfies S. In other words, Π satisfies S if and only if
|= Π ⇒ S, where |= F means that formula F is satisfied by all behaviors.

Writing programs and specifications as mathematical formulas conceptually
simplifies verification. One does not have to extract verification conditions from
a programming language; what has to be proved is already expressed as a mathe-
matical formula. Consider the proof that a low-level specification Π1 implements
a high-level specification Π2. The theorem to be proved is Π1 ⇒ Π2. When each
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Syntax

〈formula〉 ::= 〈pred〉 | ✷[〈action〉]〈st fcn〉 | 〈formula〉 ∧ 〈formula〉 | ¬〈formula〉
| ✷〈formula〉 | ∃∃∃∃∃∃ 〈var〉 : 〈formula〉

〈st fcn〉 ::= nonBoolean expression with unprimed variables

〈action〉 ::= Boolean expression with primed and unprimed variables

〈pred〉 ::= 〈action〉 with no primed variables

Semantics

[[f ]](s)
∆
= f(∀ ‘v’ : [[v]](s)/v) [[¬F ]](σ)

∆
= ¬[[F ]](σ)

[[f ′]](s, t)
∆
= [[f ]](t) |= F

∆
= ∀σ :|= [[F ]](σ)

[[A]](s, t)
∆
= A(∀ ‘v’ : [[v]](s)/v, [[v]](t)/v′) ✸F

∆
= ¬✷¬F

|= A ∆
= ∀s, t :|= [[A]](s, t) [A]f ∆

= A ∨ (f ′ = f)

[[Enabled A]](s) ∆
= ∃ t : [[A]](s, t) ✸〈A〉v ∆

= ¬✷[¬A]v
[[A]](s0 , s1, . . .)

∆
= [[A]](s0 , s1) WFv(A) ∆

= ✷✸¬(Enabled A) ∨ ✷✸〈A〉v
[[F ∧ G]](σ)

∆
= [[F ]](σ) ∧ [[G]](σ) SFv(A) ∆

= ✸✷¬(Enabled A) ∨ ✷✸〈A〉v
[[✷F ]](s0, s1, . . .)

∆
= ∀n : [[F ]](sn, sn+1, . . .)

[[∃∃∃∃∃∃ x : F ]](σ)
∆
= ∃ρ, τ : (�σ = �ρ) ∧ (ρ =x τ ) ∧ [[F ]](τ )

�(s0, s1, . . .)
∆
= if s0 = s1 then if ∀n : sn = s0 then s0 else s1, s2, . . .

else s0, �(s1, s2, . . .)

(s0, s1, . . .) =x (t0, t1 . . .)
∆
= ∀‘v’ �= ‘x’ : ∀n : [[v]](sn) = [[v]](tn)

Notation

f is a 〈st fcn〉 s, t, s0, t0, . . . are states

A is an 〈action〉 σ, ρ, τ are infinite sequences of states

F , G are 〈formula〉s (∀ ‘v’ : . . . /v, . . . /v′) denotes substitution for all
x is a variable variables v

Fig. 5. The syntax and formal semantics of the Temporal Logic of Actions (TLA).

Πi is written in canonical form as Init i ∧ ✷[Ni]v ∧ Li, the proof has the struc-
ture shown in Figure 6. The three high-level steps correspond to the three steps
described in Section 2.2:

1. Every possible initial state of Π1 is a possible initial state of Π2.
2. Step simulation.
3. The fairness requirement of Π1 implies the fairness requirement of Π2.

