Proof of the TLA Reduction Theorem

Leslie Lamport

Tue 20 Jan 1998 [16:50]

Theorem 3 Define: $\quad R \triangleq M \wedge \mathcal{R}^{\prime}$
$L \triangleq \mathcal{L} \wedge M$
$X \triangleq(\neg \mathcal{L}) \wedge M \wedge\left(\neg R^{\prime}\right)$
$M^{R} \triangleq \neg(\mathcal{R} \vee \mathcal{L}) \wedge M^{+} \wedge \neg(\mathcal{R} \vee \mathcal{L})^{\prime}$
$N \triangleq M \vee E$
$N^{R} \triangleq M^{R} \vee E$
$S \triangleq$ Init $\wedge \square[N]_{v}$
$S^{R} \triangleq$ Init $\wedge \square\left[N^{R}\right]_{v}$
$I \triangleq \wedge \mathcal{R} \Rightarrow R^{+}\left(\widehat{v} / v, v / v^{\prime}\right)$
$\wedge \mathcal{L} \Rightarrow L^{+}\left(\widehat{v} / v^{\prime}\right)$
$\wedge \neg(\mathcal{R} \vee \mathcal{L}) \Rightarrow(\widehat{v}=v)$
$\wedge \neg(\mathcal{R} \vee \mathcal{L})(\widehat{v} / v)$
$Q \triangleq \vee \square \diamond \neg \mathcal{L}$
$\vee \diamond \square[\text { FALSE }]_{v} \wedge \diamond \square \operatorname{EnABLED}\left(L^{+} \wedge \neg \mathcal{L}^{\prime}\right)$
$A_{i} \triangleq B_{i} \vee\left(\Delta_{i} \wedge M\right)$
$A_{i}^{R} \triangleq B_{i} \vee\left(\Delta_{i} \wedge M^{R}\right)$
$O \triangleq\left(\exists i \in \mathcal{I}: \Delta_{i}\right) \wedge \square \diamond\langle R\rangle_{v} \Rightarrow \square \diamond \neg \mathcal{R}$
Assume:

1. (a) Init $\Rightarrow \neg(\mathcal{R} \vee \mathcal{L})$
(b) $E \Rightarrow\left(\mathcal{R}^{\prime} \equiv \mathcal{R}\right) \wedge\left(\mathcal{L}^{\prime} \equiv \mathcal{L}\right)$
(c) $\neg\left(\mathcal{L} \wedge M \wedge \mathcal{R}^{\prime}\right)$
(d) $\neg(\mathcal{R} \wedge \mathcal{L})$
2. (a) $R \cdot E \quad \Rightarrow E \cdot R$
(b) $E \cdot L \quad \Rightarrow L \cdot E$
(c) $\forall i \in \mathcal{I}: R \cdot\left\langle E \wedge B_{i}\right\rangle_{v} \Rightarrow\left\langle E \wedge B_{i}\right\rangle_{v} \cdot R$
(d) $\forall i \in \mathcal{I}:\left\langle E \wedge B_{i}\right\rangle_{v} \cdot L \Rightarrow L \cdot\left\langle E \wedge B_{i}\right\rangle_{v}$

Prove: $S \wedge Q \wedge O \Rightarrow \exists \widehat{v}: \square I \wedge \widehat{S^{R}} \wedge\left(\forall i \in \mathcal{I}: \square \diamond\left\langle A_{i}\right\rangle_{v} \Rightarrow \square \diamond\left\langle\widehat{A_{i}^{R}}\right\rangle_{\widehat{v}}\right)$.

Proof of the Theorem

Let $m, r_{1}, \ldots, r_{k}, p, n$ and l_{1}, \ldots, l_{k} be variables distinct from the variables of v and \widehat{v}, let r equal $\left\langle r_{1}, \ldots, r_{k}\right\rangle$, and l equal $\left\langle l_{1}, \ldots, l_{k}\right\rangle$. We also let u denote a k-tuple of bound variables, distinct from all the other variables.

We first define a temporal formula H^{c} which asserts that b and c are history variables chosen as follows. The initial condition I^{c} asserts, and it will remain true forever, that c is an infinite sequence of elements of \mathcal{I} in which each element appears infinitely many times. (Such a sequence exists because \mathcal{I} is at most countably infinite.) The inital value of b doesn't matter; we take it to be an arbitrary element of \mathcal{I}. We choose b^{\prime} to be the first element i in the sequence c such that the current step is a $E \wedge B_{i}$ step. We define c^{\prime} to be the sequence obtained from c by deleting the element b^{\prime}. (If there is no such i, we let $c^{\prime}=c$ and let b^{\prime} be an arbitrary element T not in \mathcal{I}.)

$$
\begin{aligned}
& \top \triangleq \text { ChOOSE } i: i \notin \mathcal{I} \\
& I^{c} \triangleq \wedge c \in[N a t \rightarrow \mathcal{I}] \\
& \wedge \forall n \in N a t, i \in \mathcal{I}: \exists m \in N a t:(m>n) \wedge(c[m]=i) \\
& \wedge b \in \mathcal{I} \cup\{\top\} \\
& \operatorname{Pos}(i) \triangleq \min \{n \in \text { Nat }: c[n]=i\} \\
& N^{c} \triangleq \text { if } E \wedge\left(\exists i \in \mathcal{I}:\left\langle B_{i}\right\rangle_{v}\right) \\
& \text { then } \wedge b^{\prime}=\text { Choose } i: \wedge(i \in \mathcal{I}) \wedge\left\langle B_{i}\right\rangle_{v} \\
& \wedge \forall j \in \mathcal{I}:\left\langle B_{j}\right\rangle_{v} \Rightarrow(\operatorname{Pos}(i) \leq \operatorname{Pos}(j)) \\
& \wedge c^{\prime}=\left[n \in N a t \mapsto \text { if } n<\operatorname{Pos}\left(b^{\prime}\right) \text { then } c[n]\right. \\
& \text { else } c[n+1]] \\
& \text { else } \wedge b^{\prime}=\text { if } v^{\prime}=v \text { then } b \text { else } \top \\
& \wedge c^{\prime}=c \\
& H^{c} \triangleq I^{c} \wedge \square\left[N^{c}\right]_{\langle v, b, c\rangle}
\end{aligned}
$$

Note that the initial predicate I^{c} is actually an invariant of H^{c}.
For convenience, we define the action D by

$$
D \triangleq \text { if } b^{\prime}=\top \text { then } E \text { else } E \wedge\left\langle B_{b^{\prime}}\right\rangle_{v}
$$

