
The Mailbox Problem

Marcos K. Aguilera1 Eli Gafni2 Leslie Lamport1

1Microsoft Research Silicon Valley
2UCLA

22 January 2009

Abstract

We propose and solve a synchronization problem called the mailbox problem,
motivated by a particular type of interaction between a processor and an
external device or between two threads. In this problem, a postman delivers
letters to the mailbox of a home owner and uses a flag to signal a non-empty
mailbox. The owner must remove all letters delivered to the mailbox and
should not walk to the mailbox if it is empty. We present algorithms and an
impossibility result for this problem.

Contents

1 Introduction 1

2 The Mailbox Problem 3
2.1 Safety . 3
2.2 Liveness . 5
2.3 Process Communication and State 5

3 The Signaling Problem 6

4 Algorithms 7
4.1 The sussus Protocol . 7
4.2 A Non-Blocking Algorithm with Large Flags 9
4.3 Correctness . 10

4.3.1 Proof that the Algorithm is Non-Blocking 10
4.3.2 Proof of Safety . 12

4.4 A Non-blocking algorithm with Small Flags 14
4.5 The Bounded Wait-Free Mailbox Algorithm 18
4.6 Model Checking . 23

5 Impossibility Results 24
5.1 Preliminary definitions . 24
5.2 Impossibility with Two Single-Writer One-Bit Flags 26
5.3 Impossibility with Multi-Writer One-Bit Flag 31

6 Conclusion 37
6.1 Related Work . 37
6.2 Summary and Open Problems 38

1 Introduction

Computers typically use interrupts to synchronize communication between
a processor and an I/O device. When a device has a new request, it raises
an interrupt line to get the processor’s attention. The processor periodically
checks if the line has been raised and, if so, it interrupts its current task and
executes an interrupt handler to process unhandled device requests. The
interrupt line is then cleared so that it can be used when new requests come
from the device. (In modern computers, the “device” is typically an interrupt
controller that mediates between the processor and the actual I/O devices.)
The processor must eventually execute the interrupt handler if there is an
unhandled request. It is also desirable to avoid spurious interrupts, in which
the processor executes the interrupt handler when there is no unhandled
request. A closely related problem occurs in multi-threaded programming,
in which the processor and the device are separate threads and the interrupt
is some type of software signal [9, 11].

We study the following theoretical synchronization problem that arises
from this setting, which we call the mailbox problem. From time to time,
Bob the postman (the device) places letters (requests) for Eva the home
owner (the processor) in a mailbox by the street. The mailbox has a flag
that Eva can see from her house. She looks at the flag from time to time
and, depending only on what she sees, may decide to go to the mailbox to
pick up its contents, perhaps changing the position of the flag. The owner
and the postman can leave notes for one another at the mailbox, but the
notes cannot be read from the house. We require a protocol to ensure that
(i) the owner picks up every letter placed in the mailbox and (ii) she never
goes to the mailbox when it is empty (corresponding to a spurious interrupt).
The protocol cannot leave the owner or the postman stuck at the mailbox,
regardless of what the other does. For example, if the owner and postman are
both at the mailbox when the postman decides to take a nap, the owner can
return from the mailbox before the postman wakes up. We do not require the
owner to receive letters that are still in the sleeping postman’s bag. However,
we interpret condition (i) to require that she be able to receive mail left by
the postman in previous visits to the mailbox without waiting for him to
wake up.

The following simple protocol was once used in computers. The post-
man/device raises the flag after he delivers a letter/request; the owner/processor
goes to the mailbox if the flag is raised and lowers the flag after emptying
the mailbox. This can cause a spurious interrupt if the postman goes to the
mailbox while the flag is still raised from a previous visit, puts a letter in

1

the box, falls asleep for a long time, and then wakes up and raises the flag
after the owner has meanwhile emptied the mailbox.

There are obviously no spurious interrupts with this protocol if the post-
man atomically (in a single step) delivers mail to the box and raises the flag,
and the owner atomically removes mail from the box and lowers the flag.
The problem is also solvable with notes if the reading or writing of a note
and the raising or lowering of the flag can be performed atomically. Here is
a simple algorithm that uses a single note written by the postman and read
by the owner. The postman stacks letters in delivery order in the box. After
delivering his letters, the postman as a single action writes the total number
of letters he has delivered so far on his note and raises the flag. When she
sees the flag up, the owner as a single action lowers the flag and reads the
postman’s note. Then, starting from the bottom of the stack, the owner
removes only enough letters so the total number she has ever removed from
the box equals the value she read on the note.

What if a single atomic action can only either read or write a note or read
or write a flag? Then, we show that there are no non-blocking algorithms
that use only 1-bit flags—neither with two 1-bit flags, one writable by the
owner and one by the postman, nor with a single 1-bit flag writable by both.
However, we were surprised to discover that there is a wait-free algorithm
that uses two 14-valued single-reader flags. We do not know if there is one
with smaller flags.

The mailbox problem is easily solved with the more general signaling
problem, in which two processes must learn the current value of a function
F of both their states by reading flags whose size depends on the number
of possible values of F and not on the number of possible states. We give a
solution to the signaling problem that is non-blocking but not wait-free. For
the special case of the mailbox problem, we modify this solution to make
it bounded wait-free. We don’t know if there is a wait-free solution to the
general problem.

The paper is organized as follows. We define the mailbox problem in
Section 2 and the signaling problem in Section 3. Section 4 contains our
algorithms and proofs of their correctness. A key building block of the algo-
rithms is the sussus protocol described in Section 4.1. In Section 4.2, we give
a solution to the signaling problem that uses flags with large timestamps,
and we prove its correctness in Section 4.3. In Section 4.4, we show how to
shrink these timestamps. For the particular instance of the mailbox problem,
we explain in Section 4.5 how to change the non-blocking algorithm into a
wait-free algorithm . Our impossibility results for the mailbox problem (and
hence for the more general signaling problem) appear in Section 5. A con-

2

cluding section summarizes our results and describes related work and open
problems.

The problems and our solutions are described precisely in the PlusCal
algorithm language (formerly called +cal) [5]. The least error-prone way
of showing the correctness of algorithms such as these is with assertional
proofs that they implement their specifications under suitable refinement
mappings [1, 8]. Since most computer scientists are unfamiliar with as-
sertional refinement proofs, we instead provide more traditional behavioral
proofs. In an attempt to avoid the errors endemic to such proofs, where
appropriate we have used a careful, hierarchically structured proof style that
we hope is self-explanatory. We use this style in the impossibility proofs
too. As explained in Section 4.6, we have also checked the correctness of our
algorithms with the TLC model checker.

2 The Mailbox Problem

We now state the mailbox problem more precisely. For simplicity, we let
only one letter at a time be delivered to or removed from the mailbox. It
is easy to turn a solution to this problem into one in which multiple letters
can be delivered or removed.

2.1 Safety

We specify the problem and describe its solution using the PlusCal algorithm
language [5]. We explain any PlusCal construct whose meaning may not be
obvious. The owner and postman are the two processes shown in Figure 1.
The owner process is declared to be process number 0 and the postman to be
process number 1. The check procedure returns a Boolean value by setting

process (owner = 0)
variable hasmail {

w1: while (true) { call check() ;
w2: if (hasmail) { (∗ remove letter ; ∗)

call remove() } } }

process (postman = 1) {
p1: while (true) { (∗ add letter ; ∗)

call deliver() } }

Figure 1: The owner and postman processes.

3

variable counter = [i ∈ {0, 1} 7→ 0] ;

procedure deliver() { dl : counter [1] : = counter [1] + 1;
rdl : return }

procedure remove() { rm: counter [0] : = counter [0] + 1 ;
rrm: return }

procedure check() { ck : hasmail : = (counter [0] < counter [1]) ;
rck : return }

Figure 2: The abstract procedures.

the process-local variable hasmail . (In PlusCal, procedures return values
by setting variables.) The remove and deliver procedures are used only for
synchronization; the actual adding and removing of letters to the mailbox
are performed by code inserted in place of the comments. Since it is only the
correctness of the synchronization that concerns us, we largely ignore those
comments and the code they represent.

Suppose the owner calls the check procedure after executing the remove
procedure v times. We want the check procedure to return true if it is called
after the postman’s deliver procedure has returned at least v + 1 times; we
want the check procedure to return false if it returns before the postman’s
deliver procedure has been called v + 1 times. It may return either value if
the execution of the check procedure is concurrent with the v +1st execution
of deliver .

Another way of expressing these requirements is to say that the deliver ,
remove, and check procedures must simulate the abstract procedures in Fig-
ure 2, where the variable statement declares counter to be an array indexed
by the set {0, 1} with counter [0] and counter [1] initially equal to 0. In Plus-
Cal, the grain of atomicity is indicated by labels, an atomic action being an
execution from one label to the next. Thus, the entire statement labeled ck ,
including the reading of both counters and the assignment to hasmail , is a
single atomic step. (The code is an abstract specification of the problem,
not a practical solution.) Simulating the abstract procedures means behav-
ing as if there were an array variable counter that is changed the same way
by the remove and deliver procedures, and is used in the same way by the
check procedure to set the value of hasmail . (“As if” means that the actual
procedures need not have a counter variable; but the value of the check pro-
cedure must be returned in a variable called hasmail .) Because the reading

4

of counter [1] by the owner in statement ck and its writing by the postman
in statement dl are atomic, it is easy to see that check , remove, and deliver
procedures that simulate the abstract procedures of Figure 2 satisfy the re-
quirements described above. Since the simulated executions of the dl , ck ,
and rm statement of Figure 2 occur while executing the actual procedure’s
body, simulation of the procedures is equivalent to the usual condition of a
linearizable implementation of the three operations [4].

2.2 Liveness

Simulation of the abstract procedures is a safety property. A solution should
also satisfy a liveness property stating that, under some hypothesis, a process
returns from each procedure call. We now state two liveness properties we
might require. (Since the owner and postman have process numbers 0 and
1, for each process number i the other process is number 1−i .)
Non-Blocking: For each i , if process i keeps taking steps when executing a

procedure, then either that procedure returns or process 1−i performs
an infinite number of procedure calls and returns.

