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Theorem 3 De�ne: R
�
= M ^R0

L
�
= L ^M

X
�
= (:L) ^M ^ (:R0)

MR �
= :(R_ L) ^M+ ^ :(R_ L)0

N
�
= M _ E

NR �
= MR _ E

S
�
= Init ^2[N ]v

SR �
= Init ^2[NR]v

I
�
= ^ R ) R+(bv=v ; v=v 0)

^ L ) L+(bv=v 0)
^ :(R_ L)) (bv = v)

^ :(R_ L)(bv=v)

Q
�
= _ 23:L

_ 32[false]v ^ 32Enabled (L+ ^ :L0)

Ai
�
= B i _ (�i ^M )

AR
i

�
= B i _ (�i ^MR)

O
�
= (9 i 2 I : �i) ^23hR iv ) 23:R

Assume:

1. (a) Init ) :(R_ L)

(b) E ) (R0 � R) ^ (L0 � L)

(c) :(L ^M ^R0)

(d) :(R ^L)

2. (a) R � E ) E � R

(b) E � L ) L � E

(c) 8 i 2 I : R � hE ^ B i iv ) hE ^ B i iv � R

(d) 8 i 2 I : hE ^ B i iv � L ) L � hE ^ B i iv

Prove: S ^Q ^O ) 999999 bv : 2I ^dSR ^ (8 i 2 I : 23hAi iv ) 23h
d

AR
i ibv ).
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Proof of the Theorem

Let m, r1, . . . , r k , p, n and l1, . . . , lk be variables distinct from the variables

of v and bv , let r equal hr1; : : : ; r k i, and l equal h l1; : : : ; lk i. We also let u

denote a k -tuple of bound variables, distinct from all the other variables.

We �rst de�ne a temporal formula H c which asserts that b and c are

history variables chosen as follows. The initial condition I c asserts, and

it will remain true forever, that c is an in�nite sequence of elements of I

in which each element appears in�nitely many times. (Such a sequence

exists because I is at most countably in�nite.) The inital value of b doesn't

matter; we take it to be an arbitrary element of I. We choose b 0 to be the

�rst element i in the sequence c such that the current step is a E ^B i step.

We de�ne c0 to be the sequence obtained from c by deleting the element b 0.

(If there is no such i , we let c0 = c and let b 0 be an arbitrary element > not

in I.)

>
�
= choose i : i =2 I

I c
�
= ^ c 2 [Nat ! I]

^ 8n 2 Nat ; i 2 I : 9m 2 Nat : (m > n) ^ (c[m] = i)

^ b 2 I [ f>g

Pos(i)
�
= minfn 2 Nat : c[n] = ig

N c �
= if E ^ (9 i 2 I : hB i iv )

then ^ b 0 = choose i : ^ (i 2 I) ^ hB i iv

^ 8 j 2 I : hB j iv ) (Pos(i) � Pos(j ))

^ c0 = [n 2 Nat 7! if n < Pos(b 0) then c[n]

else c[n + 1]]

else ^ b 0 = if v 0 = v then b else >

^ c0 = c

H c �
= I c ^2[N c]hv ;b;c i

Note that the initial predicate I c is actually an invariant of H c.

For convenience, we de�ne the action D by

D
�
= if b 0 = > then E else E ^ hBb0 iv

We next de�ne a temporal formula H r , which asserts that r is a history

variable, and a predicate I r that we will prove is an invariant of H r . Note
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that �(u) is a state predicate, if u is a k -tuple of state functions.

�(u)
�
= (:R ^ R+)(u=v ; v=v 0)

N r �
=

r 0 = if :R0
then v 0

else if R then r

else if hE iv then choose u :

(:R ^ R+)(u=v) ^D(r=v ; u=v 0)
else r

H r �
= (r = v) ^2[N r ^ (v 0 6= v)]hv ;r i

I r
�
= ^ :R ) (r = v)

^ R ) �(r)

Next, we de�ne Rp and Rl , which assert that p, n, and l are prophecy

variables. The prophecy variable p is an \in�nite prophecy" of the form

2(p = F ) for a temporal formula F . For a prophecy variable like l , the

invariant I l is part of the formula that describes the variable.

Pp �
= 2(p = ^ 2Enabled (L+ ^ :L0)

^ 2[false]v )

�(u)
�
= (L+ ^ :L0)(u=v 0)

l�nal
�
= choose u : �(u)

I l
�
= ^ :L ) (l = v)

^ L ) �(l)
^ p ) (l = l�nal )

N l �
=

l = if p then l�nal
else if :L then v

else if L then l 0

else if hE iv
then choose u :

^ �(u)
^ D(u=v ; l 0=v 0)

else l 0

P l �
= 2I l ^2[N l ^ (hp; v i0 6= hp; v i)]hv ;b;c;p;l i

Note that the symmetric relation between the history variable r and the

prophecy variable p becomes more apparent if, in the de�nition of N r , we

replace the expression R+(u=v) with the equivalent expression �(u)0. (The
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expressions are equivalent because the bound variable u in the expression

choose u : : : : is by de�nition a constant, so u 0 = u.)

We also de�ne the action N p and predicate I p , which play the role of

next-state relation and invariant for Pp .

N p �
= ^ p ) (v 0 = v)

^ (v 0 = v)) (p 0 = p)

I p
�
= p ) (9 u : �(u))

For convenience, we combine all these next-state relations and invariants

with the following de�nitions

all
�
= hv ; b; c; r ; p; l i

N all �
= (v 0 6= v) ^N ^N c ^N r ^N p ^N l

I all
�
= I c ^ I r ^ I l

We also de�ne X by

X
�
= :L ^M ^ :R0

Finally, we de�ne our re�nement mapping v by

v
�
= if R then r

else if L then l else v

We use the following simple observations. If v is the tuple of all variables

that appear in the actions A and B , then for any u1 and u2,

(A � B)(u1=v ; u2=v
0) � 9w : A(u1=v ;w=v

0) ^ B(w=v ; u2=v
0) (1)

The proof of the theorem follows.

h1i1. 1. (I c)0 ^N c ^ E ^ �(r)) 9 u : (:R ^ R+)(u=v) ^D(r=v ; u=v 0)
2. (I c)0 ^N c ^ E ^ �(l)0 ) 9 u : �(u) ^D(u=v ; l 0=v 0)
3. 8 u : (R+(u=v ; v=v 0)) :L)

4. M � R _X _ L

h2i1. Assume: (I c)0 ^N c ^ E ^ �(r)
Prove: 9 u : (:R ^R+)(u=v) ^D(r=v ; u=v 0)

h3i1. R � D ) D � R

Proof: Assumption h2i (which implies b 0 2 I [ f>g), the de�nition

of D , and hypotheses 2(a) (if b 0 = >) and 2(c) (if b 0 2 I).

h3i2. R+ �D ) D � R+

Proof: By induction from h3i1 and the associativity of \�".

h3i3. (:R ^R+) �D ) D � (:R ^ R+)

4



Proof:

(:R ^ R+) � D � :R ^ (R+ � D) By (1).