We next define a temporal formula H^{r}, which asserts that r is a history variable, and a predicate I^{r} that we will prove is an invariant of H^{r}. Note
that $\rho(u)$ is a state predicate, if u is a k-tuple of state functions.

```
\(\rho(u) \triangleq\left(\neg \mathcal{R} \wedge R^{+}\right)\left(u / v, v / v^{\prime}\right)\)
\(N^{r} \triangleq\)
    \(r^{\prime}=\) if \(\neg \mathcal{R}^{\prime}\) then \(v^{\prime}\)
    else if \(R\) then \(r\)
        else if \(\langle E\rangle_{v}\) then Choose \(u\) :
                                    \(\left(\neg \mathcal{R} \wedge R^{+}\right)(u / v) \wedge D\left(r / v, u / v^{\prime}\right)\)
                                    else \(r\)
\(H^{r} \triangleq(r=v) \wedge \square\left[N^{r} \wedge\left(v^{\prime} \neq v\right)\right]_{\langle v, r\rangle}\)
\(I^{r} \triangleq \wedge \neg \mathcal{R} \Rightarrow(r=v)\)
        \(\wedge \mathcal{R} \Rightarrow \rho(r)\)
```

Next, we define \mathcal{R}^{p} and \mathcal{R}^{l}, which assert that p, n, and l are prophecy variables. The prophecy variable p is an "infinite prophecy" of the form $\square(p=F)$ for a temporal formula F. For a prophecy variable like l, the invariant I^{l} is part of the formula that describes the variable.

$$
\begin{aligned}
& P^{p} \triangleq \square\left(p=\wedge \square \operatorname{EnABLED}\left(L^{+} \wedge \neg \mathcal{L}^{\prime}\right)\right. \\
& \left.\wedge \square[\mathrm{FALSE}]_{v}\right) \\
& \lambda(u) \triangleq\left(L^{+} \wedge \neg \mathcal{L}^{\prime}\right)\left(u / v^{\prime}\right) \\
& l_{\text {final }} \triangleq \operatorname{CHOOSE} u: \lambda(u) \\
& I^{l} \triangleq \wedge \neg \mathcal{L} \Rightarrow(l=v) \\
& \wedge \mathcal{L} \Rightarrow \lambda(l) \\
& \wedge p \Rightarrow\left(l=l_{\text {final }}\right) \\
& N^{l} \triangleq \\
& l=\text { if } p \text { then } l_{\text {final }} \\
& \text { else if } \neg \mathcal{L} \text { then } v \\
& \text { else if } L \text { then } l^{\prime} \\
& \text { else if }\langle E\rangle_{v} \\
& \text { then Choose } u \text { : } \\
& \wedge \lambda(u) \\
& \wedge D\left(u / v, l^{\prime} / v^{\prime}\right) \\
& \text { else } l^{\prime} \\
& P^{l} \triangleq \square I^{l} \wedge \square\left[N^{l} \wedge\left(\langle p, v\rangle^{\prime} \neq\langle p, v\rangle\right)\right]_{\langle v, b, c, p, l\rangle}
\end{aligned}
$$

Note that the symmetric relation between the history variable r and the prophecy variable p becomes more apparent if, in the definition of N^{r}, we replace the expression $R^{+}(u / v)$ with the equivalent expression $\rho(u)^{\prime}$. (The
expressions are equivalent because the bound variable u in the expression Choose $u: \ldots$ is by definition a constant, so $u^{\prime}=u$.)

We also define the action N^{p} and predicate I^{p}, which play the role of next-state relation and invariant for P^{p}.

$$
\begin{aligned}
& N^{p} \triangleq \wedge p \Rightarrow\left(v^{\prime}=v\right) \\
& \wedge\left(v^{\prime}=v\right) \Rightarrow\left(p^{\prime}=p\right) \\
& I^{p} \triangleq p \Rightarrow(\exists u: \lambda(u))
\end{aligned}
$$

For convenience, we combine all these next-state relations and invariants with the following definitions

$$
\begin{aligned}
& \text { all } \triangleq\langle v, b, c, r, p, l\rangle \\
& N^{\text {all }} \triangleq\left(v^{\prime} \neq v\right) \wedge N \wedge N^{c} \wedge N^{r} \wedge N^{p} \wedge N^{l} \\
& I^{\text {all }} \triangleq I^{c} \wedge I^{r} \wedge I^{l}
\end{aligned}
$$

We also define X by

$$
X \triangleq \neg \mathcal{L} \wedge M \wedge \neg \mathcal{R}^{\prime}
$$

Finally, we define our refinement mapping \bar{v} by

$$
\begin{aligned}
\bar{v} \triangleq \text { if } \mathcal{R} & \text { then } r \\
& \text { else if } \mathcal{L} \text { then } l \text { else } v
\end{aligned}
$$

We use the following simple observations. If v is the tuple of all variables that appear in the actions A and B, then for any u_{1} and u_{2},

$$
\begin{equation*}
(A \cdot B)\left(u_{1} / v, u_{2} / v^{\prime}\right) \equiv \exists w: A\left(u_{1} / v, w / v^{\prime}\right) \wedge B\left(w / v, u_{2} / v^{\prime}\right) \tag{1}
\end{equation*}
$$

The proof of the theorem follows.
<1>1. 1. $\left(I^{c}\right)^{\prime} \wedge N^{c} \wedge E \wedge \rho(r) \Rightarrow \exists u:\left(\neg \mathcal{R} \wedge R^{+}\right)(u / v) \wedge D\left(r / v, u / v^{\prime}\right)$
2. $\left(I^{c}\right)^{\prime} \wedge N^{c} \wedge E \wedge \lambda(l)^{\prime} \Rightarrow \exists u: \lambda(u) \wedge D\left(u / v, l^{\prime} / v^{\prime}\right)$
3. $\forall u:\left(R^{+}\left(u / v, v / v^{\prime}\right) \Rightarrow \neg \mathcal{L}\right)$
4. $M \equiv R \vee X \vee L$
$\langle 2\rangle$ 1. Assume: $\left(I^{c}\right)^{\prime} \wedge N^{c} \wedge E \wedge \rho(r)$
Prove: $\exists u:\left(\neg \mathcal{R} \wedge R^{+}\right)(u / v) \wedge D\left(r / v, u / v^{\prime}\right)$
$\langle 3\rangle 1 . R \cdot D \Rightarrow D \cdot R$
Proof: Assumption $\langle 2\rangle$ (which implies $b^{\prime} \in \mathcal{I} \cup\{T\}$), the definition of D, and hypotheses 2(a) (if $b^{\prime}=\mathrm{T}$) and 2(c) (if $b^{\prime} \in \mathcal{I}$).
$\langle 3\rangle 2 . R^{+} \cdot D \Rightarrow D \cdot R^{+}$
Proof: By induction from $\langle 3\rangle 1$ and the associativity of ".".
$\langle 3\rangle 3 .\left(\neg \mathcal{R} \wedge R^{+}\right) \cdot D \Rightarrow D \cdot\left(\neg \mathcal{R} \wedge R^{+}\right)$

