
Temporal Logic:

The Lesser of Three Evils

Leslie Lamport

Microsoft Research

5 April 2010

The evil that men do lives after them.
Julius Caesar, by William Shakespeare

In the Beginning

Amir Pnueli introduced temporal logic to computer science in 1977 in a
paper presented at FOCS [10]. That paper inspired Susan Owicki to organize
an informal seminar on the subject at Stanford during the 1977–78 academic
year. Temporal logic sounded to me like yet another of the useless formalisms
that computer scientists seemed fond of, but I decided to attend anyway.
That was one of the best decisions I ever made.

Susan (together with David Gries) and I had independently developed
what is now known as the Owicki-Gries method for proving invariance prop-
erties of concurrent programs [4, 8]. I had also devised a method for proving
liveness properties of the form P ; Q , read P leads to Q , which asserts
that if P is true then Q will eventually become true. Written informally,
my proofs were reasonable. However, their formalization was ugly and com-
plicated.

Susan and I soon realized that Amir’s temporal logic was ideal for for-
malizing liveness proofs. The logic was simple, based on the single operator
2, read always or henceforth, where 2P asserts that P is true from now on.
Its dual 3P , defined to equal ¬3¬P , asserts that P is eventually true. My
; operator could be defined by

P ; Q ∆= 2(P ⇒ 3Q)

Temporal logic added to my liveness proofs the ability to directly use invari-
ance properties. The invariance of a formula I means that 2I is true. We

1



could use this fact to prove liveness properties by applying the proof rule

(I ∧ P) ; Q
2I ⇒ (P ; Q)

This rule was the key to the elegant formalization of liveness proofs. It was
enshrined in the boxes of the proof lattices Susan and I introduced [9].

Inadequate and Evil

In the late 1970s and early 1980s, I and many of my colleagues started going
beyond the realm of proving that programs satisfied particular properties to
trying to write and verify complete specifications. Temporal logic seemed
to be wonderful for the task of specifying a system. A specification would
simply be the conjunction of temporal-logic formulas that asserted properties
the system must satisfy. I believe that the first publication advocating this
approach was by Richard Schwartz and Michael Melliar-Smith [11].

By the time of that paper’s publication, I had realized that temporal
logic was not all that wonderful. In fact, I was originally an author but
had my name removed because I had become disillusioned with the method.
Watching my Richard and Michael spend days trying to specify a FIFO
queue (a very trivial example) convinced me that the method would never
work on any real example.

Others also realized that there was a problem. Most thought that the
source of the problem lay in the simplicity of Amir’s temporal logic. So,
they developed a multitude of new, more complicated logics based on more
expressive and more complicated temporal operators. I was not immune to
that temptation [5]. However, I eventually realized that the fundamental
problem lay in trying to specify something by a list of properties.

Years of experience have taught me that human beings cannot under-
stand the consequences of a conjunction of separate properties. As one of
many pieces of evidence, consider multiprocessor memory models. Engineers
have often specified them by a list of properties—for example, in the speci-
fications of the DEC/Compaq Alpha [1] and the Intel Itanium [3] memories.
Even the people who wrote the specifications did not understand them. Jim
Saxe discovered that the published Alpha memory specification permitted
causal loops, in which a write stores a completely arbitrary value, and that
value is justified by a later read. Using a formal specification that we wrote,
my colleagues and I discovered errors in the (very simple) examples in an
early version of the Itanium memory specification.

2



This experience revealed the inadequacy of temporal logic for writing
specifications. However, inadequacy is not evil. I discovered that temporal
logic is evil in the late 1980s when it led my colleague Mart́ın Abadi and me
to believe a false result for several days. Those who know me will not be
surprised that I made such an error, but those who know Mart́ın will realize
that, if he could be confused by temporal logic, then anyone can be.

Temporal logic is evil because it does not satisfy the deduction principle.
In ordinary mathematics, we prove the implication P ⇒ Q (P implies Q)
by assuming P is true and proving Q is true. This reasoning is expressed
by the following proof rule, which is called the deduction principle.

P
Q

P ⇒ Q

The deduction principle is not valid for temporal logic and other modal
logics. For example, a basic axiom of temporal logic is P

2P , which asserts
that, if P is true, then it is always true. The deduction principle would allow
us to deduce from this the truth of P ⇒ 2P , a formula asserting that, if P
is true initially, then it is always true—which is not true in general.

The Greater Evils

The source of temporal logic’s evil is that its formulas have an implicit
variable representing time. The truth of a temporal formula asserts that the
formula is true for all values of this variable. Calling the variable t , a proof
rule P

Q asserts that ∀ t : P implies ∀ t : Q , while the truth of P ⇒ Q means

∀ t : (P ⇒ Q). The deduction principle is invalid for temporal logic because
we cannot deduce ∀ t : (P ⇒ Q) from (∀ t : P)⇒ (∀ t : Q).

