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T h e r e  f o l l o w  a n u m b e r  o f  l e t t e r s  
c o m m e n t i n g  on the recent paper "Social 

Processes and Proofs of Theorems and 
Programs" by De Millo, Lipton and Perils. 
Some related letters arising out of com- 
mentary on a previous paper by Geller ap- 
pear also in this issue, in the Technical Cor- 
respondence section. It  has been brought to 
the attention of the editors that the dates 
published on tire De Millo, Lipton and 
Perlis paper are incomplete; the paper was 
first actually submitted to the Programming 
Languages editor in April  1977, as one 
of the set of  papers derived from the 1977 
A C M  Symposium on the Principles of 
Programming Languages. When it was 
later decided that the paper should appear 
under the Reports and Articles heading, 
the earlier dates were not included, for 
which omission the editors apologize. 

[] My heartiest congratulations for 
a job well done in the article on Proof 
of Theorems [1]. 

As a practitioner (MBA) and man- 
ager in the field of computers in busi- 
ness, I have found C o m m u n i c a t i o n s  

o f  the  A C M  to be arcane, difficult to 
follow, and above all, of no practical 
use. Despite the theoretical nature of 
this subject, the writing was clear, 
interesting, and devoid of mathemat-  
ical symbolism. In addition, its prac- 
tical value to me was to explain to 
me why I should not look for devel- 
opment of formal proof of the "cor- 
rectness" of our programs. 

Again, thanks for giving me the 
first article in C o m m u n i c a t i o n s  that 
I have enjoyed since I joined ACM in 
1973. May it signal the beginning of 
a new trend for at least some of the 
future articles. 

A L L A N  G.  POMERANTZ 

ARA Services, Inc. 
Philadelphia, PA 19106 

1. De Millo, R.A., Lipton, R.J., and Perlis, A.J. 
Social processes and proofs of theorems and pro- 
grams. Comm. ACM 22, 5 (May 1979), 271-280. 

[] "Social Processes and Proofs of 
T h e o r e m s  and P r o g r a m s "  by De 
Millo, Lipton and Perlis in the May 
1979 C o m m u n i c a t i o n s  is the best 

article I have read in a computer 
publication and one of the best arti- 
cles I have read anywhere. Thank 
you for publishifig it, and thanks to 
the authors for their wisdom, fair- 
ness, style, rigor, and wit. Such an 
article makes me delight in being an 
ACM member,  and, indeed, in being 
a member  of the human race. 

DANIEL GLAZER 

2147 "O"  St. N.W. #402  
Washington, DC 20037 

[] I read with amusement De Millo, 
Lipton and Perlis's fine article, "So- 
cial P roces se s . . . "  whose title I think 
could easily have been "Formal  Veri- 
fication Considered Harmful ."  What 
I found particularly interesting was 
the authors'  admonition to "make a 
sharp distinction between program 
reliability and program perfection." 
While I agree with the spirit of most 
everything in the paper, I feel it is 
important to consider both reliability 
and validity. It is not always enough 
to demonstrate reliabil i ty-there are 
cases where a convincing demonstra- 
tion of validity is also important. I 
remember my statistics professor's 
analogy of the important relation be- 
tween reliability and validity. "Pic- 
ture," he said, "the following cartoon, 
which I actually saw in a magazine: A 
small boy is standing on a scale and 
with a large smile is saying, 'I  am 
thirty pounds tall '." That  scale was 
very reliable, h o w e v e r . . .  

STEWART A .  D E N E N B E R G  

SUNY at Plattsburgh 
Plattsburgh, NY 12901 

[] Marvelous, marvelous, marvel- 
ousI I refer of course to "Social Proc- 
esses and Proofs of Theorems and 
Programs" by De Millo, Lipton and 
Perlis in the May 1979 C o m m u n i c a -  

t ions .  This is exactly the kind of 
article that belongs in the flagship 
publication and nowhere else. It ad- 
dresses a broad issue of importance 
to the computing community. It  puts 
forth powerful and convincing argu- 
ments. To have on top of that an 
article that is literate, readable, and 
stimulating is almost too much. I 
want more! I realize that won't  be 
easy, dear editor, I can only urge you 
to try. Meantime, a drink like that 

will set me up for a long dry spell. 
Another one like that will be worth 
more than a little patience. 

I have only two general thoughts 
to suggest as addenda to what was 
said. First, I think it would be an im- 
mense contribution to the health of 
mathematics if the authors would 
take the parts of the paper about the 
nature of mathematics, expand them, 
round them off a bit, and submit the 
resulting article to H a r p e r ' s  or the 
A t l a n t i c  or other such general maga- 
zine. Those insights should be disem- 
minated as widely as possible. 

Second, though a couple of bows 
were made in that direction, I think 
more could have been made of the 
whole "programming style" move- 
ment. In the terms of the paper, these 
are nothing more or less than at- 
tempts to construct programs that 
will be elegant proofs of the specifi- 
cations that are the theorem state- 
ments. The programs of a book like 
Kernighan and Plauger [1] can be 
read, and the reading gave me a 
much better handle on the whole 
programming process. If the discon- 
tinuities mentioned in the paper can 
be bridged, this is the approach that 
will bridge them. 

LEONARD F. ZETTEL, JR. 
3820 Brookshire Drive 
Trenton, M148183 

1. Kernighan B.W., and Plauger, P.J. The Ele- 
ments o/ Programming Style. McGraw-Hill, New 
York, 1974. 

[] On the basis of ten years experi- 
ence in the design, implementation 
and use of software for numerical 
applications (statistics and econo- 
metrics),  I agree completely with the 
views of De Millo, Lipton and Perlis. 

I cannot recall a single instance 
in which a proof of a program's cor- 
rec tness  would have  been  useful .  
That is not to say that I have been 
involved in the production and use 
of error-free software; rather, I find 
that there are mainly two kinds of 
software errors: 
(1) Actual errors in the implementa- 
tion of a program (bugs).  
(2) Errors in the specification of a 
program, or, more commonly, of a 
system which comprises many pro- 
grams. 
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The first kind of error can be 
quite serious, but it is typically easy 
to fix when identified. In my experi- 
ence, serious errors of the first kind 
can always be found by adequate 
testing. It is unfortunately true that 
some programmers (including, some- 
times, myself) do not test adequately, 
so the user winds up discovering 
many bugs. This is regrettable and 
can be avoided by setting up a testing 
function or department. (See Huang 
[1] for a review of testing and Myers 
[2] for the results of controlled ex- 
periment.) In any case it is my feel- 
ing as a user that user detection of 
bugs can sometimes be cost-effective 
and acceptable to users if they are 
warned in advance that the system is 
likely to contain some errors. As a 
user, I would much rather be given 
a program with two bugs now than a 
perfect program next year. 

The second kind of error, on the 
other hand, is much more serious. By 
definition it cannot be detected by 
testing or proving techniques, since 
the program meets its specifications. 
It is invariably detected very quickly 
by users, who inform the program- 
mer that the formal program specifi- 
cations do not meet their informal 
specifications (needs).  In my experi- 
ence these errors are often exceed- 
ingly expensive to fix; often the fix 
requires an extensive rewrite of the 
system. 

Lientz, Swanson and Tompkins 
[3] present the results of a survey of 
69 ~DP organizations. This survey 
confirms that maintenance due to in- 
adequate or changing program speci- 
fications is an important component 
of today's EDP costs. On average the 
surveyed users allocated 48 percent 
of their annual personnel hours to 
m a i n t e n a n c e  and e n h a n c e m e n t .  
Within this category, 60 percent of 
the t ime was devo ted  to user  en- 
hancements, improved documenta- 
tion and recoding for computational 
efficiency (40 percent to user en- 
hancements alone). Only 17 percent 
was devoted to emergency fixes and 
routine debugging. Table V of their 
article clearly shows that manage- 
ment in the surveyed organizations 
perceived user demands for enhance- 

ments and extensions to be the num- 
ber one problem area. 

