
56b

The Mutual Exclusion Problem

Part II: Statement and Solutions

L. Lamport1

Digital Equipment Corporation

6 October 1980

Revised:
1 February 1983

1 May 1984
27 February 1985

June 26, 2000

To appear in Journal of the ACM

1Most of this work was performed while the author was at SRI International,
where it was supported in part by the National Science Foundation under grant
number MCS-7816783.

Abstract

The theory developed in Part I is used to state the mutual exclusion problem
and several additional fairness and failure-tolerance requirements. Four “dis-
tributed” N -process solutions are given, ranging from a solution requiring
only one communication bit per process that permits individual starvation,
to one requiring about N ! communication bits per process that satisfies every
reasonable fairness and failure-tolerance requirement that we can conceive
of.

Contents

1 Introduction 3

2 The Problem 4
2.1 Basic Requirements . 4
2.2 Fairness Requirements . 6
2.3 Premature Termination . 8
2.4 Failure . 10

3 The Solutions 14
3.1 The Mutual Exclusion Protocol 15
3.2 The One-Bit Solution . 17
3.3 A Digression . 21
3.4 The Three-Bit Algorithm . 22
3.5 FCFS Solutions . 26

4 Conclusion 32

1

List of Figures

1 The One-Bit Algorithm: Process i 17
2 The Three-Bit Algorithm: Process i 24
3 The N -Bit FCFS Algorithm: Process i 28
4 The N !-Bit FCFS Algorithm: Process i. 31

2

1 Introduction

This is the second part of a two-part paper on the mutual exclusion problem.
In Part I [9], we described a formal model of concurrent systems and used it
to define a primitive interprocess communication mechanism (communica-
tion variables) that assumes no underlying mutual exclusion. In this part,
we consider the mutual exclusion problem itself.

The mutual exclusion problem was first described and solved by Dijkstra
in [2]. In this problem, there is a collection of asynchronous processes,
each alternately executing a critical and a noncritical section, that must be
synchronized so that no two processes ever execute their critical sections
concurrently. Dijkstra’s original solution was followed by a succession of
others, starting with [6].

These solutions were motivated by practical concerns—namely, the need
to synchronize multiprocess systems using the primitive operations provided
by the hardware. More recent computers usually provide sophisticated syn-
chronization primitives that make it easy to achieve mutual exclusion, so
these solutions are of less practical interest today. However, mutual exclu-
sion lies at the heart of most concurrent process synchronization, and the
mutual exclusion problem is still of great theoretical significance. This paper
carefully examines the problem and presents new solutions of theoretical in-
terest. Although some of them may be of practical value as well—especially
in distributed systems—we do not concern ourselves here with practicality.

All of the early solutions assumed a central memory, accessible by all
processes, which was typical of the hardware in use at the time. Imple-
menting such a central memory requires some mechanism for guaranteeing
mutually exclusive access to the individual memory cells by the different
processes. Hence, these solutions assume a lower-level “hardware” solution
to the very problem they are solving. From a theoretical standpoint, they
are thus quite unsatisfactory as solutions to the mutual exclusion problem.
The first solution that did not assume any underlying mutual exclusion was
given in [10]. However, it required an unbounded amount of storage, so it
too was not theoretically satisfying. The only other published solution we
are aware of that does not assume mutually exclusive access to a shared
resource is by Peterson [18].

Here, in Part II, we present four solutions that do not assume any under-
lying mutual exclusion, using the concurrently accessible registers defined in
Part I [9]. They are increasingly stronger, in that they satisfy stronger con-
ditions, and more expensive, in that they require more storage. The precise

3

formulation of the mutual exclusion problem and of the various fairness and
failure-tolerance assumptions, is based upon the formalism of Part I.

2 The Problem

We now formally state the mutual exclusion problem, including a number
of different requirements that one might place upon a solution. We exclude
from consideration only the following types of requirements.

• Efficiency requirements involving space and time complexity.

• Probabilistic requirements, stating that the algorithm need only work
with probability one. (Solutions with this kind of requirement have
recently been studied by Rabin [19].)

• Generalizations of the mutual exclusion problem, such as allowing
more than one process in the critical section at once under certain
conditions [4, 14], or giving the processes different priorities [14].

Except for these exclusions and one other omission (r-bounded waiting) men-
tioned below, we have included every requirement we could think of that one
might reasonably want to place upon a solution.

2.1 Basic Requirements

We assume that each process’s program contains a noncritical section state-
ment and a critical section statement, which are executed alternately. These
statements generate the following sequence of elementary operation execu-
tions in process i:

NCS [1]
i −→ CS [1]

i −→ NCS [2]
i −→ CS [2]

i −→ · · ·

where NCS [k]
i denotes the kth execution of process i’s noncritical section,

CS [k]
i denotes the kth execution of its critical section, and −→ is the prece-

dence relation introduced in Part I. Taking NCS [k]
i and CS [k]

i to be ele-
mentary operation executions simply means that we do not assume any
knowledge of their internal structure, and does not imply that they are of
short duration.

We assume that the CS [k]
i are terminating operation executions, which

means that process i never “halts” in its critical section. However, NCS [k]
i

4

may be nonterminating for some k, meaning that process i may halt in its
noncritical section.

The most basic requirement for a solution is that it satisfy the following:

Mutual Exclusion Property: For any pair of distinct processes i and j,
no pair of operation executions CS [k]

i and CS [k′]
j are concurrent.

In order to implement mutual exclusion, we must add some synchroniza-
tion operations to each process’s program. We make the following require-
ment on these additional operations.

No other operation execution of a process can be concurrent with
that process’s critical or noncritical section operation executions.

This requirement was implicit in Dijkstra’s original statement of the prob-
lem, but has apparently never been stated explicitly before.

The above requirement implies that each process’s program may be writ-
ten as follows:

initial declaration;
repeat forever

noncritical section ;
trying ;
critical section ;
exit ;

end repeat

The trying statement is what generates all the operation executions between
a noncritical section execution and the subsequent critical section execution,
and the exit statement generates all the operation executions between a crit-
ical section execution and the subsequent noncritical section execution. The
initial declaration describes the initial values of the variables. A solution
consists of a specification of the initial declaration, trying and exit state-
ments.

A process i therefore generates the following sequence of operation exe-
cutions:

NCS [1]
i −→ trying [1]

i −→ CS [1]
i −→ exit [1]

i −→ NCS [2]
i −→ · · ·

where trying [1]
i denotes the operation execution generated by the first exe-

cution of the trying statement, etc.

5

The second basic property that we require of a solution is that there
be no deadlock. Deadlock occurs when one or more processes are “trying
to enter” their critical sections, but no process ever does. To say that a
process tries forever to enter its critical section means that it is performing
a nonterminating execution of its trying statement. Since every critical sec-
tion execution terminates, the absence of deadlock should mean that if some
process’s trying statement doesn’t terminate, then other processes must be
continually executing their critical sections. However, there is also the possi-
bility that a deadlock occurs because all the processes are stuck in their exit
statements. The possibility of a nonterminating exit execution complicates
the statement of the properties and is of no interest here, since the exit
statements in all our algorithms consist of a fixed number of terminating
operations. We will therefore simply require of an algorithm that every exit
execution terminates.

The absence of deadlock can now be expressed formally as follows:

Deadlock Freedom Property: If there exists a nonterminating trying op-
eration execution, then there exist an infinite number of critical section
operation executions.