Step 1 and steps 2.1.1, 2.1.2, and 2.2.1 (the “leaves” in the proof of step 2)
involve no temporal operators. They are proved by everyday math, where v and
v′ are treated as separate variables, for each variable v. Steps 1 and 2.1.1 are
usually easy. The hard part of the proof is finding the invariant Inv and proving
2.1.2 and 2.2.1. The structure of the formulas to be proved leads to a further
decomposition of the proof. For example, N1 is usually written as a disjunction
N 1

1 ∨ . . . ∨ Nn
1 , allowing the proof of step 2.1.2 to be broken into the following

steps.
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Theorem: Init1 ∧ ✷[N1]v ∧ L1 ⇒ Init2 ∧ ✷[N2]v ∧ L2

Proof: 1. Init1 ⇒ Init2

2. Init1 ∧ ✷[N1]v ⇒ ✷[N2]w

2.1. Init1 ∧ ✷[N1]v ⇒ ✷Inv

2.1.1. Init1 ⇒ Inv

2.1.2. Inv ∧ [N1]v ⇒ Inv ′

2.2. ✷[N1]v ∧ ✷Inv ⇒ ✷[N2]w
2.2.1. Inv ∧ [N1]v ⇒ [N2]w

3. Init1 ∧ ✷[N1]v ∧ L1 ⇒ L2

. . .

Fig. 6. The structure of the proof that specification Π1 implements specification Π2.

2.1.2. Inv ∧ [N1]v ⇒ Inv ′

2.1.2.1. Inv ∧ N 1
1 ⇒ Inv ′

. . .
2.1.2.n. Inv ∧ Nn

1 ⇒ Inv ′

2.1.2.n+1. Inv ∧ (v′ = v) ⇒ Inv ′

The invariant Inv is usually written as a conjunction Inv1 ∧ . . .∧ Invm, allowing
a further decomposition of the proof as follows.

2.1.2.i. Inv ∧ N i
1 ⇒ Inv ′

2.1.2.i.1. Inv ∧ N i
1 ⇒ Inv ′

j

. . .
2.1.2.i.m. Inv ∧ N i

1 ⇒ Inv ′
j

This is precisely the decomposition performed by the Owicki-Gries method. In
that method, N i

1 corresponds to an individual program statement and Inv j

equals at(πj) ⇒ Pj , where at(πj) asserts that control is at point πj and Pj

is the assertion attached to that control point.
In general, specifications may have internal variables. For simplicity, assume

that each specification has a single internal variable; the generalization to arbi-
trary numbers of internal variables is easy. Proving that one specification imple-
ments another then requires proving a formula of the form |= (∃∃∃∃∃∃ x : Π1)⇒ (∃∃∃∃∃∃ y :
Π2), where the Πi are as above. By simple logic, this is equivalent to proving
|= Π1 ⇒ (∃∃∃∃∃∃ y : Π2), assuming the variable x does not occur in Π2. To prove
this formula, it suffices to prove |= Π1 ⇒ Π2[f/y] for some expression f , where
Π2[f/y] denotes the formula obtained by substituting f for the variable y. This
is the same kind of formula whose proof is outlined in Figure 6. The expression
f is called a refinement mapping [1].

Composition
One advantage of writing specifications as mathematical formulas is that they
can be manipulated with simple mathematical laws. For example, let X and Y
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be defined as in Figure 4, and let

Πx
∆= (x = 0) ∧ ✷[X ]x ∧ WFx(X )

Πy
∆= (y = 0) ∧ ✷[Y]y ∧ WFy(Y)

Applying the temporal logic identity (✷F ) ∧ (✷G) ≡ ✷(F ∧ G) and observing
that [X ]x ∧ [Y]y equals [X ∨ Y]〈x, y〉, we can show that Πx ∧ Πy is equivalent
to Π .

Program Increment , which is specified by Π , can be viewed as the composi-
tion of two processes, each incrementing one of the variables. Formulas Πx and
Πy are the specifications of these processes. This example illustrates the gen-
eral principle that, in the mathematical approach, composition is conjunction.
There is no need to define a new parallel composition operator. A more detailed
explanation of why composition is conjunction can be found in [3].

