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ABSTRACT. The problem addressed here concerns a set of isolated processors, some unknown subset of which 
may be faulty, that communicate only by means of two-party messages. Each nonfaulty processor has a private 
value of reformation that must be communicated to each other nonfanlty processor. Nonfaulty processors always 
communicate honestly, whereas faulty processors may lie The problem is to devise an algorithm in which 
processors communicate their own values and relay values received from others that allows each nonfaulty 
processor to refer a value for each other processor The value referred for a nonfanlty processor must be that 
processor's private value, and the value inferred for a faulty one must be consistent wRh the corresponding value 
inferred by each other nonfanlty processor 

It is shown that the problem is solvable for, and only for, n >_ 3m + 1, where m IS the number of faulty 
processors and n is the total number. It is also shown that if faulty processors can refuse to pass on reformation 
but cannot falsely relay information, the problem is solvable for arbitrary n _> m _> 0. This weaker assumption 
can be approxunated m practice using cryptographic methods 
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1. Introduction 

Faul t - to lerant  systems often require  a means  by which independent  processors or  processes 
can arrive at an  exact  mutua l  agreement  o f  some kind. It  may  be necessary, for example,  
for the processors o f  a redundant  system to synchronize their  internal  docks  periodically.  
Or  they may  have  to settle upon  a value  o f  a t ime-varying input  sensor that  gives each o f  
them a slightly different  reading. In the absence o f  faults reaching a satisfactory mutua l  
agreement  is usual ly an  easy matter.  In  most  cases it suffices s imply to exchange values 
(times, in the case o f  clock synchronizat ion)  and compute  some kind o f  average. In  the 
presence o f  faulty processors, however ,  s imple exchanges cannot  be relied upon;  a bad 
processor might  report  one  value  to a given processor and another  value to some other  
processors, causing each to calculate a different  "average ."  

One  might  imagine  that  the effects o f  faulty processors could be dealt  with through the 
use o f  vot ing schemes revolving more  than  one  round o f  informat ion  exchange; such 
schemes might  force faulty processors to reveal  themselves as faulty or  at least to behave 
consistently enough  with  respect to the nonfaul ty  processors to al low the latter to reach an 
exact  agreement .  As we will  show, it is not  always possible to devise schemes o f  this kind, 
even  i f  it is known that  the faulty processors are in a minority.  Algor i thms that allow exact  
agreement  to be reached by the nonfaul ty  processors do exist, however ,  i f  they sufficiently 
ou tnumber  the faulty ones. 

Our  results are formula ted  using the not ion  o f  interactive consistency, which we define 
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as follows: Consider a set of  n isolated processors, of  which it is known that no more than 
m are faulty. It is not known, however, which processors are faulty. Suppose that the 
processors can commumcate only by means of  two-party messages. The communication 
medium is presumed to be fail-safe and of  negligible delay. The sender o f  a message, 
moreover, Is always identifiable by the receiver. Suppose also that each processor p has 
some private value of  information Vp (such as its clock value or its reading of  some sensor). 
The question is whether for given m, n _> 0, it is possible to devise an algorithm based on 
an exchange of  messages that will allow each nonfaulty processor/) to compute a vector of  
values with an element for each of  the n processors, such that 

(1) the nonfaulty processors compute exactly the same vector; 
(2) the element of  this vector corresponding to a given nonfaulty processor is the private 

value of  that processor. 

Note that the algorithm need not reveal which processors are faulty, and that the 
elements of  the computed vector corresponding to faulty processors may be arbitrary; it 
matters only that the nonfaulty processors compute exactly the same value for any given 
faulty processor. 

We say that such an algorithm achieves interactive consisCency, since it allows the 
nonfaulty processors to come to a consistent view of  the values held by all the processors, 
including the faulty ones. The computed vector is called an interactive consistency (i.c.) 
vector. Once mteractwe consistency has been achieved, each nonfaulty processor can apply 
an averaging or filtering function to the i.c. vector, according to the needs of  the application. 
Since each nonfaulty processor applies this function to the same vector of  values, an exact 
agreement is necessarily reached. 

We show in the following sections that algorithms can be devised to guarantee interactive 
consistency for and only for n, m such that n >_ 3m + 1. It will follow, in particular, that 
a minimum of four processors is required in the single-fault case. We also show, however, 
that interactive consistency can be assured for arbitrary n _> m _> 0 if it is assumed that 
faulty processors can refuse to pass on information obtained from other processors but 
cannot falsely report this information. This assumption can be approximated in practice 
using authenticators, which we discuss in Section 5. 