These two properties, mutual exclusion and deadlock freedom, were the
requirements for a mutual exclusion solution originally stated by Dijkstra
in [2]. (Of course, he allowed mutually exclusive access to a shared variable
in the solution.) They are the minimal requirements one might place on a
solution.

2.2 Fairness Requirements

Deadlock freedom means that the entire system of processes can always
continue to make progress. However, it does not preclude the possibility
that some individual process may wait forever in its trying statement. The
requirement that this cannot happen is expressed by:

Lockout Freedom Property: Every trying operation execution must ter-
minate.

This requirement was first stated and satisfied by Knuth in [6].
Lockout freedom means that any process i trying to enter its critical

section will eventually do so, but it does not guarantee when. In particular,
it allows other processes to execute their critical sections arbitrarily many
times before process i executes its critical section. We can strengthen the

6

lockout freedom property by placing some kind of fairness condition on the
order in which trying processes are allowed to execute their critical sections.

The strongest imaginable fairness condition is that if process i starts to
execute its trying statement before process j does, then i must execute its
critical section before j does. Such a condition is not expressible in our
formalism because “starting to execute” is an instantaneous event, and such
events are not part of the formalism. However, even if we were to allow
atomic operations—including atomic reads and writes of communication
variables—so our operations were actually instantaneous events, one can
show that this condition cannot be satisfied by any algorithm. The reason
is that with a single operation, a process can either tell the other processes
that it is in its trying statement (by performing a write) or else check if
other processes are in their trying statements (by performing a read), but
not both. Hence, if two processes enter their trying statements at very
nearly the same time, then there will be no way for them to decide which
one entered first. This result can be proved formally, but we will not bother
to do so.

The strongest fairness condition that can be satisfied is the following
first-come-first-served (FCFS) condition. We assume that the trying state-
ment consists of two substatements—a doorway whose execution requires
only a bounded number of elementary operation executions (and hence al-
ways terminates), followed by a waiting statement. We can require that if
process i finishes executing its doorway statement before process j begins
executing its doorway statement, then i must execute its critical section
before j does. Letting doorway [k]

i and waiting [k]
i denote the kth execution

of the doorway and waiting statements by process i, this condition can be
expressed formally as follows.

First-Come-First-Served Property: For any pair of processes i and j

and any execution CS [m]
j : if doorway [k]

i −→ doorway [m]
j , then CS [k]

i −→
CS [m]

j .

(The conclusion means that CS [k]
i is actually executed.)

The FCFS property states that processes will not execute their critical
sections “out of turn”. However, it does not imply that any process ever
actually executes its critical section. In particular, FCFS does not imply
deadlock freedom. However, FCFS and deadlock freedom imply lockout
freedom, as we now show.

Theorem 1 FCFS and deadlock freedom imply lockout freedom.

7

Proof : Suppose trying [k]
i is nonterminating. Since there are a finite number

of processes, the deadlock freedom property implies that some process j

performs an infinite number of CS [m]
j executions, and therefore an infinite

number of doorway [m]
j executions. It then follows from Axiom A5 of Part I

that doorway [k]
i −→ doorway [m]

j for some m. The FCFS property then
implies the required contradiction.

The requirement that executing the doorway take only a bounded num-
ber of elementary operation executions means that a process does not have
to wait inside its doorway statement. Formally, the requirement is that
there be some a priori bound—the same bound for any possible execution
of the algorithm—on the number of elementary operation executions in each
doorway [k]

i . Had we only assumed that the doorway executions always ter-
minate, then any lockout free solution is always FCFS, where the doorway
is defined to be essentially the entire trying statement. This requirement
seems to capture the intuitive meaning of “first-come-first-served”. A weaker
notion of FCFS was introduced in [17], where it was only required that a
process in its doorway should not have to wait for a process in its critical or
noncritical section. However, we find that definition rather arbitrary.

Michael Fischer has also observed that a FCFS algorithm should not
force a process to wait in its exit statement. Once a process has finished
executing its critical section, it may execute a very short noncritical section
and immediately enter its trying statement. In this case, the exit statement
is effectively part of the next execution of the doorway , so it should involve
no waiting. Hence, any exit [k]

i execution should consist of only a bounded
number of elementary operation executions for a FCFS solution. As we
mentioned above, this is true of all the solutions described here.

An additional fairness property intermediate between lockout freedom
and FCFS, called r-bounded waiting , has also been proposed [20]. It states
that after process i has executed its doorway , any other process can enter
its critical section at most r times before i does. Its formal statement is
the same as the above statement of the FCFS property, except with CS [m]

j

replaced by CS [m+r]
j .

2.3 Premature Termination

Thus far, all our properties have been constraints upon what the processes
may do. We now state some properties that give processes the freedom to

8

behave in certain ways not explicitly indicated by their programs. We have
already required one such property by allowing nonterminating executions
of the noncritical section—i.e., we give the process the freedom to halt in
its noncritical section. It is this requirement that distinguishes the mutual
exclusion problem from a large class of synchronization problems known as
“producer/consumer” problems [1]. For example, it prohibits solutions in
which processes must take turns entering their critical section.

We now consider two kinds of behavior in which a process can return to
its noncritical section from any arbitrary point in its program. In the first,
a process stops the execution of its algorithm by setting its communication
variables to certain default values and halting. Formally, this means that
anywhere in its algorithm, a process may execute the following operation:

begin
set all communication variables to their default values;
halt

end

For convenience, we consider the final halting operation execution to be a
nonterminating noncritical section execution. The default values are spec-
ified as part of the algorithm. For all our algorithms, the default value of
every communication variable is the same as its initial value.

This type of behavior has been called “failure” in previous papers on
the mutual exclusion problem. However, we reserve the term “failure” for
a more insidious kind of behavior, and call the above behavior shutdown. If
the algorithm satisfies a property under this type of behavior, then it is said
to be shutdown safe for that property.

Shutdown could represent the physical situation of “unplugging” a pro-
cessor. Whenever a processor discovers that another processor is unplugged,
it does not try to actually read that processor’s variables, but instead uses
their default values. We require that the processor never be “plugged back
in” after it has been unplugged. We show below that this is really equivalent
to requiring that the processor remain unplugged for a sufficiently long time.

The second kind of behavior is one in which a process deliberately aborts
the execution of its algorithm. Abortion is the same as shutdown except for
three things:

• The process returns to its noncritical section instead of halting.

• Some of its communication variables are left unchanged. (Which ones
are specified as part of the algorithm.)

9

• A communication variable is not set to its default value if it already
has that value.1

Formally, an abortion is an operation execution consisting of a collec-
tion of writes that set certain of the process’s communication variables to
their default values, followed by (−→) a noncritical section execution. (The
noncritical section execution may then be followed by a trying statement
execution—or by another abortion.) For our algorithms, the value of a com-
munication variable is set by an abortion if there is an explicitly declared
initial value for the variable, otherwise it is left unchanged by the abortion.
If an algorithm satisfies a property with this type of behavior, then it is said
to be abortion safe for that property.

2.4 Failure

Shutdown and abortion describe fairly reasonable kinds of behavior. We
now consider unreasonable kinds of behavior, such as might occur in the
event of process failure. There are two kinds of faulty behavior that a failed
process could exhibit.

• Unannounced death, in which it halts undetectably.