Wait-Free: For each i , every procedure execution begun by process i re-
turns if i keeps taking steps—even if process 1−i halts in the middle
of executing a procedure [3]. The algorithm is said to be bounded
wait-free [3] or loop-free [6] if each procedure returns before the calling
process has taken N steps, for some fixed constant N .

Non-blocking is stronger than deadlock-freedom because it requires a process
to return from a procedure call even if the other process halts while executing
a procedure.

2.3 Process Communication and State

A solution requires the two processes to communicate, which they do with
shared variables. We want the check procedure to be efficient, so it should
access only a small amount of persistent state. We therefore add to the mail-
box problem the following access restriction: The check procedure accesses
shared memory only by reading a shared variable Flag that can assume only
a small number of values; and the value returned by the procedure depends
only on the values of Flag that it reads.

We consider only algorithms in which variables are atomic registers or
arrays of atomic registers, and an atomic step can read or write at most one

5

atomic register. In all our algorithms, Flag is an array indexed by process.
We call the atomic register Flag [i] the flag of process i .

3 The Signaling Problem

The mailbox problem is easily solved with a solution to the more general
signaling problem. In this problem, two processes numbered 0 and 1 can
call the two procedures read and write. These procedures are required to
simulate the abstract procedures in Figure 3.

Process i ’s execution of write(v) sets ownValue[i] to v , and the read
procedure returns the current value of F (ownValue[0], ownValue[1]) in the
process-local variable returnVal , where the operator F is a parameter of
the problem. The array ownValue is initially equal to InitValues, which we
assume to be an array indexed by {0, 1} with values in a set Values, where
Values and InitValues are also parameters of the problem. We assume that
the argument of every call to write is an element of Values.

It’s trivial to solve the mailbox problem using a solution to the signaling
problem with Values the set of natural numbers and F (x , y) defined to equal
the Boolean value (x < y). Each process maintains a counter. The deliver
and remove procedures are implemented by the process incrementing its own
counter and calling write with the new counter value; check is implemented
by read .

The definitions of non-blocking and wait-free are the same for the sig-
naling problem as for the mailbox problem. The access restriction applies
to the read procedure rather than to check . Its requirement that the flags
assume only a small number of values must be modified, since it obviously
cannot be achieved if the set FValues of all F (x , y) with x and y in Values is
large—for example, if it is infinite. Instead, letting |S | be the cardinality of
a set S , we require that the number of values of each flag be a small multiple
of |FValues|, independent of |Values|. In our solution, each flag has at most

variable ownValue = InitValues

procedure write(newVal) { wr : ownValue[self] : = newVal ;
rtw : return }

procedure read() { rd : returnVal : = F (ownValue[0], ownValue[1]) ;
rtr : return }

Figure 3: The abstract procedures that specify the signaling problem.

6

7 ∗ |FValues| possible values.

4 Algorithms

We now give a non-blocking solution to the signaling problem satisfying the
access restriction and use it to obtain a wait-free solution to the mailbox
problem. In these solutions, each flag is a single-writer (atomic) register
whose value is a record with a Val field that contains a value F (x , y) for
some x and y in Values and a TS field containing a timestamp that can
assume only 7 values. (Remember that the array Flag has the two flags
Flag [0] and Flag [1], and that F (x , y) is the Boolean x < y in the mailbox
problem.) We do not know if there is a solution with smaller flags.

Our algorithms are based on the sussus protocol described in Section 4.1.
Section 4.2 uses it to obtain a solution to the signaling problem that is
non-blocking, but in which each flag has, instead of the TS field, a field
Timestamp of timestamp values that can grow without bound. This so-
lution is proved correct in Section 4.3. Section 4.4 shows how to bound
the timestamps, and Section 4.5 obtains a wait-free solution to the mailbox
problem by modifying the bounded-timestamp algorithm.

4.1 The sussus Protocol

The sussus protocol consists of a procedure sussus(v) that can be called at
most once by each of two processes, numbered 0 and 1. Intuitively, when a
process i calls sussus with argument v i , it tries to communicate v i to process
1−i (the other process) and to learn the value (if any) communicated by that
process. The procedure returns in variable outcome a value that is either
“success” or “unknown” and in variable outValue a value that is either the
value v1−i with which the other process calls sussus or else the special value
⊥. The outcome value “success” indicates that process i communicates its
value successfully to the other process, provided that process also executes
the sussus procedure. The outcome “unknown” indicates that process i does
not know whether it communicates its value successfully. More precisely, the
protocol is bounded wait-free and satisfies the following safety properties:

SU1. If both processes return from the procedure,1 then at least one obtains
the outcome “success”.

1A process may never call the procedure or may stop taking steps inside it.

7

variables A = [i ∈ {0, 1} 7→ ⊥] , B = [i ∈ 0 . . 1 7→ ⊥] ;
(* A and B are initialized with A[i] = B [i] = ⊥ for i = 0, 1. *)

procedure sussus(v) {
s1: A[self] : = v ;
s2: outValue : = A[1−self];

if (outValue = ⊥) outcome : = “success” ; (* Case A *)
else {

s3: B [self] : = “done”;
s4: if (B [1−self] = ⊥) outcome : = “unknown”; (* Case B *)

else outcome : = “success”; (* Case C *) };
s5: return; }

Figure 4: The sussus procedure.

SU2. For each i , if process i returns from the procedure before process 1−i
calls it, then process i obtains outcome equal to “success” and outValue
equal to ⊥.

SU3. For each i , if both processes return from the procedure execution and
process i obtains the outcome “success”, then process 1−i returns with
outValue equal to the value with which process i called the procedure.

SU4. For each i , if process i returns from the execution and obtains the
outcome “unknown”, then process 1−i has already called the procedure
with a value equal to the value of outValue obtained by process i .

Figure 4 shows the sussus procedure, written in PlusCal. The protocol uses
two shared arrays A and B indexed by process number, initialized with
A[i] = B [i] = ⊥ for each i . The first step in process i ’s execution of sussus(v)
sets element A[i] to v . In the next step, process i reads A[1−i] and stores
the result in local variable outValue. If the value read is ⊥, then process i
sets outcome to “success”. Otherwise, in a third step, process i sets B [i] to
“done” and, in a fourth step, it reads B [1−i]; if the result is ⊥, process i sets
outcome to “unknown”, otherwise it sets outcome to “success”. Observe that
each atomic step accesses at most one array element of one shared variable.

Properties SU2 and SU4 follow easily from the code and the fact that
each A[i] is initially equal to ⊥. To see why the protocol satisfies properties
SU1 and SU3, observe that there are three possibilities for the values of
variables outcome and outValue when a process completes its operation:

8

〈0,A〉 〈1,B〉 〈0,C 〉 〈1,C 〉 〈0,B〉 〈1,A〉
S U S S U S

Figure 5: Possibilities when both processes complete execution of the sussus
protocol.

Case A: outcome = “success”, outValue = ⊥
Case B: outcome = “unknown”, outValue 6= ⊥
Case C: outcome = “success”, outValue 6= ⊥

These cases are indicated by comments in the code.
Figure 5 shows these cases as six pairs, where each pair 〈i , ρ〉 repre-

sents process i ending up in case ρ. Beneath each such pair, we indicate
the outcome that process i obtains, with S standing for “success” and U for
“unknown”. Two adjacent pairs indicate the results obtained by each process
in some execution. For example, we see the adjacent pairs 〈1,B 〉 and 〈0,C 〉
and the letters U and S beneath them. This indicates that, in some execu-
tion, process 1 ends up in case B with outcome “unknown”, while process 0
ends up in case C with outcome “success”. It turns out that every execution
in which both processes return from their executions of sussus corresponds
to some adjacent pair in the figure. It is easy to prove this by straightforward
case analysis, and even easier by model checking the PlusCal code. (In fact,
SU1–S4 can be verified directly by model checking.) Properties SU1 and
SU3 follow easily from this fact together with the observation that the only
value other than ⊥ that process i can obtain is the one with which process
1−i called the procedure . (Remember that each process invokes operation
sussus at most once.)

4.2 A Non-Blocking Algorithm with Large Flags

We now present a solution to the signaling problem that is non-blocking,
but in which flags contain unbounded integer timestamps. In the write
procedure, process i sets Flag [i] to a record whose Timestamp field is a
timestamp and whose Val field is what the process thinks is the current
value of F (ownValue[0], ownValue[1]). (The algorithm does not actually use
a variable ownValue, although the last value with which write was called by
each process can be inferred from the values of other variables.) The read
procedure returns the value Flag [j].Val for the record Flag [j] with the largest
Timestamp field. (We will show that, if the two timestamps are equal, then
the two Val fields are equal.)

9

When executing write(v), a process i uses the sussus protocol to com-
municate the value v (its current value of ownValue[i]) to the other process.
More precisely, it executes a sequence of numbered rounds, each perform-
ing a new instance of sussus, until a sussus instance succeeds. It then
sets Flag [i].Timestamp to the number of that successful round and sets
Flag [i].Val to F (ownValue[0], ownValue[1]), using for ownValue[1−i] the
most recent output value different from ⊥ it obtained from the sussus pro-
tocols.

The shared variables and the procedures are shown in Figure 6. The
algorithm uses the following process-local variables in addition to returnVal :

outcome, outValue The variables used to return the results of a call to a
procedure named multisussus.

round The number of the current round, initially equal to 0.

otherVal The most recently read value of the other process. For process i , its
initial value is InitValues[1−i] (the initial value of ownValue[1−i]
in the specification).

A procedure call of multisussus(rnd , v) is the call sussus(v) of the round
rnd instance of the sussus protocol, with A[rnd , i] and B [rnd , i] being the
registers A[i] and B [i] of that instance. The expression [Timestamp 7→
t , Val 7→ v] denotes a record with a Timestamp field that equals t and a Val
field that equals v .

For simplicity, we have written the read procedure so that process i re-
turns the Val component of its own register Flag [i] only if Flag [i].Timestamp
is strictly greater than Flag [1−i].Timestamp. As we remarked above, if those
two timestamps are equal, then Flag [i].Val will equal Flag [1−i].Val and the
procedure can return either value. This is proved in Section 4.3.2 below.