It is my opinion that methods for 
avoiding program misspecification 
are much more urgently needed than 
methods for proving that a program 
meet its specifications. For  example, 
I consider Michael Jackson's work 
to be a step in the right direction [4], 
as are the various concepts known 
by the buzzwords chief-programmer 
team, top-down design, iterative re- 
finement, etc. (see Zelkowitz [5] for 
a review). 

R I C H A R D  H I L L  

A.C. Nielsen Management 
Services S.A. 
CH-6002 Lucerne 
Switzerland 

1. Huang,  J.C. An approach to program test- 
ing. Computing Surveys 7, 3 (Sept. 1975), 113-128. 
2. Myers, G.J. A controlled experiment in pro- 
gram testing and code walkthroughs/inspections,  
Comm. A C M  21, 9 (Sept. 1978), 760-768. 
3. Lientz, B.P., Swanson, E.B., and Tompkins, 
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tenance. Comm. A C M  21, 6 (June 1978), 466-471. 
4. Jackson, M.A. Information systems: Mod- 
eling, sequencing and transformations. Proc. Third 
International Conference on Software Engineer- 
ing, Atlanta,  Ga., May 1978, 72-81. 
5. Zelkowitz, M.V. Perspectives on software 
engineering. Computing Surveys 10, 2 (June 1978), 
197-216. 

[] It was time somebody said i t -  
loud and c lear - the  formal approach 
to sof tware  ver i f ica t ion  does not  
work now and probably never will 
work in the real programming world. 
In their well-written paper the au- 
thors stress the obvious parallel to 
mathematics: Little to nothing of the 
immense  wea l th  of p r e sen t  day  
mathematics came out of formal rea- 
soning like the predicate calculus, 
etc., nor are theorems usually proved 
by such means. 

The one sentence that was quoted 
from Poincar6 really says it all: " . . .  if 
it requires twenty-seven equations to 
establish that 1 is a number, how 
many will it require to demonstrate 
a real theorem?" 

Au tomat i c  ver i f ica t ion by the 
computer, much heralded only a few 
years ago, has turned out to be a 
totally impossible approach for any 
program that lies outside the toy- 
program world of the "greatest com- 
mon div isors ,"  etc. Some of the 
deeper reasons for this may be found 
in Weizenbaum's excellent book [1]. 
But the fact that the verification 
route has failed does not mean that 

the need for' correct, reliable soft- 
ware has d isappeared .  Quite  the 
contrary: With the ever increasing 
complex i ty  of compu te r  systems, 
particularly of real-time process con- 
trol systems, the problem has be- 
come more aggravated than ever. 

The authors at one point identify 
"real life programming" with hourly 
changing specifications, with "patch- 
es," "glue, . . . .  spit," etc. It seems to 
me that with such a chaotic program- 
ming style one would be as remote 
from reality as are their chastised 
colleagues of the "verification guild." 

It is both interesting and fruitful 
to draw parallels between the pro- 
gramming world and the world of 
mathematics. As the authors point 
out there exist important differences, 
t o o .  

There are many deep mathemati- 
cal theorems that may be written 
down in a couple of lines; programs 
may take thousands of lines but ex- 
hibit a certain "shallowness." But 
does it have to be that  way? No 
doubt, mathematics can be very con- 
cise and deep-bu t  must programs be 
shallow? That this is now usually the 
case may be one reason for the often 
quoted "software problem." There is 
one dimension that is crucial in "real- 
l i fe"  p rograms:  complexi ty .  The  
problem of software engineering is 
usual ly not  the f inding of " d e e p  
theorems" but rather the highly non- 
trivial task of mastering complexity. 
This is what system engineering-be 
it for hardware or software-is all 
about. 

To attack this problem success- 
fully nature can teach us a lesson or 
two, if one is willing to see and to lis- 
ten. Biological systems are extremely 
sophisticated; we can hardly guess 
their immense complexity. How does 
nature "engineer" these extremely 
complex systems? In his wonderful 
and very readab le  works Ar thu r  
Koestler [2, 3] gives us some hints. 

These systems are deeply struc- 
tured and highly redundant. Many 
years ago Koestler introduced the 
concept of a holon that is gradually 
finding acceptance in many disci- 
plines. The modules of Portal (a 
Pascal based real-time programming 
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language developed at our research 
lab) are something like holons. When 
programming in Portal one is forced 
to provide a certain amount of re- 
dundant information. In his newest 
book [3] Koestler very eloquently 
shows how natural systems can be 
represented as a hierarchy of holons 
(as a "holarchy") .  

We believe that complex software 
should also be developed as a hier- 
archy of such holons (or modules, as 
they are now appearing more and 
more in modern programming lan- 
guages). Deep structuring and re- 
dundancy: This is, in the long run, 
the only way to come to grips with 
complexity in software that can re- 
liably operate in a real-life environ- 
ment. 

H. LIENHARD 
LGZ Landis & Gyr Zug AG 
CH-6301 Zug 
Switzerland 

1. Weizenbaum, J. Computer Power and Human 
Reason. Freeman, San Francisco, 1978. 
2. Koestler, A. The Ghost in the Machine. 
Henry Regnery Co., Chicago, 1967. 
3. Koestler, A. Janus--a Summing Up. Hutch-  
inson, 1978. 

[] It is with great satisfaction that I 
noted that for the first time a paper 
on the philosophy of computer sci- 
ence, in this case the methodology 
of program verification, has been 
published in Communications. 

I think the authors make a good 
case in demonstrating that computer 
science is at best like mathematics, 
and that unfortunately not all mathe- 
matics is classical, id est Euclidean 
mathematics. The notion that mathe- 
matics is a fallible, quasi-empirical 
science has been defended very per- 
suasively by Lakatos [ 1, 2]. Many of 
the arguments the authors put for- 
ward can be found in the first refer- 
ence and it is only sad that the au- 
thors do not seem to be aware of its 
existence. 

Once  one  accep ts  the quas i -  
empiricism in mathematics, and by 
analogy in computer science, one can 
either become an adherent of the 
P o p p e r i a n  school  of  c o n j e c t u r e s  
(theories) and refutations [3], or one 
may believe Kuhn [4] who claims 
that the fate of scientific theories is 
decided by a social forum, a thesis 

the authors also appear to defend 
and which can be directly derived 
from Kuhn's views. Again an appro- 
priate reference would have shown 
that the ideas in the paper are only 
novel on the level of analogy with 
computer science. 

Personally I have to admit to 
feeling ill at ease with Kuhn's philos- 
ophy because its direct application 
implies that sociology, and worse, 
astrology and scientology, are on a 
par with "normal" science. I think it 
is therefore preferable to state that a 
program is corroborated as long as it 
is producing results in agreement 
with the program specification. When 
a negative result occurs the core of 
the program could still be correct 
but then surely something is wrong 
in one of the layers around the core 
[5]. 

Finally, I wish to take issue with 
the remarks made by the authors 
about probabilistic proofs. The fact 
that, for the time being, a proof is 
considered a working proof, does not 
mean that one can attach a probabil- 
istic truth value to it. What value 
would you assign it? And is it de- 
pending on the successful use of the 
theorem? Probability is a meaning- 
less concept here (for a more de- 
tailed argument see [5]). It is safer to 
say that the probability is zero, just 
as for any other empirical t heo ry -  
we use it until it is replaced by a bet- 
ter one, and so on, and so forth. The 
most we can say is that we have faith 
or confidence in a program, terms 
which are, however, unknown in the 
theory of knowledge. 