Proof:

$$
\begin{aligned}
\left(\neg \mathcal{R} \wedge R^{+}\right) \cdot D & \equiv \neg \mathcal{R} \wedge\left(R^{+} \cdot D\right) & & \text { By }(1) \\
& \Rightarrow \neg \mathcal{R} \wedge\left(D \cdot R^{+}\right) & & \text {By }\langle 3\rangle 2 . \\
& \equiv(\neg \mathcal{R} \wedge D) \cdot R^{+} & & \text {By }(1) . \\
& \Rightarrow\left(D \wedge \neg \mathcal{R}^{\prime}\right) \cdot R^{+} & & \text {By hypothesis } 1(\mathrm{~b}), \text { since } D \Rightarrow E \\
& \equiv D \cdot\left(\neg \mathcal{R} \wedge R^{+}\right) & & \text {By }(1) .
\end{aligned}
$$

$\langle 3\rangle 4$. Q.E.D.
Proof: By assumption $\langle 2\rangle$, since

$$
\begin{array}{rlrl}
\rho(r) \wedge E & & \\
& \Rightarrow \rho(r) \wedge D & & \text { Assumption }\langle 2\rangle \text { and def of } N^{c} . \\
& \equiv\left(\neg \mathcal{R} \wedge R^{+}\right)\left(r / v, v / v^{\prime}\right) \wedge D & & \text { Definition of } \rho . \\
& \Rightarrow\left(\left(\neg \mathcal{R} \wedge R^{+}\right) \cdot D\right)(r / v) & & \text { By }(1) . \\
& \Rightarrow\left(D \cdot\left(\neg \mathcal{R} \wedge R^{+}\right)\right)(r / v) & \text { By }\langle 3\rangle 3 . \\
& \equiv \exists u: D\left(r / v, u / v^{\prime}\right) \wedge\left(\neg \mathcal{R} \wedge R^{+}\right)(u / v) & \text { By (1). }
\end{array}
$$

$\langle 2\rangle$ 2. Assume: $\left(I^{c}\right)^{\prime} \wedge N^{c} \wedge E \wedge \lambda(l)^{\prime}$
Prove: $\exists u:(\lambda(u) \wedge D)\left(u / v, l^{\prime} / v^{\prime}\right)$
$\langle 3\rangle 1 . D \cdot L \Rightarrow L \cdot D$
Proof: Assumption $\langle 2\rangle$ (which implies $b^{\prime} \in \mathcal{I} \cup\{T\}$), the definition of D, and Hypotheses 2(b) (if $b^{\prime}=\mathrm{T}$) and 2(d) (if $b^{\prime} \in \mathcal{I}$).
$\langle 3\rangle 2 . D \cdot L^{+} \Rightarrow L^{+} \cdot D$
Proof: By induction from $\langle 3\rangle 1$ and the associativity of ".".
$\langle 3\rangle 3 . \forall u, w: D\left(u / v, w / v^{\prime}\right) \wedge \neg \mathcal{L}(w / v) \Rightarrow \neg \mathcal{L}(u / v)$
Proof: Hypothesis 1 (b) (which implies $E \wedge \mathcal{L} \Rightarrow \mathcal{L}^{\prime}$), since assumption $\langle 2\rangle$ and the definition of D imply $D \Rightarrow E$.
$\langle 3\rangle 4$. Q.E.D.
Proof: By assumption $\langle 2\rangle$, since
$(\lambda(l))^{\prime} \wedge E$

$$
\begin{array}{ll}
\Rightarrow(\lambda(l))^{\prime} \wedge D & \text { Assumption }\langle 2\rangle \text { and def of } N^{c} . \\
\equiv L^{+}\left(v^{\prime} / v, l^{\prime} / v^{\prime}\right) \wedge \neg \mathcal{L}\left(l^{\prime} / v\right) \wedge D & \text { By definition of } \lambda . \\
\Rightarrow\left(D \cdot L^{+}\right)\left(l^{\prime} / v^{\prime}\right) \wedge \neg \mathcal{L}\left(l^{\prime} / v\right) & \text { By }(1) . \\
\Rightarrow\left(L^{+} \cdot D\right)\left(l^{\prime} / v^{\prime}\right) \wedge \neg \mathcal{L}\left(l^{\prime} / v\right) & \text { By }\langle 3\rangle 2 . \\
\Rightarrow \exists u: L^{+}\left(u / v^{\prime}\right) \wedge D\left(u / v, l^{\prime} / v^{\prime}\right) \wedge \neg \mathcal{L}\left(l^{\prime} / v\right) & \text { By }(1) . \\
\Rightarrow \exists u: L^{+}\left(u / v^{\prime}\right) \wedge D\left(u / v, l^{\prime} / v^{\prime}\right) \wedge \neg \mathcal{L}(u / v) & \text { By }\langle 3\rangle 3 \\
\equiv \exists u: \lambda(u) \wedge D\left(u / v, l^{\prime} / v^{\prime}\right) & \text { By definition of } \lambda .
\end{array}
$$

$\langle 2\rangle 3$. Assume: u a k-tuple of constants
Prove: $\quad R^{+}\left(u / v, v / v^{\prime}\right) \Rightarrow \neg \mathcal{L}$
$\langle 3\rangle 1 . R\left(u / v, v / v^{\prime}\right) \Rightarrow \neg \mathcal{L}$
Proof: By definition, R implies \mathcal{R}^{\prime}, so $R\left(u / v, v / v^{\prime}\right)$ implies \mathcal{R}, which by hypothesis 1 (d) implies $\neg \mathcal{L}$.
$\langle 3\rangle 2$. Q.E.D.