4.3 Correctness

4.3.1 Proof that the Algorithm is Non-Blocking

We first show that the algorithm is non-blocking. Execution of read obviously
completes in two steps. To show that execution of write is non-blocking, we
assume that process i takes infinitely many steps of the write procedure with-
out returning, and prove that process 1−i performs infinitely many complete
executions of write.

Process i must perform infinitely many rounds. If process 1−i performed
finitely many rounds, then eventually process i would perform a round that

10

variables Flag = [i ∈ {0, 1} 7→ [Timestamp 7→ 0,
Val 7→ F (InitValues[0], InitValues[1])]] ,

A = [r ∈ Nat , i ∈ {0, 1} 7→ ⊥] ,
B = [r ∈ Nat , i ∈ {0, 1} 7→ ⊥]

(∗ Initially Flag [i].Timestamp = 0, Flag [i].Val = F (InitValues[0], InitValues[1]),
and A[r , i] = B [r , i] = ⊥ for all i and r . ∗)

procedure read()
variable readFlag {

rd : readFlag : = Flag [1−self] ;
rd1: if (Flag [self].Timestamp > readFlag .Timestamp)

returnVal : = Flag [self].Val ;
else returnVal : = readFlag .Val ;

rtr : return }

procedure write(newVal)
variable done = false ; {

wr : while (¬done) { round : = round + 1 ;
call multisussus(round , newVal) ;

wr1: if (outValue 6= bot) otherVal : = outValue ;
if (outcome = “success”) done : = true } ;

Flag [self] : = [Timestamp 7→ round ,
Val 7→ if self = 0 then F (newVal , otherVal)

else F (otherVal ,newVal)] ;
rtw : return }

procedure multisussus(rnd , v) {
s1: A[rnd , self] : = v ;
s2: outValue : = A[rnd , 1−self];

if (outValue = ⊥) outcome : = “success” ;
else {

s3: B [rnd , self] : = “done”;
s4: if (B [rnd , 1−self] = ⊥) outcome : = “unknown”;

else outcome : = “success” } ;
s5: return }

Figure 6: The global variables and read and write procedures of the Signaling
algorithm with unbounded round numbers.

11

process 1−i never began. By property SU2 of the sussus protocol, process i
would succeed in that round and return from write, contrary to hypothesis.
Hence both i and 1−i perform infinitely may rounds. Property SU1 implies
that for at least one process, infinitely many of the calls of multisussus must
succeed. That process must exit from write infinitely many times, completing
the proof.

4.3.2 Proof of Safety

We now prove that the read and write procedures of Figure 6 simulate the
abstract procedures that specify them. We do this for the more general
algorithm in which the read can return the Val field of either flag if it finds
the timestamps of the two flags to be equal in statement rd1.

We say that a process succeeds in round r if it obtains the outcome
“success” in its round r execution of multisussus, and we say that a write by
process i completes when it writes Flag [i]. To avoid having to consider initial
values as a special case, we pretend that there was an initial execution of
write(InitValues[i]) by each process i that succeeded in round 0 and preceded
all calls of read .

We prove that the specification procedures are simulated if the value
of ownValue[i] is defined to be written during process i ’s execution of write
when either the procedure writes Flag [i] or when process 1−i reads the value
(in statement s2 of multisussus) with which the write procedure was called—
whichever happens first. To prove simulation, it suffices to show that, with
this definition of ownValue, an execution of the read procedure returns the
value that F (ownValue[0], ownValue[1]) had when it executed statement rd .
Let the “current” instant be the one immediately preceding that execution
of statement rd . Throughout the proof, we let Flag denote the current value
of the variable Flag (its value in that “current” instant).

1. It suffices to let i be such that Flag [1−i].Timestamp ≥ Flag [i].Timestamp
and prove Flag [1−i].Val = F (ownValue[0], ownValue[1]).
Proof: The read returns the current value of one of the flags. Since
we have not assumed which process is executing the read , we can as-
sume by symmetry that it returns Flag [1−i].Val . It can do this only if
Flag [1−i].Timestamp ≥ Flag [i].Timestamp, so it suffices to show that
Flag [1−i].Val has the correct value F (ownValue[0], ownValue[1]) under
this assumption.

In the proof that Flag [1−i].Timestamp ≥ Flag [i].Timestamp implies
Flag [1−i].Val = F (ownValue[0], ownValue[1]), we are assuming that some

12

process is about to execute the rd statement. We note for future reference
that this proof requires only the weaker assumption that the process is not
between the call of write and the writing of its flag.

2. Process 1−i set otherVal to the value with which process i called
multisussus in round Flag [i].Timestamp.
Proof: Process i succeeded in round Flag [i].Timestamp (since it wrote
Flag [i] in that round). The step 1 assumption implies that process
1−i completed round Flag [i].Timestamp, so property SU3 implies that
it obtained the value Flag [i].Val written by i during the execution of
multisussus for that round.

3. Process i did not complete a write after executing any round later than
Flag [i].Timestamp.
Proof: If it had completed a later write, it would have rewritten Flag [i]
with a larger Timestamp field.

4. The current value of ownValue[i] is the value that otherVal had in process
1−i when that process wrote Flag [1−i].
Proof: The proof is broken into two cases:

4.1. Case: In every execution of multisussus in a round after
Flag [i].Timestamp, process 1−i obtained only the value ⊥.

Proof: In this case, when process 1−i wrote Flag [1−i], its value of
otherVal was still the value it had in round Flag [i].Timestamp, which
is the value with which process i called write when the procedure wrote
Flag [i]. That value is the current value of ownValue[i] by our definition
of ownValue.

4.2. Case: Process 1−i obtained a value v when executing multisussus
in some round after Flag [i].Timestamp.

Proof: By step 3, process i must have been executing write(v) when
process 1−i obtained the value v . The definition of ownValue implies
v equals the current value of ownValue[i], and the algorithm implies
that v was the value of process (1−i)’s variable otherVal when it wrote
Flag [1−i].

5. The current value of ownValue[1−i] is the value that newVal had in
process 1−i when that process wrote Flag [1−i].
Proof: The proof is broken into two cases:

5.1. Case: The current execution of read is being performed by
process 1−i .

Proof: In this case, process 1−i could not have called write after writ-

13

ing Flag [1−i], so the definition of ownValue[1−i] implies that it equals
the value of newVal in the call of write in which 1−i wrote the current
value of Flag [1−i].

5.2. Case: The current execution of read is being performed by process i .
Proof: In this case, process i is not currently executing write, so step 3
implies it did not perform any round after round Flag [i].Timestamp.
By the step 1 assumption, process i did not read any value with
which process 1−i called multisussus after writing the current value
of Flag [1−i]. The definition of ownValue[1−i] therefore implies that its
current value equals the value newVal had in process 1−i when that
process wrote the current value of Flag [1−i].

6. Q.E.D.
Proof: Steps 4 and 5 imply that process 1−i set Flag [1−i].Val to
F (ownValue[0], ownValue[1]), which by step 1 is what we had to prove.

We now show that if two flags have equal Timestamp fields, then they also
have equal Val fields. Since this is true initially, we need only show that it is
true after a flag is written. By our observation after step 1, the proof shows
that

(Flag [1−i].Timestamp ≥ Flag [i].Timestamp) ⇒
(Flag [1−i].Val = F (ownValue[0], ownValue[1]))

is true immediately after a process writes its flag. If the flags have equal
Timestamp fields after the write, then their Val fields are also equal because
they both equal F (ownValue[0], ownValue[1]).

4.4 A Non-blocking algorithm with Small Flags

Let Sig be the algorithm of Section 4.2. We modify Sig to obtain a new al-
gorithm BSig in which the unbounded timestamps in Flag are replaced with
timestamps from a set TStamps containing only 7 values. More precisely,
we replace each field Flag [i].Timestamp whose value is an unbounded round
number with the field Flag [i].TS whose value is an element of TStamps.
Hence, if Flag [i].Val can assume at most n possible values for each i , then
Flag assumes at most (7n)2 possible values. We assume a relation Â on the
set TStamps that, for now, we think of as a total ordering.

To derive BSig , we first modify Sig by adding a process-local variable ts
and adding to Flag [i] a TS field that is set to the current value of ts when
Flag [i] is written. We then show that in statement rd1, instead of comparing

14

the Timestamp fields with >, we can compare the TS fields with Â. In other
words, the if test in rd1 becomes

Flag [self].TS Â readFlag .TS

The Timestamp fields are then never used, so we can eliminate them to
obtain BSig . Of course, our problem is figuring out to what value ts should
be set.

As we stated above, it makes no difference whether the if or else clause
in rd1 is executed if the two flags’ Timestamp fields are equal. To replace
the comparison of the Timestamp fields by the comparison of the TS fields,
it suffices to ensure that the following assertion BInv(i) is invariant (true at
all times) for each i :

BInv(i) ∆= (Flag [i].Timestamp > Flag [1−i].Timestamp)
⇒ (Flag [i].TS Â Flag [1−i].TS)

Since both Timestamp fields initially equal 0, BInv(i) is true initially. To
make it an invariant, we must ensure it is left true by any step that changes
Flag . That is, we must ensure that BInv(i) is true immediately after a step
that writes either Flag [i] or Flag [1−i].

We further modify algorithm Sig by having the write procedure use the
multisussus procedure to communicate not just newVal but also the current
value of ts. In other words, in each round, process i calls multisussus with
the record value [Val 7→ newVal , TS 7→ ts]. If the round succeeds, the
process will write ts into the TS field of Flag [i]. We define the round r value
of ts to be the value ts has when the process executes multisussus in round
r and, hence, the value to which Flag [i].TS is set if that execution succeeds.

We must deduce what the value of ts should be in each round to ensure
the invariance of BInv(i). We do this by trying to prove that BInv(i) is
true after a step that changes Flag and seeing what properties the value of
ts must have to make the proof work. We now assume Flag [i].Timestamp >
Flag [1−i].Timestamp and prove Flag [i].TS Â Flag [1−i].TS .
1. Process 1−i executed multisussus in round Flag [1−i].Timestamp with ts

equal to Flag [1−i].TS , and that execution succeeded.
Proof: The algorithm implies that process 1−i ’s execution of multisussus
in round Flag [1−i].Timestamp succeeded, and that the value of ts for that
round was Flag [1−i].TS .