We begin in Section 2 with a description of  the single-fault case. Section 3 is concerned 
with the generalization to n _> 3m + 1 and Section 4 with an impossibility argument for n 
_< 3m. Section 5 gives an algorithm for arbitrary n _> m _> 0 that works under the restricted 
assumption stated above. Conclusions and issues for future study are given in Sec- 
tion 6. 

Problems similar to the one considered here have been studied by Davies and 
Wakerly [1]. 

2. The Single-Fault Case 

In order to give the reader a feeling for the problem, we begin with a procedure for 
obtaining interactwe consistency in the simple case o f m  = 1, n = 4. The procedure consists 
of an exchange of  messages, followed by the computation of  the interactive consistency 
vector on the basis of  the results of  the exchange. 

Two rounds of  reformation exchange are required. In the first round the processors 
exchange their private values. In the second round they exchange the results obtained in 
the first round. The faulty processor 0 f  there is one) may "lie," of  course, or refuse to send 
messages. If  a nonfaulty processor p fails to receive a message it expects from some other 
processor, p simply chooses a value at random and acts as if that value had been sent. 

The exchange having been completed, each nonfaulty processor p records its private 
value Vp for the element of  the interactive consistency corresponding to p itself. The 
element corresponding to every other processor q is obtained by examining the three 
received reports of  q's value (one of  these was obtained directly from q in the first round, 
and the others from the remaining two processors in the second round). I f  at least two of  
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the three reports agree, the majority value is used. Otherwise, a default value such as 
"NIL"  is used. 

To see that this procedure assures interactive consistency, first note that if q is nonfaulty, 
p will receive Vq both from q and from the other nonfaulty processor(s). Thusp  will record 
Vq for q as desired. Now suppose q is faulty. We must show only that p and the other two 
nonfaulty processors record the same value for q. If  every nonfaulty processor records 
NIL, we are done. Otherwise, some nonfaulty processor, say p, records a non-NIL value 
v, having received v from at least two other processors. Now i fp  received v from both of  
the other nonfaulty processors, each other nonfaulty processor must receive v from every 
processor other than p (and possibly from p as well); every nonfaulty processor will thus 
record v. Otherwise, p must have received v from all processors other than some other 
nonfaulty processor p ' .  In this case p '  received v from all processors other than q (so p '  
records v), and all other nonfaulty processors received v from all processors other than p ' .  
All nonfaulty processors therefore record v as required. 

3. A Procedure  f o r  n >_ 3 m  + 1 

Recall that the procedure given in the last section requires two rounds of  information 
exchange, the first consisting of  communications of  the form "my private value is" and 
the second consisting o f  communications o f  the form "processor x told me his private 
value is . . . .  " In the general case o f  m faults, m + 1 rounds are required. In order to 
describe the algorithm, it will be convenient to characterize this exchange of  messages in 
a more formal way. 

Let P be the set of  processors and V a set of  values. For k >_ 1, we define a k- level  

scenario as a mapping from the set of  nonempty strings (possibly having repetitions) over 
P of  length _<k + 1, to V. For a given k-level scenario o and string w -~ p ip2  • • • pr,  2 _< 

r _< k + l ,  o(w)  is interpreted as the value p2 tells pl  that p3 told p2 that p4 told p3 . . .  that 
p ,  told p,-~ is pr'S private value. For a single-element string p,  o ( p )  simply designates p 's  
private value V r. A k-level scenario thus summarizes the outcome of  a k-round exchange 
of  information. (Note that if a faulty processor lies about who gave it information, this is 
equivalent to lying about a value it was given.) Note also that for a given subset of  
nonfaulty processors, only certain mappings are possible scenarios; in particular, since 
nonfaulty processors are always truthful in relaying information, a scenario must satisfy 

o ( p q w )  = o(qw)  

for each nonfaulty processor q, arbitrary processor p, and string w. 
The messages a processor p receives in a scenario o are given by the restriction op of  o 

to strings beginning with p. The procedure we present now for arbitrary m >_ 0, n >_ 
3m + 1, is described in terms of  p's computation, for a given Op, of  the element of  
the interactive-consistency vector corresponding to each processor q. The computation is 
as follows: 

(1) If  for some subset Q o f P o f s i z e  >(n + m ) / 2  and some value v, op(pwq)  = v for each 
string w over Q of  length _<m, p records v. 