) :R^ (D � R+) By h3i2.

� (:R ^D) � R+ By (1).

) (D ^ :R0) � R+ By hypothesis 1(b), since D ) E .

� D � (:R ^ R+) By (1).

h3i4. Q.E.D.

Proof: By assumption h2i, since

�(r) ^ E

) �(r) ^D Assumption h2i and def of N c .

� (:R ^ R+)(r=v ; v=v 0) ^D De�nition of �.

) ((:R ^ R+) � D)(r=v) By (1).

) (D � (:R ^R+))(r=v) By h3i3.

� 9 u : D(r=v ; u=v 0) ^ (:R ^R+)(u=v) By (1).

h2i2. Assume: (I c)0 ^N c ^ E ^ �(l)0

Prove: 9 u : (�(u) ^D)(u=v ; l 0=v 0)
h3i1. D � L) L �D

Proof: Assumption h2i (which implies b 0 2 I [ f>g), the de�nition

of D , and Hypotheses 2(b) (if b 0 = >) and 2(d) (if b 0 2 I).

h3i2. D � L+ ) L+ �D

Proof: By induction from h3i1 and the associativity of \�".

h3i3. 8 u;w : D(u=v ;w=v 0) ^ :L(w=v)) :L(u=v)
Proof: Hypothesis 1(b) (which implies E ^ L ) L0), since assump-

tion h2i and the de�nition of D imply D ) E .

h3i4. Q.E.D.

Proof: By assumption h2i, since

(�(l))0 ^ E

) (�(l))0 ^D Assumption h2i and def of N c .

� L+(v 0=v ; l 0=v 0) ^ :L(l 0=v) ^D By de�nition of �.

) (D � L+)(l 0=v 0) ^ :L(l 0=v) By (1).

) (L+ �D)(l 0=v 0) ^ :L(l 0=v) By h3i2.

) 9 u : L+(u=v 0) ^D(u=v ; l 0=v 0) ^ :L(l 0=v) By (1).

) 9 u : L+(u=v 0) ^D(u=v ; l 0=v 0) ^ :L(u=v) By h3i3

� 9 u : �(u) ^D(u=v ; l 0=v 0) By de�nition of �.

h2i3. Assume: u a k�tuple of constants

Prove: R+(u=v ; v=v 0)) :L

h3i1. R(u=v ; v=v 0) ) :L

Proof: By de�nition, R impliesR0, so R(u=v ; v=v 0) impliesR, which

by hypothesis 1(d) implies :L.

h3i2. Q.E.D.
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Proof: h3i1, by induction on k .

h2i4. M � R _X _ L

Proof: M � (:L ^M ^R0) _ (:L ^M ^ :R0) _ (L ^M )

Propositional logic.

� (M ^R0) _ (:L ^M ^ :R0) _ (L ^M )

Hypothesis 1(c).

� R _X _ L

De�nitions of R, X , and L.

h2i5. Q.E.D.

Proof: h2i1, h2i2, h2i3, and h2i4.

h1i2. Pp ) 2[N p ]hv ;p i ^2I
p

h2i1. Pp ) 2[N p ]hv ;p i

Proof: This is semantically obvious, since v = v 0 implies

Enabled (L+ ^ :L0) � (Enabled (L+ ^ :L0))0

but I don't know how to derive it from more primitive proof rules.

h2i2. Pp ) 2I p

Proof: Follows from the de�nitions of Pp and I p by simple temporal

reasoning, since Enabled (L+ ^ :L0) is equivalent to 9 u : �(u).
h2i3. Q.E.D.

Proof: h2i1 and h2i2.

h1i3. 999999 b; c : H c ^2I c

h2i1. 999999 b; c : H c

Proof: By the standard rule for adding history variables.

h2i2. H c ) 2I c

h3i1. I c ^ [N c ]hv ;c i ) (I c)0

Proof: Immediate from the de�nitions.

h3i2. Q.E.D.

Proof: h3i1 and the TLA invariance rule.

h2i3. Q.E.D.

Proof: h2i1, h2i2, and predicate logic.

h1i4. 2I c ^H c ^ S ) 999999 r : H r ^2I r

h2i1. 999999 r : H r

Proof: By the rules for history variables.

h2i2. 2I c ^H c ^ S ^H r ) 2I r

h3i1. Assume: (I c)0 ^N c ^N ^N r ^ (v 0 6= v) ^ I r

Prove: (I r )0

h4i1. Case: E ^ :R

h5i1. Case: R

h6i1. R0

Proof: Assumptions h5i and h4i and hypothesis 1(b) (which
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implies E ^R ) R0).

h6i2. r 0 = choose u : (:R ^R+)(u=v) ^D(r=v ; u=v 0)
Proof: h6i1, assumption h4i (:R), assumption h3i (which

asserts (v 0 6= v) ^N r ), and the de�nition of N r .

h6i3. �(r)
Proof: Assumptions h5i and h3i (which asserts I r ), and the

de�nition of I r .

h6i4. (:R ^ R+)(r 0=v)
Proof: h6i2, h6i3, assumptions h3i (which asserts (I c)0 ^N c)

and h4i, and h1i1.1.

h6i5. Q.E.D.

Proof: h6i4 implies �(r)0, since (:R ^ R+)(r 0=v) = (:R ^

R+)(r 0=v ; v 0=v 0) = (:R ^ R+)(r=v ; v=v 0)0 = �(r)0. The level-

h3i goal then follows from h6i1 and the de�nition of I r .

h5i2. Case: :R

h6i1. :R0

Proof: Assumptions h5i and h4i and hypothesis 1(b) (which

implies E ^R0 )R).

h6i2. r 0 = v 0

Proof: h6i1, assumption h3i (which asserts N r ), and the def-

inition of N r .

h6i3. Q.E.D.

Proof: h6i1, h6i2, and the de�nition of I r imply tle level-h3i

goal.

h5i3. Q.E.D.

Proof: Immediate from h5i1 and h5i2.

h4i2. Case: R

h5i1. r 0 = r

Proof: Assumption h3i (which asserts N r ), assumption h4i,

which by de�nition of R implies R0, and the de�nition of N r .

h5i2. Case: R

h6i1. �(r) ^ R ) �(r)0

Proof:

�(r) ^ R � (:R ^ R+)(r=v ; v=v 0) ^ R By de�nition of �.

) ((:R ^ R+) � R)(r=v) By (1).

� (:R ^ (R+ � R))(r=v) By (1).

) (:R ^ R+)(r=v) By de�nition of +.

� (:R ^ R+)(r 0=v ; v 0=v 0) By h5i1.

� (�(r))0 By de�nition of �.

h6i2. Q.E.D.
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Proof: Assumptions h5i and h3i (which asserts I r ) imply

�(r). The level-h3i goal then follows from assumption h4i

(which, by de�nition of R, implies R0), step h6i1, and the

de�nition of I r .

h5i3. Case: :R

h6i1. r = v

Proof: Assumptions h5i and h3i (which asserts I r ) and the

de�nition of I r .

h6i2. R(r 0=v ; v 0=v 0)
Proof: By assumption h4i, since h6i1 and h5i1 imply r 0 = v .

h6i3. �(r)0

Proof: By assumption h5i and h6i2, since R implies R+ and

(:R ^ R+)(r 0=v ; v 0=v 0) = (:R ^ R+)(r=v ; v=v 0)0 = �(r)0.
h6i4. Q.E.D.