J .  VAN D E N  Bus 
University of Nijmegen 
Nijmegen, The Netherlands 

1. Lakatos,  Mathematics, Science and Episte- 
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2. Lakatos,  I. Proo/s and Re/utations. Cam- 
bridge University Press, London, 1976. 
3. Popper, K. Conjectures and Re/utations. 
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4. Kuhn, T.S. The Struct.re o] Scientific Revo- 
lutions. Chicago University Press. 1970. 
5. Lakatos,  I. The Methodology o/ Scientific 
Research Programmes. Cambridge University 
Press, London. 1977. 

[] Congratulations on finally pub- 
lishing a sensible paper on program 
verification, namely "Social Proc- 
esses and Proofs of Theorems and 
Programs" by De Millo, Lipton and 

Perlis. If that paper doesn't demolish 
program verification, and the verifi- 
cation freaks manage to make some 
progress toward their goals, there 
still will be a number of questions 
which ultimately must be answered. 

Consider the following thought 
experiment. The designers of Euclid 
(the name "Euclid" may be replaced 
by the name of any other language of 
similar intent) expect all Euclid pro- 
grams to be verified. Euclid is a gen- 
eral purpose programming language, 
so it is reasonable to expect impor- 
tant large scale programs to be writ- 
ten with it; one of these programs 
might well be an automatic Euclid 
program verifier which accepts as in- 
put a Euclid program and a formal 
specification of what that program 
does, and which returns a result of 
"Verified" or "Not Verified." Al- 
though not all Euclid programs may 
in fact be verified, certain important 
software ought to be verified, for ex- 
ample, the automatic program veri- 
fier itself. It makes sense then to ap- 
ply the verifier to itself and to a 
specification of what an automatic 
Euclid program verifier does. Ques- 
tions arise: 
(1) Are there any grounds for believ- 
ing such a self-application of the ver- 
ifier would terminate? 
(2) If such a self-application can be 
shown to terminate, would it termi- 
nate within the lifetime of anyone 
currently interested in program veri- 
fication? 
(3) If it terminates with a result of 
"Ver i f ied ,"  would anyone  bel ieve 
that the result is correct, and why? 
(4) If it terminates with a result of 
" N o t  Ver i f ied ,"  perhaps  lots of 
people would believe it informally, 
but again, what would be the formal 
grounds for believing such a result? 
Furthermore, would not such a cor- 
rect result of self-application v e r g e  

on the paradoxical? 
If for some technical reason self- 

a p p l i c a t i o n  is no t  a l lowed ,  how 
would one decide to which Euclid 
programs the verifier is applicable? 
Would a "higher level" verifier be nec- 
essary to verify the verifier? How 
would that verifier be verified? And 
so on, ad infinitum. 
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I suspect that no major programs 
written in Euclid, whether an auto- 
matic Euclid program verifier, a Eu- 
clid compiler, a database manage- 
ment system, or an operating system, 
would ever be verified by man, wom- 
an, child, beast, or machine. 

HARVEY ABRAMSON 

The University of British 
Columbia 
Vancouver, B.C. 
Canada V6T 1W5 

[] The article by De Millo, Lipton 
and Perlis presents among other is- 
sues some theoretical limitations in 
the possible use of automatic pro- 
gram verifiers when applied to real- 
world systems in which the specifica- 
tions are often of the same order of 
magn i tude  as the p r o g r a m s  t hem-  
selves. 

There is another aspect of the 
theoretical limitations of such verifi- 
ers the authors have overlooked. Be- 
fore an automatic program verifier 
can determine whether a program 
realizes the specification from which 
it was written, the specification itself 
must be encoded in machine read- 
able form for input to the verifier. 
This encoding is in fact nothing more 
or less than a program. Assuming 
that the language used to encode the 
specification has approximately the 
same power as the language in which 
the program to be verified is written, 
it follows that the encoding of the 
specification must be of the same 
order of magnitude as the program 
to be verified. 

Even if the encoding of the speci- 
fication were developed separately 
from the program to be verified, it 
would be subject to the same pro- 
gramming errors to which all pro- 
grams are liable. 

Thus even assuming it were theo- 
retically possible to develop a veri- 
fier capable of handling a real-world 
program, all it could really demon- 
strate would be that one encoding of 
a spec i f ica t ion  accompl i shed  the 
same function as another encoding 
of the specification. It  could never 
demonstrate that either encoding ac- 
complished the actual functional re- 

quirement of the specification itself, 
much less that an encoding fulfilled 
the much more elusive intentions of 
those responsible for requesting the 
system in the first place. 

I am afraid these limitations ulti- 
mately confine the role of the auto- 
matic verifier to that of a historical 
curiosity. 

JOSHUA TURNER 

Penn Mutual Life 
Philadelphia, PA 19172 

[] In "Social Processes and Proofs 
of T h e o r e m s  and P r o g r a m s , "  De 
Millo, Lipton and Perlis decry the 
attention paid to program verifica- 
tion at the expense of other, un- 
named techniques. It  appears that 
the "ACM Algorithms Policy" was 
published in the same issue (May 
1979, pp. 329-330) to assure them 
that they need not worry. This two- 
page policy statement describes in 
detail the criteria that a program 
must meet in order to be publ i shed-  
such things as what dialects of For- 
tran are acceptable, where indenta- 
tion should be used, and what kinds 
of comments are needed.* Nowhere 
is it stated that the correctness of the 
program be demonstrated in any 
way. What a wonderfully democratic 
social process: All programs are in- 
nocent until proven guilty. There is 
even provision for a jury of peers; the 
publication of "certifications" and 
"remarks."  

I 'm afraid that I am one of those 
"classicists" who believe that a the- 
orem either can or cannot be derived 
from a set of axioms. I don't  believe 
that the correctness of a theorem is 
to be decided by a general election. 
To err is human. False theorems will 

*The word "algorithm" usually means 
a general method for computing some- 
thing, and "program" means code that can 
be executed on a computer. In the tradi- 
tion of Computer Science, the ACM has 
tried to make itself seem more erudite by 
calling the programs it publishes "algo- 
rithms." The "ACM Alogrithms Policy" 
would not have allowed Euclid to publish 
his algorithm, although he could have 
published a Fortran program to compute 
GCDs which was based upon it. In the 
interest of restoring meaning to our lan- 
guage, I will call programs "programs." 
I urge the ACM to do the same. 

be published. Yet must we rely so 
heavi ly  upon  divine fo rg iveness?  
Surely we should try to prove our 
theorems as best we can. 

For  years, we did not know any 
better way to check programs than 
by testing them to see if they worked. 
We were in the position of geometers 
before Euclid: To see if a theorem 
was true, all they could do was test it 
on some diagrams. But the work of 
Floyd and others has given us an- 
other way. They taught us that a 
program is a mathematical object, so 
we can apply the reasoning methods 
of mathematics to deduce its proper- 
ties. (Of course, there were geomet- 
ric proofs before Euclid, and pro- 
gram verification before Floyd. I 
hope the reader will forgive my rhe- 
torical simplification of history. ) 

After Euclid, a theorem could no 
longer be accepted solely on the basis 
of evidence provided by drawing pic- 
tures. After Floyd, a program should 
no longer be accepted solely on the 
basis of how it works on a few test 
cases. A program with no demon- 
stration of why it is correct is the 
same as a conjec ture-a  statement 
which we think may be a theorem. A 
conjecture must be exceptionally in- 
teresting to warrant publication. An 
unverified program should also have 
tO be exceptional to be published. 