2. Process i set otherVal .TS to Flag [1−i].TS in round
Flag [1−i].Timestamp.

15

Proof: By step 1 and property SU3, since the hypothesis
Flag [i].Timestamp > Flag [1−i].Timestamp implies that i executed that
round.

3. Case: Process 1−i has just written Flag [1−i].
3.1. Process 1−i has not executed any round after round

Flag [1−i].Timestamp.
Proof: By the case assumption, which implies process 1−i has just
finished round Flag [1−i].Timestamp .

3.2. Process i executed rounds Flag [1−i].Timestamp through
Flag [i].Timestamp and, after each of them, its value of otherVal .TS
equaled Flag [1−i].TS .

Proof: The algorithm and the hypothesis Flag [i].Timestamp >
Flag [1−i].Timestamp implies that i executed those rounds; step 2
asserts that process i ’s value of otherVal .TS equaled Flag [i].TS af-
ter round Flag [1−i].Timestamp; and 3.1, SU2, and the write proce-
dure’s code imply that otherVal .TS also equaled Flag [i].TS after rounds
Flag [1−i].Timestamp + 1 through Flag [i].Timestamp.

3.3. Q.E.D.
Proof: The desired conclusion Flag [i].TS Â Flag [1−i].TS follows from
3.2 if the values of ts satisfy the following condition.

TS1. In every round r , process i ’s value of ts satisfies ts Â
otherVal .TS , where otherVal is the variable’s value after process
i finished round r − 1, or its initial value if r = 1, assuming its
initial value satisfies otherVal .TS = Flag [1−i].TS .

4. Case: Process i has just written Flag [i].

4.1. Case: Process 1−i wrote Flag [1−i] after process i finished its round
Flag [i].Timestamp − 1 execution of multisussus.

Proof: The algorithm implies that process 1−i succeeded in
round Flag [1−i].Timestamp. The hypothesis Flag [i].Timestamp >
Flag [1−i].Timestamp implies that process i executed that round, and
SU3 and the algorithm imply that process i set otherVal .TS equal
to Flag [1−i].TS during that round. The 4.1 case assumption implies
that process 1−i did not begin any later rounds before process i fin-
ished round Flag [i].Timestamp − 1, so SU2 implies otherVal .TS still
equaled Flag [1−i].TS after that round. Property TS1 (introduced in
step 3.3 above) for r = Flag [i].Timestamp then implies Flag [i].TS Â
Flag [1−i].TS , since Flag [i].TS equals the value of ts in process i for

16

round Flag [i].Timestamp.

4.2. Case: Process 1−i wrote the current value of Flag [1−i] before
process i finished its round Flag [i].Timestamp − 1 execution
of multisussus.

Proof: The desired conclusion Flag [i].TS Â Flag [1−i].TS follows from
case assumption 4.2 if the value of ts satisfies the following condition.

TS2. In each round r , process i ’s value of ts satisfies ts Â
Flag [1−i].TS , where Flag [1−i] is a value read after process i
returns from its round r − 1 execution of multisussus, or is the
initial value of Flag [1−i] if r = 1.

4.3. Q.E.D.
Proof: Process 1−i wrote Flag [1−i]. The hypothesis im-
plies Flag [i].Timestamp > 0, so process i executed round
Flag [i].Timestamp − 1. (If Flag [i].Timestamp = 1, this round is the
posited initial round 0.) Therefore, cases 4.1 and 4.2 are exhaustive.

5. Q.E.D.
Proof: Since we have to prove that BInv(i) remains true when a process
writes its flag, the cases of steps 3 and 4 are exhaustive.

We have shown that we obtain a correct algorithm BSig if ts satisfies prop-
erties TS1 and TS2. These properties can be combined into:

TS12. For each process i , the round r value of ts must satisfy ts Â
otherVal .TS and ts Â Flag [1−i].TS , where otherVal and Flag [1−i]
are the variables’ values at the end of round r−1 or, for r = 1, are
their initial values that must satisfy otherVal .TS = Flag [1−i].TS .

We must satisfy TS12 when ts assumes values in a bounded set TStamps with
a relation Â. We have been thinking of Â as a total ordering on TStamps,
but we actually require only that the relation Â satisfy the following two
properties, for all elements v and w in TStamps:

• Antisymmetry: if v Â w is true then w Â v is false.

• There exists an element Dominate(v ,w) in TStamps such that
Dominate(v ,w) Â v and Dominate(v ,w) Â w .

In particular, we do not require that Â be transitive. A computer search
reveals that the smallest set with the requisite relation Â contains 7 ele-
ments. We take TStamps to be the set {“T1”, . . . , “T7”} and define Â and
Dominate as follows, where the value of the expression choose x ∈ S : P is
an arbitrary element x of S satisfying P (assuming there is such an x).

17

v Â w ∆= (v = “T1” ∧ w ∈ {“T3”, “T4”, “T5”})
∨ (v = “T2” ∧ w ∈ {“T1”, “T3”, “T7”})
∨ (v = “T3” ∧ w ∈ {“T5”, “T6”, “T7”})
∨ (v = “T4” ∧ w ∈ {“T2”, “T3”, “T6”})
∨ (v = “T5” ∧ w ∈ {“T2”, “T4”, “T7”})
∨ (v = “T6” ∧ w ∈ {“T1”, “T2”, “T5”})
∨ (v = “T7” ∧ w ∈ {“T1”, “T4”, “T6”})

Dominate(v ,w) ∆= choose x ∈ TStamps : (x Â v) ∧ (x Â w)

The TLC model checker has verified that Â and Dominate satisfy the re-
quired properties.

To satisfy TS12, we introduce a process-local variable nextts that process
i sets to Dominate(otherVal .TS , Flag [1−i].TS) at the end of the round and
have process i set ts to nextts at the beginning of the round. (To satisfy
TS12, we must let the initial value of nextts satisfy nextts Â Flag [1−i].TS .)
The new algorithm, which we call BSig , is obtained from Sig by the following
modifications:

• For each process i , the initial value of Flag [i].TS is arbitrarily chosen
to equal “T1” (rather than 0), and otherVal is initially equal to [Val 7→
InitValues[i], TS 7→ “T1”].

• The process-local variables ts and nextts are added, with nextts ini-
tially equal to “T2” (which makes nextts Â Flag [1−i] hold initially for
each i).

• The if test of statement rd1 is changed to:

rd1: if (Flag [self].TS Â readFlag .TS)

• The write procedure is changed to the one in Figure 7.

It is easy to check that the modified algorithm satisfies TS12, which implies
its correctness. More precisely, TS12 implies that algorithm BSig satisfies
the required safety property because algorithm Sig does. By its construction,
BSig obviously satisfies the same non-blocking property as Sig .

4.5 The Bounded Wait-Free Mailbox Algorithm

The algorithms of Sections 4.2 and 4.4 are non-blocking but not wait-free,
because one process could remain forever in the write procedure while the
other process performs an infinite sequence of calls to and returns from write.

18

procedure write(newVal)
variable done = false ; {

wr : while (¬done) {
round : = round + 1 ;
ts : = nextts ;
call multisussus(round , [Val 7→ newVal , TS 7→ ts]) ;

wr1: if (outValue 6= bot) otherVal : = outValue ;
nextts : = Dominate(otherVal .TS ,Flag [1−self].TS) ;
if (outcome = “success”) done : = true } ;

Flag [self] : = [TS 7→ ts ,
Val 7→ if self = 0 then F (newVal , otherVal .Val)

else F (otherVal .Val ,newVal)] ;
rtw : return }

Figure 7: The write procedure for the bounded-timestamp algorithm BSig .

We do not know of a wait-free solution to the general signaling problem.
However, we now show that a simple modification of the signaling algorithm
yields a bounded wait-free solution for the special case of the mailbox prob-
lem.

Figure 8 shows how the read and write procedures of the signaling prob-
lem are used to implement the three procedures of the mailbox problem,
where wcounter and pcounter are local counter variables of the owner and
postman, respectively, that initially equal 0, and the signaling algorithm is
used with F (u, v) equal to the Boolean-valued expression u < v . It is clear
that these deliver , remove, and check procedures satisfy their specifications
in Figure 2. A mailbox algorithm calls these procedures as shown in Figure 1,
with the owner being process 0 and the postman process 1.

To make the algorithm wait-free, we have the owner return from write
without writing her flag if she observes the postman’s counter to be greater
than hers. We now show that this modified signaling algorithm still satisfies
the required safety property when used in a mailbox algorithm. Namely, we
show that the read and write procedures still simulate their specifications if
the owner calls write (in the remove procedure) only after a call to read (in
the check procedure) returns the value true.

Recall that the unmodified procedures simulate their specification if
ownValue[i] is considered to be changed by a write operation when ei-
ther it writes Flag [i] or else the value being written is seen (through a call
to multisussus) by process 1−i . For the modified algorithm, we consider
ownValue[0] to be changed at any arbitrary point during the owner’s write

19

procedure deliver() { dl : pcounter : = pcounter + 1;
call write(pcounter);

rdl : return }

procedure remove() { rm: wcounter : = wcounter + 1 ;
call write(wcounter);

rrm: return }

procedure check() { ck : call read();
ck1: hasmail : = returnVal ;
rck : return }

Figure 8: Implementing the mailbox with signaling.

operation. We consider ownValue[1] to be changed by the postman’s write
operation when either (a) it writes Flag [1]; (b) the value being written is
seen by the owner, who exits the write “normally” (by writing Flag [0]); or
(c) the value being written is seen by the owner, who exits abnormally, and
the values of the flags indicate that a read (done at that instant) will return
true—whichever of (a), (b), or (c) occurs first.