Proof: h6i3, assumption h4i (which implies R0), and the def-

inition of I r imply the level-h3i goal.

h5i4. Q.E.D.

Proof: Immediate from h5i2 and h5i3.

h4i3. Case: :R0

h5i1. r 0 = v 0

Proof: Assumption h3i (which asserts N r ), assumption h4i, and

the de�nition of N r .

h5i2. Q.E.D.

Proof: h5i1, assumption h4i, and the de�nition of I r imply our

level-h3i goal.

h4i4. Q.E.D.

h5i1. N � (E ^ :R) _ R _ (M ^ :R0)

Proof: N � E _M By de�nition of N .

� E _ (M ^R0) _ (M ^ :R0) By predicate logic.

� E _ R _ (M ^ :R0) By de�nition of R.

� (E ^ :R) _ R _ (M ^ :R0) By propositional logic.

h5i2. Q.E.D.

Proof: By h5i1 and assumption h3i (which asserts N ), cases

h4i1, h4i2, and h4i3 are exhaustive.

h3i2. I r ^ unchanged hv ; r i ) (I r )0

Proof: Immediate, since v and r are the only free variables of I r .

h3i3. Q.E.D.

Proof: By h3i1, h3i2, the de�nition of H r , and the usual TLA in-

variance rule.

h2i3. Q.E.D.
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Proof: h2i1 and h2i2 and predicate logic.

h1i5. 2I c ^H c ^ S ^Q ) 999999 p; l : Pp ^ P l

h2i1. 999999p : Pp

Proof: By the following rule for adding \in�nite prophecy" variables:

If p does not occur free in the temporal formula F , then 999999p :

2(p = F ).

h2i2. 2I c ^H c ^Q ^ S ^ Pp ) 999999 l : P l

h3i1. I p ^ p ) I l

h4i1. I p ^ p ) �(l�nal )
Proof: By de�nition of I p and l�nal .

h4i2. �(l�nal )) L

Proof: By de�nition of �, since L+ equals (L^M )+ (by de�nition

of L), which implies L.

h4i3. Q.E.D.

Proof: h4i1, h4i2, and the de�nition of I l

h3i2. Q ^ Pp ) 23(9 !u : I l (u=l))
h4i1. 2I p ^23:L ) 23(9 !u : I l (u=l))
h5i1. I p ^ :L ) :p

Proof: I p ^ p ) (9 u : �(u))) L+ ) L.

h5i2. I p ^ :L ) (9 !u : I l (u=l))
Proof: h5i1 and the de�nition of I l imply I l (u=l) � (u = v).

h5i3. Q.E.D.

Proof: h5i2 and temporal reasoning.

h4i2. 2I p ^2p ) 2(9 !u : I l (u=l))
h5i1. I l ^ p ) (l = l�nal )

Proof: De�nition of I l

h5i2. I p ^ p ) (9 !u : I l (u=l))
Proof: Immediate from h5i1 and h3i1.

h5i3. Q.E.D.

Proof: h5i2 and simple temporal reasoning.

h4i3. Q ^ Pp ) (23:L) _32p

Proof: By de�nition of Q and Pp .

h4i4. Q.E.D.

Proof: By h4i1, h4i2, h4i3, h1i2 (which implies Pp ) 2I p), and

simple temporal reasoning.

h3i3. 2I c^H c^S^Pp ) 2[(I l )0^(v 0 6= v)) 9 u : N l (u=l)^I (u=l)]v
h4i1. Assume: (I c)0 ^N c ^N ^ I p ^N p ^ (I l )0 ^ (v 0 6= v)

Prove: 9 u : N l (u=l) ^ I l (u=l)
h5i1. :p
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Proof: Assumption h4i, since N p ^ (v 0 6= v) implies :p.

h5i2. Case: :L

h6i1. I l (v=l) ^N l(v=l)
Proof: h5i1, assumption h5i, and the de�nitions of I l and N l .

h6i2. Q.E.D.

Proof: Immediate from h6i1.

h5i3. Case: L

h6i1. Case: E ^ :L

h7i1. L0

Proof: Assumptions h6i and h5i and hypothesis 1(b)

(which implies E ^ L ) L0).

h7i2. 9 u : �(u) ^D(u=v ; l 0=v 0)
Proof: h7i1 and assumption h4i (which asserts (I l )0) imply

�(l)0. The result follows from �(l)0, assumptions h6i and h4i

(which implies (I c)0 ^N c), and h1i1.2.

h7i3. Q.E.D.

Let: u
�
= choose u : �(u) ^D(u=v ; l 0=v 0)

h8i1. N l � (l = u)

Proof: h5i1, assumption h5i, assumption h6i, assumption

h4i (which implies v 0 6= v), and the de�nition of N l .

h8i2. N l(u=l)
Proof: By h8i1.

h8i3. �(u)
Proof: h7i2 and the de�nition of u.

h8i4. I l (u=l)
Proof: h8i3, assumption h5i, h5i1, and the de�nition of

I l .

h8i5. Q.E.D.

Proof: h8i2 and h8i4 imply the level-h4i goal.

h6i2. Case: L

h7i1. Case: L0

h8i1. (�(l))0 ^ L) �(l 0)
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Proof: (�(l))0 ^ L

� L+(v 0=v ; l 0=v 0) ^ :L(l 0=v) ^ L

By de�nition of �

) (L � L+)(l 0=v 0) ^ :L(l 0=v)
By (1).

) (L+)(l 0=v 0) ^ :L(l 0=v)
By de�nition of A+ for an action A.

� �(l 0)
By de�nition of �

h8i2. �(l 0)
Proof: Assumption h4i implies (I l )0, which by assump-

tion h7i implies (�(l))0. By h8i1, (�(l))0 and assumption

h6i imply �(l 0).
h8i3. I l (l 0=l)
Proof: h5i1 and assumption h5i imply I l � �(l), so h8i2
implies I l (l 0=l).

h8i4. N l(l 0=l)
Proof: h5i1, assumptions h5i and h6i imply N l � (l =

l 0), so N l(l 0=l) � (l 0 = l 0).

h8i5. Q.E.D.

Proof: h8i3 and h8i4 imply the level-h4i goal.

h7i2. Case: :L0

h8i1. l 0 = v 0

Proof: Assumption h4i (which implies (I l )0), assumption

h7i, and the de�nition of I l .

h8i2. �(v 0)
Proof: Assumption h6i implies L+, which with assump-

tion h7i implies (L+ ^ :L0)(v 0=v 0), which equals �(v 0).
h8i3. I l (v 0=l)
Proof: h5i1 and assumption h5i imply I l � �(l), so h8i2
implies I l (v 0=l).

h8i4. N l(v 0=l)
Proof: h5i1, assumption h5i, and assumption h6i imply

N l � (l = l 0). By h8i1, this implies N l � (l = v 0), so

N l(v 0=l) � (v 0 = v 0).

h8i5. Q.E.D.