(2) Otherwise, the algorithm for m - 1, n - 1 is recursively applied with P replaced by 
P - {q}, and op by the mapping Op defmed by 

~,,(pw) ffi op(pwq) 

for each string w of  length _<m over P - {q}. If  at least [(n + m)/2J of  the n - 1 elements 
in the vector obtained in the recursiv¢ call agree, p records the common value, otherwise 
p records NIL. 

Note that 69 corresponds to the m-level subscenario of  o in which q is excluded and 
in which each processor's private value is the value it obtains directly from q m o. Note 
also that the algorithm essentially reduces to the one given in the last section in the case 
m ffi l ,  n -- 4. 
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The proof that the algorithm given above does indeed assure interactive consistency 
proceeds by reduction on m: 

Basis m = O. In this case no processor is faulty, and the algorithm always terminates 
m step (1) withp recording Vq for q. 

Induction Step m > 0. First note that if q is nonfaulty, op(pwq) = Vq for each string w 
(including the empty string) of  length _<m over the set of  nonfaulty processors. This set has 
n - m members (which, since n > 3m, is >(n + m)/2) and so satisfies the requirements for 
Q in step (1) of  the algorithm. Any other set satisfying these requirements, moreover, must 
contain a nonfaulty processor (since it must be of  size >(n + m)/2, and n _> 3m + 1) and 
must therefore also yield Vq as the common value. The algorithm thus terminates at step 
(1), a n d p  records Vq and q as required. 

Now suppose that q is faulty. We must show that the value p records for q agrees with 
the value each other nonfaulty processor p '  records for q. 

First consider the case m which bo thp  a n d p '  exit the procedure at step (1), each having 
found an appropriate set Q. Since each such set has more than (n + m)/2 members, and 
since P has only n members in all, the two sets must have more than 2((n + m)/2) - n = 
m common members. Since at least one of  these must be nonfaulty, the two sets must give 
rise to the same value v, as required. 

Next suppose that p '  exits at step (1), having found an appropriate set Q and common 
value v, and that p executes step (2). We claim that in the vector of  n - 1 elements that p 
computes in the recursive call, the elements corresponding to members of  Q = Q - (q} are 
equal to v. Since Q has at least t(n + m)/2J members, it will then follow that p records v 
in accordance with step (2). To see that the elements corresponding to members of  Q are 
indeed equal to v, recall that the mapping Op that p uses to compute the vector in the 
recursive call is the restriction, to strings beginning with p, of  the m-level scenario Jr 
defined by 

~(w) = o(wq) 

for each string w of  length _<m over P - {q}. By the induction hypothesis, this vector is 
identical to the one p '  would have computed using the restriction ~,, of  ~ had p '  made the 
recursive call. Moreover, the value p '  would have computed for the element of  this vector 
corresponding to a given q '  in Q must be v, since Q and v satisfy step (1) of  the algorithm. 
(Note that Q is of  size _>[(n + m)/2J > [(n - 1) + (m - 1)]/2, and that op,(p'wq') = 
op,(p'wq'q) = v for each string w of  length _<m - 1 over Q.) The case in which p exits at 
step (1) and p '  exits at step (2) is handled similarly. 

In the one remaining case, both p and p '  exit at step (2). In this case both recurse and 
must, by the induction hypothesis, compute exactly the same vector, and hence the same 
value for q. Q.E.D. 

4. Proof o f  Impossibility for  n < 3m + 1 

The procedure of  the last section guarantees interactive consistency only if n _> 3m + 1. In 
this section it is shown that the 3m + 1 bound is tight. We will prove not only that it is 
impossible to assure interactive consistency for n < 3m + 1 with m + 1 rounds of  
information exchange, but also that it is impossible, even allowing an infinite number of  
rounds of  exchange (i.e., using scenarios mapping from all nonempty strings over P to V). 

Just to gain some intuitive feeling as to why 3m processors are not sufficient, consider 
the case of  three processors A, B, C, of  which one, say C, is faulty. By prevaricating in just 
the right way, C can thwart A 's  and B's efforts to obtain consistency. In particular, C's 
messages to A can be such as to suggest to A that C's private value is, say, 1, and that B is 
faulty. Similarly, C's  messages to B can be such as to suggest to B that C's private value 
is 2, and that A is faulty. If  C plays its cards just right, A will not be able to tell whether B 
or C is faulty, and B will not be able to tell whether A or C is at fault. A will thus have no 
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choice but to record 1 for C's value, while B must record 2, defeating interactive 
consistency. 

In order to give a precise statement o f  the impossibility result and its proof, a few formal 
definitions are needed. 