Proof: $\langle 3\rangle 1$, by induction on k.
$\langle 2\rangle 4 . \quad M \equiv R \vee X \vee L$
Proof: $M \equiv\left(\neg \mathcal{L} \wedge M \wedge \mathcal{R}^{\prime}\right) \vee\left(\neg \mathcal{L} \wedge M \wedge \neg \mathcal{R}^{\prime}\right) \vee(\mathcal{L} \wedge M)$
Propositional logic.
$\equiv\left(M \wedge \mathcal{R}^{\prime}\right) \vee\left(\neg \mathcal{L} \wedge M \wedge \neg \mathcal{R}^{\prime}\right) \vee(\mathcal{L} \wedge M)$
Hypothesis 1(c).
$\equiv R \vee X \vee L$
Definitions of R, X, and L.
$\langle 2\rangle 5$. Q.E.D.
Proof: $\langle 2\rangle 1,\langle 2\rangle 2,\langle 2\rangle 3$, and $\langle 2\rangle 4$.
$\langle 1\rangle 2 . P^{p} \Rightarrow \square\left[N^{p}\right]_{\langle v, p\rangle} \wedge \square I^{p}$
$\langle 2\rangle 1 . P^{p} \Rightarrow \square\left[N^{p}\right]_{\langle v, p\rangle}$
Proof: This is semantically obvious, since $v=v^{\prime}$ implies
$\operatorname{EnABLED}\left(L^{+} \wedge \neg \mathcal{L}^{\prime}\right) \equiv\left(\operatorname{EnABLED}\left(L^{+} \wedge \neg \mathcal{L}^{\prime}\right)\right)^{\prime}$
but I don't know how to derive it from more primitive proof rules.
$\langle 2\rangle 2 . \quad P^{p} \Rightarrow \square I^{p}$
Proof: Follows from the definitions of P^{p} and I^{p} by simple temporal reasoning, since EnABLED $\left(L^{+} \wedge \neg \mathcal{L}^{\prime}\right)$ is equivalent to $\exists u: \lambda(u)$.
$\langle 2\rangle 3$. Q.E.D.
Proof: $\langle 2\rangle 1$ and $\langle 2\rangle 2$.
$\langle 1\rangle 3$. ヨ $b, c: H^{c} \wedge \square I^{c}$
$\langle 2\rangle 1$. ヨ $b, c: H^{c}$
Proof: By the standard rule for adding history variables.
$\langle 2\rangle 2 . H^{c} \Rightarrow \square I^{c}$
$\langle 3\rangle 1 . I^{c} \wedge\left[N^{c}\right]_{\langle v, c\rangle} \Rightarrow\left(I^{c}\right)^{\prime}$
Proof: Immediate from the definitions.
$\langle 3\rangle 2$. Q.E.D.
Proof: $\langle 3\rangle 1$ and the TLA invariance rule.
$\langle 2\rangle 3$. Q.E.D.
Proof: $\langle 2\rangle 1,\langle 2\rangle 2$, and predicate logic.
$\langle 1\rangle 4 . \square I^{c} \wedge H^{c} \wedge S \Rightarrow \exists r: H^{r} \wedge \square I^{r}$
$\langle 2\rangle 1$. $\exists r: H^{r}$
Proof: By the rules for history variables.
$\langle 2\rangle 2 . \square I^{c} \wedge H^{c} \wedge S \wedge H^{r} \Rightarrow \square I^{r}$
$\langle 3\rangle 1$. Assume: $\left(I^{c}\right)^{\prime} \wedge N^{c} \wedge N \wedge N^{r} \wedge\left(v^{\prime} \neq v\right) \wedge I^{r}$
Prove: $\left(I^{r}\right)^{\prime}$
$\langle 4\rangle$ 1. Case: $E \wedge \neg R$
$\langle 5\rangle 1$. CASE: \mathcal{R}
$\langle 6\rangle 1$. \mathcal{R}^{\prime}
Proof: Assumptions $\langle 5\rangle$ and $\langle 4\rangle$ and hypothesis 1(b) (which
implies $\left.E \wedge \mathcal{R} \Rightarrow \mathcal{R}^{\prime}\right)$.
$\langle 6\rangle 2 . r^{\prime}=\mathrm{CHOOSE} u:\left(\neg \mathcal{R} \wedge R^{+}\right)(u / v) \wedge D\left(r / v, u / v^{\prime}\right)$
Proof: $\langle 6\rangle 1$, assumption $\langle 4\rangle(\neg R)$, assumption $\langle 3\rangle$ (which asserts $\left.\left(v^{\prime} \neq v\right) \wedge N^{r}\right)$, and the definition of N^{r}.
〈6〉3. $\rho(r)$
Proof: Assumptions $\langle 5\rangle$ and $\langle 3\rangle$ (which asserts I^{r}), and the definition of I^{r}.
$\langle 6\rangle 4 .\left(\neg \mathcal{R} \wedge R^{+}\right)\left(r^{\prime} / v\right)$
Proof: $\langle 6\rangle 2,\langle 6\rangle 3$, assumptions $\langle 3\rangle$ (which asserts $\left.\left(I^{c}\right)^{\prime} \wedge N^{c}\right)$ and $\langle 4\rangle$, and $\langle 1\rangle 1.1$.
$\langle 6\rangle 5$. Q.E.D.
PROOF: $\langle 6\rangle 4$ implies $\rho(r)^{\prime}$, since $\left(\neg \mathcal{R} \wedge R^{+}\right)\left(r^{\prime} / v\right)=(\neg \mathcal{R} \wedge$ $\left.R^{+}\right)\left(r^{\prime} / v, v^{\prime} / v^{\prime}\right)=\left(\neg \mathcal{R} \wedge R^{+}\right)\left(r / v, v / v^{\prime}\right)^{\prime}=\rho(r)^{\prime}$. The level$\langle 3\rangle$ goal then follows from $\langle 6\rangle 1$ and the definition of I^{r}.
$\langle 5\rangle 2$. CASE: $\neg \mathcal{R}$
$\langle 6\rangle 1 . \neg \mathcal{R}^{\prime}$
Proof: Assumptions $\langle 5\rangle$ and $\langle 4\rangle$ and hypothesis 1(b) (which implies $\left.E \wedge \mathcal{R}^{\prime} \Rightarrow \mathcal{R}\right)$.
$\langle 6\rangle 2 . r^{\prime}=v^{\prime}$
Proof: $\langle 6\rangle 1$, assumption $\langle 3\rangle$ (which asserts N^{r}), and the definition of N^{r}.
$\langle 6\rangle$ 3. Q.E.D.
Proof: $\langle 6\rangle 1,\langle 6\rangle 2$, and the definition of I^{r} imply tle level- $\langle 3\rangle$ goal.
$\langle 5\rangle 3$. Q.E.D.
Proof: Immediate from $\langle 5\rangle 1$ and $\langle 5\rangle 2$.
$\langle 4\rangle$ 2. Case: R
$\langle 5\rangle 1 . r^{\prime}=r$
Proof: Assumption $\langle 3\rangle$ (which asserts N^{r}), assumption $\langle 4\rangle$, which by definition of R implies \mathcal{R}^{\prime}, and the definition of N^{r}.
$\langle 5\rangle 2$. Case: \mathcal{R}
$\langle 6\rangle 1 . \rho(r) \wedge R \Rightarrow \rho(r)^{\prime}$
Proof:

$$
\begin{aligned}
\rho(r) \wedge R & \equiv\left(\neg \mathcal{R} \wedge R^{+}\right)\left(r / v, v / v^{\prime}\right) \wedge R & & \text { By definition of } \rho . \\
& \Rightarrow\left(\left(\neg \mathcal{R} \wedge R^{+}\right) \cdot R\right)(r / v) & & \text { By (1). } \\
& \equiv\left(\neg \mathcal{R} \wedge\left(R^{+} \cdot R\right)\right)(r / v) & & \text { By (1). } \\
& \Rightarrow\left(\neg \mathcal{R} \wedge R^{+}\right)(r / v) & & \text { By definition of }+. \\
& \equiv\left(\neg \mathcal{R} \wedge R^{+}\right)\left(r^{\prime} / v, v^{\prime} / v^{\prime}\right) & & \text { By }\langle 5) 1 . \\
& \equiv(\rho(r))^{\prime} & & \text { By definition of } \rho .
\end{aligned}
$$

$\langle 6\rangle 2$. Q.E.D.

Proof：Assumptions $\langle 5\rangle$ and $\langle 3\rangle$（which asserts I^{r} ）imply $\rho(r)$ ．The level－$\langle 3\rangle$ goal then follows from assumption $\langle 4\rangle$ （which，by definition of R ，implies \mathcal{R}^{\prime} ），step $\langle 6\rangle 1$ ，and the definition of I^{r} ．
$\langle 5\rangle 3$ ．Case：$\neg \mathcal{R}$
〈6〉1．$r=v$
Proof：Assumptions $\langle 5\rangle$ and $\langle 3\rangle$（which asserts I^{r} ）and the definition of I^{r} ．
〈6＞2．$R\left(r^{\prime} / v, v^{\prime} / v^{\prime}\right)$
Proof：By assumption $\langle 4\rangle$ ，since $\langle 6\rangle 1$ and $\langle 5\rangle 1$ imply $r^{\prime}=v$ ． ＜6〉3．$\rho(r)^{\prime}$
Proof：By assumption $\langle 5\rangle$ and $\langle 6\rangle 2$ ，since R implies R^{+}and $\left(\neg \mathcal{R} \wedge R^{+}\right)\left(r^{\prime} / v, v^{\prime} / v^{\prime}\right)=\left(\neg \mathcal{R} \wedge R^{+}\right)\left(r / v, v / v^{\prime}\right)^{\prime}=\rho(r)^{\prime}$ ．
$\langle 6\rangle$ 4．Q．E．D．
Proof：$\langle 6\rangle 3$ ，assumption $\langle 4\rangle$（which implies \mathcal{R}^{\prime} ），and the def－ inition of I^{r} imply the level－$\langle 3\rangle$ goal．
$\langle 5\rangle 4$. Q．E．D．
Proof：Immediate from $\langle 5\rangle 2$ and $\langle 5\rangle 3$ ．
$\langle 4\rangle 3$ ．CASE：$\neg \mathcal{R}^{\prime}$
$\langle 5\rangle 1 . r^{\prime}=v^{\prime}$
Proof：Assumption $\langle 3\rangle$（which asserts N^{r} ），assumption $\langle 4\rangle$ ，and the definition of N^{r} ．
$\langle 5\rangle 2$ ．Q．E．D．
Proof：$\langle 5\rangle 1$ ，assumption $\langle 4\rangle$ ，and the definition of I^{r} imply our level－$\langle 3\rangle$ goal．
$\langle 4\rangle$ 4．Q．E．D．
$\langle 5\rangle 1 . N \equiv(E \wedge \neg R) \vee R \vee\left(M \wedge \neg \mathcal{R}^{\prime}\right)$

$$
\text { Proof: } \begin{aligned}
N & \equiv E \vee M & & \text { By definition of } N . \\
& \equiv E \vee\left(M \wedge \mathcal{R}^{\prime}\right) \vee\left(M \wedge \neg \mathcal{R}^{\prime}\right) & & \text { By predicate logic. } \\
& \equiv E \vee R \vee\left(M \wedge \neg \mathcal{R}^{\prime}\right) & & \text { By definition of } R . \\
& \equiv(E \wedge \neg R) \vee R \vee\left(M \wedge \neg \mathcal{R}^{\prime}\right) & & \text { By propositional logic. }
\end{aligned}
$$

$\langle 5\rangle 2$ ．Q．E．D．
Proof：By $\langle 5\rangle 1$ and assumption $\langle 3\rangle$（which asserts N ），cases $\langle 4\rangle 1,\langle 4\rangle 2$ ，and $\langle 4\rangle 3$ are exhaustive．
$\langle 3\rangle 2 . I^{r} \wedge$ UNCHANGED $\langle v, r\rangle \Rightarrow\left(I^{r}\right)^{\prime}$
Proof：Immediate，since v and r are the only free variables of I^{r} ．
$\langle 3\rangle 3$ ．Q．E．D．
Proof：By $\langle 3\rangle 1,\langle 3\rangle 2$ ，the definition of H^{r} ，and the usual TLA in－ variance rule．
$\langle 2\rangle$ 3．Q．E．D．