Proof: h8i3 and h8i4 imply the level-h4i goal.

h7i3. Q.E.D.

Proof: Immediate from h7i1 and h7i2.

h6i3. Q.E.D.
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Proof: N � E _M By de�nition of N .

� E _ (L ^M ) By assumption h5i.

� E _ L By de�nition of L.

� (E ^ :L) _ L By propositional logic.

Therefore, cases h6i1 and h6i2 are exhaustive.

h5i4. Q.E.D.

Proof: h5i3 and h5i2.

h4i2. (I c)0 ^ [N c]hv ;b;c i ^ [N ]v ^ I p ^ [N p ]hv ;p i )

[(I l )0 ^ (v 0 6= v)) 9 u : N l (u=l) ^ I l (u=l)]v
Proof: h4i1, since v 0 = v implies [: : :]v .

h4i3. 2I c ^2[N c]hv ;b;c i ^2[N ]v ^2I
p ^2[N p ]hv ;p i )

2[(I l )0 ^ (v 0 6= v)) 9 u : N l (u=l) ^ I l (u=l)]v
Proof: h4i2 and simple TLA reasoning.

h4i4. Q.E.D.

Proof: h4i3 and h1i2.

h3i4. Q.E.D.

Proof: By h3i2, h3i3, and the following rule for adding prophecy

variables.

Let w be an m-tuple of variables, let x be an n-tuple of

variables distinct from the variables of w , let I be a predicate

and N an action, where all the free variables of I and N are

included in w and x . Then

^ 23(9 !a : I (a=x ))
^ 2[I 0 ^ (w 0 6= w)) (9 a : N (a=x ) ^ I (a=x ))]w
) 999999 x : 2I ^2[N ^ (w 0 6= w)]hw ;x i

where 9 !a means there exists a unique a:

9 !a : F (a)
�
= 9 a : F (a) ^ (8 b : F (b)) (b = a))

h2i3. Q.E.D.

h3i1. 2I c ^H c ^Q ^ S ^ Pp ) 999999 l : (Pp ^ P l )

Proof: By h2i2 and temporal predicate logic, since l does not occur

free in Pp .

h3i2. (999999 p : 2I c ^H c ^Q ^ S ^ Pp)) 999999 p; l : (Pp ^ P l )

Proof: By h3i1 and temporal predicate logic.

h3i3. (999999 p : 2I c ^H c ^Q ^ S ^ Pp) � 2I c ^H c ^Q ^ S

Proof: By h2i2 and temporal predicate logic, since p does not occur

free in 2I c ^H c ^Q ^ S .

h3i4. Q.E.D.

Proof: By h3i2 and h3i3.

h1i6. Assume: N all ^ I all ^ (I all )0 ^X

12



Prove: MR

h2i1. (:R ^ (r = v)) _ (:R ^ R+)(r=v ; v=v 0)
Proof: Assumption h1i implies I r , and the conclusion follows from I r

and the de�nition of �(r).
h2i2. (:L0 ^ (l 0 = v 0)) _ (L+ ^ :L0)(v 0=v ; l 0=v 0)
Proof: Assumption h1i implies (I l )0, and the conclusion follows from

(I l )0 and the de�nition of �(l).
h2i3. MR(r=v ; l 0=v 0)
h3i1. (:(R _ L) ^M+)(r=v)
h4i1. Case: :R^ (r = v)

Proof: Assumption h1i implies :L ^ M , from which we deduce

:(R _ L) ^M ^ (r = v), which implies the level-h3i goal because

M implies M+.

h4i2. Case: (:R ^ R+)(r=v ; v=v 0)
h5i1. :L(r=v)
Proof: Since R equals M ^R0, this follows from assumption h4i

and hypothesis 1(c).

h5i2. (:R ^M+)(r=v)
Proof: Assumption h1i implies M . Since R+ implies M+, as-

sumption h4i implies (:R ^M+)(r=v ; v=v 0). From (1), we then

deduce (:R ^ (M+ �M ))(r=v), which implies the desired result

since M+ �M implies M+.

h5i3. Q.E.D.

Proof: The result follows immediately from h5i1 and h5i2.

h4i3. Q.E.D.

Proof: h2i1 implies that cases h4i1 and h4i2 are exhaustive.

h3i2. Q.E.D.

h4i1. Case: :L0 ^ (l 0 = v 0)

Proof: By h3i1 and assumption h1i, which implies :R0, we have

(:(R_L)^M+)(r=v)^:(R_L)0^(l 0 = v 0), which implies (:(R_

L)^M+^:(R_L)0)(r=v ; l 0=v 0), and the level-h2i goal follows from

the de�nition of MR.

h4i2. Case: (L+ ^ :L0)(v 0=v ; l 0=v 0)
h5i1. :R0(l 0=v 0)
Proof: Since L equals L ^M , this follows from assumption h4i

and hypothesis 1(c).

h5i2. (:(R _ L) ^M+ ^ :L0)(r=v ; l 0=v 0)
Proof: By (1), h3i1 and assumption h4i imply

((:(R _L) ^M+) � (L+ ^ :L0))(r=v ; l 0=v 0)
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which by (1) equals

(:(R _L) ^ (M+ � L+) ^ :L0)(r=v ; l 0=v 0)
The result then follows because M+ �L+ impliesM+ �M+, which

implies M+.

h5i3. Q.E.D.

Proof: The level-h2i goal follows immediately from h5i1, h5i2,

and the de�nition of MR.

h4i3. Q.E.D.

Proof: h2i2 implies that cases h4i1 and h4i2 are exhaustive.

h2i4. v = r

h3i1. Case: R

Proof: Immediate from the de�nition of v .

h3i2. Case: :R

Proof: Assumption h1i implies :L and I r . From :R, :L, and the

de�nition of v we deduce v = v . From :R ^ I r we deduce r = v .

h3i3. Q.E.D.

Proof: Immediate from h3i1 and h3i2.

h2i5. v 0 = l 0

h3i1. Case: L0

Proof: Assumption h1i implies L ^ M , which by hypothesis 1(c)

implies :R0. From :R0, L0, and de�nition of v , we deduce v 0 = l 0.

h3i2. Case: :L0

Proof: Assumption h1i implies :R' and (I r )0. From :R0 and :L0

we deduce v 0 = v 0, and from :L0 ^ (I r )0 we deduce l 0 = v 0.

h2i6. Q.E.D.