The ACM seems to have gone too 
far in its eagerness to reassure De 
Millo, Lipton and Perlis. After all, 
they did write of "the benefits that 
could result f rom accepting a stand- 
ard of correctness like the standard 
of correctness for real mathematical 
proofs." Let us heed their advice and 
settle for the frail, human standards 
of mathematicians. The ACM should 
require that programmers convince 
us of the correctness of the programs 
that they publish, just as mathemati-  
cians must convince one another of 
the correctness of their theorems. 
Mathematicians don't  do this by giv- 
ing "a sufficient variety of test cases 
to exercise all the main features," 
and neither should computer scien- 
tists. 

LESLIE LAMPORT 

SRI International 
Menlo Park, CA 94025 
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[] The  catalog of criticisms of the 
idea  of  p r o v i n g  p r o g r a m s  c o r r e c t  
wh ich  was  p u b l i s h e d  in the  M a y  
1 9 7 9  i s sue  o f  Communica t ions  
( " S o c i a l  P r o c e s s e s  a nd  P r o o f s  of  
Theorems and Programs,"  by R.A.  
De Millo, R.J. Lipton and A.J.  Per- 
lis, pp. 271-280)  demands a catalog 
of responses by someone who be- 
lieves in verification, as I do. The 
following catalog is organized as a 
series of responses to quotations, or  
sequences of quotations, f rom the 
De Millo, Lipton and Perlis paper  
cited above. 

(1) "The aim of program verification... 
is to increase dramatically one's confidence 
in the correct functioning of a piece of 
software" (p. 271 ). "There is a fundamen- 
tal logical objection to verification... 
Since the requirement for a program is in- 
formal and the program is formal, there 
must be a transition, and the transition it- 
self must necessarily be informal" (p. 275). 
" . . .  the monolithic view of verification is 
blind to the benefits that could result from 
accepting.., a standard of reliability like 
the standard for real engineering struc- 
tures" (p. 279). 

This is a criticism of a viewpoint 
on verification held for  a long time 
by most  people in the f ield-this  au- 
thor  i nc luded -bu t  which has been 
obsolete for at least two years. The 
fact is that [6] "there are really two 
kinds of software correctness, only 
one of which can be proved. There  is 
program correctness (does a program 
satisfy its specifications?) and speci- 
fication correctness (are the specifi- 
cations what  the users wanted?) .  De- 
bugging a program involves the find- 
ing and elimination of program bugs 
(ways in which the program failed to 
satisfy its specifications) as well as 
specification bugs (ways in which the 
users decided that the specifications 
were wrong) .  Usually, in practice, 
there are more  of the latter than of 
the former. The trouble is that, al- 
though we can prove that a program 
meets its specifications, we have no 
way of proving what users want." 

S o f t w a r e  co r r e c t ne s s ,  in o t h e r  
words, is neither entirely formal, as 
the older view would have it, nor  
entirely informal, as one might infer 
f rom reading De Millo, Lipton, and 
Perlis. A proof  of correctness con- 

• sists of two steps, one formal, the 
other informal;  and neither of the 
two is valid without the other one. 

(2) "[Bertrand] Russell did succeed in 
showing that ordinary working proofs can 
be reduced to formal, symbolic deductions. 
But he failed, in three enormous, taxing 
volumes, to get beyond the elementary 
facts of arithmetic. He showed what can 
be done in principle and what cannot be 
done in practice. If the mathematical proc- 
ess were really one of strict, logical pro- 
gression, we would still be counting on our 
fingers" (p. 272). 

It is easy to say that Russell did 
not have a computer  and that the 
1,907 pages of mathematical  formu-  
las in Principia Mathematica could 
be verified in less than two hours of 
comput ing time, assuming 1,000,000 
instructions per second, 100,000 in- 
structions per line of theorem to be 
verified, and 35 lines per page. This 
facile reply, however,  hides an im- 
portant  fact: One of the major  goals 
of verification is to provide a new 
dimension in the way we do mathe- 
matics, as well as in the way we do 
c o m p u t e r  sc ience .  M a t h e m a t i c a l  
facts can, in theory, be encoded in 
machine readable form and verified 
by computer  in terms of other math-  
ematical facts, until we have a com- 
p e n d i u m  of  k n o w n  m a t h e m a t i c a l  
k n o w l e d g e  r o u g h l y  e q u i v a l e n t  to 
Gmelins '  70-volume, over 100,000- 
page Handbook of Inorganic Chem- 
istry, or Beilstein's even larger Or- 
ganic Chemistry. (Actually,  all these 
works suffer f rom J~he inclusion of 
massive amounts  of useless informa- 
tion; better examples might be the 
2400-page Handbook of Chemistry 
and Physics, or Boss's General Cata- 
logue of 33,342 Stars For The Epoch 
1950 in astronomy. ) 

T h e s e  w o r k s  are  no t  pe r fec t ,  
either, but they do provide a dimen- 
sion in chemistry, physics, and as- 
t ronomy that is totally lacking in 
mathematics and computer  science 
today, and which would be impos- 
sible to implement in either mathe- 
matics or computer  science, as Rus- 
sell's example shows us, without the 
aid of the computer.  The  tools for 
c h e c k i n g  m a t h e m a t i c a l  p r o o f s  by 
computer  have been with us for at 
least fifteen years (see e.g.[l]) ,  and 

a number  of attempts to codify vari- 
ous branches of mathematics have 
been made since then. Many  mathe-  
maticians, however,  remain disdain- 
ful of routine work and unwilling to 
investigate the capabilities that com- 
puter science can give them. 

We do not  argue that strict logi- 
cal deduct ion should be the only way 
that mathematics should be done, or 
even that it should come first; rather, 
it should come last, after the theo- 
rems to be proved, and their proofs, 
are well unders tood informally. 

(3) "Stanislaw Ulam estimates that math- 
ematicians publish 200,000 theorems every 
year . . . .  A number of these are subse- 
quently contradicted or otherwise disal- 
lowed . . . .  The theorems that get ignored 
or discredited are seldom the work of 
crackpots or incompetents.., increasing 
the number of mathematicians working on 
a given problem does not necessarily in- 
sure believable proofs . . . .  Even simplicity, 
clarity, and ease provide no guarantee that 
a proof is correct" (pp. 272-273 ). 

Again,  this is because mathema-  
ticians do not  use the computer  in 
verifying their proofs. They simply 
throw together loosely constructed 
arguments and hope that these stand 
up to each other 's  scrutiny. A num- 
ber of chapters of my own Ph.D. 
thesis [3], in fact, were devoted to 
the re-expression of just such a proof  
(originally formulated by my thesis 
supervisor) into a rigorous form. 

The stage of manipulating loosely 
constructed arguments, in fact, seems 
to be necessary in mathematics (un-  
less we ask the computer  to prove 
our  theorems as well as to verify their 
c o r r e c t n e s s ,  an en t e rp r i s e  w h o s e  
main defect appears to be that it 
takes all the fun out of the game) .  
Once a loosely formulated argument  
has been committed to paper, how- 
ever, it should, in the ideal world we 
are striving for, be verified by com- 
puter. 

(4) "One theoretician estimates.., that a 
formal demonstration of one of Ramanu- 
jan's conjectu/'es assuming set theory and 
elementary analysis would take about two 
thousand pages; the length of a deduction 
from first principles is nearly inconceiva- 
ble" (p. 273). 