• Malfunctioning , in which it keeps setting its state, including the values
of its communication variables, to arbitrary values.

An algorithm that can handle the first type of faulty behavior must use real-
time clocks, otherwise there is no way to distinguish between a process that
has died and one that is simply pausing for a long time between execution
steps. An example of an algorithm (not a solution to our mutual exclusion
problem) that works in the presence of such faulty behavior can be found in
[8]. Consideration of this kind of behavior is beyond the scope of this paper.

A malfunctioning process obviously cannot be prevented from executing
its critical section while another process’s critical section execution is in
progress. However, we may still want to guarantee mutual exclusion among
the nonfaulty processes. We therefore assume that a malfunctioning process
does not execute its critical section. (A malfunctioning process that executes

1Remember that setting a variable to its old value is not a “no-op”, since a read that
is concurrent with that operation may get the wrong value. If communication variables
were set every time the process aborted, repeated abortions would be indistinguishable
from the “malfunctioning” behavior considered below.

10

its critical section code is simply defined not to be executing its critical
section.)

A malfunctioning process can also disrupt things by preventing nonfaulty
processes from entering their critical sections. This is unavoidable, since a
process that malfunctions after entering its critical section could leave its
communication variables in a state indicating that it is still in the critical
section. What we can hope to guarantee is that if the process stops malfunc-
tioning, then the algorithm will resume its normal operation. This leaves
two types of behavior to be considered, which differ in how a process stops
malfunctioning.

The first type of failure allows a failed process to execute the following
sequence of actions.

• It malfunctions for a while, arbitrarily changing the values of its com-
munication variables.

• It then aborts—setting all its communication variables to some default
values.

• It then resumes normal behavior, never again malfunctioning.

This behavior represents a situation in which a process fails, its failure is
eventually detected and it is shut down, and the process is repaired and
restored to service. The assumption that it never again malfunctions is
discussed below.

Formally, this means that each process may perform at most one oper-
ation execution composed of the following sequence of executions (ordered
by the −→ relation):

• A malfunction execution, consisting of a finite collection of writes to
its communication variables.

• A collection of writes that sets each communication variable to its
default value.

• A noncritical section execution.

The above operation execution will be called a failure. If a property of
a solution remains satisfied under this kind of behavior, then the solution is
said to be fail safe for that property. Note that we do not assume failure
to be detectable; one process cannot tell that another has failed (unless it

11

can infer from the values of the other process’s variables that a failure must
have occurred).

The second type of failure we consider is one in which a process malfunc-
tions, but eventually stops malfunctioning and resumes forever its normal
behavior, starting in any arbitrary state. This behavior represents a tran-
sient fault.

If such a failure occurs, we cannot expect the system immediately to
resume its normal operation. For example, the malfunctioning process might
resume its normal operation just at the point where it is about to enter
its critical section—while another process is executing its critical section.
The most we can require is that after the process stops malfunctioning, the
system eventually resumes its correct operation.

Since we are interested in the eventual operation, we need only consider
what happens after every process has stopped malfunctioning. The state of
the system at that time can be duplicated by starting all processes at arbi-
trary points in their program, with their variables having arbitrary values.
In other words, we need only consider the behavior obtained by having each
process do the following:

• Execute a malfunction operation.

• Then begin normal execution at any point in its program.

This kind of behavior will be called a transient malfunction. Any operation
execution that is not part of the malfunction execution will be called a
normal operation execution.

Unfortunately, deadlock freedom and lockout freedom cannot be achieved
under this kind of transient malfunction behavior without a further assump-
tion. To see why, suppose a malfunctioning process sets its communication
variables to the values they should have while executing its critical section,
and then begins normal execution with a nonterminating noncritical section
execution. The process will always appear to the rest of the system as if
it is executing its critical section, so no other process can ever execute its
critical section.

To handle this kind of behavior, we must assume that a process executing
its noncritical section will eventually set its communication variables to their
default values. Therefore, we assume that instead of being elementary, the
noncritical section executions are generated by the following program:

12

while ?
do abort ;

noncritical operation od

where the “?” denotes some unknown condition, which could cause the while
to be executed forever, and every execution of the noncritical operation ter-
minates. Recall that an abort execution sets certain communication vari-
ables to their default values if they are not already set to those values.

We now consider what it means for a property to hold “eventually”.
Intuitively, by “eventually” we mean “after some bounded period of time”
following all the malfunctions. However, we have not introduced any concept
of physical time. The only unit of time implicit in our formalism is the time
needed to perform an operation execution. Therefore, we must define “after
some bounded period of time” to mean “after some bounded number of
operation executions”. The definition we need is the following.

Definition 1 A system step is an operation execution consisting of one
normal elementary operation execution from every process. An operation
execution A is said to occur after t system steps if there exist system steps
S1, . . . , St such that S1 −→ · · · −→ St −→ A.

It is interesting to note that we could introduce a notion of time by
defining the “time” at which an operation occurs to be the maximum t
such that the operation occurs after t system steps (or 0 if there is no such
t). Axioms A5 and A6 of Part I imply that this maximum always exists.
Axiom A5 and the assumption that there are no nonterminating elementary
operation executions imply that “time” increases without bound—i.e., there
are operations occurring at arbitrarily large “times”. Since we only need the
concept of eventuality, we will not consider this way of defining “time”.

We can now define what it means for a property to hold “eventually”.
Deadlock freedom and lockout freedom state that something eventually
happens—for example, deadlock freedom states that so long as some process
is executing its trying operation, then some process eventually executes its
critical section. Since “eventually X eventually happens” is equivalent to
“X eventually happens”, requiring that these two properties eventually hold
is the same as simply requiring that they hold.

We say that the mutual exclusion and FCFS properties eventually hold if
they can be violated only for a bounded “length of time”. Thus, the mutual
exclusion property eventually holds if there is some t such that any two
critical section executions CS [k]

i and CS [m]
j that both occur after t system

13

steps are not concurrent. Similarly, the FCFS property holds eventually if it
holds whenever both the doorway executions occur after t system steps. The
value of t must be independent of the particular execution of the algorithm,
but it may depend upon the number N of processes.

If a property eventually holds under the above type of transient mal-
function behavior, then we say that the algorithm is self-stabilizing for that
property. The concept of self-stabilization is due to Dijkstra [3].

Remarks On “Forever”

In our definition of failure, we could not allow a malfunctioning process to fail
again after it had resumed its normal behavior, since repeated malfunction-
ing and recovery can be indistinguishable from continuous malfunctioning.
However, if an algorithm satisfies any of our properties under the assumption
that a process may malfunction only once, then it will also satisfy the prop-
erty under repeated malfunctioning and recovery—so long as the process
waits long enough before malfunctioning again.

The reason for this is that all our properties require that something either
be true at all times (mutual exclusion, FCFS) or that something happen
in the future (deadlock freedom, lockout freedom). If something remains
true during a malfunction, then it will also remain true under repeated
malfunctioning. If something must happen eventually, then because there
is no “crystal ball” operation that can tell if a process will abort in the
future,2 another malfunction can occur after the required action has taken
place. Therefore, an algorithm that is fail safe for such a property must also
satisfy the property under repeated failure, if a failed process waits long
enough before executing its trying statement again. Similar remarks apply
to shutdown and transient malfunction.