Proof: $\langle 2\rangle 1$ and $\langle 2\rangle 2$ and predicate logic.
$\langle 1\rangle 5$. $\square I^{c} \wedge H^{c} \wedge S \wedge Q \Rightarrow \exists p, l: P^{p} \wedge P^{l}$
$\langle 2\rangle 1$. ヨ $p: P^{p}$
Proof: By the following rule for adding "infinite prophecy" variables:
If p does not occur free in the temporal formula F, then $\exists p$:
$\square(p=F)$.
$\langle 2\rangle 2 . \square I^{c} \wedge H^{c} \wedge Q \wedge S \wedge P^{p} \Rightarrow \exists l: P^{l}$
$\langle 3\rangle 1 . I^{p} \wedge p \Rightarrow I^{l}$
$\langle 4\rangle 1 . I^{p} \wedge p \Rightarrow \lambda\left(l_{\text {final }}\right)$
Proof: By definition of I^{p} and $l_{\text {final }}$.
$\langle 4\rangle 2 . \lambda\left(l_{\text {final }}\right) \Rightarrow \mathcal{L}$
Proof: By definition of λ, since L^{+}equals $(\mathcal{L} \wedge M)^{+}$(by definition of L), which implies \mathcal{L}.
$\langle 4\rangle 3$. Q.E.D.
Proof: $\langle 4\rangle 1,\langle 4\rangle 2$, and the definition of I^{l}
$\langle 3\rangle 2 . Q \wedge P^{p} \Rightarrow \square \diamond\left(\exists!u: I^{l}(u / l)\right)$
$\langle 4\rangle 1 . \square I^{p} \wedge \square \diamond \neg \mathcal{L} \Rightarrow \square \diamond\left(\exists!u: I^{l}(u / l)\right)$
$\langle 5\rangle 1 . I^{p} \wedge \neg \mathcal{L} \Rightarrow \neg p$
PROOF: $I^{p} \wedge p \Rightarrow(\exists u: \lambda(u)) \Rightarrow L^{+} \Rightarrow \mathcal{L}$.
$\langle 5\rangle 2 . I^{p} \wedge \neg \mathcal{L} \Rightarrow\left(\exists!u: I^{l}(u / l)\right)$
Proof: $\langle 5\rangle 1$ and the definition of I^{l} imply $I^{l}(u / l) \equiv(u=v)$.
$\langle 5\rangle 3$. Q.E.D.
Proof: $\langle 5\rangle 2$ and temporal reasoning.
$\langle 4\rangle 2 . \square I^{p} \wedge \square p \Rightarrow \square\left(\exists!u: I^{l}(u / l)\right)$
$\langle 5\rangle 1 . I^{l} \wedge p \Rightarrow\left(l=l_{\text {final }}\right)$
Proof: Definition of I^{l}
$\langle 5\rangle 2 . I^{p} \wedge p \Rightarrow\left(\exists!u: I^{l}(u / l)\right)$
Proof: Immediate from $\langle 5\rangle 1$ and $\langle 3\rangle 1$.
$\langle 5\rangle 3$. Q.E.D.
Proof: $\langle 5\rangle 2$ and simple temporal reasoning.
$\langle 4\rangle 3 . Q \wedge P^{p} \Rightarrow(\square \diamond \neg \mathcal{L}) \vee \diamond \square p$
Proof: By definition of Q and P^{p}.
$\langle 4\rangle 4$. Q.E.D.
Proof: By $\langle 4\rangle 1,\langle 4\rangle 2,\langle 4\rangle 3,\langle 1\rangle 2$ (which implies $P^{p} \Rightarrow \square I^{p}$), and simple temporal reasoning.
$\langle 3\rangle 3 . \square I^{c} \wedge H^{c} \wedge S \wedge P^{p} \Rightarrow \square\left[\left(I^{l}\right)^{\prime} \wedge\left(v^{\prime} \neq v\right) \Rightarrow \exists u: N^{l}(u / l) \wedge I(u / l)\right]_{v}$
$\langle 4\rangle$ 1. Assume: $\left(I^{c}\right)^{\prime} \wedge N^{c} \wedge N \wedge I^{p} \wedge N^{p} \wedge\left(I^{l}\right)^{\prime} \wedge\left(v^{\prime} \neq v\right)$
PROVE: $\exists u: N^{l}(u / l) \wedge I^{l}(u / l)$
$\langle 5\rangle 1$. $\neg p$

Proof: Assumption $\langle 4\rangle$, since $N^{p} \wedge\left(v^{\prime} \neq v\right)$ implies $\neg p$.
(5)2. CASE: $\neg \mathcal{L}$
$\langle 6\rangle 1 . I^{l}(v / l) \wedge N^{l}(v / l)$
Proof: $\langle 5\rangle 1$, assumption $\langle 5\rangle$, and the definitions of I^{l} and N^{l}.
$\langle 6\rangle 2$. Q.E.D.
Proof: Immediate from $\langle 6\rangle 1$.
$\langle 5\rangle 3$. Case: \mathcal{L}
$\langle 6\rangle 1$. Case: $E \wedge \neg L$
$\langle 7\rangle 1$. \mathcal{L}^{\prime}
Proof: Assumptions $\langle 6\rangle$ and $\langle 5\rangle$ and hypothesis 1(b) (which implies $E \wedge \mathcal{L} \Rightarrow \mathcal{L}^{\prime}$).
$\langle 7\rangle 2$. $\exists u: \lambda(u) \wedge D\left(u / v, l^{\prime} / v^{\prime}\right)$
Proof: $\langle 7\rangle 1$ and assumption $\langle 4\rangle$ (which asserts $\left.\left(I^{l}\right)^{\prime}\right)$ imply $\lambda(l)^{\prime}$. The result follows from $\lambda(l)^{\prime}$, assumptions $\langle 6\rangle$ and $\langle 4\rangle$ (which implies $\left(I^{c}\right)^{\prime} \wedge N^{c}$), and $\langle 1\rangle 1.2$.
$\langle 7\rangle$ 3. Q.E.D.
LET: $u \triangleq$ CHOOSE $u: \lambda(u) \wedge D\left(u / v, l^{\prime} / v^{\prime}\right)$
$\langle 8\rangle 1 . N^{l} \equiv(l=u)$
Proof: $\langle 5\rangle 1$, assumption $\langle 5\rangle$, assumption $\langle 6\rangle$, assumption
$\langle 4\rangle$ (which implies $v^{\prime} \neq v$), and the definition of N^{l}.
<8〉2. $N^{l}(u / l)$
Proof: By $\langle 8\rangle 1$.
$\langle 8\rangle 3$. $\lambda(u)$
Proof: $\langle 7\rangle 2$ and the definition of u.
$\langle 8\rangle 4 . I^{l}(u / l)$
Proof: $\langle 8\rangle 3$, assumption $\langle 5\rangle,\langle 5\rangle 1$, and the definition of I^{l}.
$\langle 8\rangle 5$. Q.E.D.
Proof: $\langle 8\rangle 2$ and $\langle 8\rangle 4$ imply the level- $\langle 4\rangle$ goal.
$\langle 6\rangle 2$. Case: L
$\langle 7\rangle 1$. Case: \mathcal{L}^{\prime}
$\langle 8\rangle 1 .(\lambda(l))^{\prime} \wedge L \Rightarrow \lambda\left(l^{\prime}\right)$