First, define a scenario as a mapping from the set P* of  all nonempty strings over P, to 
V. For a givenp E P define ap-scenario as a mapping from the subset of  P+, consisting of  
strings beginning with p, to V. 

Next, for a given choice N C P of  nonfaulty processors and a given scenario o, say that 
a is consistent with N if for each q E N, p E P, and w E P* (set of  all strings over P), 
o(pqw) = a(qw). (In other words, o is consistent with N if each processor in N always 
reports what it knows or hears truthfully.) 

Now define the notion of  interactive consistency as follows. For each p ~ P, let Fp be a 
mapping that takes a p-scenario Op and a processor q as arguments and returns a value in 
V. (Intuitively, Fp gives the value that p computes for the element of  the interactive 
consistency vector corresponding to q on the basis of  Op.) We say that (Fp[p ~ P} assures 
interactive consistency for  m faults if for each choice of  N C P, [ N] _> n - m, and each 
scenario o consistent with N, 

(i) for all p, q E N, F,(o,, q) = o(q), 
(ii) for all p, q E N, r E P, Fp(op, r) ffi Fq(Oq, r), 

where op and oq denote the restrictions of  o to strings beginning with p and q, respectively. 
Intuitively, clause (i) requires that each nonfaulty processor p correctly compute the 

private value o f  each nonfaulty processor q, and clause (ii) requires that each two nonfaulty 
processors compute exactly the same vector. 

THEOREM. I f  [ V[ _> 2 and n _> 3m, there exists no (Fp [p ~ P} that assures interactive 
consistency for  m faults. 

PROOF. Suppose, to the contrary, that {Fp [p E P} assures interactive consistency for m 
faults. Since n _< 3m, P can be partitioned into three nonempty sets A, B, and C, each of  
which has no more than m members. Let v and v' be two distinct values in V. Our general 
plan is to construct three scenarios a, jg, and o such that a is consistent with N = A O C, 
~8 with N = B t.J C, and o with N = A U B. The members of  C will all be given private 
value v in a and v' in ~8. Moreover, a, jO, and o will be constructed in such a way that no 
processor a ~ A can distinguish a from o (i.e., a~ ffi oa), and no processor b ~ B can 
distinguish ~8 from o (i.e., ~gb ffi Oh). It will then follow that for the scenario o processors in 
A and B will compute different values for the members o f  C. 

We define the scenarios a, AS, and o recursively as follows: 

(i) For  each w ~ P+ not ending in a member of  C, let 

~(w) =/~(w) = o(w) = v. 

(ii) For each a E A, b E B, c E C let 

a(c) = a(ac) = ,~(bc) = ~(cc) = v, 

~(c) = O(ac) = ~(bc) =/~(cc) = v', 

o(c) = o(ac) = o(cc) = v, o(bc) = v'. 

b E B, c E C, p E P, w E P*c (i.e., w is any string over P ending (iii) For each a E A, 
in c), let 

~(paw) = ,~(aw), p(paw)  -- ~(aw), 
~(pbw)  ffi /~(bw), ~(pbw)  =/~(bw), 
~(pcw) = ~(cw), /~(pcw) =/~(cw), 

o(paw)  = o(aw), 
o(pbw) -- o(bw), 

o(acw) -- ,~(cw), 
o(bcw) =/~(cw). 
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It is easy to verify by inspection that a, fl, and a are in fact consistent with N ffi A t.J C, 
B t2 C, A t d  B, respectively. Moreover, one can show by a simple induction proof  on the 
length of  w that 

a(aw) = o(aw), fl(bw) = a(bw) 

for all a E A, b ~ B, and w E P*. 
It then follows from the definition of  interactive consistency that for any a E A, 

b ~ B ,  c ~ C ,  

v = or(c) = F~(a~, c) = Fa(oa, c) = Fb(ob, C) = Fb([3b, C) ffi V', 

giving a contradiction. Q.E.D. 

5. An Algorithm Using Authenticators 

The negative result of  the last section depends strongly on the assumption that a faulty 
processor may refuse to pass on values it has received from other processors or may pass 
on fabricated values. This section addresses the situation in which the latter possibility is 
precluded. We will assume, in other words, that a faulty processor may "lie" about its own 
value and may refuse to relay values it has received, but may not relay altered values 
without betraying itself as faulty. 