Proof: h2i3, h2i4, and h2i5.

h1i7. Init ^2[N all ]all ^2I
all ) Init ^2[NR]v

h2i1. Init ^ I all ) Init

Proof: Assumption h1i implies I r^I l . By hypothesis 1(a), Init implies

:(R_L), which by I r ^I l implies (l = v)^(r = v), which by de�nition

of v implies v = v , so Init = Init .

h2i2. Assume: N all ^ I all ^ (I all )0

Prove: [NR]v
h3i1. :p

Proof: Assumption h2i implies N all , which implies (v 0 6= v) ^ N p ,

which implies :p.

h3i2. Case: E ^ :R ^ :L

h4i1. Case: :R^ :L

h5i1. :R0 ^ :L0

Proof: Assumptions h3i and h4i and hypothesis 1(b) (which
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implies E ^ L0 ) L and E ^R0 ) R).

h5i2. (v = v) ^ (v 0 = v 0)

Proof: h5i1, assumption h4i, and the de�nition of v .

h5i3. Q.E.D.

Proof: h5i2 and case assumption h3i imply E , which in turn

implies NR.

h4i2. Case: R

h5i1. 9 u : (:R ^ R+)(u=v) ^D(r=v ; u=v 0)
Proof: Assumption h2i implies I r ^ (I c)0 ^ N c. Assumption

h4i and I r implies �(r). The result follows from assumption h3i,

(I c)0 ^N c, �(r), and h1i1.1.
h5i2. R0

Proof: Assumptions h3i and h4i and hypothesis 1(b).

h5i3. r 0 = choose u : (:R ^R+)(u=v) ^D(r=v ; u=v 0)
Proof: Assumption h2i (which implies N r and v 0 6= v), h5i2,

assumption h3i, and the de�nition of N r .

h5i4. D(r=v ; r 0=v 0)
Proof: h5i1 and h5i3.

h5i5. (v = r) ^ (v 0 = r 0)

Proof: h5i2, assumption h4i, and the de�nition of v .

h5i6. Q.E.D.

Proof: h5i4 and h5i5 imply D , which implies E (since D implies

E ), which in turn implies NR.

h4i3. Case: L

h5i1. L0

Proof: Assumptions h3i and h4i and hypothesis 1(b).

h5i2. �(l)0

Proof: h5i1, assumption h2i (which implies (I l )0), and the def-

inition of I l .

h5i3. 9 u : �(u) ^D(u=v ; l 0=v 0)
Proof: Assumption h2i (which implies (I c)0 ^ N c), h5i2, as-

sumption h3i, and h1i1.2.

h5i4. l = choose u : �(u) ^D(u=v ; l 0=v 0)
Proof: h3i1, assumption h4i, assumption h3i, assumption h2i

(which implies v 6= v 0 and N l), and the de�nition of N l .

h5i5. D(l=v ; l 0=v 0)
Proof: h5i3 and h5i4.

h5i6. :R ^ :R0

Proof: Assumption h4i, h5i1, and hypothesis 1(d).

h5i7. (v = l) ^ (v 0 = l 0)
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Proof: Assumption h4i, h5i1, h5i6, and the de�nition of v .

h5i8. Q.E.D.

Proof: h5i5 and h5i7 imply D , which implies E (since D implies

E ), which in turn implies NR.

h4i4. Q.E.D.

Proof: Immediate from h4i1, h4i2, and h4i3.

h3i3. Case: R

h4i1. r 0 = r

Proof: Assumption h2i implies N r , which by assumption h3i

(which implies R0) implies r 0 = r .

h4i2. v 0 = r 0

Proof: Assumption h3i (which implies R0) and the de�nition of

v .

h4i3. :L

Proof: Assumption h3i (which implies R0) and hypothesis 1(c).

h4i4. v = r

h5i1. Case: R

Proof: The de�nition of v implies v = r .

h5i2. Case: :R

Proof: By h4i3, the de�nition of v implies v = v . Assumption

h2i implies I r , which implies v = r .

h5i3. Q.E.D.

Proof: Immediate from h5i1 and h5i2.

h4i5. Q.E.D.

Proof: h4i1, h4i2, and h4i4 imply v 0 = v , which implies the level-

h2i goal.

h3i4. Case: L

h4i1. :R

Proof: Assumption h3i (which implies L) and hypothesis 1(d).

h4i2. l 0 = l

Proof: Assumption h2i implies N l , which by h3i1 and assumption

h3i (which implies L) implies l = l 0.

h4i3. v = l

Proof: h4i1, assumption h3i (which implies L), and the de�nition

of v .

h4i4. v 0 = l 0

h5i1. :R0

Proof: Assumption h3i (which implies L) and hypothesis 1(c).

h5i2. Case: L0

Proof: h5i1 and the de�nition of v imply v 0 = l 0.
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h5i3. Case: :L0

Proof: h5i1 and the de�nition of v imply v 0 = v 0. Assumption

h2i implies (I l )0, which implies l 0 = v 0, proving v 0 = l 0.

h5i4. Q.E.D.

Proof: Immediate from h5i2 and h5i3.

h4i5. Q.E.D.

Proof: h4i2, h4i3, and h4i4 imply v 0 = v , which implies the level-

h2i goal.

h3i5. Case: X

Proof: Assumption h2i and h1i6 implyMR, which implies the level-

h2i goal.

h3i6. Q.E.D.

Proof: Assumption h2i implies N , which equals E _ M , so h1i1.4

implies that cases h3i2, h3i3, h3i4, and h3i5 are exhuastive.

h2i3. [N all ^ I all ^ (I all )0]all ) [NR]v

Proof: h2i2, since the de�nition of v implies (all
0
= all)) (v 0 = v).

h2i4. Q.E.D.

Proof: h2i1, h2i3, and the usual TLA step-simulation rule.

h1i8. 2I all ) 2I (v=bv)
h2i1. I r ^ I l ) I (v=bv )
h3i1. I r ^R ) R+(v=v ; v=v 0) ^ :(R _L)(v=v)
Proof: I r ^R ) �(r) ^R

By de�nition of I r .

= R+(r=v ; v=v 0) ^R ^ :R(r=v)
By de�nition of �.

) R+(r=v ; v=v 0) ^ :L(r=v) ^ :R(r=v)
Since R = M ^R0, hypothesis 1(c) implies :(L ^ R+).

= R+(r=v ; v=v 0) ^ :(R_ L)(r=v)
By propositional logic.

and R implies v = r by de�nition of v .

h3i2. I l ^ L ) L+(v=v 0) ^ :(R_ L)(v=v)
Proof: I l ^ L ) �(l)

By de�nition of I l .

= L+(l=v 0) ^ :L0(l=v 0)
By de�nition of �.

) L+(l=v 0) ^ :R0(l=v 0) ^ :L0(l=v 0)
Since L = L ^M , hypothesis 1(c) implies :(L+ ^R0).

) L+(l=v 0) ^ :(R0 _ L0)(l=v 0)
By propositional logic.

= L+(l=v 0) ^ :(R_ L)(l=v)
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and, by hypothesis 1(d), L implies :R, so L implies v = l by de�ni-

tion of v .

h3i3. :(R _L)) (v = v)

Proof: By de�nition of v .

h3i4. Q.E.D.

Proof: Immediate from h3i1, h3i2, h3i3, and the de�nition of I .

h2i2. Q.E.D.