Proof：$(\lambda(l))^{\prime} \wedge L$

$$
\begin{aligned}
& \equiv L^{+}\left(v^{\prime} / v, l^{\prime} / v^{\prime}\right) \wedge \neg \mathcal{L}\left(l^{\prime} / v\right) \wedge L \\
& \quad \text { By definition of } \lambda \\
& \Rightarrow \quad\left(L \cdot L^{+}\right)\left(l^{\prime} / v^{\prime}\right) \wedge \neg \mathcal{L}\left(l^{\prime} / v\right) \\
& \quad \text { By (1). } \\
& \Rightarrow \quad\left(L^{+}\right)\left(l^{\prime} / v^{\prime}\right) \wedge \neg \mathcal{L}\left(l^{\prime} / v\right) \\
& \quad \text { By definition of } A^{+} \text {for an action } A . \\
& \equiv \quad \lambda\left(l^{\prime}\right) \\
& \quad \text { By definition of } \lambda
\end{aligned}
$$

〈8〉2．$\lambda\left(l^{\prime}\right)$
Proof：Assumption $\langle 4\rangle$ implies $\left(I^{l}\right)^{\prime}$ ，which by assump－ tion $\langle 7\rangle$ implies $(\lambda(l))^{\prime}$ ．By $\langle 8\rangle 1,(\lambda(l))^{\prime}$ and assumption $\langle 6\rangle$ imply $\lambda\left(l^{\prime}\right)$ ．
＜8＞3．$I^{l}\left(l^{\prime} / l\right)$
Proof：$\langle 5\rangle 1$ and assumption $\langle 5\rangle$ imply $I^{l} \equiv \lambda(l)$ ，so $\langle 8\rangle 2$ implies $I^{l}\left(l^{\prime} / l\right)$ ．
$\langle 8\rangle 4 . N^{l}\left(l^{\prime} / l\right)$
Proof：$\langle 5\rangle 1$ ，assumptions $\langle 5\rangle$ and $\langle 6\rangle$ imply $N^{l} \equiv(l=$ $\left.l^{\prime}\right)$ ，so $N^{l}\left(l^{\prime} / l\right) \equiv\left(l^{\prime}=l^{\prime}\right)$ ．
$\langle 8\rangle$ ．Q．E．D．
Proof：$\langle 8\rangle 3$ and $\langle 8\rangle 4$ imply the level－$\langle 4\rangle$ goal．
$\langle 7\rangle 2 . \mathrm{CASE}: \neg \mathcal{L}^{\prime}$
$\langle 8\rangle 1 . l^{\prime}=v^{\prime}$
Proof：Assumption $\langle 4\rangle$（which implies $\left.\left(I^{l}\right)^{\prime}\right)$ ，assumption $\langle 7\rangle$ ，and the definition of I^{l} ．
$\langle 8\rangle 2 . \lambda\left(v^{\prime}\right)$
Proof：Assumption $\langle 6\rangle$ implies L^{+}，which with assump－ tion $\langle 7\rangle$ implies $\left(L^{+} \wedge \neg \mathcal{L}^{\prime}\right)\left(v^{\prime} / v^{\prime}\right)$ ，which equals $\lambda\left(v^{\prime}\right)$ ．
＜8〉3．$I^{l}\left(v^{\prime} / l\right)$
Proof：$\langle 5\rangle 1$ and assumption $\langle 5\rangle$ imply $I^{l} \equiv \lambda(l)$ ，so $\langle 8\rangle 2$ implies $I^{l}\left(v^{\prime} / l\right)$ ．
$\langle 8\rangle 4 . N^{l}\left(v^{\prime} / l\right)$
Proof：$\langle 5\rangle 1$ ，assumption $\langle 5\rangle$ ，and assumption $\langle 6\rangle$ imply $N^{l} \equiv\left(l=l^{\prime}\right) . \quad$ By $\langle 8\rangle 1$ ，this implies $N^{l} \equiv\left(l=v^{\prime}\right)$ ，so $N^{l}\left(v^{\prime} / l\right) \equiv\left(v^{\prime}=v^{\prime}\right)$.
$\langle 8\rangle 5$. Q．E．D．
Proof：$\langle 8\rangle 3$ and $\langle 8\rangle 4$ imply the level－$\langle 4\rangle$ goal．
$\langle 7\rangle$ 3．Q．E．D．
Proof：Immediate from $\langle 7\rangle 1$ and $\langle 7\rangle 2$ ．
$\langle 6\rangle 3$ ．Q．E．D．

$$
\text { Proof: } \begin{aligned}
N & \equiv E \vee M & & \text { By definition of } N . \\
& \equiv E \vee(\mathcal{L} \wedge M) & & \text { By assumption }\langle 5\rangle . \\
& \equiv E \vee L & & \text { By definition of } L . \\
& \equiv(E \wedge \neg L) \vee L & & \text { By propositional logic. }
\end{aligned}
$$

Therefore, cases $\langle 6\rangle 1$ and $\langle 6\rangle 2$ are exhaustive.
$\langle 5\rangle 4$. Q.E.D.
Proof: $\langle 5\rangle 3$ and $\langle 5\rangle 2$.
$\langle 4\rangle 2 .\left(I^{c}\right)^{\prime} \wedge\left[N^{c}\right]_{\langle v, b, c\rangle} \wedge[N]_{v} \wedge I^{p} \wedge\left[N^{p}\right]_{\langle v, p\rangle} \Rightarrow$ $\left[\left(I^{l}\right)^{\prime} \wedge\left(v^{\prime} \neq v\right) \Rightarrow \exists u: N^{l}(u / l) \wedge I^{l}(u / l)\right]_{v}$
Proof: $\langle 4\rangle 1$, since $v^{\prime}=v$ implies $[\ldots]_{v}$.
〈4)3. $\square I^{c} \wedge \square\left[N^{c}\right]_{\langle v, b, c\rangle} \wedge \square[N]_{v} \wedge \square I^{p} \wedge \square\left[N^{p}\right]_{\langle v, p\rangle} \Rightarrow$

$$
\square\left[\left(I^{l}\right)^{\prime} \wedge\left(v^{\prime} \neq v\right) \Rightarrow \exists u: N^{l}(u / l) \wedge I^{l}(u / l)\right]_{v}
$$

Proof: $\langle 4\rangle 2$ and simple TLA reasoning.
$\langle 4\rangle$ 4. Q.E.D.
Proof: $\langle 4\rangle 3$ and $\langle 1\rangle 2$.
$\langle 3\rangle 4$. Q.E.D.
Proof: By $\langle 3\rangle 2,\langle 3\rangle 3$, and the following rule for adding prophecy variables.