This sounds like the kind of esti- 
mate  we used to read about  fifteen 
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years ago concerning the length of a 
program to play chess. The point is 
that if we want to demonstrate a con- 
jecture of Ramanujan's (say),  it is 
not necessary to assume set theory 
and elementary analysis and nothing 
else. We can always use lemmas and 
other known theorems, whether we 
are doing a computer generated proof 
or not. Again, we are not expecting 
perfection, because not all the lem- 
mas we use are necessarily right; we 
can only strive toward some future 
day when most of the important 
mathematical proofs in the world 
will have been verified by computer. 

(5) " . . .  let us suppose that the program- 
mer gets the message ' V E R I F I E D ' . . . .  
What does the programmer know? He 
knows that his program is formally, logic- 
ally, provably, certifiably correct . . . .  He 
does not know within what limits it will 
work; he does not know what happens 
when it exceeds those limits" (p. 277). 

This is a fundamental misunder- 
standing of the nature of program 
correctness. The statement of cor- 
rectness of any program says that if 
we start it at the beginning with its 
entry assertion valid, then it will end, 
and when it does, its exit assertion 
(the one that is associated with the 
particular exit point where it ended) 
will be valid. The exit assertion tells 
us what the program has done; the 
entry assertion tells us what must be 
true in order for the program to work 
properly. All the limits on the pro- 
gram are built into the entry asser- 
tion; and a program can always be 
written to test whether its input is 
within its own given limits, before 
proceeding. 

It is true that a higher level lan- 
guage program can be proved cor- 
rect with no reference to machine 
limitations such as word size. Such a 
proof, however, is not complete and 
must be supplemented by a proof of 
correctness of the object program in 
its actual machine environment. The 
theory behind such proofs is known 
[4] and such proofs have actually 
been constructed [5]. 

The  warning which De Millo,  
Lipton and Perlis give here may be 
characterized more as misdirected 
than as inappropriate. Instead of 

saying that a programmer does not 
know within what limits his verified 
program will work, it would be more 
to the point to say that he knows that 
his verified program will do exactly 
what he said it would, but that he 
does not know whether this will con- 
tinue to satisfy him. We have all 
heard stories of labor unions which, 
barred legally or financially from 
calling a strike, have caused an effec- 
tive slowdown by simply asking their 
members to "work to ru les"- that  is, 
to obey every rule slavishly. Bugs in 
verified programs should be expected 
to be of this kind-sending out a 
check for $0.00, for example, simply 
because the program was never told 
explicitly not to do that. 

(6) "Verifications are not messages; a per- 
son who ran out into the hall to communi- 
cate his latest verification would rapidly 
find himself a social pariah" (p. 275). 

Not true. Let  me give you an ex- 
ample.  A n u m b er  of years  ago a 
fe l low exper t  in ver i f ica t ion  was 
stumped by the problem .of trying to 
figure out why the following program 
terminates: 

DIMENSION A(100) 
I-----1 

1 IF ( A ( I ) . L E . A ( I  + 1)) G O T O 2  
T = A(I )  
A( I )  = A(I  + 1) 
A(I  + 1) = T  
IF ( I .EQ.  1) GOTO2 
I - I - - 1  
GOTO 1 

2 I = I + 1  
IF (I. NE. 100) GOTO 1 

This program sorts 100 numbers, and 
in the process the index I "wanders" 
up and down until it finally reaches 
100. T h e r e f o r e  1 0 0 - - I  does not  
satisfy the criteria for a termination 
expression (i.e. an integer expression 
which is non-negative at an assertion 
point in a loop and which always de- 
creases every time we go around the 
loop).  Consideration of the number 
of adjacent pairs of elements A ( I )  
and A ( I  + 1 ) which are out of order 
at any given time likewise fails to 
provide us with a termination expres- 
sion. Yet it is clear that this should be 
a one-loop program, since statement 
number 1 is inside every closed loop 
of the program and hence a single 

termination expression should suf- 
fice. 

I concluded my visit and left my 
colleague's office, still thinking about 
the problem, and was about a mile 
down the nearest interstate when the 
answer came to me: Instead of the 
number of adjacent pairs, use the 
number  of all pairs (A(I) ,  A(J))  
which are out of order at any given 
time; this number should decrease 
whenever an out-of-order pair is in- 
te rchanged .  Ful l  of exc i tement ,  I 
rushed back to my colleague's office, 
where he confirmed that this was in- 
deed the right idea. It turns out that 
the unsortedness U (the number of 
out-of-order pairs) is not quite the 
termination expression we want, be- 
cause it decreases only when an in- 
t e rchange  actual ly  takes place.  A 
little experimentation, however, re- 
veals that 2 U -  I + 99 will work. 
This is an integer expression which is 
never negative at statement number 
1, because I < 99 at statement num- 
ber 1, while U >__ 0 by def ini t ion.  
There are three paths from statement 
number 1 around the loop and back 
to statement number 1, and the be- 
havior of U, I, and 2U -- I + 99 on 
each of these three paths is as fol- 
IOWS: 

PATH NUMBER 1 2 3 
INTERCHANGE NO YES YES 
PATH GOES THROUGH 

STATEMENT 2? YES YES NO 
CHANGE IN VALUE 

OF U 0 --1 - 1  
CHANGE IN VALUE 

OF I +1 +1 - 1  
CHANGE IN VALUE 

OF 2 U - I + 9 9  - I  - 3  - 1  

With this help, a formal proof may 
be readily constructed. 

V e r i f i c a t i o n s ,  l ike any o t h e r  
mathematical proofs, have an infor- 
mal stage at which we determine 
assertions and test to make sure they 
remain true as we go through the 
program from one assertion point to 
another. Quite often, in fact, a pub- 
lished program will be accompanied 
by a proof of its correctness which is 
given in informal style only. It is the 
formal verification of a program that 
"cannot really be read; a reader can 
f lay himself  t h rough  one  of the 
shorter ones by dint of heroic effort, 
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but  tha t ' s  not  read ing"  ( to  cont inue 
the above  quo te ) .  But  the  same is 
t rue of any to ta l ly  fo rmal  p roof  in 
m a t h e m a t i c s - o r ,  for  that  mat ter ,  of  
a t race  ( in the usual  sense)  of any 
p rog ram taking more  than  a few mil-  
l iseconds of compu te r  t ime. 

(7) "There are even some cases of black- 
box code, numerical algorithms that . . . 
work for no reason that anyone knows; 
the input assertions for these algorithms 
are not even formulable, let alone formal- 
izable. To take just one example, an im- 
portant algorithm with the rather jaunty 
name of Reverse Cuthi l l -McKee was 
known for years to be far better than plain 
Cuthill-McKee . . . .  Only recently, how- 
ever, has its superiority been theoretically 
demonstrable. . ,  and even then only with 
the usual informal mathematical proof, 
not with a formal deduction. During all of 
the years when Reverse Cuthill-McKee 
was unproved, even though it automatic- 
a l ly  made any p rogram in which it 
appeared unverifiable, programmers per- 
versely went on using it" (p. 276). 

Of course ;  tha t ' s  ca l led  a conjec-  
ture. Ma themat i c i ans  use conjectures  

all  the  t ime, and  only la ter  p rove  
them; somet imes  they remain  un-  

p roved  for  long per iods  of time, and 
yet  o ther  theorems  based  on them 
cont inue to be bel ieved.  In  compute r  
science, we der ive results  based  on 
the P / N P  conjec ture  and p roceed  to 
act as if they were  true; in mathe-  
matics,  we do the same with the Rie-  
mann  hypothesis .  If  Reverse  Cuthi l l -  

M c K e e  were used in a p r o g r a m  before  
it was theore t ica l ly  demons t ra ted ,  
this would  not  make  any p rog ram in 
w h i c h  i t  a p p e a r e d  u n p r o v a b l e ;  it  
would  mere ly  be  p rovab le  up  to a 

conjecture ,  in the same way that  the 
exponent ia l  charac te r  of the t ravel-  
ing sa lesperson p rob l em is p rovab le  
up to the P / N P  conjecture .  