The change of each ownValue[i] occurs during a write, as required. We
need only show that a read (performed only by the owner) returns the cor-
rect value—that is, a value consistent with the simulated values of each
ownValue[i] at some point during the read . If the owner exits write nor-
mally, the flag values and the simulated values of the ownValue[i] when the
owner performs the next read are the same as in the unmodified signaling
algorithm. By correctness of the unmodified algorithm, the read returns the
correct value in this case. We therefore need only prove that a read returns
the correct value if the owner’s previous write returned without setting her
flag. We assume that the owner (i) executed write(v), (ii) read a value w of
the postman’s counter with w > v and exited without writing her flag, and
(iii) has just finished executing read ; and we show that the read returns a
correct value. There are two cases:

1. Case: The call of read returns true.
Proof: The abnormal exit of the owner implies that she observed the
postman’s counter to be greater than her own. The true result is therefore
correct by definition of the current value of ownValue[i]. For ownValue[1],
this follows either by case (a) or, if the postman’s write(w) is still in
progress, by case (c).

20

2. Case: The call of read returns false.

2.1. At some instant t1 during the owner’s previous execution of read , the
flags indicated that her counter was less than the postman’s.

Proof: Because returnVal must equal true for the owner to call write.

2.2. At some instant t2 during the owner’s just-completed read execution,
Flag [1].Val = false and that value of Flag [1] was written after t1.

Proof: By 2.1 and the case assumption, since the owner did not write
Flag [0] between t1 and executing the just-completed read .

2.3. The value of Flag [1] at instant t2 was written by the postman’s exe-
cution of write(v).

Proof: At t1, the value of wcounter was v−1, so 2.1 implies that
pcounter was at least v . Since wcounter was at most v between t1
and t2, a write of Flag [1] with Flag [1].Val = false between t1 and t2
could only have been performed by the postman executing write(v).

2.4. The postman’s execution of write(v+1) did not complete by t2.
Proof: By 2.3.

2.5. Q.E.D.
Proof: The return of false is correct for a read of the ownValue[i]
at t2, since the definition of when ownValue[i] changes implies that
ownValue[0] = ownValue[1] = v at that instant.

The modified write procedure is obtained from the one in Figure 7 by re-
placing the ninth line

if (outcome = “success”) done : = true } ;

with

if (outcome = “success”) done : = true
if (self = 0 ∧ otherVal .Val > newVal)

wr2: return } ;

If the owner exits write by seeing a higher counter value, then she knows
that there is a letter in the mailbox and can remove it without performing
a read . We do not bother with this optimization.

We now prove that the modified algorithm is bounded wait-free. In
the proof, we consider the write procedure to have completed when it has
either written the process’s flag or, in the case of the owner, has seen a
postman’s counter value greater than her own. We say that process i succeeds
(respectively, fails) in round r if it executes round r of the write procedure
and the procedure exits (respectively, does not exit) in that round.

21

1. The owner can set A[r , 0] to a value v only after the postman’s execution
of write(v−1) has completed.
Proof: We assume that the postman has not completed his execution of
write(v−1) and the owner has set A[r , 0] to v , and we obtain a contradic-
tion.

1.1. A call of read by the owner when her counter equaled v−1 returned
true.

Proof: The owner set A[r , 0] to v when executing write(v), which she
does only after her counter equals v−1 and she executes a read operation
that returns true.

1.2. The read of step 1.1 simulates an execution of the read in the specifica-
tion of Figure 3 during which ownValue[0] = v−1 and ownValue[1] ≤
v−1.

Proof: By the correctness of the signaling algorithm (which implies
that it simulates the abstract procedures), step 1.1 (which implies
ownValue[0] = v−1), and the assumption that the postman has not
yet completed a write of v−1 (which implies ownValue[1] ≤ v−1).

1.3. Q.E.D.
Proof: Step 1.2 contradicts step 1.1, since read must return the value
ownValue[0] < ownValue[1].

2. For any round r , if both processes have performed their round-r assign-
ment to A, then A[r , 0]− 1 ≤ A[r , 1] ≤ A[r , 0] + 1.
Proof: By induction on r . It is trivial for round 1, in which each process
i sets A[1, i] to 1. We now assume that the inequality is true for r and
prove that it holds for r + 1.

2.1. If A[r , 1] = A[r , 0]+1, then it is impossible for the postman to succeed
and the owner to fail in round r .

Proof: If the postman’s write succeeds in round r , then sussus property
SU3 implies that the owner obtains the value A[r , 1] in that round,
which by hypothesis is greater than her counter’s value. Hence, she
must succeed in that round.

2.2. If A[r , 0]− 1 = A[r , 1], then it is impossible for the owner to succeed
and the postman to fail in round r .

Proof: By step 1, the owner’s write of A[r , 0] occurred after the post-
man’s execution of write(A[r , 1]), which is when the postman performed
round r . Hence, the postman finished executing round r before the
owner began executing round r . By sussus property SU2, this implies
that the postman must have succeeded in round r .

22

2.3. Q.E.D.
Because counter values are incremented by 1, if a write by process i
succeeds in round r , then in round r+1 the process sets A[r+1, i] to
A[r , i] + 1. Therefore, the step 2 inequality can hold for r and not for
r+1 only in the two cases that steps 2.1 and 2.2 show to be impossible.

3. The algorithm is bounded wait-free.
Proof: We must show that if a process i calls write, then it succeeds
within a bounded number of rounds. Process i can fail in a round r only
if it obtains the other process’s value in that round (by SU4), which means
that process 1−i must have written A[r , 1−i]. By sussus property SU1,
at least one process succeeds in each round. Since a process that succeeds
starts the next round with a larger value, and step 2 implies that the
values written in the same round can differ by at most 1, it is obvious
that process i must succeed within a bounded number of rounds. A little
thought reveals that it can take up to three rounds.

4.6 Model Checking

We have presented three algorithms: Sig , the signaling algorithm with un-
bounded timestamps (Section 4.2); BSig , the signaling algorithm with bound-
ed timestamps (Section 4.4); and the wait-free mailbox algorithm based on
BSig (Section 4.5) that we call here MB . We have provided correctness
proofs for these algorithms that we believe most researchers in concurrent
algorithms will find convincing. However, the traditional behavioral style of
proof that we used is inherently unreliable, in part because it provides no
rigorous connection between the actions that the proof claims the algorithm
performs and the actual code. We therefore directly checked the PlusCal
code using the PlusCal to TLA+ translator [5] and TLC, the TLA+ model
checker [12]. To check a signaling algorithm, we must specify F and write
driver code that determines the parameters Values and InitValues and calls
the read and write procedures. We checked the signaling algorithms with
F (u, v) equal to the pair 〈u, v 〉 and with driver code in which, as in MB , the
nth call of write by each process has n as its argument. Algorithms Sig and
BSig are independent of F and the values being written, in the sense that
they do not make any decision based on F or those values. We therefore
expected any error in the algorithm to manifest itself with this choice of F
and driver code.

We checked that each algorithm satisfies its PlusCal specification under
a suitable refinement mapping [1]. We also checked that BSig satisfies the
invariants BInv(i) of Section 4.4 and that MB satisfies the invariant of the

23

key second step in the proof of wait-freedom (Section 4.5). We checked Sig
and BSig for all executions in which each process writes at most 4 times,
and MB for all executions in which the postman delivers at most 5 letters.

Our experience provides an indication of the adequacy of these checks.
After finding the basic algorithms, we made numerous errors in writing the
PlusCal code, the invariants, and the refinement mappings. TLC found all
but two of those errors in executions with at most 2 writes or letter deliv-
eries. One exception was an error in MB that TLC found only by checking
executions with 3 letters. (Having TLC find these errors before we tried writ-
ing proofs saved us a lot of time.) The other was an error in Sig and BSig
in which process i ’s variable otherVal was initialized to InitValues[i] rather
than InitValues[1−i]. This error was missed by model checking because all
our tests had InitValues[0] = InitValues[1]; it was discovered only when
writing the proofs. This experience and our intuition suggest that checking
executions with more writes or letter deliveries would not find any further
errors. However, we could have missed some basic gap in our checking other
than that caused by the symmetry of InitValues. Moreover, the PlusCal
code provided here was formatted by hand, so it could differ from the code
that was checked. Still, the model checking combined with our proofs and
our checking of the manuscript gives us a high degree of confidence in the
correctness of these algorithms—a degree of confidence it would have been
much harder to achieve without model checking.

5 Impossibility Results

We now show that it is impossible to solve the mailbox problem in two cases
when Flag holds small values:

• Flag consists of two bits, each writable by a single process; and

• Flag consists of one bit writable by both processes.

These results hold even if the postman and owner can access unbounded
shared registers during the execution of deliver and remove.

5.1 Preliminary definitions

To prove these results, we first give some definitions and simple properties of
the mailbox problem in terms of executions, where an execution is a sequence
of steps and a step is taken to be a primitive concept. We let ◦ be sequence
concatenation and define 〈s1, . . . , sn 〉 to be an n-element sequence, with

24

〈 〉 the empty sequence. We define a mailbox execution to be an execution
in which each step is either a call of one of the three procedures or else
a step executed by one those procedures, and which satisfies the following
conditions:

E1. Calls and returns must be properly matched. (That is, a return must
be preceded by a corresponding call, and two calls by the same process
cannot occur without an intervening return.)

E2. A call of remove can occur only if there is a preceding step of process 0
and the last such step is a return of check with value true.

E3. A call of check can occur only if there is no preceding step of process 0,
or if the last such step is a return from remove or a return from check
with value false.

Observe that the empty sequence 〈 〉 is a mailbox execution. We make the
following definitions, for any finite mailbox execution E .

• M (E) equals the number of calls of deliver minus the number of returns
of remove in E .

• N (E) equals the number of returns of deliver minus the number of
returns of remove in E .

We identify an algorithm A with its set of all possible executions, which is
prefix-closed, meaning that every prefix of an execution in A is in A. If A is
an algorithm, then this set of mailbox executions satisfies the following four
properties:2

Process-Enabled: For every finite execution E in A and every process i ,
there exists a step s of i such that E ◦ 〈s 〉 is in A.

Call-Enabled: For every finite execution E in A and every call step s, if
E ◦ 〈s 〉 is a mailbox execution then E ◦ 〈s 〉 is in A.