Proof: By simple temporal reasoning from h2i1.

h1i9. 8 i 2 I : Q ^O ^2[N all ]all ^2I
all ^23hAi iv ) 23hAR

i iv

Let: T
�
= Q ^O ^2[N all ]all ^2I

all

h2i1. 8 i 2 I : T ^23hB i iv ) 23hB i iv

h3i1. Assume: (b 0 2 I) ^ hN all ^ I all ^ (I all )0 ^ Bb0 iv

Prove: hBb0 iv

h4i1. :M

Proof: Assumption h3i and hypothesis 1(e).

h4i2. :p

Proof: Assumption h3i, since N all implies (v 0 6= v) ^ N p which

implies :p.

h4i3. D

h5i1. E

Proof: h4i1, assumption h3i (which implies N ), and the de�ni-

tion of N .

h5i2. Q.E.D.

Proof: h5i1, assumption h3i (which implies Bb0), and the de�-

nition of D .

h4i4. Case: R

h5i1. R0

Proof: h4i3, assumption h4i and hypothesis 1(b) (since D )

E ).

h5i2. r 0 = choose u : (:R ^R+)(u=v) ^D(r=v ; u=v 0)
Proof: h4i1 (which implies :R), h5i1, h4i3 (which with assump-

tion h3i implies hE iv ), assumption h3i (which implies N r ), and

the de�nition of N r .

h5i3. 9 u : (:R ^ R+)(u=v) ^D(r=v ; u=v 0)
Proof: Assumption h3i (which implies (I c)0 ^ N c ^ I r ), h4i3

(which implies E ), assumption h4i (which with I r implies �(r)),
and h1i1.1.

h5i4. D(r=v ; r 0=v 0)
Proof: h5i2 and h5i3.
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h5i5. hBb0(r=v ; r 0=v 0)ir
By assumption h3i (b 0 2 I) and the de�nition of D , h5i4 implies

(hBb0 iv )(r=v ; r
0=v 0).

h5i6. (v = r) ^ (v 0 = r 0)

Proof: Assumption h4i, h5i1, and the de�nition of v .

h5i7. Q.E.D.

Proof: The level-h3i goal follows immediately from h5i5 and

h5i6.

h4i5. Case: L

h5i1. L0

Proof: Assumption h4i, h4i3 (which implies E ), and hypothesis

1(b).

h5i2. l = choose u : �(u) ^D(u=v ; l 0=v 0)
Proof: Assumption h3i impliesN l . The result then follows from

h4i2, h4i5, h4i1 (which implies :L), h4i3 (which by assumption

h3i implies hE iv ), and the de�nition of N l .

h5i3. 9 u : �(u) ^D(u=v ; l 0=v 0)
Proof: Assumption h3i implies (I c)0 ^ (I l )0. By h5i1, (I l )0 im-

plies �(l)0. The result then follows from h4i3 and h1i1.2.

h5i4. D(l=v ; l 0=v 0)
Proof: h5i2 and h5i3.

h5i5. hBb0(l=v ; l 0=v 0)il
Proof: h5i4, assumption h3i (which asserts b 0 2 I), and the

de�nition of D imply (hBb0 iv )(l=v ; l
0=v 0).

h5i6. (v = l) ^ (v 0 = l 0)

Proof: Case assumption h4i, h5i1, hypothesis 1(d), and the def-

inition of v .

h5i7. Q.E.D.

Proof: The level-h3i goal follows immediately from h5i5 and

h5i6.

h4i6. Case: :(R_ L)

h5i1. :(R0 _ L0)

Proof: Assumption h4i, h4i3 (which implies E ), and hypothesis

1(b).

h5i2. (v = v) ^ (v 0 = v 0)

Proof: Case assumption h4i, h5i1, and the de�nition of v .

h5i3. Q.E.D.

Proof: Assumption h3i, which implies hBb0 iv , and h5i2 imply

the level-h3i goal.

h4i7. Q.E.D.
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Proof: Immediate from h4i4, h4i5, and h4i6.

h3i2. Assume: i 2 I

Prove: T ^23h(i = b 0) ^ Bb0 iv ) 23hB i iv

h4i1. 2[N all ]all ^2I
all ^23h(i = b 0) ^ Bb0 iv

) 23hN all ^ I all ^ (I all )0 ^ (i = b 0) ^ Bb0 iv

Proof: Since (all 0 = all) implies (v 0 = v), this follows easily from

the following three TLA proof rules:

1. [A]f ) [B ]g

2[A]f ) 2[B ]g
2. 2[A]f ^2R ) 2[A ^R ^R0]f
3. 2[A]f ^23hB if ) 23hA ^ B if

h4i2. Q.E.D.

Proof: By h4i1, assumption h3i, and h3i1, using the TLA rule

A) B

23hAif ) 23hB if
h3i3. Assume: i 2 I

Prove: T ^23hB i iv ) 23h(i = b 0) ^ Bb0 iv

h4i1. T ^23hB i iv ) 23hE ^ B i iv

Proof:

T ^23hB i iv

) 2[N ]v ^23hB i iv De�nition of T

) 23hN ^B i iv TLA reasoning.

) 23hE ^B i iv
the last step following from hypothesis 1(e) and assumption h3i,

which imply N ^ B i � E ^ B i .

h4i2. T ^23hE ^ B i iv ) _ 23h(i = b 0) ^ E ^Bb0 iv

_ ^ 23hE ^B i ^ (i 6= b 0)ihv ;b;c i

^ 32[E ^ B i ) (i 6= b 0)]hv ;b;c i

h5i1. 23hE ^ B i iv ) _ 23h(i = b 0) ^ E ^ Bb0 iv

_ ^ 23hE ^ B i ^ (i 6= b 0)iv
^ 32[E ^B i ) (i 6= b 0)]v

Proof: For any action A and predicate q , we have

23hAiv
� ^ 23hAiv

^ 23hA ^ q iv _32[:A _ :q ]v

23F _ 32:F , for any F

) _ 23hA ^ q iv
_ 32[:A _ :q ]v ^23hAiv

Propositional logic.

) _ 23hA ^ q iv
_ 32[:A _ :q ]v ^23hA ^ :q iv

32[B ]v ^ 23hC iv )
23hB ^ C iv for any B , C .
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h5i2. T )

^ 23h(i = b 0) ^ E ^Bb0 iv � 23h(i = b 0) ^ E ^ Bb0 ihv ;b;c i

^ 32[E ^ B i ) (i 6= b 0)]v � 32[E ^ B i ) (i 6= b 0)]hv ;b;c i

h6i1. N c ^ (v 0 = v)) (hv ; b; c i0 = hv ; b; c i)
Proof: By de�nition of N c.

h6i2. For any action A,

2[N c]hv ;b;c i ) ^ 32[A]v � 32[A]hv ;b;c i

^ 23[A]v � 23[A]hv ;b;c i

Proof: By h6i1, using the follow rules, among others

[A]f ^ [B ]g ) [C ]h

2[A]f ^2[B ]g ) 2[C ]h

[A]f ^ hB ig ) hC ih

2[A]f ^3[B ]g ) 3hC ih )

h6i3. Q.E.D.