One way to eliminate this problem is to make the time variable t explicit.
Every atomic formula becomes an explicit function of t , so P ; Q is written
∀ t : (P(t)⇒ ∃ s ≥ t : Q(s)). This is exactly what Nissim Francez did in his
thesis [2]. The messiness of representing even so simple a formula as P ; Q
indicates why this is a bad idea. In fact, Nissim was Amir’s student, and I
believe it was his thesis that inspired Amir to use temporal logic. Temporal
logic is a lesser evil than the complexity introduced by an explicit time
variable.

Another way people have tried to avoid the evil of temporal logic is to use
some form of program logic in its place. Logic is a branch of mathematics,
and one of the most basic operations of mathematics is substituting an

3



expression for a variable. Substitution is fundamental to computing because
it lies at the heart of refinement, which is also called implementation. In a
volume commemorating a happier occasion—the retirement of Willem-Paul
de Roever—I illustrated refinement as substitution by showing how to derive
an important hardware protocol from a simple specification. The main step
essentially consisted of substituting (p + c) mod 2 for the variable x in the
assignment statement x : = x + 1 [7].

Although evil, temporal logic is still mathematics. One can therefore
derive a temporal-logic description of the protocol from its temporal-logic
specification by substituting (p + c) mod 2 for x . However, literally sub-
stituting for x in the statement x : = x + 1 makes no sense. One cannot
substitute an expression for a variable in a program logic with assignment
statements. Indeed, I know of no program logic in which such substitution
is possible. A “logic” that does not permit substitution is a greater evil than
temporal logic.

A Necessary and Useful Evil

Although evil, temporal logic is necessary. It is the best way we know to
reason about liveness. Moreover, its ability to describe reactive systems,
even if only in principle, helps us to understand them. The traditional first
step in creating a science is to introduce mathematics. Temporal logic is the
natural mathematics of reactive systems.

We cannot remove the evil from temporal logic, but we can overcome
its inadequacy for writing specifications. This doesn’t require new temporal
operators; the 2 operator that Amir introduced in 1977 is (approximately)
enough. The trick is to extend the base formulas from state predicates to
actions, which are predicates on pairs of states [6]. The result is a logic that
confines the evil of temporal logic mainly to the domain for which it is both
necessary and useful: liveness.

I began working on verification because I wanted to ensure that the
algorithms I developed were correct. I have always sought formal methods
that would help me do that. Today, temporal logic is a tool that I use every
day in my work on distributed and concurrent algorithms. I am continually
grateful that this evil that Amir did lives after him.

References

[1] Alpha Architecture Committee. Alpha Architecture Reference Manual.
Digital Press, Boston, third edition, 1998.

4



[2] Nissm Francez. The Specification and Verification of Cyclic (Sequential
and Concurrent) Programs. PhD thesis, Weizmann Institute of Science,
Rehovot, Israel, June 1976.

[3] Intel. A formal specification of intel itanium pro-
cessor family memory ordering. Application Note.
http://download.intel.com/design/Itanium/Downloads/25142901.pdf,
October 2002.

[4] Leslie Lamport. Proving the correctness of multiprocess programs.
IEEE Transactions on Software Engineering, SE-3(2):125–143, March
1977.

[5] Leslie Lamport. Timesets—a new method for temporal reasoning about
programs. In Dexter Kozen, editor, Logics of Programs, volume 131 of
Lecture Notes in Computer Science, pages 177–196, Berlin, Heidelberg,
New York, May 1981. Springer-Verlag.

[6] Leslie Lamport. The temporal logic of actions. ACM Transactions on
Programming Languages and Systems, 16(3):872–923, May 1994.

[7] Leslie Lamport. Computer science and state machines. In Dennis
Dams, Ulrich Hannemann, and Martin Steffen, editors, Concurrency,
Compositionality, and Correctness (Essays in Honor of Willem-Paul
de Roever), volume 5930 of Lecture Notes in Computer Science, pages
60–65. Springer, 2010.

[8] Susan Owicki and David Gries. Verifying properties of parallel
programs: An axiomatic approach. Communications of the ACM,
19(5):279–284, May 1976.

[9] Susan Owicki and Leslie Lamport. Proving liveness properties of con-
current programs. ACM Transactions on Programming Languages and
Systems, 4(3):455–495, July 1982.

[10] Amir Pnueli. The temporal logic of programs. In Proceedings of the 18th
Annual Symposium on the Foundations of Computer Science, pages 46–
57. IEEE, November 1977.

[11] Richard L. Schwartz and P. M. Melliar-Smith. Temporal logic specifi-
cation of distributed systems. In Proceedings of the 2nd International
Conference on Distributed Computing Systems, pages 446–454. IEEE
Computer Society Press, April 1981.

5