(8) "Every programmer knows that alter- 
ing a line or sometimes even a bit can 
utterly destroy a program or mutilate it in 
ways that we do not understand and can- 
not predict . . . .  There is no reason to be- 
lieve that verifying a modified program is 
any easier than verifying the original the 
first time around. There is no reason to be- 
lieve that a big verification can be the sum 
of many small verifications. There is no 
reason to believe that a verification can 
transfer to any other program--not even to 
a program only one single line different 
from the original" (p. 278). 

This  is one of the  mos t  impor t an t  
fal lacies in the paper .  The  first s tate-  
ment  above  is true,  but  it does  not  
imply  the  o ther  three.  T h e  reason is 
that  the first s ta tement  has to do  with 
modi fy ing  a correct  p rog ra m in a 
r easonab le  seeming,  but  wrong way, 
so as to p roduce  an incorrec t  p ro -  
gram. If  a p rog ra m is incorrect ,  no 
amount  of  verif icat ion can prove  it 
correct .  A n d  it is t rue that  cor rec t  
p rog rams  can be made  to exhibit  
wildly erra t ic  b e h a v i o r - i n  fact, they 
no rma l ly  will do  s o - i f  only  a single 
bi t  is changed.  

But  cont ras t  this with a careful ly  
w o r k e d  o u t ,  i n f o r m a l l y  v e r i f i e d  
change  in a correct  p rog ra m so as to 
p roduce  another  cor rec t  p rogram.  
We have a p roof  of correc tness  of 
the first p rog ra m and we need to de- 
rive a p roof  of correctness  of the sec- 
ond.  U n d e r  these condi t ions ,  large 
amounts  of the first p roo f  remain  un- 
modif ied  in the second;  in par t icu lar ,  
all  the  unmodif ied  subrout ines  will 
still have  the same entry  and exit  as- 
sert ions and will still remain  correct  
with respect  to these. The  change in 
the p roof  should be expected  to be 
bigger  than  the change in the p ro-  
gram, but  not  that  much  bigger.  

The  s ta tement  about  big verifica- 
t ions not  being the sums of smal ler  
ones was apparen t ly  m a d e  in s imple 
ignorance  of the re la t ions between 
the proofs  of correctness  of subrou-  
tines and the proofs  of correctness  of 
the  p rog rams  which call  them. It  is 
perfect ly  t rue that  the use of p roce-  
dures  as parameters ,  and  even the use 
of call  by  reference,  can lead  to situ- 
at ions in which the semantics  of the 
given p rog ra m are  imperfec t ly  un- 
ders tood  and p roof  techniques are 
of ques t ionable  validi ty.  But in the 
case  of call  by  value  and result ,  the 
s implest  and  most  used of pa r ame te r  
passing methods ,  several  researchers  
have der ived ways of handl ing  sub- 
rout ine  calls in a p r o g r a m  to be 
p roved  correct ,  p rov ided  that  the 
subrout ine  has a l ready  been p roved  
correct .  In  this way, if a p rog ra m is 
b roken  up into a main  p rog ra m and 
n subrout ines ,  we have n + 1 verifi- 
cat ions  to do, and  that  is all we have 
to do  in proving  p rog ra m correct -  

ness. ( L e t  us a lways remember ,  of 
course,  that  the specif icat ion correct -  
ness p r o b l e m  is still with us.)  

(9) "Verifications are long and involved 
but shallow; that's what's wrong with them. 
The verification of even a puny program 
can run into dozens of pages, and there's 
not a light moment or a spark of wit on 
any of those pages . . . .  Nobody is going to 
buttonhole a colleague into listening to a 
verification. Nobody is ever going to read 
it. One can feel one's eyes glaze over at the 
very thought" (p. 276). 

We can make  an analogy here  
w i t h  c o m p i l i n g  a h i g h e r  l e v e l  

l anguage  p r o g r a m  into mach ine  lan-  
guage. Original ly ,  this was done  by  
hand;  peop le  wrote  out  p rog rams  in 
sequences of  steps specified infor-  
mal ly  in Engl ish  and then p roceeded  
to t rans la te  these into mach ine  lan- 
guages. Then  compi lers  came along, 
and s tar ted to do this job  au tomat ic -  

ally. A t  first peop le  were against  this, 
and  for  much  the same reasons as 
given above.  Compi le r s  d id  what  had  
previous ly  been  a fascinat ing human  
job  in a machine- l ike ,  humorless  

manner .  ( T h e y  also p roduced  over ly  
long object  code,  in much the same 
way that  a verifier p roduces  over ly  
long proofs . )  N o b o d y  is ever  going 
to read  the objec t  code  p roduced  by 
a compi ler ,  ei ther;  one  s imply trusts  
the compi le r  and  goes about  one ' s  
business.  W h a t  we hope  for  in veri-  
fiers is that  we will at least  be able  to 
trust  them to show p rog ram correct -  
ness. 

(10) "The formal demonstration that a 
program is consistent with its specifications 
has value only if the specifications and the 
program are independently derived" (p. 
275). 

I t  is true that  many  peop le  used 
to look  on  verif icat ion as a pure ly  
ma themat i ca l  process ,  whereas  now 
we look  on it as two processes,  only  
one of which is mathemat ica l .  But 
the s ta tement  above  seems to be  
denying the value  of the par t  which is 
m a t h e m a t i c a l ,  w h e n  in f ac t  b o t h  
par ts  are  necessary.  I t  may  be  t rue 
that  showing, informal ly ,  that  the 
specificat ions of a given p ro g ram will 
satisfy the users of that  p rog ram is a 
fo rmidab le  task. But  the  po in t  is that,  
even when we are  finished with that  
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task, we are not done; we still have 
to go through the mathematical  part, 
to show that the program satisfies its 
specifications. 

It  may  be argued, of course, that 
there is another way. Let  us forget en- 
tirely about proving anything about 
our  programs and concentrate  on 
testing them as thoroughly as we can. 
All we can say in response to such an 
argument  is that this is the way other 
sciences and engineering disciplines 
used to function, with disastrous re- 
suits. The Tacoma Narrows Bridge 
collapsed because people were de- 
signing bridges, in those days, with 
no thought  whatever to proving that 
they would not collapse. That  state 
of affairs is now changed;  and yet no- 
body  claims that proofs in bridge 
engineering (or  chemistry or  phys- 
ics or  electrical engineering) are in 
any sense perfect. They  are approxi-  
mations, for a different reason than 
proofs of correctness are approxima-  
tions; and yet they do increase our  
confidence in the proper  functioning 
of the bridges, or  the circuits, or  the 
chemical reactions, with which they 
are concerned.  

(11 ) "For even the most trivial mathemat- 
ical theories, there are simple statements 
whose formal demonstrations would be 
impossibly long . . . .  Suppose that we en- 
code logical formulas as binary strings and 
set out to build a computer that will decide 
the truth of a simple set of formulas of 
length, say, at most a thousand bits. Sup- 
pose that we even allow ourselves the lux- 
ury of a technology that will produce pro- 
ton-size electronic components connected 
by infinitely thin wires. Even so, the com- 
puter we design must densely fill the entire 
observable universe" (p. 278). 

This is the same sort of argument  
that has been used before against 
using computers  at all. Back when 
the unsolvability of the halting prob- 
lem was a relatively new result, peo- 
ple used to use arguments  which, 
s t r i pped  to the i r  ba re  essent ia ls ,  
seemed to be saying that because we 
cannot  prove that all halting pro- 
grams halt, it is futile to try to prove 
that any halting program halts. In the 
same way, the argument  above seems 
to be saying that because we cannot  
prove the correctness of all correct  
programs less than a thousand bits 

in length, it is futile to try to prove 
the correctness of a n y  correct pro- 
gram. 