3 The Solutions

We now present four solutions to the mutual exclusion problem. Each one is
stronger than the preceding one in the sense that it satisfies more properties,
and is more expensive in that it requires more communication variables.

2Such operations lead to logical contradictions—e.g., if one process executes “set x true
if process i will abort”, and process i executes “abort if x is never set true”.

14

3.1 The Mutual Exclusion Protocol

We first describe the fundamental method for achieving mutual exclusion
upon which all the solutions are based. Each process has a communication
variable that acts as a synchronizing “flag”. Mutual exclusion is guaranteed
by the following protocol: in order to enter its critical section, a process must
first set its flag true and then find every other process’s flag to be false.
The following result shows that this protocol does indeed ensure mutual
exclusion, where v and w are communication variables, as defined in Part I,
that represent the flags of two processes, and A and B represent executions
of those processes’ critical sections.

Theorem 2 Let v and w be communication variables, and suppose that for
some operation executions A and B and some k and m:

• V [k] −→ read w = false −→ A.

• W [m] −→ read v = false −→ B.

• v[k] = w[m] = true.

• If V [k+1] exists then A −→ V [k+1].

• If W [m+1] exists then B −→ W [m+1].

Then A and B are not concurrent.

We first prove the following result, which will be used in the proof of the
theorem. Its statement and proof use the formalism developed in Part I.

Lemma 1 Let v be a communication variable and R a read v = false op-
eration such that:

1. v[k] = true

2. V [k] ✮R

3. R / ✮V [k]

Then V [k+1] must exist and V [k+1] ✮R.

Proof : Intuitively, the assumptions mean that V [k] “effectively precedes” R,
so R can’t see any value written by a write that precedes V [k]. Since R does

15

not obtain the value written by V [k], it must be causally affected by a latter
write operation V [k+1]. We now formalize this reasoning.

By A3 and the assumption that the writes of v are totally ordered,
hypothesis 2 implies that V [i] ✮ R for all i ≤ k. If R ✮ V [i] for some
i < k, then A3 would imply R ✮ V [k], contrary to hypothesis 3. Hence,
we conclude that R is effectively nonconcurrent with V [i] for all i ≤ k. If
V [k] were the last write to v, hypothesis 2 and C2 would imply that R has
to obtain the value true, contrary to hypothesis 1. Therefore, the operation
V [k+1] must exist.

We now prove by contradiction that V [k+1] ✮ R. Suppose to the
contrary that V [k+1] / ✮ R. C3 then implies that R ✮ V [k+1] which,
by A3 implies R ✮ V [i] for all i ≥ k + 1. A3 and the assumption that
V [k+1] / ✮R, implies that V [i] / ✮R for all i ≥ k+1. Since we have already
concluded that V [i] ✮R for all i ≤ k, C2 implies that R must obtain the
value true, which contradicts hypothesis 1. This completes the proof that
V [k+1] ✮R.

Proof of Theorem: By C3, we have the following two possibilities:

1. read w = false ✮W [m].

2. W [m] ✮ read w = false.

(These are not disjoint possibilities.) We consider case 1 first. Combining 1
with the first two hypotheses of the theorem, we have

V [k] −→ read w = false ✮W [m] −→ read v = false

By A4, this implies V [k] −→ read v = false. A2 and the lemma then imply
that V [k+1] exists and V [k+1] ✮ read v = false . Combining this with the
fourth and second hypotheses gives

A −→ V [k+1] ✮ read v = false −→ B

By A4, this implies A −→ B, completing the proof in case 1.
We now consider case 2. Having already proved the theorem in case 1, we

can make the additional assumption that case 1 does not hold, so read w =
false / ✮ W [m]. We can then apply the lemma (substituting w for v and
m for k) to conclude that W [m+1] exists and W [m+1] ✮ read w = false .
Combining this with the first and last hypotheses gives

B −→ W [m+1]
✮ read w = false −→ A

16

private variable: j with range 1 . . . N ;

communication variable: xi initially false;

repeat forever
noncritical section;

l: xi := true;
for j := 1 until i − 1

do if xj then xi := false;
while xj do od;
goto l

fi
od;

for j := i + 1 until N

do while xj do od od;
critical section;
xi := false

end repeat

Figure 1: The One-Bit Algorithm: Process i

A4 now implies B −→ A, proving the theorem for this case.

We have written the proof of this theorem in full detail to show how
A1–A4 and C0–C3 are used. In the remaining proofs, we will be more terse,
leaving many of the details to the reader.

3.2 The One-Bit Solution

We now use the above protocol to obtain a mutual exclusion solution that
requires only the single (one-bit) communication variable xi for each process
i. Obviously, no solution can work with fewer communication variables. This
solution was also discovered independently by J. Burns. The algorithm for
process i is shown in Figure 1, and its correctness properties are given by
the following result.

Theorem 3 The One-Bit Algorithm satisfies the mutual exclusion and dead-
lock freedom properties, and is shutdown safe and fail safe for these proper-
ties.

Proof : To prove the mutual exclusion property, we observe that the above
protocol is followed by the processes. More precisely, the mutual exclusion

17

property is proved using Theorem 2, substituting xi for v, xj for w, CS [k]
i

for A and CS [k′]
j for B. This protocol is followed even under shutdown and

failure behavior, so the algorithm is shutdown safe and fail safe for mutual
exclusion. To prove deadlock freedom, we first prove the following lemma.

Lemma 2 Any execution of the second for loop must terminate, even under
shutdown and failure behavior.

Proof : The proof is by contradiction. Let i be any process that executes a
nonterminating second for loop. Then before entering the loop, i performs
a finite number of write xi executions, with the final one setting xi true. We
now prove by contradiction that every other process can also execute only a
finite number of writes to its communication variable. Let k be the lowest-
numbered process that performs an infinite number of write xk executions.
Process k executes statement l infinitely many times. Since every lower-
numbered process j executes only a finite number of writes to xj, A5, A2
and C2 imply that all but a finite number of reads of xj by k must obtain its
final value. For k to execute statement l infinitely many times (and not get
trapped during an execution of the first for loop’s while statement), this
final value must be false for every j < k. This implies that k can execute its
first for loop only finitely many times before it enters its second for loop.
But since the final value of xi is true, this means that k < i, and that k can
execute its second for loop only finitely many times before being trapped
forever in the “while xi” statement in its second for loop. This contradicts
the assumption that k performs an infinite number of write xk executions.

We have thus proved that if the execution of the second for loop of
any process is nonterminating, then every process can execute only a finite
number of writes to its communication variable. The final value of a process’s
communication variable can be true only if the process executes its second
for loop forever. Letting i be the highest-numbered process executing a
nonterminating second for loop, so the final value of xj is false for every
j > i, we easily see that i must eventually exit this for loop, providing the
required contradiction. Hence, every execution of the second for loop must
eventually terminate.

Proof of Theorem (continued): We now complete the proof of the theo-
rem by showing that the One-Bit Algorithm is deadlock free. Assume that
some process performs a nonterminating trying execution. Let i be the low-
est numbered process that does not execute a nonterminating noncritical

18

section. (There is at least one such process—the one performing the non-
terminating trying execution.) Each lower numbered process j performs a
nonterminating noncritical section execution after setting its communica-
tion variable false. (This is true for shutdown and failure behavior too.) It
follows from A5, A2 and C2 that if i performs an infinite number of reads
of the variable xj, then all but a finite number of them must return the
value false. This implies that every execution of the first for loop of process
i must terminate. But, by the above lemma, every execution of its second
for loop must also terminate. Since we have assumed that every execution
of its noncritical section terminates, this implies that process i performs an
infinite number of critical section executions, completing the proof of the
theorem.