Real Time
To demonstrate the power of mathematics as a specification language, I will
show how to write real-time specifications. As an example, I will add to program
Increment the requirement that x must be incremented at least once every

√
2

seconds.
The usual approach to specifying real-time systems is to devise a real-time

pseudo-programming language or a real-time temporal logic. A new language
or logic means a new semantics, new proof rules, and new tools. It isn’t a very
comforting thought that, when faced with a new problem domain, one must redo
everything. Using mathematics, we don’t have to change or add anything; we
just define what we need.

In mathematics, time is simply represented by a variable. So, we introduce
a variable now to represent the current time. For simplicity, we pretend that
incrementing x and y takes no time, which means that x and y don’t change
when now does. We begin by writing a formula RT asserting that now is a
nondecreasing real number that gets arbitrarily large, and that x and y don’t
change when now does. The formula RT has the canonical form Init∧✷[N ]v∧L,
where

– The initial predicate Init asserts that now is a real number.
– The next-state relation N asserts that the new value of now is a real number

greater than its old value, and x and y are left unchanged.
– v equals now , so [N ]v allows steps that leave now unchanged.
– L asserts that now gets arbitrarily large.

Letting R be the set of real numbers and (r, ∞) be the set of all real num-
bers greater than r, and observing that WFnow (now ′ > r) implies that now is
eventually greater than r, we can define RT by

RT ∆= ∧ now ∈ R

∧ ✷
[∧ now ′ ∈ (now ,∞)
∧ 〈x, y〉′ = 〈x, y〉

]
now

∧ ∀ r ∈ R : WFnow (now ′ > r)
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We next introduce a variable t to act as a timer, and define MaxT to be a
formula asserting that

1. t initially equals
√
2 plus the time when x was last incremented (where we

consider x to be first incremented when the program is started).
2. now is always less than or equal to t.

These two conditions imply that x must be incremented at least once every√
2 seconds. The second condition is easily expressed as ✷(now ≤ t). The first

condition is expressed by a formula of the form Init ∧ ✷[N ]v, where

– Init asserts that t equals
√
2 + now .

– N asserts that if the current step is an X step (one that increments x), then
the step must make the new value of t equal to

√
2+now ; otherwise the step

must leave t unchanged.
– v is the tuple 〈x, t〉, so [N ]v allows steps that leave both x and t unchanged.

We can therefore define MaxT by

MaxT ∆= ∧ t =
√
2 + now

∧ ✷
[
t ′ = if X then

√
2 + now

else t

]
〈x, t〉

∧ ✷(now ≤ t)

Recall that Π , defined in Figure 4, is the formula representing the untimed
version of program Increment . The formula representing the timed version is
then

Π ∧RT ∧ ∃∃∃∃∃∃ t : MaxT

which asserts of a behavior that it satisfies

– Π , so x and y are incremented as specified by the Increment program.
– RT , so now behaves the way real time should.
– ∃∃∃∃∃∃ t : MaxT , so x is incremented at least once every

√
2 seconds. (Note how t

is hidden, so the formula describes how the values of x and now can change,
but asserts nothing about the value of t.)

The approach used in this simple example is quite general. To write real-
time specifications, one specifies the non-real-time aspects and then conjoins the
real-time constraints. These constraints are expressed in terms of a few simple
parametrized formulas [2].

Remarks
TLA is simple. All TLA formulas, such as the specification Π in Figure 4, can be
expressed using only the operators ∧, ¬, ∈, choose, ′ (prime), ✷, and ∃∃∃∃∃∃. TLA is
the basis for a complete specification language, called TLA+ [29] that includes
a module structure for writing large specifications.
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When seeing a TLA specification like the one in Figure 4 for the first time,
computer scientists are struck by what is unfamiliar about it. Typically, they
are impelled to add some syntactic sugar to make the specification look more
familiar. First, they observe that because one writes x′ = x + 1 instead of the
traditional assignment statement x := x+1, TLA forces one to write the explicit
conjunct y′ = y to state that y is unchanged. So, they suggest writing something
like an assignment statement to avoid having to say that other variables are
unchanged. Next, they want to eliminate the temporal operators by just writing
the initial condition and the actions. The next-state relationN and the ✷[N ]〈x, y〉
would be implicit. Instead of writing WF〈x, y〉(X ) ∧WF〈x, y〉(Y), the actions X
and Y would be marked in some way.