Check-Correct: For every finite execution E in A and every finite sequence
S of steps beginning with a call of check and ending with the subse-
quent return from check such that E ◦ S is in A:

• If N (E) > 0 then the return from check returns true
2These properties follow from but do not imply the mailbox problem specification,

because they do not require deliver to increment the postman’s counter in a single atomic
step.

25

• If M (E ◦ S) = 0 then the return from check returns false

Non-blocking: Every infinite execution E in A has infinitely many return
steps.

Define an execution of an operation to be a finite sequence of steps with which
some process performs the operation. More precisely, it is any sequence of
steps of a single process that could describe an execution of the operation if
they were interleaved with suitable steps of the other process. We identify
a procedure P with the operation that begins with the call of P and ends
with the return. A solo execution in A of operation op from an execution
S is an execution T of operation op such that S ◦ T ∈ A. We say that a
mailbox execution E is complete if E is finite and the number of call steps in
E equals the number of return steps in E . If P is a procedure, we say that
a mailbox execution E is P-enabled if E ◦ 〈callP 〉 is a mailbox execution.
The following properties are immediate from these definitions and the four
properties above.

Solo Execution Existence: For every mailbox procedure P and every mail-
box execution E in A, if E is P -enabled then there is a solo execution
in A of P from E .

Solo Check Result: For every mailbox execution E in A, every solo exe-
cution in A of check from E returns the Boolean value N (E) > 0.

Our proofs are based on reduction to the consensus problem, which is defined
in terms of a procedure propose that takes a value as parameter and returns a
value. The following properties must hold for every execution of an algorithm
that solves the consensus problem:

Uniform-Agreement: No two processes return different values.

Validity: If a process returns v , then some process calls propose(v).

Termination: If a process takes infinitely many steps, then it returns.

5.2 Impossibility with Two Single-Writer One-Bit Flags

Theorem 1 There is no non-blocking algorithm that solves the mailbox prob-
lem with the access restriction when Flag is an array with two one-bit single-
writer atomic registers.

26

Proof: The proof is by contradiction. Let A be a non-blocking algorithm
that solves the mailbox problem with the access restriction using two one-
bit single-writer atomic registers. We will use A to construct a wait-free
consensus algorithm for two processes, contradicting the impossibility result
of Fischer, Lynch, and Paterson [10, Chapter 12].
Throughout this proof, let Flag [0] and Flag [1] denote the two one-bit single-
writer atomic registers used by algorithm A. Through step 11 below, “exe-
cution” means a finite execution in A. For an execution E , we let Flag [i](E)
be the value of Flag [i] after the last step of E .

1. We may assume that each process of A is deterministic, meaning that for
each execution E of A and each process i , there is at most one step s of
process i such that E ◦ 〈s 〉 is an execution of A.
Proof: We can remove any nondeterministic choice by arbitrarily speci-
fying which possible action a process performs. Since the algorithm must
be correct regardless of which choice is made, correctness of the original
algorithm implies correctness of the deterministic one.

2. (a) Each process must be allowed to write to Flag [0] or Flag [1].
(b) We can assume that process i is allowed to write to Flag [i].
Proof: (a) If a process is not allowed to write to Flag [0] or Flag [1], it is
easy to construct a scenario in which it executes remove or deliver and
the flags do not change, causing a subsequent check to return an incorrect
result.
(b) An algorithm in which process i can write to Flag [1−i] is easily trans-
formed into one in which process i can write to Flag [i].

Definition: An execution E is c-checkable if E is complete and check -
enabled.

3. For any 1-bit values F 0 and F 1, there is a Boolean C (F 0,F 1) such that
for every c-checkable execution E with Flag [i](E) = F i for each i , every
solo execution in A of check from E returns the value C (F 0,F 1).
Proof: By the access restriction, an execution of check cannot write to
shared variables and it returns a value that depends only on the values
read from each Flag [i]. By step 1, for each F 0 and F 1 there is a single
value that can be returned.

4. C (Flag [0](E),Flag [1](E)) = (N (E) > 0), for every c-checkable execu-
tion E .
Proof: By the Solo Check Result property and definition of C .

5. For every c-checkable execution E with N (E) = 0 and every solo execu-

27

tion S in A of deliver from E ,
Flag [0](E ◦ S) = Flag [0](E)
Flag [1](E ◦ S) = 1− Flag [1](E)

Proof: Since E is a c-checkable execution, E◦S is a c-checkable execution.
By step 4, C (Flag [0](E ◦ S),Flag [1](E ◦ S)) 6= C (Flag [0](E),Flag [1](E)).
By step 2, Flag [0](E ◦ S) = Flag [0](E), since S contains only steps of
process 1. Hence, Flag [1](E ◦ S) 6= Flag [1](E), and thus Flag [1](E ◦ S) =
1− Flag [1](E) since Flag [1] is either 0 or 1.

6. For every c-checkable execution E with N (E) = 1, every solo execution
S in A of check from E (that by step 4 returns true), and every solo
execution T in A of remove from E ◦ S ,
Flag [0](E ◦ S ◦ T) = 1− Flag [0](E)
Flag [1](E ◦ S ◦ T) = Flag [1](E)

Proof: Analogous to the proof of step 5.
Definition: I i

∆= Flag [i](〈 〉), the initial value of Flag [i], for i = 0, 1

7. C (I 0, I 1) = C (1− I 0, 1− I 1) = false
C (I 0, 1− I 1) = C (1− I 0, I 1) = true

7.1. Choose step sequences S 1, S 2, S 3, and S 4 such that
• S 1 is a solo execution in A of deliver from 〈 〉;
• S 2 is a solo execution in A of check from S 1 that returns true;
• S 3 is a solo execution in A of remove from S 1 ◦ S 2; and
• S 4 is a solo execution in A of deliver from S 1 ◦ S 2 ◦ S 3.

Then S 1, S 1 ◦S 2 ◦S 3 and S 1 ◦S 2 ◦S 3 ◦S 4 are c-checkable executions.
Proof: The Solo Execution Existence and Solo Check Result properties
imply that S 1, S 2, S 3, and S 4 exist. Clearly, S 1, S 1 ◦ S 2 ◦ S 3 and
S 1 ◦ S 2 ◦ S 3 ◦ S 4 are c-checkable executions.

7.2. (a) N (〈 〉) = 0
(b) N (S 1) = 1
(c) N (S 1 ◦ S 2 ◦ S 3) = 0
(d) N (S 1 ◦ S 2 ◦ S 3 ◦ S 4) = 1

Proof: Immediate from step 7.1 and definition of N .

7.3. (a) Flag [0](〈 〉) = I 0 and Flag [1](〈 〉) = I 1

(b) Flag [0](S 1) = I 0 and Flag [1](S 1) = 1− I 1

(c) Flag [0](S 1 ◦ S 2 ◦ S 3) = 1− I 0 and Flag [1](S 1 ◦ S 2 ◦ S 3) = 1− I 1

(d) Flag [0](S 1◦S 2◦S 3◦S 4) = 1−I 0 and Flag [1](S 1◦S 2◦S 3◦S 4) = I 1

Proof:
(a) By definition.

28

(b) By steps 5 and 7.2(a).
(c) By steps 6 and 7.2(b).
(d) By steps 5 and 7.2(c).

7.4. Q.E.D.
Proof: Step 7 follows from steps 7.2, 7.3, and 4.

8. Choose a solo execution S 0 in A of deliver from 〈 〉. Then S 0 is a c-
checkable execution, Flag [0](S 0) = I 0, and Flag [1](S 0) = 1− I 1.
Proof: S 0 exists by the Solo Execution Existence property, and it is a
c-checkable execution. The values of Flag [i](S 0) follow from step 5.

Definition: Let a check+remove operation consist of a call to check fol-
lowed by a call to remove if the check returns true.

9. If S is a solo execution in A of check+remove from S 0, then S performs
the remove and Flag [0](S 0 ◦ S) = 1− I 0.
Proof: That S performs the remove follows from the Solo Check Result
property, since N (S 0) = 1, and steps 8 and 6 then imply that Flag [0](S 0 ◦
S) = 1− I 0.

10. If S is a solo execution in A of deliver from S 0, then Flag [1](S 0 ◦ S) =
1− I 1.

Proof: Clearly, S 0 ◦ S is a c-checkable execution. Since deliver does not
modify Flag [0], step 8 implies Flag [0](S 0 ◦ S) = I 0. Step 6 then implies
C (I 0,Flag [1](S 0 ◦ S)) = true, so step 7 implies Flag [1](S 0 ◦ S) = 1− I 1.

11. If S is a sequence of steps containing a single execution of deliver and
a single execution of check+remove, and S 0 ◦ S is an execution, then
either
Flag [0](S 0 ◦ S) = I 0 and Flag [1](S 0 ◦ S) = 1− I 1, or
Flag [0](S 0 ◦ S) = 1− I 0 and Flag [1](S 0 ◦ S) = I 1.

Proof: S 0◦S is a c-checkable execution and simple arithmetic shows that
N (S 0 ◦ S) > 0, so this follows from steps 4 and 7.

Henceforth, “execution” no longer refers only to finite executions in A but to
executions of A or of the following algorithm C.
Definition: Let C be the (set of executions that define the) following two-
process algorithm. There is a copy of algorithm A initialized to the state at
the end of S 0. Each process i has a procedure propose(v) that performs the
following operations:
c1. process i writes v to a shared register V [i] initialized to ⊥;
c2. process i uses A to execute either check+remove if i = 0 or deliver if

i = 1;

29

c3. if process i ends up with value 1 − I i in Flag [i] then process i reads
V [i] and returns its value; else process i reads V [1−i] and returns its
value.

The definition of C means that if G is an execution in C and S is the sequence
of steps from G performed (by both processes) in operation c2, then S 0 ◦ S
is an execution in A, which we call π(G).

12. Algorithm C solves the consensus problem.
Proof: Let G be an execution of C, and let v j be the value with which
process j calls propose, or ⊥ if the process does not call propose. We
show that C satisfies the Uniform-Agreement, Validity, and Termination
properties of consensus (Section 5.1, page 26).
Definition: For i = 0, 1, let G i be the prefix of G up to when process i
returns from check+remove or deliver , or let G i equal ⊥ if process i never
returns from these operations in G .
For each process i , the following properties of execution G follow directly
from the definition of C.
CF1. If process i returns from propose, then G i 6= ⊥.
CF2. If process i returns w i from propose, then w i is a value that process

i reads from V [i] or V [1−i] after the steps of G i .