The One-Bit Algorithm as written in Figure 1 is not self-stabilizing for
mutual exclusion or deadlock freedom. It is easy to see that it is not self-
stabilizing for deadlock freedom, since we could start all the processes in the
while statement of the first for loop with their communication variables all
true. It isn’t self-stabilizing for mutual exclusion because a process could be
started in its second for loop with its communication variable false, remain
there arbitrarily long, waiting as higher numbered processes repeatedly exe-
cute their critical sections, and then execute its critical section while another
process is also executing its critical section.

The One-Bit Algorithm is made self-stabilizing for both mutual exclusion
and deadlock freedom by modifying each of the while loops so they read
the value of xi and correct its value if necessary. In other words, we place

if xi then xi := false

in the body of the first for loop’s while statement, and likewise for the
second for loop (except setting xi true there). We now prove that this mod-
ification makes the One-Bit Algorithm self-stabilizing for mutual exclusion
and deadlock freedom.

Theorem 4 With the above modification, the One-Bit Algorithm is self-
stabilizing for mutual exclusion and deadlock freedom.

Proof : It is easy to check that the proof of the deadlock freedom property in
Theorem 3 is valid under the behavior assumed for self-stabilization, so the
algorithm is self-stabilizing for deadlock freedom. To prove that it is self-
stabilizing for mutual exclusion, we have to show that the mutual exclusion
protocol is followed after a bounded number of system steps. It is easy to

19

verify that this is true so long as every process that is in its second for loop
(or past the point where it has decided to enter its second for loop) exits
from that loop within a bounded number of system steps.3 We prove this
by “backwards induction” on the process number.

To start the induction, we observe that since its second for loop is empty,
process N must exit that for loop within some bounded number t(N) of
system steps. To complete the induction step, we assume that if j > i then
process j must exit its second for loop within t(j) system steps of when it
entered, and we prove that if process i is in its second for loop (after the
malfunction), then it must eventually exit. We define the following sets:

S1: The set of processes waiting in their second for loop for a process
numbered less than or equal to i.

S2: The set of processes waiting in their first for loop for a process in S1.

S3: The set of processes in their trying statement.

If process i is in its second for loop, then within a bounded number of steps
it either leaves that loop or else sets xi true. In the latter case, no process
that then enters its trying section can leave it before process i does. Each
higher-numbered process that is in its second for loop must leave it in a
bounded number of system steps, whereupon any other process that is in
its second for loop past the test of xi must exit that loop within a bounded
number of system steps. It follows that within a bounded number of steps,
if process i is still in its second for loop, then the system execution reaches
a point at which each of the three sets Sm cannot get smaller until i sets xi

false. It is then easy to see that once this has happened, within a bounded
number of steps, one of the following must occur:

• Process i exits its second for loop.

• Another process joins the set S3.

• A process in S3 joins S1 or S2.

Since there are only N processes, there is a bound on how many times the
second two can occur. Therefore, the first possibility must occur within a
bounded number of system steps, completing the proof that process i must

3In this proof, we talk about where a process is in its program immediately before
and after a system step. This makes sense because a system step contains an elementary
operation from every process.

20

exit its second for loop within a bounded number of system steps. This in
turn completes the proof of the theorem.

3.3 A Digression

Suppose N processes are arranged in a circle, with process 1 followed by
process 2 followed by . . . followed by process N , which is followed by pro-
cess 1. Each process communicates only with its two neighbors using an
array v of boolean variables, each v(i) being owned by process i and read
by the following process. We want the processes to continue forever taking
turns performing some action—first process 1, then process 2, and so on.
Each process must be able to tell whether it is its turn by reading just its
own variable v(i) and that of the preceding process, and must pass the turn
on to the next process by complementing the value of v(i) (which is the only
change it can make).

The basic idea is to let it be process i’s turn if the circle of variables v(1),
. . . , v(N) changes value at i—that is, if v(i) = ¬v(i−1). This doesn’t quite
work because a ring of values cannot change at only one point. However, we
let process 1 be exceptional, letting it be 1’s turn when v(1) = v(N). The
reader should convince himself that this works if all the v(i) are initially
equal.

It is obvious how this algorithm, which works for the cycle of all N
processes arranged in order, is generalized to handle an arbitrary cycle of
processes with one process singled out as the “first”. To describe the general
algorithm more formally, we need to introduce some notation. Recall that a
cycle is an object of the form 〈i1, . . . , im〉, where the ij are distinct integers
between 1 and N . The ij are called the elements of the cycle. Two cycles
are the same if they are identical except for a cyclic permutation of their
elements—e.g., 〈1, 3, 5, 7〉 and 〈5, 7, 1, 3〉 are two representations of the same
cycle, which is not the same cycle as 〈1, 5, 3, 7〉. We define the first element
of a cycle to be its smallest element ij .

By a boolean function on a cycle we mean a boolean function on its set
of elements. The following functions are used in the remaining algorithms.
Note that CG(v, γ, i) is the boolean function that has the value true if and
only if it is process i’s turn to go next in the general algorithm applied to
the cycle γ of processes.

Definition 2 Let v be a boolean function on the cycle γ = 〈i1, . . . , im〉, and

21

let i1 be the first element of γ. For each element ij of the cycle we define:

CGV (v, γ, ij)
def≡ ¬v(ij−1) if j > 1

v(im) if j = 1.

CG(v, γ, ij)
def≡ v(ij) ≡ CGV (v, γ, ij)

If CG(v, γ, ij) is true, then we say that v changes value at ij.

The turn-taking algorithm, in which process i takes its turn when CG(v, γ, i)
equals true, works right when it is started with all the v(i) having the same
value. If it is started with arbitrary initial values for the v(i), then several
processes may be able to go at the same time. However, deadlock is impos-
sible; it is always at least one process’s turn. This is expressed formally by
the following result, whose proof is simple and is left to the reader.

Lemma 3 Every boolean function on a cycle changes value at some ele-
ment—i.e., for any boolean function v on a cycle γ, there is some element
i of γ such that CG(v, γ, i) = true.

We will also need the following definitions. A cycle 〈i1, . . . , im〉 is said
to be ordered if, after a cyclic permutation of the ij , i1 < . . . < im. For
example, 〈5, 7, 2, 3〉 is an ordered cycle while 〈2, 5, 3, 7〉 is not. Any non-
empty set of integers in the range 1 to N defines a unique ordered cycle. If
S is such a set, then we let ORD S denote this ordered cycle.

3.4 The Three-Bit Algorithm

The One-Bit algorithm has the property that the lowest-numbered process
that is trying to enter its critical section must eventually enter it—unless
a still lower-numbered process enters the trying region before it can do so.
However, a higher-numbered process can be locked out forever by lower-
numbered processes repeatedly entering their critical sections. The basic
idea of the Three-Bit Algorithm is for the processes’ numbers to change
in such a way that a waiting process must eventually become the lowest-
numbered process.