Proof: By h6i2, since T implies 2[N c]hv ;b;c i

h5i3. Q.E.D.

Proof: Immediate from h5i1 and h5i2

h4i3. T ) : (^ 23hE ^ B i ^ (i 6= b 0)ihv ;b;c i

^ 32[(E ^ B i )) (i 6= b 0)]hv ;b;c i)

h5i1. I c ^N c ^ E ^ B i ^ (i 6= b 0)) Pos(i)0 < Pos(i)

Proof: I c ^ N c ^ E ^ B i imply b 0 2 I. From b 0 2 I, i 2 I

(assumption h3i), E ^B i , and N c, we deduce Pos(b 0) < Pos(i),

which by N c implies c0[Pos(i) � 1] = i . By de�nition of Pos ,

this implies Pos(i)0 < Pos(i).

h5i2. 2I c ^2[N c]hv ;b;c i ^2[(E ^ B i)) (i 6= b 0)]hv ;b;c i

) 2[Pos(i)0 � Pos(i)]hv ;b;c i

h6i1. I c ^N c ^ :(E ^ B i)) Pos(i)0 � Pos(i)

h7i1. Case: E ^ 9 j 2 I : B j

Proof: In this case, I c and N c imply c0[Pos(i)] = i or

c0[Pos(i)� 1] = i , either case implying Pos(i)0 � Pos(i).

h7i2. Case: :(E ^ 9 j 2 I : B j )

Proof: In this case, c0 = c, so Pos(i)0 = Pos(i).

h7i3. Q.E.D.

Proof: Immediate from h7i1 and h7i2.

h6i2. I c ^ [N c]hv ;b;c i ^ [(E ^ B i )) (i 6= b 0)]hv ;b;c i

) [Pos(i)0 � Pos(i)]hv ;b;c i

Proof: h5i1, h6i1, and propositional logic.

h6i3. Q.E.D.

Proof: By h6i2 and the TLA rules

I ^ I 0 ^ [A]f ) [B ]g

2I ^2[A]f ) 2[B ]g

[A]f ^ [B ]g � [C ]h

2[A]f ^2[B ]g � 2[C ]h
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h5i3. 2I c ^2[N c]hv ;b;c i ^23hE ^ B i ^ (i 6= b 0)ihv ;b;c i

) 23hPos(i)0 < Pos(i)ihv ;b;c i

Proof: By h5i1, the TLA rules

I ^ [A]f ^ hB ig ) hC ih

2I ^2[A]f ^3hB ig ) 3hC ih

F ) G

2F ) 2G

and the rule that 2 distributes over ^.

h5i4. Q.E.D.

h6i1. ^ T

^ 23hE ^ B i ^ (i 6= b 0)ihv ;b;c i

^ 32[(E ^ B i )) (i 6= b 0)]hv ;b;c i)

) ^ 2[Pos(i)0 � Pos(i)]hv ;b;c i

^ 23hPos(i)0 < Pos(i)ihv ;b;c i

Proof: h5i2 and h5i3

h6i2. Q.E.D.

Proof: the formula

^ 2(Pos(i) 2 Nat)

^ 2[Pos(i)0 � Pos(i)]hv ;b;c i

^ 23hPos(i)0 < Pos(i)ihv ;b;c i

asserts that Pos(i) is decremented in�nitely many times and

remains a natural number, which is impossible. Since T im-

plies I c , which implies2(Pos(i) 2 Nat), h6i1 implies the level-

h4i goal.

h4i4. Q.E.D.

Proof: By propositional logic from h4i1, h4i2, and h4i3.

h3i4. Q.E.D.

Proof: By h3i2 and h3i3.

h2i2. (9 i 2 I : �i) ^ T ^23hM iv ) 23hMR iv

h3i1. T ^23hX iv ) 23hMR iv

Proof: From the general rule

2I ^2[A]v ^23hB iv ) 23hI ^ I 0 ^A ^ B iv
and 2[N all ]all ) 2[N all ]v (which follows from [N all ]all ) [N all ]v ),

we deduce that T ^23hX iv implies 23hN all ^ I all ^ (I all )0 ^X iv .

The result then follows from h1i6.

h3i2. (9 i 2 I : �i) ^ T ^23hR iv ) 23hMR iv

h4i1. (9 i 2 I : �i) ^T ^23hR iv ) 23:R

Proof: By de�nition of O (which is implied by T ).

h4i2. 2[N ]v ^23hR iv ^23:R) 23hX iv

h5i1. 23hR iv ^23:R) 23hR ^ :R0 iv

Proof: Since R impliesR0, we infer that 23hR iv implies 23R,
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and the result follows from the general rule

23P ^23:P ) 23hP ^ :P 0 iP

plus the observation that 23hR^:R0iR implies 23hR^:R0iv

because R0 6= R implies v 0 6= v (because v contains all the

variables that occur free in R).

h5i2. 2[N ]v ^23hR ^ :R0 iv ) 23hX iv

h6i1. N ^R ^ :R0 ) X

Proof: N ^R ^ :R0 � (M _ E ) ^R ^ :R0 De�nition of N .

� M ^R ^ :R0 Hypothesis 1(b).

) M ^ :L ^ :R0 Hypothesis 1(d).

= X De�nition of X

h6i2. Q.E.D.

Proof: From h6i1 by the general rule

[N ]v ^ hAiv ) hB iv

2[N ]v ^23hAiv ) 23hB iv
h5i3. Q.E.D.

Proof: By propositional logic from h5i1 and h5i2.

h4i3. Q.E.D.

Proof: By propositional logic from h4i1, h4i2, and h3i1, since T

implies 2[N all ]all which implies 2[N ]v .

h3i3. T ^23hLiv ) 23hMR iv

h4i1. T ^23hLiv ) 23(:L)

Proof: By de�nition of Q (which is implied by T ), since

23hLiv ) 23htrueiv = 2:2[false]v = :32[false]v .

h4i2. (:L) ^2[N ^ :X ]v ) 2(:L)

h5i1. :L ^ [N ^ :X ]v ) :L0

h6i1. :L ^ E ) :L0

Proof: Hypothesis 1(b).

h6i2. :L ^ R ) :L0

Proof: By de�nition of R (which implies R0) and hypothesis

1(d).

h6i3. :L ^ L) :L0

Proof: By de�nition of L (which implies L).

h6i4. :L ^ (v 0 = v)) :L0

Proof: By the hypothesis that the tuple v contains all the

free variables of L.

h6i5. Q.E.D.

Proof: By h6i1, h6i2, h6i3, h6i4, since h1i1.4 and the de�ni-

tion of N imply that N ^ :X equals E _ R _ L.
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h5i2. Q.E.D.

Proof: By h5i1 and the standard TLA invariance rule.

h4i3. 23hLiv ^23:L ) 23h:N _X iv

h5i1. 3L ) 3h:N _X iv _ L

Proof: By h4i2, since :2[N^:X ]v is equivalent to3h:N_X iv .

h5i2. 23L ) 23h:N _X iv _32L

Proof: By h5i1 and the proof rules

F ) G

2F ) 2G

2(3F _G)) 23F _32G

h5i3. Q.E.D.