(12) [continuing the quotation above] 
"This precise observation about the length 
of formal deductions agrees with our intu- 
ition about the amount of detail embedded 
in ordinary, workaday mathematical 
proofs. We often use 'Let us assume, with- 
out loss of generality' or 'Therefore, by re- 
numbering, if necessary' to replace enor- 
mous amounts of formal detail" (p. 278). 

Those  who have been concerned 
with formalizing mathematical  proofs 
are well aware of the fact that large 
amounts  of formal detail are, indeed, 
passed over when writing out an in- 
formal proof.  But they are just as 
aware that the complete specification 
of  this  f o r m a l  d e t a i l - a s  long  as 
known results in mathematics may 
be used, and theorems do not have 
to proceed f rom first pr inc ip les- in-  
volves an increase in size of perhaps 
one or  even two orders of magnitude 
(that is, ten or  a hundred times the 
original size) but nowhere  near the 
difference between an actual com- 
puter and a computer  that would fill 
up the universe: "The  proofs pre- 
sented in Chapter  VI  are consider- 
ably more  formal than the proofs of 
the same theorems that appear  in 
mathematical  textbooks. The text- 
book  version of the algebra proof  is 
a short paragraph;  the formalized 
version runs to 63 steps" [1]. 

(13) " . . .  it might be argued that all these 
references to readability and internaliza- 
tion are irrelevant, that the aim of verifica- 
tion is eventually to construct an automatic 
verifying system. Unfortunately, thejie is a 
wealth of evidence that fully automated 
verifying systems are out of the question" 
(p. 276). 

It might be argued that it is futile 
to answer this criticism in this par- 
ticular paper,  because the authors, in 
their next paragraph,  go on to as- 
sume that a fully automated verifying 
system could indeed be built, and 
at tempt to show why such a system 
could not produce the results ex- 
pected of it. But I should like to an- 
swer it anyway, because it is a point 
quite commonly  encountered.  The  
fact is that, in one sense, the authors 
are r igh t - fu l ly  automated verifying 
systems, for any but  the simplest 

classes of programs,  are out of the 
question, roughly because we cannot  
expect the computer  to be a universal 
theorem prover. But that doesn ' t  
matter  because, in practice, a verifier 
does not have to be fully automated 
in order  to be useful. In  fact, for 
real machine language programs,  a 
wealth of information about  the pro- 
gram to be proved correct  (normal ly  
as long as or longer than the program 
itself) must  be supplied as input to 
the verifier along with the program 
(see e.g. [7]). If this information is 
incorrect or  incomplete, the program 
will no t  be p r o v e d  c o r r e c t ,  even  
though it may be correct. Other  re- 
searchers have experimented with 
verification as an interactive process, 
and to a certain extent with program 
construct ion and verification as si- 
multaneous interactive processes. 

(14) "It seems to us that the scenario envi- 
sioned by the proponents of verification 
goes something like this: The programmer 
inserts his 300-line input/output package 
into the verifier. Several hours later, he re- 
turns. There is his 20,000-line verification 
and the message 'VERIFIED'." (p. 277). 

This scenario is off in at least 
four  respects. It will not  take several 
hours;  it will take about  as long as a 
compilation. It will not  normally 
happen on the first run, any more  
than a compilat ion produces usable 
results on the first run; the program- 
mer must stay with the computer  
until the verification is right, and 
may have to communica te  interac- 
tively with it. There  will not  be 
20,000 lines of output ;  there is no 
need for the intermediate steps in a 
verification to be printed out at all. 
Most  importantly,  the message does 
not read simply " V E R I F I E D " :  All 
the assumptions that are made (the 
entry assertion) are stated, and all 
the actions of the program (the exit 
assertions) are likewise. If the pro- 
gram still has bugs in it after verifica- 
tion (which it very likely will, if it is 
being written for the first t ime) these 
will be specification errors, not  soft- 
ware errors. 

I should like to conclude by cit- 
ing a number  of statements made  by 
De Millo, Lipton and Perlis with 
which I heartily agree: 
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(15)  " . . .  w e  w o u l d  st i l l  ins i s t  t h a t  v e r i f i c a -  
t i on  r e n o u n c e  its c l a i m  o n  a l l  o t h e r  a r e a s  

o f  p r o g r a m m i n g ;  to  t e a c h  s t u d e n t s  in in-  

t r o d u c t o r y  p r o g r a m m i n g  c l a s s e s  h o w  to  d o  

v e r i f i c a t i o n ,  f o r  i n s t a n c e ,  o u g h t  to  b e  as  

f a r f e t c h e d  as  t e a c h i n g  s t u d e n t s  in  i n t r o d u c -  

t o r y  b i o l o g y  h o w  to  d o  o p e n - h e a r t  s u r g e r y "  

(p .  2 7 6 ) .  

I have been teaching program- 
ming for thirteen years and verifica- 
tion for eight, and never have I at- 
tempted to teach verification to any- 
one in an elementary programming 
class, or advised others to do so. Ver- 
ification is a mathematical subject re- 
quiring mathematical maturity for its 
understanding; it is properly taught 
as part of a course on the analysis of 
algorithms, the philosophy of pro- 
gramming (as I teach it, along with 
structured programming),  or com- 
piler construction (since verifier con- 
struction is so similar). 

(16)  " . . .  t h e r e  h a s  n e v e r  b e e n  a v e r i f i c a t i o n  

of ,  s ay ,  a C o b o l  s y s t e m  t h a t  p r i n t s  r e a l  

c h e c k s "  (p .  2 7 9 ) .  

This is true (although my student 
Harry Keeling has been working on 
Cobol program verification for some 
time),  but not for the reasons the au- 
thors seem to imply. Cobol involves 
a great wealth of programming lan- 
guage features, whereas the inductive 
assertion method of proving pro- 
grams correct, as it was originally 
formulated [2], applied only to pro- 
grams containing simple assignment 
(variable = expression), goto, con- 
ditional goto, and halt statements. It 
has taken researchers in verification 
a long time to learn how to handle 
all the features of a language as so- 
phisticated as Cobol. But it has now 
been done; program correctness has 
changed from being impossible to 
being merely hideously expensive. I 
can prove the program corectness of 
a two-page check writing program, 
today, for about $10,000; yes, I 
know that this is not cost-effective, 
and the only reason I offer to do it is 
because the proof would involve 
quite a bit of general work that would 
make succeeding proofs easier. (And 
there are provisos; you have to ex- 
plain to me, informally, how the pro- 
gram works, and I take no responsi- 
bility for the Cobol manuals being 

wrong, which has happened to me in 
the past.) 

(17)  " T h e  d e s i r e  to  m a k e  p r o g r a m s  c o r r e c t  

is c o n s t r u c t i v e  a n d  v a l u a b l e . . ,  t h i s  is n o t  

t he  m o m e n t  to  r e s t r i c t  r e s e a r c h  o n  p r o -  

g r a m m i n g "  (p .  2 7 9 ) .  

Let no one forget that these 
words were also written by De Millo, 
Lipton and Perlis. 
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A uthors' Response: 
Many of the points raised above 

are addressed directly in our paper, 
so in deference to conciseness we will 
not  a t t empt  a p a r a g r a p h - b y - p a r a -  
graph response to the correspondents. 

