On a “Theorem” of Peterson

Leslie Lamport
SRI International

31 October 1984



1 Introduction

In [2], Peterson considers the problem of allowing concurrent reading and
writing of a data item by keeping multiple copies of the data. Theorem 3 of
that paper asserts that with n readers and a single writer, n+ 1 copies of the
data are needed if the writer need not wait for the readers and the readers
wait only for the writer. In this paper, I present an algorithm that appears
to contradict Peterson’s theorem, using only two buffers for any number of
readers. Whether this is a counterexample depends upon the interpretation
of “readers wait only for the writer”, which was not defined in [2] (hence
the quotation marks of the title). This illustrates the need for rigor when
reasoning about concurrent programs.

2 The Algorithm

Briefly stated, the problem addressed by Peterson is to allow concurrent
reading and writing while assuring that a reader always obtains a correct
value, meaning either the last value written by the writer before the read
operation or a value written during the read. Moreover, if one read is com-
pleted before a second read is begun, then the first read cannot obtain a
later value than the second. A future paper will describe the problem more
rigorously, using the formalism of [1]. However, here I will be as informal
as Peterson and pretend that my algorithm is also, in the words of [2],
“sufficiently simple that there is no need to provide complicated ... formal
proofs.”

The algorithm uses Solution 2 of [2] in which, using one copy of the data
plus a few flags, the writer never waits but the readers can be starved by
repeated writing. For any data item x, let read.of (x) and write.of (z) denote
the reading and writing operations in an instance of Peterson’s Solution 2
for that item. The current value of the data is kept in one of the two buffers
buff[0] and buff[1], where the value of the variable num indicates which.
Initially, num = 0 and buff[0] has the starting data value.

The basic idea of the algorithm is that a reader first reads num to see
which buffer contains the current value, then reads that value. The presumed
correctness of the read.of and write.of operations guarantees that if the
reader ever terminates, then it will obtain a correct value—either one that
was “current” when it started reading or else a more recent value written
while it was reading. The writer keeps using the same buffer unless there



is no other reader currently reading from the other buffer, in which case
it switches to the other buffer. The writer changes num after writing to
prevent any new read operation from using that other buffer before the new
value is written.

The algorithms for the read and write operations are given below. I
assume that there are n readers, numbered from one through n. Reader ¢
uses the the Boolean flag reading[i] to indicate that it is currently reading,
and uses rdbuf[i] to hold the value of the buffer that it is trying to read.
The symbol @ denotes addition modulo 2, and the writer’s if condition has
the value true if the writer finds that any reader is currently reading buffer
number num & 1.

Algorithm for the sth reader: Algorithm for the writer:
rdbuf [i] := num; if \/j_,(reading[j] A (rdbuf[j] # num))
readingli] := true; then write.of (buff [num))
read.of (rdbuf[i]); else write.of (buff [num & 1]);
reading[i| := false num = num @ 1

fi

The argument given above shows that any read that terminates does
so with a correct value. To see that every read does eventually terminate,
assume to the contrary that reader ¢ is performing a nonterminating read. of
operation. Since the writer is never blocked, it must eventually be outside
its write operation. Suppose that, at that time, num # rdbuf[i]. Then the
writer will never attempt to read buffer rdbuf|i], since it will always see that
reader ¢ is currently reading buffer num @ 1. By the assumed correctness
of the read.of and write.of operations, this implies that reader ¢’s read.of
operation will eventually terminate, which is a contradiction.

Next, we consider the other possibility: num = rdbuf[i]. If the writer
ever changes num, then the above argument shows that reader ¢ will termi-
nate. Hence, we may assume that num remains forever equal to rdbuf|i].
This means that any reader currently reading buffer num @ 1 must eventu-
ally terminate, and all newly initiated read operations will use buffer num.
Hence, eventually there will never be any more reads being performed to
buffer num @ 1. If the writer were ever to initiate a new write, it would
change num. We therefore conclude that the writer never begins any new
writes. The correctness of the read.of operation implies that reader i’s op-
eration must eventually terminate, which is the required contradiction.



3 Discussion

In my algorithm, a read will terminate if the writer waits long enough before
initiating a new write, regardless of what other readers do. In this sense, a
reader waits only for the writer. However, in the presence of repeated writes,
a reader trying to read from a buffer may not be able to do so until other
readers have finished reading from the other buffer. Thus, in the presence
of repeated writes, a reader can be blocked if another reader fails to make
progress. In this sense, the reader may be regarded as waiting for the other
reader as well as for the writer.

Whether or not the algorithm contradicts Peterson’s theorem is a ques-
tion that could be debated by lawyers. The validity of a theorem in com-
puter science should be a question of mathematics, not law. A more rigorous
treatment of the subject is needed.

References

[1] Leslie Lamport. A New Approach to Proving the Correctness of Multi-
process Programs. ACM Trans. on Prog. Lang. and Systems 1, 1 (July
1979), 84-97.

[2] Gary L. Peterson. Concurrent Reading While Writing. ACM Trans. on
Prog. Lang. and Systems 5, 1 (January 1983), 46-55.