Of course, we don’t actually change a process’s number. Rather, we
modify the algorithm so that instead of process i’s two for loops running
from 1 up to (but excluding) i and i+1 to N , they run cyclically from f up to
but excluding i and from i⊕ 1 up to but excluding f , where f is a function
of the communication variables, and ⊕ denotes addition modulo N . As

22

processes pass through their critical sections, they change the value of their
communication variables in such a way as to make sure that f eventually
equals the number of every waiting process.

The first problem that we face in doing this is that if we simply replaced
the for loops as indicated above, a process could be waiting inside its first for
loop without ever discovering that f should have been changed. Therefore,
we modify the algorithm so that when it finds xj true, instead of waiting for
it to become false, process i recomputes f and restarts its cycle of examining
all the processes’ communication variables.

We add two new communication variables to each process i. The variable
yi is set true by process i immediately upon entering its trying section, and
is not set false until after process i has left its critical section and set xi false.
The variable zi is complemented when process i leaves its critical section.

Finally, it is necessary to guarantee that while process i is in its try-
ing region, a “lower-numbered” process that enters after i cannot enter its
critical section before i does. This is accomplished by having the “lower-
numbered” process wait for yi to become false instead of xi. This will still
insure mutual exclusion, since xi is false whenever yi is.

Putting these changes all together, we get the algorithm of Figure 2.
The “for j := . . . cyclically to . . . ” denotes an iteration starting with j
equal to the lower bound, and incrementing j by 1 modulo N up to but
excluding the upper bound. We let ∗ := ∗ denote an assignment operation
that performs a write only if it will change the value of the variable—i.e.,
the right-hand side is evaluated, compared with the current value of the
variable on the left-hand side, and an assignment performed only if they
are unequal. The ∗ := ∗ operation is introduced because we have assumed
nothing about the value obtained by a read that is concurrent with a write,
even if the write does not change the value. For example, executing v :=
true when v has the value true can cause a concurrent read of v to obtain
the value false. However, executing v ∗ :=∗ true has absolutely no effect if
v has the value true.

We let z denote the function that assigns the value zj to j—so evaluating
it at j requires a read of the variable zj . Thus, CG(z, 〈1, 3, 5〉, 3) = true if
and only if z1
= z3. Note that i is always an element of the cycle γ computed
by process i, so the cycle is nonempty and the argument of the minimum
function is a nonempty set (by Lemma 3).

We now prove that this algorithm satisfies the desired properties. In this
and subsequent proofs, we will reason informally about processes looping and
things happening eventually. The reader can refer to the proof of Theorem 3

23

private variables: j, f with range 1 . . . N ,
γ with range cycles on 1 . . . N ;

communication variables: xi, yi initially false, zi;

repeat forever
noncritical section;
yi := true;

l1: xi := true;
l2: γ := ORD{i : yi = true}

f := minimum {j ∈ γ : CG(z, γ, j) = true};
for j := f cyclically to i

do if yj then xi ∗ :=∗ false;
goto l2

fi
od;

if ¬xi then goto l1 fi;
for j := i ⊕ 1 cyclically to f

do if xj then goto l2 fi od;
critical section;
zi := ¬zi;
xi := false;
yi := false

end repeat

Figure 2: The Three-Bit Algorithm: Process i

24

to see how these arguments can be made more formal.

Theorem 5 The Three-Bit Algorithm satisfies the mutual exclusion, dead-
lock freedom and lockout freedom properties, and is shutdown safe and fail
safe for them.

Proof : To verify the mutual exclusion property, we need only check that the
basic mutual exclusion protocol is observed. This is not immediately obvi-
ous, since process i tests either xj or yj before entering its critical section,
depending upon the value of f . However, a little thought will show that
processes i and j do indeed follow the protocol before entering their critical
sections, process i reading either xj or yj, and process j reading either xi or
yi. This is true for the behavior allowed under shutdown and failure safety,
so the algorithm is shutdown safe and fail safe for mutual exclusion.

To prove deadlock freedom, assume for the sake of contradiction that
some process executes a nonterminating trying statement, and that no pro-
cess performs an infinite number of critical section executions. Then even-
tually there must be some set of processes looping forever in their trying
statements, and all other processes forever executing their noncritical sec-
tions with their x and y variables false. Moreover, all the “trying” processes
will eventually obtain the same value for f . Ordering the process numbers
cyclically starting with f , let i be the lowest-numbered trying process. It is
easy to see that all trying processes other than i will eventually set their x
variables false, and i will eventually enter its critical section, providing the
necessary contradiction.

We now show that the algorithm is lockout free. There must be a time
at which one of the following three conditions is true for every process:

• It will execute its critical section infinitely many times.

• It is and will remain forever in its trying statement.

• It is and will remain forever in its noncritical section.

Suppose that this time has been reached, and let β = 〈j1, . . . , jp〉 be the
ordered cycle formed from the set of processes for which one of the first two
conditions holds. Note that we are not assuming j1 to be the first element
(smallest ji) of β. We prove by contradiction that no process can remain
forever in its trying section.

Suppose j1 remains forever in its trying section. If j2 were to execute its
critical section infinitely many times, then it would eventually enter its trying

25

section with zj2 equal to ¬CGV (z, β, j2). When process j2 then executes
its statement l2, the cycle γ it computes will include the element j1, and it
will compute CG(z, γ, j2) to equal false. It is easy to see that the value of f
that j2 then computes will cause j1 to lie in the index range of its first for
loop, so it must wait forever for process j1 to set yj1 false.

We therefore see that if j1 remains forever in its trying section, then
j2 must also remain forever in its trying section. Since this is true for any
element j1 in the cycle β (we did not assume j1 to be the first element), a
simple induction argument shows that if any process remains forever in its
trying section, then all the processes j1, . . . , jp must remain forever in their
trying sections. But this means that the system is deadlocked, which we
have shown to be impossible, giving the required contradiction.

The above argument remains valid under shutdown and failure behavior,
so the algorithm is shutdown safe and fail safe for lockout freedom.

As with the One-Bit Algorithm, we must modify the Three-Bit Algo-
rithm in order to make it self-stabilizing. It is necessary to make sure that
process i does not wait in its trying section with yi false. We therefore need
to add the statement yi ∗ :=∗ true somewhere between the label l2 and the
beginning of the for statement. It is not necessary to correct the value of
xi because that happens automatically, and the initial value of zi does not
matter. We then have the following result.

Theorem 6 The Three-Bit Algorithm, with the above modification, is self-
stabilizing for the mutual exclusion, deadlock freedom and lockout freedom
properties.

Proof : Within a bounded number of system steps, each process will either
have passed through point l2 of its program twice, or entered its noncritical
section and reset its x and y variables. (Remember that for self-stabilization,
we must assume that these variables are reset in the noncritical section if
they have the value true.) After that has happened, the system will be in a
state it could have reached starting at the beginning from a normal initial
state.

3.5 FCFS Solutions

We now describe two FCFS solutions. Both of them combine a mutual ex-
clusion algorithm ME that is deadlock free but not FCFS with an algorithm

26

FC that does not provide a mutual exclusion but does guarantee FCFS en-
try to its “critical section”. The mutual exclusion algorithm is embedded
within the FCFS algorithm as follows.

repeat forever
noncritical section;
FC trying;
FC critical section: begin

ME trying;
ME critical section;
ME exit

end;
FC exit

end repeat

It is obvious that the entire algorithm satisfies the FCFS and mutual ex-
clusion properties, where its doorway is the FC algorithm’s doorway. More-
over, if both FC and ME are deadlock free, then the entire algorithm is also
deadlock free. This is also true under shutdown and failure . Hence, if FC
is shutdown safe (or fail safe) for FCFS and deadlock freedom, and ME is
shutdown safe (fail safe) for mutual exclusion and deadlock freedom, then
the entire algorithm is shutdown safe (fail safe) for FCFS, mutual exclusion
and deadlock freedom.