CF3. v i and ⊥ are the only values that V [i] can equal during the ex-
ecution, and it equals ⊥ only if process i has not yet completed
operation c1.

12.1. If process i returns some value w i from propose in G , then w i 6= ⊥.
Proof: We assume w i = ⊥ and obtain a contradiction. By CF1, G i 6=
⊥. By CF2, w i is a value read from V [i] or V [1−i]. Since process
i can obviously not read V [i] = ⊥ in operation c3, w i must be read
from V [1−i]. CF3 then implies that G i does not contain a complete
execution of operation c1 by process 1−i . Hence, π(G i) = S 0 ◦ S for
some solo execution S in A of check+remove or deliver (by process i).
Step 9 or 10 (depending on the value of i) implies Flag [i](S◦S 0) = 1−I i .
Since Flag [i] is changed only in the execution of c2 by process i , this
implies that i reads Flag [i] = 1− I i in operation c3, so it does not read
V [1−i]. This provides the required contradiction.

12.2. G satisfies the Validity property.
Proof: Clear from CF2, CF3, and 12.1.

12.3. G satisfies the Uniform-Agreement property.

30

Proof: It suffices to assume process 0 returns w0 and process 1 re-
turns w1 from their executions of propose in G and prove w0 = w1.
Let i be the last of the processes to finish operation c2. By CF1,
G i 6= ⊥; by definition of the algorithm, π(G i) = S 0 ◦ S for some
sequence S that contains a single execution of deliver and a single ex-
ecution of check+remove, such that S 0 ◦ S is an execution in A. By
step 11, either (1) Flag [0](π(G i)) = I 0 and Flag [1](π(G i)) = 1 − I 1

or (2) Flag [0](π(G i)) = 1 − I 0 and Flag [1](π(G i)) = I 1. Since Flag [j]
is changed only in operation c2 of process j , the value of Flag [j] that
each process j reads in c3 is Flag [j](π(G i)). By CF3 and definition of
operation c3, in case (1) we have w0 = w1 = v1, and in case (2) we have
w0 = w1 = v0.

12.4. G satisfies the Termination property.
Proof: We must show that each process i completes the execution of
propose in a finite number of steps. Process i clearly completes opera-
tions c1 and c3 in a finite number of steps. It completes c2 in a finite
number of steps because A is a non-blocking algorithm and i performs
either one or two executions of procedures of A.

12.5. Q.E.D.
Proof: Steps 12.2–12.4 show that G satisfies the properties required of
a consensus algorithm.

13. Q.E.D.
Proof: Step 12 contradicts the well-known result that there is no wait-
free consensus algorithm in which processes communicate only by shared
read/write variables [10, Chapter 12].

5.3 Impossibility with Multi-Writer One-Bit Flag

Theorem 2 There is no non-blocking algorithm that solves the mailbox prob-
lem with the access restriction when Flag is a one-bit multi-writer atomic
register.

Proof: The proof is by contradiction. Let A be a non-blocking algorithm
that solves the mailbox problem with the access restriction whenA’s variable
Flag is a one-bit multi-writer atomic register. As in the proof of Theorem 1,
we will use A to solve fault-tolerant consensus, which contradicts the impos-
sibility result of Fischer, Lynch, and Paterson [10, Chapter 12].
Through step 9 below, “execution” means a finite execution in A. For an
execution E , we let Flag(E) be the value of Flag after the last step of E .

31

1. We may assume that each process of A is deterministic, meaning that for
each execution E of A and each process i , there is at most one step s of
process i such that E ◦ 〈s 〉 is an execution of A.
Proof: The same as for step 1 of Theorem 1.

2. We may assume that every time a process intends to write some value v
to Flag in A, the process first reads Flag and, if it finds the value to be
v , then it does not perform the write.
Proof: We modify algorithm A by replacing each write of Flag with an
operation that performs a read and then writes only if it would change
the value. Because Flag is an atomic register, it is easy to see that this
modification preserves correctness.

3. For any 1-bit value F , there is a Boolean C (F) such that in every ex-
ecution that includes an execution of check , if Flag=F throughout the
execution of check , then that execution of check returns C (F).
Proof: By the mailbox problem’s access restriction, an execution of check
cannot write to shared variables, and it returns a value that depends only
on the values read from Flag . By assumption, the only value it reads is
F . By step 1, for each F there is a single value that can be returned in
this case.

Definition: An execution E is c-checkable iff E is complete and check -
enabled.

4. C (Flag(E)) = (N (E) > 0), for every c-checkable execution E .
Proof: By the Solo Check Result property.

5. If E is a c-checkable execution, N (E) = 0, and S is a solo execution in A
of deliver from E , then Flag(E ◦ S) = 1− Flag(E).
Proof: Clearly, E ◦ S is a c-checkable execution. By step 4, C (Flag(E ◦
S)) 6= C (Flag(E)). Hence, Flag(E ◦ S) 6= Flag(E), so Flag(E ◦ S) =
1− Flag(E) because Flag is either 0 or 1.

Definition: I ∆= Flag(〈 〉), the initial value of Flag .

6. C (I)=false and C (1− I)=true
Proof: By the Solo Execution Existence property, we can choose a solo
execution S in A of deliver from 〈 〉. Clearly, S is a c-checkable execution.
Since N (〈 〉) = 0 and I is defined to equal Flag(〈 〉), step 4 implies C (I) =
C (Flag(〈 〉)) = false. By step 5, Flag(S) = 1 − Flag(〈 〉) = 1 − I . Since
N (S) = 1, step 4 then implies C (1− I) = C (Flag(S)) = true.

7. Choose a solo execution S 0 in A of deliver from 〈 〉. Then S 0 is a c-
checkable execution and Flag(S 0) = 1− I .

32

Proof: S 0 exists by the Solo Execution Existence property, and clearly
it is a c-checkable execution. Step 5 implies Flag(S 0) = 1− I .

Definition: Let a check+remove+check operation consist of the following,
in order: (1) a call to check , (2) a call to remove if the check returns true,
and (3) a call to check .

8. If S is a solo execution in A of check+remove+check from S 0, then S
performs the remove.
Proof: By the Solo Check Result property, since N (S 0) = 1.

9. If S is a solo execution in A of deliver from S 0, then S has no steps that
write I to Flag .
Proof: We assume S has a step that writes I to Flag and obtain a
contradiction. Let S 1 be the prefix of S up to and including that step.
Then Flag(S 0 ◦ S 1) = I , and S 0 ◦ S 1 is check -enabled (since S 0 is c-
checkable). By the Solo Execution Existence property, we can choose a
solo execution S 2 in A of check from S 0 ◦S 1. Since N (S 0 ◦S 1) = 1, by the
Check-Correct property (Section 5.1, page 25), the check execution returns
true. But by steps 3 and 6, the check execution returns C (Flag(S 0 ◦
S 1)) = C (I) = false, which is the required contradiction.

Henceforth, “execution” no longer refers only to finite executions in A but to
executions of A or of the following algorithm C.
Definition: Let C be the (set of executions that define the) following two-
process algorithm. There is a copy of algorithm A initialized to the state at
the end of S 0. Each process i has a procedure propose(v) that performs the
following operations:

Process 0:
c01. write v to a shared register V [0] initialized to ⊥;
c02. use A to execute check+remove+check ;
c03. if the second check in operation c02 returned false

then read V [0] and return its value,
else read V [1] and return its value

Process 1:
c11. write v to a shared register V [1] initialized to ⊥;
c12. use A to execute deliver until either

(a) deliver returns, or

(b) the process is about to write 1−I to Flag , in which case execution
of deliver is stopped before the write occurs.

33

c13. if (a) occurs then read V [1] and return its value
if (b) occurs then read V [0] and return its value

Formally, the definition of C means that if G is an execution in C and S is
the sequence of steps from G performed (by both processes) in operation c02
and c12, then S 0 ◦ S is an execution in A, which we call π(G).

10. Algorithm C solves the consensus problem.
Proof: Let G be an execution of C, and let v j be the value with which
process j calls propose, or ⊥ if the process does not call propose. We
show that C satisfies the Uniform-Agreement, Validity, and Termination
properties of consensus (Section 5.1, page 26).
Definition: For i = 0, 1, let G i be the prefix of G up to when process
i stops executing A, or let G i equal ⊥ if process i never starts or never
stops executing A in G .
For each process i , the following properties of execution G follow directly
from the definition of C.
CF1. If process i returns from propose, then G i 6= ⊥.
CF2. If process i returns w i from propose, then w i is a value that process

i reads from V [i] or V [1−i] after the steps of G i .
CF3. v i and ⊥ are the only values that V [i] can equal during the exe-

cution, and it equals ⊥ iff process i has not yet written to V [i] in
operation c01 or c11.

10.1. If process i returns some value w i from propose in G , then w i 6= ⊥.
Proof: We assume w i = ⊥ and obtain a contradiction. By CF1, G i 6=
⊥. By CF2, w i is a value read from V [i] or V [1−i]. Since process i
can obviously not read V [i] = ⊥ in operation c03 or c13, w i must be
read from V [1−i]. By CF3, process 1−i does not write to V [1−i] in
G i , so process i completes operation c02 or c12 without process 1−i
having started operation c12 or c02. Thus, π(G i) = S 0 ◦ S where
S is either a solo execution in A of check+remove+check from S 0 or
the prefix3 of a solo execution in A of deliver from S 0. Note that
Flag(G i) = Flag(S ◦ S 0) because Flag is not written outside algorithm
A. We now consider the two possible values of i :

10.1.1. Case: i = 0
Then S is a solo execution in A of operation check+remove+check
from S 0. By step 8, this operation performs the remove. By the

3Remember that C may stop deliver in the middle of its execution.

34

Solo Check Result property, the last check execution in S 0 ◦S returns
false. By definition of C, process 0 reads V [0] and returns its value
(in execution G). CF3 and the fact that process i writes to V [i] in
G i implies w0 = v0 6= ⊥, which is the required contradiction that
proves step 10.1 for i = 0.