To see how useful this syntactic sugaring would really be, consider the TLA+

specification of a switch for a local area network. This specification was men-
tioned in Section 3.6, and a portion of it translated into pseudoPascal appeared
in Figure 1. The specification is about 700 lines long. Ten of the shorter of those
lines are devoted to assertions that variables remain unchanged. Replacing the
mathematician’s “=” with the computer scientist’s “:=” would reduce the length
of the specification by about 1%. Making the ✷[N ]v implicit would make the
specification .1% shorter. The fairness requirements represent about 4% of the
specification. However, they are not expressible as simple fairness conditions
on disjuncts of the next-state relation. Expressing them requires the full power
of the WF and SF operators. While it is dangerous to generalize from a single
example, it is clear that replacing the mathematical notation with programming-
language notation would shorten a specification by only a few percent, and would
seriously restrict the ability to express fairness conditions.

The nontemporal part—the initial condition and next-state relation together
with their subsidiary definitions—forms about 95% of the switch specification.
It consists entirely of simple, familiar mathematics: numbers, sequences, sets,
and so on. TLA works in practice because 95% of a specification consists of
everyday mathematics, and 95% of a proof consists of ordinary mathematical
reasoning. Temporal operators and temporal reasoning are used only for what
they do best—expressing and proving fairness properties.

6 Conclusion

It has been 18 years since Ashcroft introduced the use of an invariant for reason-
ing about concurrent programs. Thinking about concurrent programs in terms of
invariants is now standard practice among good programmers. (Unfortunately,
good programmers are probably still in the minority.)

Ashcroft’s work spawned a plethora of formalisms for specifying and rea-
soning about concurrent programs. Regardless of the formalism used, there is
usually only one way to prove the correctness of any particular algorithm. The
precise formulation may differ, but the proof will be essentially the same no
matter what formalism is used. In any sensible method, one reasons about the
algorithm, not about its particular representation. There are nonsensical meth-
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ods in which the representation is so cumbersome that it interferes with the
proof, but these methods can (and should) be ignored.

Formalisms do differ in what they can express. Ones based directly on pro-
gram texts can usually express only invariance and simple liveness properties.
Other methods allow the specification and proof of a much more general class of
properties. The methods that work in practice specify properties as abstract pro-
grams, with hidden internal variables. They allow one to prove that one abstract
program implements another.

I believe that the best language for writing specifications is mathematics.
Mathematics is extremely powerful because it has the most powerful abstrac-
tion mechanism ever invented—the definition. With programming languages,
one needs different language constructs for different classes of system—message-
passing primitives for communication systems, clock primitives for real-time
systems, Riemann integrals for hybrid systems. With mathematics, no special-
purpose constructs are necessary; we can define what we need.

Writing specifications as mathematical formulas conceptually simplifies veri-
fication, making the rigorous formalization of proofs needed for mechanical verifi-
cation easier. A system for mechanically verifying TLA specifications is currently
being developed [16].

Perhaps the greatest advantage of specifying with mathematics is that it
allows us to describe systems the way we want to, without being constrained
by ad hoc language constructs. Mathematical manipulation of specifications can
yield new insight. A producer/consumer system can be written as the conjunc-
tion of two formulas, representing the producer and consumer processes. Simple
mathematics allows us to rewrite the same specification as the conjunction of n
formulas, each representing a single buffer element. We can view the system not
only as the composition of a producer and a consumer process, but also as the
composition of n buffer-element processes. Processes are not fundamental com-
ponents of a system, but abstractions that we impose on it. This insight could
not have come from writing specifications in a language whose basic component
is the process.
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