Van den Bos raises the possibility 
that our stance is in some sense an- 
ticipated by more conventional phi- 
losophies of science and mathemat- 
ics. Indeed, we referred in the article 
to the beautiful monograph by Laka- 
tos [1]. Since writing the paper, we 
have uncovered several other sources 
of essentially the same notions in 
computer science and mathematics. 
The most striking of these is the dis- 
cursive chapter on proof in [2]. Van 
den Bos is incorrect, however, in his 
assertion concerning "normal sci- 
ence": Scientific theories should have 
tests in reality! 

Lienhard and Denenberg both 
ra i se  the  c o n c e p t  of r e l i ab i l i t y  
coupled to validity. If by validity, 
they mean knowledge in fact of cor- 
rectness, if they mean certainty, then 

we do not believe that validity is pos- 
sible. In a manner of speaking we 
hold a view which is exactly opposite 
to Lamport 's .  Lakatos [1] has put it 
beautifully: " 'certainty' is far from 
being a sign of success, it is only a 
symptom of lack of imagination, of 
concep tua l  pover ty .  It p roduces  
smug satisfaction and prevents the 
growth of knowledge." 

The points raised by Lienhard, 
Hill and Zettel concerning program 
style have considerable merit. We do 
not advocate sloppy or intellectually 
inefficient programming techniques; 
on the other hand style must not be 
credited with more than it is capable 
of del iver ing.  P r o g r a m m i n g  tech-  
lvique cannot take.one far in the ab- 
sence of talent. We are reminded of 
Gauss's rebuke of a colleague: " . . .  
[he] needs notions not notations!" 

The arguments raised by Abram- 
son and Turner are of course theo- 
retical variations on the "who will 
verify the verifier?" theme. Although 
Abramson's  point is technically cor- 
rect, it does not necessarily imply 
that verification is meaningless. Rec- 
ognizing early the theoretical intrac- 
tability of automated verification, the 
verification community abandoned 
the un i fo rm appl icab i l i ty  of their  
techniques ,  concen t ra t ing  on pro-  
grams that are "verifiable" and lan- 
guages which encourage their con- 
struction. It is not necessary to invoke 
so esoteric an example of a program 
which is not a verifiable program; the 
fact that there are valuable programs 
to which the social process cannot 
apply seems to us an insurmountable 
difficulty. Turner 's  concern Over spec- 
ification raises another problem. If 
formal specification of the type re- 
quired by these techniques is any less 
error prone than programming, why 
bother with the programming step at 
all? As Turner points out, such a 
specification is really an executable 
object, and if it is more reliable than 
the program with which it will be 
proved consistent, then the program 
is downright dangerous! 

Lamport  and Maurer display an 
amazing inability to distinguish be- 
tween algorithms and programs. Of 
course, the social processes of math- 
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ematics will apply to algorithms and 
even to their proofs! One has only to 
glance at [3] or [4] or the proceed- 
ings of any recent SIGACT conference 
to see the processes at work--with 
noticeable disregard of the trappings 
of p rog ram ver i f icat ion.  Maure r  
makes our point. He was able to mull 
over his 1 l-line sorting program pre- 
cisely because  it is compac t  and 
clean and interesting-the fact that 
[4] is devoted largely to sorting algo- 
rithms and their mathematical treat- 
ment testifies to the inherent attrac- 
t iveness of such problems.  Would 
Maurer be as motivated to mull over 
the properties of a report writer em- 
bedded deep within someone's Cobol 
fixed assets package? Maurer would 
probably claim that he would, but we 
have seen some of this code (out of 
necessity, not choice) and there is 
nothing interesting about it; it is de- 
tailed and baroque and valuable, but 
it is also very boring. Number theo- 
rists and accountants both do inter- 
esting and valuable things with num- 
bers. But to a number theorist, the 
numbers are personal friends to be 
cultivated and dealt with individu- 
ally. The folklore of mathematics is 
filled with stories of mathematical 
discoveries resulting from an "idle" 
consideration of a number. It is hard 
to imagine an accountant sustaining 
the same interest in his ledger figures. 
We think that the implications for 
p rog ram proving are clear. Com- 
puter scientists enjoy computers and 
programming, but to the rest of the 
world the computer is a tool. 

Maurer also expounds a view of 
mathematics which is fairly far re- 
moved from our experience. In our 
paper we attempted to present math- 
ematical proof in a setting which is 
much closer to what we perceive is 
mathematical practice. A still more 
current example can be found in the 
Mathematical Intelligencer (Volume 
1, No. 4, 1979). In an article en- 
titled "A Proof that Euler Missed," 
A. van der  P oo r t en  describes a 
"proof" that the Riemann Zeta func- 
tion, when evaluated at 3, is irra- 
tional. Some excerpts: 
1. It seems that Apery has shown 
that zeta(3)  is irrational. 

2. What on earth is going on here? 
3. Apery's incredible proof appears 
to be a mixture of miracles and mys- 
teries. 

It is hard to imagine such a field 
benefiting at all from the approach 
suggested by Maurer. 

Maurer also seems to have missed 
the point that there is no notion of 
continuity which makes "scaling up" 
or approximation at all sensible. His 
characterization of the Tacoma Nar- 
rows Bridge disaster as the result of 
not proving that bridges don't col- 
lapse is a complete distortion of fact, 
and to suggest that engineers do so 
now is simply false. 

It seems to us that the only po- 
tential virtue of program proving lies 
in the hope of obtaining perfection. 
If one now claims that a proof of cor- 
rectness can raise confidence even 
though it is not perfect or that an in- 
completed proof can help one locate 
errors, then that claim must be justi- 
fied! There is absolutely no objective 
evidence that program verification is 
as effective as, say, ad hoc program 
testing in this regard. Indeed, all we 
have to go on are the testimonials of 
the verifiers-hardly a disinterested 
group. 

Finally, pervading several of the 
letters is the sense that if only we did 
things this way or that way or if we 
drastically shifted our activities, then 
program proving would work. Per- 
haps, but we are troubled by Thor- 
eau's advice: "Beware of any enter- 
prise that requires new clothes." 
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A C M  Contributes to CSA Exam 

Study. President Daniel D. Mc- 
Cracken ccP has presented ACM'S 
check for $7,500 to the Institute for 
Certification of Computer Profes- 
sionals for development work on the 
Certificate in Systems Analysis exam- 
ination. ACM'S contribution should 
carry the program forward through 
its first year. 

William W. Cotterman, Georgia 
State University, is chairman of the 
ICCP ad hoc Commi t t ee  on CSA. 
Committee members are J. Daniel 
Couger ,  Univers i ty  of Co lo rado ;  
Norman L. Enger, Applied Manage- 
ment Systems; Frederick G. Harold, 
F lo r ida  At lan t ic  Univers i ty ;  and 
Clement L. McGowan, SofTech. 

A C M  Announces  College Con- 
suiting Service. The Association has 
initiated a consulting service for the 
purpose of providing knowledgeable 
computer personnel to assist colleges 
and universities in planning for and 
util izing compu te r s  in three  main 
areas: (1)  the uses of computers in 
education; (2) computer science and 
information systems curricula; and 
(3) planning, selection, and adminis- 
tration of computing resources. 

The service, which is intended 
primarily for undergraduate institu- 
tions, is to be adminstered by Gerald 
L. Engel of the Christopher Newport 
College, and Richard H. Austing of 
the University of Maryland, through 
ACM'S Cur r icu lum Commi t t ee  on 
Computer Education. 

Colleges and universities desir- 
ing to obtain the help of a consultant 
through this service during the 1979/  
80 academic year must submit an ap- 
plication form including information 
on current facilities and plans as well 
as preferred visit dates. Selected ap- 
plicants will be provided with the 
name of a qualified computer profes- 
sional and will be expected to make 
appropriate arrangements with that 
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