Proof:

23hLiv ^23:L

) 23L ^23:L Since L) L.

) (23h:N _X iv _32L) ^23:L By h5i2.

) 23h:N _X iv Since 23:L � :32L.

h4i4. T ^23hLiv ) 23hX iv

h5i1. T ^23hLiv ) 23h:N _X iv

Proof: h4i1 and h4i3.

h5i2. 2[N ]v ^23h:N _X iv ) 23hX iv

Proof: By the TLA rule 2[A]v ^3hB iv ) 3hA ^B iv .

h5i3. Q.E.D.

Proof: h5i1 and h5i2, since T implies 2[N ]v .

h4i5. Q.E.D.

Proof: h4i4 and h3i1.

h3i4. Q.E.D.

Proof: h3i1, h3i2, h3i3, and h1i1.4, since 23 distributes over dis-

junction.

h2i3. Q.E.D.

Proof: h2i1 and h2i2 and de�nition of Ai , since �i ^23hM iv equals

23h�i ^M iv (because �i is a constant), and 23(F _G) is equivalent

to (23F ) _ (23G) for any temporal formulas F and G .

h1i10. Q.E.D.

h2i1. S ^H c ^2I c ^H r ^2I r ^ Pp ^ P l ) 2I all ^2[N all ]all
h3i1. (v 0 = v) ^ I r ^ I l ^ (I l )0 ^N c ^N r ^N p ^N l ) (all 0 = all)

h4i1. (v 0 = v) ^N c ) hb; c i0 = hb; c i
Proof: By de�nition of N c.

h4i2. I r ^ (v 0 = v) ^N r ) (r 0 = r)

Proof: Follows from the de�nitions of I r and N r , and the hy-

pothesis that the free variables of R are included in the tuple of
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variables v , which implies (v 0 = v)) (R0 = R).

h4i3. (v 0 = v) ^N p ) (p 0 = p)

Proof: Immedate from the de�nition of N p .

h4i4. (v 0 = v) ^N p ^ I l ^ (I l )0 ^N l ) (l 0 = l)

h5i1. Case: p

h6i1. I l ) (l = l�nal )

Proof: Assumption h5i and de�nition of I l .

h6i2. (v 0 = v) ^N p ) p 0

Proof: Assumption h5i and de�nition of N p .

h6i3. (I l )0 ^ p 0 ) (l 0 = l 0�nal )

Proof: By de�nition of I l .

h6i4. (v = v 0)) (l 0�nal = l�nal )

Proof: By de�nition of l�nal , since, for any constant tuple u,

v are the only free variables of �(u).
h6i5. Q.E.D.

Proof: The level-h4i goal follows from h6i1, h6i2, h6i3, and

h6i4.

h5i2. Case: :p

h6i1. N p ) :p 0

Proof: Assumption h5i and the de�nition of N p .

h6i2. Case: :L

Proof: In this case, (v 0 = v) implies :L0, so by h6i1, I l ^

(I l )0 ^N p ^ (v 0 = v) implies l = v = v 0 = l 0.

h6i3. Case: L

Proof: In this case, assumption h5i implies (v 0 = v) ^N l )

(l = l 0).

h6i4. Q.E.D.

Proof: Cases h6i2 and h6i3 are exhaustive.

h5i3. Q.E.D.

Proof: By h5i1 and h5i2.

h4i5. Q.E.D.

Proof: By h4i1, h4i2, h4i3, h4i4, and the de�nition of all .

h3i2. 2[N ]v ^2I
r ^2I l ^2[N c ]hv ;b;c i ^2[N

r ^ (v 0 6= v)]hv ;r i

^2[N p ]hv ;p i ^2[N
l ^ (hp; v i0 6= hp; v i]hv ;b;c;p;l i ) 2[N all ]all

Proof: By the de�nition of N all , h3i1, repeated application of the

rule

^ (g = g 0) ^A) (f = f 0)

^ (f = f 0) ^ B ) (g = g 0)

[A]f ^ [B ]g � [A ^ B ]hf ;g i
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and the usual TLA rules

2I ^2[A]f ) 2[I ^ I 0 ^A]f [A]f ^ [B ]g ) [C ]h

2[A]f ^2[B ]g ) 2[C ]h
h3i3. Q.E.D.

Proof: Follows easily from h3i2, h1i2, the de�nitions, and the rule

that 2 distributes over ^.

h2i2. S ^Q ^O ^H c ^2I c ^H r ^2I r ^ Pp ^ P l

) SR ^ 2I (v=bv ) ^ (8 i 2 I : 23hAi iv ) 23hAR
i iv )

Proof: h2i1, h1i7, h1i8, h1i9, and the de�nition of SR.

h2i3. S ^Q ^O ^H c ^2I c ^H r ^2I r ^ Pp ^ P l

) 999999 bv : dSR ^ 2I ^ (8 i 2 I : 23hAi iv ) 23h
d

AR
i ibv )

Proof: h2i2 and (temporal) predicate logic.

h2i4. S ^Q ^O ^ (999999 b; c; r ; p; l : H c ^2I c ^H r ^2I r ^ Pp ^ P l )

) (999999 bv : dSR ^ 2I ^ (8 i 2 I : 23hAi iv ) 23h
d

AR
i ibv ))

Proof: h2i3 and (temporal) predicate logic, since b, c, r , p, and l do

not occur free in S , Q , O , or

999999 bv : dSR ^ 2I ^ (8 i 2 I : 23hAi iv ) 23h
dAR
i ibv )

h2i5. S ^Q ) (999999 b; c; r ; p; l : H c ^2I c ^H r ^2I r ^ Pp ^ P l )

h3i1. H c ^2I c ^ S ) 999999 r : H c ^2I c ^H r ^2I r

Proof: By h1i4, since r does not occur free in H c and I c .

h3i2. H c ^2I c ^ S ^Q ) 999999 p; l : Pp ^ P l

Proof: h1i5.

h3i3. H c ^2I c ^ S ^Q ) 999999 r ; p; l : H c ^2I c ^H r ^2I r ^ Pp ^ P l

Proof: h3i1 and h3i2, since r does not occur free in Pp or P l , and p

and l do not occur free inH c, 2I c , H r , or 2I r . (We are using the rule

that if x does not occur free in F , then (999999 x : F^G) � F^(999999 x : G).)

h3i4. S ^ Q ^ (999999 b; c : H c ^ 2I c) ) 999999 b; c; r ; p; l : H c ^ 2I c ^ H r ^

2I r ^ Pp ^ P l

Proof: By h3i3, since b and c do not occur free in S or Q . (We are

using the rule that if x does not occur free in F , then (999999 x : F ^G) �

F ^ (999999 x : G).)

h3i5. Q.E.D.

Proof: By h3i4 and h1i5.

h2i6. Q.E.D.

Proof: h2i4 and h2i5.
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