We can let ME be the One-Bit Algorithm, so we need only look for
algorithms that are FCFS and deadlock free. The first one is the N -Bit
Algorithm of Figure 3, which is a modification of an algorithm due to Kat-
seff [5]. It uses N communication variables for each process. However, each
of the N − 1 variables zi[j] of process i is read only by process j. Hence, the
complete mutual exclusion algorithm using it and the One-Bit Algorithm
requires the same number of single-reader variables as the Three-Bit Algo-
rithm. The “for all j” statement executes its body once for each of the
indicated values of j, with the separate executions done in any order (or
interleaved). The function zij on the cycle ORD{i, j} is defined by:

zij(i)
def= zi[j]

zij(j)
def= zj [i]

We now prove the following properties of this algorithm.

Lemma 4 The N -Bit Algorithm satisfies the FCFS and Deadlock Freedom
properties, and is shutdown safe, abortion safe and fail safe for them.

27

communication variables:
yi initially false,
array zi indexed by {1 . . .N} − {i};

private variables:
array after indexed by {1 . . .N} − {i} of boolean,
j with range 1 . . . N ;

repeat forever
noncritical section;
doorway: for all j
= i

do zi[j] ∗ :=∗ ¬CGV (zij , ORD{i, j}, i) od;
for all j
= i

do after [j] := yj od ;
yi := true;

waiting: for all j
= i

do while after [j]
do if CG(zij , ORD{i, j}, i)∨ ¬yj

then after [j] := false fi od
od;

critical section;
yi := false

end repeat

Figure 3: The N -Bit FCFS Algorithm: Process i

28

Proof : Informally, the FCFS property is satisfied because if process i finishes
its doorway before process j enters its doorway, but i has not yet exited,
then j must see yi true and wait for i to reset yi or change zi[j]. This
argument is formalized as follows.

Assume that doorway [k]
i −→ doorway [m]

j . Let Y
[k′]
i denote the write

operation of yi performed during doorway [k]
i , let Zi[j][k

′′] be the last write
of zi[j] performed before Y

[k′]
i .

We suppose that CS [m]
j exists, but that CS [k]

i /−→ CS [m]
j , and derive

a contradiction. Let R be any read of yi performed by process j during
trying [m]

j . Since doorway [k]
i −→ doorway [m]

j , we have Y
[k′]
i −→ R. Since

CS [k]
i /−→ CS [m]

j , A4 implies that Y
[k′+1]
i / ✮ R. It then follows from C2

that the read R must obtain the value y
[k′]
i , which equals true. A similar

argument shows that every read of zi[j] during trying [m]
j obtains the value

zi[j][k
′′]. It is then easy to see that process j sets after [i] true in its doorway

and can never set it false because it always reads the same value of zi[j] in
its waiting statement as it did in its doorway. Hence, j can never exit from
its waiting section, which is the required contradiction.

We next prove deadlock freedom. The only way deadlock could occur
is for there to be a cycle 〈i1, . . . , im〉 of processes, each one waiting for the
preceding one—i.e., with each process ij⊕1 having after [ij] true. We assume
that this is the case and obtain a contradiction. Let Ryj denote the read of
yij�1 and let Wyj denote the write of yij by process ij in the last execution
of its doorway. Since Ryj −→ Wyj and the relation −→ is acyclic, by A2
and A4 there must be some j such that Wyj / ✮Ryj⊕1. By C3, this implies
that Ryj⊕1 ✮Wyj.

Let Wy′ be the write of yij that immediately precedes Wyj, and thus
sets its value false. If Wy′ did not exist (because Wyj was the first write of
yij) or Ryj⊕1 / ✮Wy′, it would follow from C2 and C3 that Ryj⊕1 obtains
the value false. But this is impossible because process ij⊕1 has set after [ij]
true. Hence, there is such a Wy′ and Ryj⊕1 ✮Wy′.

Using this result and A4, it is easy to check that the last write of zij⊕1 [ij]
(during the last execution of the doorway of process ij⊕1) must have pre-
ceded the reading of it by process ij during the last execution of its doorway.
It follows from this that in the deadlock state, CG(zij⊕1 [ij],ORD{ij , ij⊕1},
ij⊕1) must be true, contradicting the assumption that ij⊕1 is waiting forever
with after [ij] true. This completes the proof of deadlock freedom.

29

We leave it to the reader to verify that the above proofs remain valid
under shutdown, abortion and failure behavior. The only nontrivial part
of the proof is showing that the algorithm is abortion safe for deadlock
freedom. This property follows from the observation that if no process
enters its critical section, then eventually all the values of zi[j] will stabilize
and no more writes to those variables will occur—even if there are infinitely
many abortions.

Using this lemma and the preceding remarks about embedding a mutual
exclusion algorithm inside a FCFS algorithm, we can prove the following
result.

Theorem 7 Embedding the One-Bit Algorithm inside the N -Bit Algorithm
yields an algorithm that satisfies the mutual exclusion, FCFS, deadlock free-
dom and lockout freedom properties, and is shutdown safe, abortion safe and
fail safe for these properties.

Proof : As we remarked above, the proof of the mutual exclusion, FCFS and
deadlock freedom properties is trivial. Lockout freedom follows from these
by Theorem 1. The fact that it is shutdown safe and fail safe for these prop-
erties follows from the fact that the One-Bit and N -Bit algorithms are. The
only thing left to show is that the entire algorithm is abortion safe for these
properties even though the One-Bit algorithm is not. The FCFS property for
the outer N -Bit algorithm implies that once a process has aborted, it cannot
enter the One-Bit algorithm’s trying statement until all the processes that
were waiting there have either exited from the critical section or aborted.
Hence, so far as the inner One-Bit algorithm is concerned, abortion is the
same as shutdown until there are no more waiting processes. The shutdown
safety of the One-Bit Algorithm therefore implies the abortion safety for the
entire algorithm.

The above algorithm satisfies all of our conditions except for self-stabi-
lization. It is not self-stabilizing for deadlock freedom because it is possible
to start the algorithm in a state with a cycle of processes each waiting for
the next. (The fact that this cannot happen in normal operation is due
to the precise order in which variables are read and written.) In our final
algorithm, we modify the N -Bit Algorithm to eliminate this possibility.

In the N -Bit Algorithm, process i waits for process j so long as the
function zij on the cycle ORD{i, j} does not change value at i. Since a
function must change value at some element of a cycle, this prevents i and j

30

communication variables:
yi initially false,
array zi indexed by CY C(i);

private variables:
j with range 1 . . . N ,
γ with range CY C(i),
array after indexed by 1 . . . N of booleans;

repeat forever
noncritical section;
doorway: for all γ ∈ CY C(i) do

zi[γ] ∗ :=∗ ¬CGV (zγ , γ, j) od;
for all j
= i

do after [j] := yj od;
waiting: for all j
= i

do while after [j]
do after [j] := yj;

for all γ ∈ CY C(j, i)
do if ¬CG(zγ , γ, i)

then after [j] := false fi od
od

od;
critical section;
yi := false

end repeat

Figure 4: The N !-Bit FCFS Algorithm: Process i.

from waiting for each other. However, it does not prevent a cycle of waiting
processes containing more than two elements. We therefore introduce a
function zγ for every cycle γ, and we require that i wait for j only if for
every cycle γ in which j precedes i: zγ does not change value at i. It is easy
to see that for any state, there can be no cycle γ in which each process waits
for the preceding one, since zγ must change value at some element of γ.