10.1.2. Case: i = 1
In S , process 1 executes deliver until one of these cases occur: (a) pro-
cess 1 returns from deliver or (b) process 1 is about to write 1 − I
to Flag . Hence, in S , process 1 does not write 1− I to Flag . Step 9
implies that process 1 does not write I to Flag either, and we argued
above that process 0 (process 1−i) does not start operation c02 and
hence does not write to Flag in G1. Thus, if process 1 reads Flag
in G1, it obtains Flag(S 0), which equals 1 − I by step 7. By step 2,
a process writes 1 − I to Flag only if it reads I from Flag , which
does not happen. Thus, case (b) above cannot occur. In case (a),
the definition of C implies that process 1 reads V [1] and returns its
value. Thus, CF3 and the fact that process 1 writes to V [1] in G1

imply w1 = v1 6= ⊥, which is the required contradiction that proves
step 10.1 for i = 1.

10.2. G satisfies the Validity property.
Proof: Clear from CF2, CF3, and 10.1.

10.3. G satisfies the Uniform-Agreement property.
Proof: It suffices to assume process 0 returns w0 and process 1 re-
turns w1 from their executions of propose in G and prove w0 = w1.
By CF1, G i 6= ⊥ for i = 0, 1. Moreover, π(G) = S 0 ◦ S for some se-
quence S such that S 0 ◦ S is in A, and S contains a single execution of
check+remove+check and the prefix of a single execution of deliver .

10.3.1. It is impossible to have w0 = v0 and w1 = v1.
Proof: We assume w0 = v0 and w1 = v1 and obtain a contradiction.
By definition of C, in G process 0 executes check+remove+check and
the second check returns false. It is impossible that Flag = 1 − I
throughout the execution of the second check , otherwise it would have
returned true by steps 3 and 6. Thus, Flag = I at some point in
the execution of the second check . Process 0 does not write 1 − I
to Flag in check by the mailbox problem’s access restriction, and
process 1 does not write 1− I to Flag during deliver by definition of
C. Thus Flag(S 0 ◦ S) = I . By the definition of C and the assumption
w1 = v1, process 1 completes its deliver operation. Thus, S 0 ◦ S

35

contains two deliver executions and one remove execution. Since the
second check returns false, execution S 0 ◦ S is c-checkable, so by
step 4 Flag(S 0 ◦ S) = I implies C (I) = true. This contradicts
step 6.

10.3.2. It is impossible to have w0 = v1 and w1 = v0.
Proof: We assume w0 = v1 and w1 = v0, and we obtain a con-
tradiction. By definition of algorithm C, in G process 0 executes
check+remove+check and the second check returns true, while pro-
cess 1 executes deliver and stops just before it is about to write 1− I
to Flag . By the Solo Execution Existence property, we can choose
S 1, S 2, and S 3 as follows:
• S 1 is a solo execution in A of remove from S 0 ◦ S (by process 0);
• S 2 is a single step by process 1 that writes 1− I to Flag (the step

it was about to take at the end of S 0 ◦ S); and
• S 3 is a solo execution in A of check from S 0 ◦ S ◦ S 1 ◦ S 2 (by

process 0).
Then, M (S 0 ◦ S ◦ S 1 ◦ S 2 ◦ S 3) = 0 by definition of M (Section 5.1,
page 25) and of S 0, S , S 1, S 2, and S 3. Thus, by the Check-Correct
property (Section 5.1, page 25), the check in S 3 returns false. How-
ever, Flag(S 0 ◦ S ◦ S 1 ◦ S 2) = 1 − I by definition of S 2, so steps 3
and 6 imply that the check in S 3 returns true. This is the required
contradiction.

10.3.3. Q.E.D.
Proof: CF3 and step 10.1 imply that each w i equals some v j . Steps
10.3.1 and 10.3.2 rule out the two possibilities in which w0 6= w1,
proving w0 = w1.

10.4. G satisfies the Termination property.
Proof: We must show that each process i completes the execution of
propose in a finite number of steps. Operations c01, c03, c11, and c13
clearly terminate. Operations c02 and c12 also terminate because A is a
non-blocking algorithm and there are at most three operation executions
of A in G . Hence, the execution of propose completes in a finite number
of steps.

10.5. Q.E.D.
Proof: Steps 10.2–10.4 show that G satisfies the properties required of
a consensus algorithm.

11. Q.E.D.

36

Proof: Step 10 contradicts the well-known result that there is no wait-
free consensus algorithm in which processes communicate only by shared
read/write variables [10, Chapter 12].

6 Conclusion

6.1 Related Work

The mailbox problem is the producer-consumer problem with an unbounded
number of buffers, the postman being the producer and the owner’s check
operation being the consumer’s test if there is a buffer to consume. With a
bounded number of buffers, the producer also has a check operation that tests
if there is an empty buffer. All previous solutions to the N -buffer producer-
consumer problem that we know of with single-writer shared variables require
each process’s check operation to read flags that can hold at least N + 1
values [7].

We can use our bounded signaling algorithm to implement an N -buffer
producer-consumer algorithm in which the shared variables read by check
have size independent of N . We simply let the read procedure return a
value indicating the result of both check operations. However, because the
write operation of our signaling algorithm is non-blocking, not wait-free, the
resulting producer-consumer algorithm is wait-free only with anO(N) bound
on waiting time. We can obtain a wait-free algorithm with constant waiting
time as follows by using two instances of a wait-free mailbox algorithm. In
the first instance, the postman is the producer and the letters in the mailbox
represent filled buffers; in the second, the owner is the producer and the
letters represent empty buffers. Initially, the first mailbox has no letters and
the second has N letters. It is easy to fill in the details.

Ellen et al. [2] define a SNZI object that is similar to a mailbox. It con-
sists of an internal counter accessed with increment , decrement , and test-for-
nonzero operations. (They call these operations arrive, depart, and query,
respectively.) They give a linearizable implementation for any number of
processes in which the test-for-nonzero operation is efficient, just reading a
single bit. At first glance, it appears that there is a trivial solution to the
mailbox problem using a SNZI object: just implement deliver with incre-
ment, check with test-for-nonzero, and remove with decrement . However,
this doesn’t work because of the following restriction on the use of a SNZI
object: if the counter is zero and increment is called, then decrement can
be called only after increment returns. For example, if initially the postman
calls increment and the owner calls test-for-nonzero and obtains true, then

37

this restriction requires the owner to wait for the postman’s call to return
before she can call decrement . (The restriction does not affect the intended
applications of SNZI objects, in which a process calls decrement only to can-
cel its own previous increment .) The SNZI implementation also differs from
our algorithms because it uses compare-and-swap instructions rather than
just read and write.

6.2 Summary and Open Problems

We have introduced the mailbox problem, which abstracts the use of inter-
rupts to synchronize threads or hardware devices. The need for an efficient
mechanism to determine if an interrupt has occurred is expressed by the
mailbox problem’s access restriction that check reads only a small amount
of shared memory and returns a value that depends only on what it reads.
We presented a bounded wait-free algorithm using two flags that assume 14
values each, and we gave impossibility results for 1-bit flags. We do not
know if there is an algorithm with 1-bit flags under a weaker access restric-
tion that allows the value returned by check to depend on process-local state
that it remembers across executions of the procedure. Another open ques-
tion is whether the space efficiency can be improved. Our algorithms use
Θ(n log n) bits of shared memory, where n is the number of executions of
deliver and remove. We conjecture that there is a solution using logarithmic
space.

We have also generalized the mailbox problem to the signaling problem,
in which the two processes can each write its own value and read a function F
of the two values. The size of the shared state accessed by the read operation
must depend only on the size of the result obtained by applying F to the
values, not on the size of the values themselves. We presented a non-blocking
solution to this problem. We don’t know if a wait-free solution exists.

References

[1] Martín Abadi and Leslie Lamport. The existence of refinement map-
pings. Theoretical Computer Science, 82(2):253–284, May 1991.

[2] Faith Ellen, Yossi Lev, Victor Luchangco, and Mark Moir. Snzi: scal-
able nonzero indicators. In PODC ’07: Proceedings of the Twenty-Sixth
Annual ACM Symposium on Principles of Distributed Computing, pages
13–22, New York, NY, USA, August 2007. ACM.

38

[3] Maurice P. Herlihy. Wait-free synchronization. ACM Transactions on
Programming Languages and Systems, 13(1):124–149, January 1991.

[4] M.P. Herlihy and J.M. Wing. Axioms for concurrent objects. In Proceed-
ings of the Fourteenth Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 13–26, Munich, January
1987. ACM.

[5] Leslie Lamport. The pluscal algorithm language. URL http:
//research.microsoft.com/users/lamport/tla/pluscal.html. The
page can also be found by searching the Web for the 25-letter string
obtained by removing the “-” from uid-lamportpluscalhomepage.

[6] Leslie Lamport. A new solution of Dijkstra’s concurrent programming
problem. Communications of the ACM, 17(8):453–455, August 1974.

[7] Leslie Lamport. Proving the correctness of multiprocess programs.
IEEE Transactions on Software Engineering, SE-3(2):125–143, March
1977.

[8] Leslie Lamport. The temporal logic of actions. ACM Transactions on
Programming Languages and Systems, 16(3):872–923, May 1994.

[9] Butler W. Lampson and David D. Redell. Experience with processes
and monitors in mesa. Communications of the ACM, 23(2):105–117,
February 1980.

[10] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann, San Ma-
teo, California, 1995.

[11] Jerome H. Saltzer. Traffic control in a multiplexed computer system.
Project MAC Technical Report MAC-TR-30, M.I.T., June 1966.

[12] Yuan Yu, Panagiotis Manolios, and Leslie Lamport. Model checking
TLA+ specifications. In Laurence Pierre and Thomas Kropf, editors,
Correct Hardware Design and Verification Methods, volume 1703 of Lec-
ture Notes in Computer Science, pages 54–66, Berlin, Heidelberg, New
York, September 1999. Springer-Verlag. 10th IFIP wg 10.5 Advanced
Research Working Conference, CHARME ’99.

39