In practice, this assumption can be satisfied to an arbitrarily high degree of  probabili ty 
using authenticators. An  authenticator is a redundant augment to a data item that can be 
created, ideally, only by the originator of  the data. A processorp constructs an authenticator 
for a data item d by calculating Ap[d], where Ap is some mapping known only top.  It must 
be highly improbable that a processor q other t h a n p  can generate the authenticator Ap[d] 
for a given d. At the same time, it must be easy for q to check, for a givenp,  v, and d, that 
v = Ap[d ]. The problem of  devising mappings with these properties is a cryptographic one. 
Methods for their constructions are discussed in [2] and [3]. For  many applications in 
which faults are due to random errors rather than to malicious intelligence, any mappings 
that "suitably randomize" the data suffice. 

A scenario o is carried out in the following way. As before, let v = o(p)  designate p 's  
private value, p communicates this value to r by sending r the message consisting of  the 
triple (p,  a, v), where a = Ap[v]. When r receives the message, it checks that a = Ap[v]. If  
so, r takes v as the value of  a(rp). Otherwise r lets o(rp) = NIL. More generally, i f r  receives 
exactly one message of  the form (pl ,  al(p2, a2 . . .  (p~, ak, V) . . .  )), where ak ffi Ah[v] and 
for 1 _< i _< k - 1, a, = A,[(p,+l, a,+l . . .  (pk, ak, v)], then ff(r~01 . - -  jOk) ~-  V. Otherwise, 
o(rpl . . .  pk) = NIL. 

A scenario o constructed in this way is consistent with a given choice N of  nonfaulty 
processors, if  for all processors p E N, q E P and strings w, w' over P. 

(i) o(qpw) = o(pw), 
(ii) o(w'pw) is either o(pw) or NIL. 

Condit ion (i) ensures that nonfaulty processors are always truthful. Condit ion (ii) 
guarantees that a processor cannot relay an altered value of  information received from a 
nonfaulty processor. 

We now present a procedure, using m + l-level authenticated scenarios, that guarantees 
interactive consistency for any n _> m. As before, the procedure is described in terms of  the 
value a nonfaulty processor p records for a given processor q on the basis of  o.: 

Let Spq be the set of  all non-NIL values op(pwq), where w ranges over strings of  distinct 
elements with length _<m over P - (p ,  q}. I f  Spq has exactly one element v, p records v 
for q; otherwise, p records NIL. 

To see that interactive consistency is assured, consider first the case in which q is 
nonfaulty. In this case op(pwq) is either o(q) or NIL for each appropriate w by condition 
(ii). Since, in particular, op(pq) = o(q) by (i), Spq ffi (o(q)}. p thus records o(q) for q as 
required. 
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I f q  is faulty, it suffices to show only that for each two nonfaulty processorsp andp ' ,  S m  
= Sp,q. So suppose v E Spq, i.e., v = o , ( p w q )  for some string w having no repetitions, with 
length _<m over P - {p, q}. I f p '  occurs in w (say w ffi w lp 'wD,  then o ( p w q )  = o(p 'w2q)  by 
(ii); hence v = o ( p w q )  E Sp,q. I f p '  does not occur in w and w is of  length <m, thenpw is 
of  length _<m; so v ffi o ( p w q )  = o ( p ' p w q )  E Sp,q. Finally, i f p '  does not occur in w and w is 
o f  length m, w must be of  the form wlrw~ where r is nonfaulty, giving that v = o ( p w q )  = 
o(rw2q) (by (ii)) ffi o(p'rwzq) (by (i)) E Sp,q. In each case v E Sp,q. A symmetrical argument 
shows that f f  v ~ Sp,q, v E Spq. Hence Sr,q = S m  as required. Q.E.D. 

6. Conclusions 

The problem of  obtaining interactive consistency appears to be quite fundamental to the 
design of  fault-tolerant systems in which executive control is distributed. In the SIFT [4] 
fault-tolerant computer under development at SRI, the need for an interacUve consistency 
algorithm arises in at least three aspects of  the design--synchronization of  clocks, stabili- 
zation of  input from sensors, and agreement on results o f  diagnostic tests. In the prehminary 
stages of  the design of  this system, it was naively assumed that simple majority voting 
schemes could be devised to treat these situations. The gradual realization that simple 
majorities are insufficient led to the resuRs reported here. 

These results by no means answer all the questions one might pose about interactive 
consistency. The algorithms presented here are intended to demonstrate existence. The 
construction of  efficient algorithms and algorithms that work under the assumption of  
restricted communications is a topic for future research. Other questions that will be 
considered include those of  reaching approximate agreement and reaching agreement 
under various probabilistic assumptions. 
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