This leads us to the N !-Bit Algorithm of Figure 4. We use the notation
that CY C(i) denotes the set of all cycles containing i and at least one other
element, and CY C(j, i) denotes the set of all those cycles in which j precedes
i. We let zγ denote the function on the cycle γ that assigns the value zi[γ]
to the element i.

31

Using the N !-Bit FCFS Algorithm, we can construct the “ultimate” al-
gorithm that satisfies every property we have ever wanted from a mutual
exclusion solution, as stated by the following theorem. Unfortunately, as the
reader has no doubt noticed, this solution requires approximately N ! com-
munication variables for each process, making it of little practical interest
except for very small values of N .

Theorem 8 Embedding the One-Bit Algorithm inside the N !-Bit Algorithm
yields an algorithm that satisfies the mutual exclusion, FCFS, deadlock free-
dom and lockout freedom properties, and is shutdown safe, abortion safe, fail
safe and self-stabilizing for these properties.

Proof : The proof of all but the self-stabilizing condition is the same as for
the previous solution using the N -Bit Algorithm. It is easy to see that since
the One-Bit algorithm is self-stabilizing for mutual exclusion and deadlock
freedom, to prove self-stabilization for the entire algorithm it suffices to
prove that the N !-Bit Algorithm is self-stabilizing for deadlock freedom.
The proof of that is easily done using the above argument that there cannot
be a cycle of processes each waiting endlessly for the preceding one.

4 Conclusion

Using the formalism of Part I, we stated the mutual exclusion problem, as
well as several additional properties we might want a solution to satisfy. We
then gave four algorithms, ranging from the inexpensive One-Bit Algorithm
that satisfies only the most basic requirements to the ridiculously costly
N !-Bit Algorithm that satisfies every property we have ever wanted of a
solution.

Our proofs have been done in the style of standard “journal mathemat-
ics”, using informal reasoning that in principle can be reduced to very formal
logic, but in practise never is. Our experience in years of devising synchro-
nization algorithms has been that this style of proof is quite unreliable. We
have on several occasions “proved” the correctness of synchronization algo-
rithms only to discover later that they were incorrect. (Everyone working
in this field seems to have the same experience.) This is especially true of
algorithms using our nonatomic communication primitives.

This experience led us to develop a reliable method for proving properties
of concurrent programs [7], [11], [16]. Instead of reasoning about a program’s

32

behavior, one reasons in terms of its state. When the first version of the
present paper was written, it was not possible to apply this method to these
mutual exclusion algorithms for the following reasons:

• The proof method required that the program be described in terms of
atomic operations; we did not know how to reason about the nonatomic
reads and writes used by the algorithms.

• Most of the correctness properties to be proved, as well as the proper-
ties assumed of the communication variables, were stated in terms of
the program’s behavior; we did not know how to apply our state-based
reasoning to such behavioral properties.

Recent progress in reasoning about nonatomic operations [12] and in
temporal logic specifications [13, 15] should make it possible to recast our
definitions and proofs in this formalism. However, doing so would be a
major undertaking, completely beyond the scope of this paper. We are
therefore forced to leave these proofs in their current form as traditional,
informal proofs. The behavioral reasoning used in our correctness proofs,
and in most other published correctness proofs of concurrent algorithms, is
inherently unreliable; we advise the reader to be skeptical of such proofs.

33

Acknowledgements

Many of these ideas have been maturing for quite a few years before appear-
ing on paper for the first time here. They have been influenced by a number
of people during that time, most notably Carel Scholten, Edsger Dijkstra,
Chuck Seitz, Robert Keller, Irene Greif, and Michael Fischer. The impetus
finally to write down the results came from discussions with Michael Rabin
in 1980 that led to the discovery of the Three-Bit Algorithm.

References

[1] P. Brinch Hansen. Concurrent programming concepts. Computing Sur-
veys, 5:223–245, 1973.

[2] E. W. Dijkstra. Solution of a problem in concurrent programming
control. Communications of the ACM, 8(9):569, September 1965.

[3] Edsger W. Dijkstra. Self-stabilizing systems in spite of distributed con-
trol. Communications of the ACM, 17(11):643–644, November 1974.

[4] M. J. Fischer et al. Resource Allocation with Immunity to Limited
Process Failure. Technical Report 79-09-01, Department of Computer
Science, University of Washington, September 1979.

[5] H. P. Katseff. A solution to the critical section problem with a totally
wait-free fifo doorway. 1978. Internal Memorandum, Computer Science
Division, University of California, Berkeley.

[6] D. E. Knuth. Additional commments on a problem in concurrent pro-
gram control. Communications of the ACM, 9(5):321, May 1966.

[7] Leslie Lamport. The ‘Hoare logic’ of concurrent programs. Acta Infor-
matica, 14(1):21–37, 1980.

[8] Leslie Lamport. The implementation of reliable distributed multipro-
cess systems. Computer Networks, 2:95–114, 1978.

[9] Leslie Lamport. The mutual exclusion problem—part i: a theory of
interprocess communication. To appear in JACM .

[10] Leslie Lamport. A new solution of Dijkstra’s concurrent programming
problem. Communications of the ACM, 17(8):453–455, August 1974.

34

[11] Leslie Lamport. Proving the correctness of multiprocess programs.
IEEE Transactions on Software Engineering, SE-3(2):125–143, March
1977.

[12] Leslie Lamport. Reasoning about nonatomic operations. In Proceed-
ings of the Tenth Annual Symposium on Principles of Programming
Languages, pages 28–37, ACM SIGACT-SIGPLAN, January 1983.

[13] Leslie Lamport. Specifying concurrent program modules. ACM Trans-
actions on Programming Languages and Systems, 5(2):190–222, April
1983.

[14] Leslie Lamport. The synchronization of independent processes. Acta
Informatica, 7(1):15–34, 1976.

[15] Leslie Lamport. What good is temporal logic? In R. E. A. Mason,
editor, Information Processing 83: Proceedings of the IFIP 9th World
Congress, IFIP, North Holland, Paris, September 1983.

[16] Susan Owicki and Leslie Lamport. Proving liveness properties of con-
current programs. ACM Transactions on Programming Languages and
Systems, 4(3):455–495, July 1982.

[17] G. Peterson and M. Fischer. Economical solutions for the critical section
problem in a distributed system. In Proc. ACM Symp. Thy. Comp.,
pages 91–97, ACM, 1977.

[18] Gary L. Peterson. A new solution to lamport’s concurrent programming
problem. ACM Transactions on Programming Languages and Systems,
5(1):56–65, January 1983.

[19] Michael Rabin. The choice coordination problem. Acta Informatica,
17:121–134, 1982.

[20] Ronald L. Rivest and Vaughn R. Pratt. The mutual exclusion prob-
lem for unreliable processes: preliminary report. In Proc. IEEE Symp.
Found. Comp. Sci., pages 1–8, IEEE, 1976.

35