Let w be an m-tuple of variables, let x be an n-tuple of variables distinct from the variables of w, let I be a predicate and N an action, where all the free variables of I and N are included in w and x. Then

$$
\begin{aligned}
& \wedge \square \diamond(\exists!a: I(a / x)) \\
& \wedge \square\left[I^{\prime} \wedge\left(w^{\prime} \neq w\right) \Rightarrow(\exists a: N(a / x) \wedge I(a / x))\right]_{w} \\
& \Rightarrow \exists x: \square I \wedge \square\left[N \wedge\left(w^{\prime} \neq w\right)\right]_{\langle w, x\rangle}
\end{aligned}
$$

where $\exists!a$ means there exists a unique a :

$$
\exists!a: F(a) \triangleq \exists a: F(a) \wedge(\forall b: F(b) \Rightarrow(b=a))
$$

$\langle 2\rangle$ 3. Q.E.D.
$\langle 3\rangle 1 . \square I^{c} \wedge H^{c} \wedge Q \wedge S \wedge P^{p} \Rightarrow \boldsymbol{\exists} l:\left(P^{p} \wedge P^{l}\right)$
Proof: By $\langle 2\rangle 2$ and temporal predicate logic, since l does not occur free in P^{p}.
$\langle 3\rangle 2 .\left(\exists p: \square I^{c} \wedge H^{c} \wedge Q \wedge S \wedge P^{p}\right) \Rightarrow \boldsymbol{\exists} p, l:\left(P^{p} \wedge P^{l}\right)$
Proof: By $\langle 3\rangle 1$ and temporal predicate logic.
〈3)3. $\left(\exists p: \square I^{c} \wedge H^{c} \wedge Q \wedge S \wedge P^{p}\right) \equiv \square I^{c} \wedge H^{c} \wedge Q \wedge S$
Proof: By $\langle 2\rangle 2$ and temporal predicate logic, since p does not occur free in $\square I^{c} \wedge H^{c} \wedge Q \wedge S$.
$\langle 3\rangle 4$. Q.E.D.
Proof: By $\langle 3\rangle 2$ and $\langle 3\rangle 3$.
$\langle 1\rangle$ 6. Assume: $N^{\text {all }} \wedge I^{\text {all }} \wedge\left(I^{\text {all }}\right)^{\prime} \wedge X$

Prove：$\overline{M^{R}}$
$\langle 2\rangle$ ．$(\neg \mathcal{R} \wedge(r=v)) \vee\left(\neg \mathcal{R} \wedge R^{+}\right)\left(r / v, v / v^{\prime}\right)$
Proof：Assumption $\langle 1\rangle$ implies I^{r} ，and the conclusion follows from I^{r} and the definition of $\rho(r)$ ．
$\langle 2\rangle 2$ ．$\left(\neg \mathcal{L}^{\prime} \wedge\left(l^{\prime}=v^{\prime}\right)\right) \vee\left(L^{+} \wedge \neg \mathcal{L}^{\prime}\right)\left(v^{\prime} / v, l^{\prime} / v^{\prime}\right)$
Proof：Assumption $\langle 1\rangle$ implies $\left(I^{l}\right)^{\prime}$ ，and the conclusion follows from $\left(I^{l}\right)^{\prime}$ and the definition of $\lambda(l)$ ．
$\langle 2\rangle 3 . M^{R}\left(r / v, l^{\prime} / v^{\prime}\right)$
$\langle 3\rangle 1 .\left(\neg(\mathcal{R} \vee \mathcal{L}) \wedge M^{+}\right)(r / v)$
$\langle 4\rangle$ 1．CASE：$\neg \mathcal{R} \wedge(r=v)$
Proof：Assumption $\langle 1\rangle$ implies $\neg \mathcal{L} \wedge M$ ，from which we deduce $\neg(\mathcal{R} \vee \mathcal{L}) \wedge M \wedge(r=v)$ ，which implies the level－$\langle 3\rangle$ goal because M implies M^{+}．
$\langle 4\rangle 2$ ．CASE：$\left(\neg \mathcal{R} \wedge R^{+}\right)\left(r / v, v / v^{\prime}\right)$
$\langle 5\rangle 1 . \neg \mathcal{L}(r / v)$
Proof：Since R equals $M \wedge \mathcal{R}^{\prime}$ ，this follows from assumption $\langle 4\rangle$ and hypothesis 1 （c）．
$\langle 5\rangle 2$ ．$\left(\neg \mathcal{R} \wedge M^{+}\right)(r / v)$
Proof：Assumption $\langle 1\rangle$ implies M ．Since R^{+}implies M^{+}，as－ sumption $\langle 4\rangle$ implies $\left(\neg \mathcal{R} \wedge M^{+}\right)\left(r / v, v / v^{\prime}\right)$ ．From（1），we then deduce $\left(\neg \mathcal{R} \wedge\left(M^{+} \cdot M\right)\right)(r / v)$ ，which implies the desired result since $M^{+} \cdot M$ implies M^{+}．
〈5〉3．Q．E．D．
Proof：The result follows immediately from $\langle 5\rangle 1$ and $\langle 5\rangle 2$ ．
$\langle 4\rangle$ 3．Q．E．D．
Proof：$\langle 2\rangle 1$ implies that cases $\langle 4\rangle 1$ and $\langle 4\rangle 2$ are exhaustive．
$\langle 3\rangle 2$ ．Q．E．D．
〈4〉1．CASE：$\neg \mathcal{L}^{\prime} \wedge\left(l^{\prime}=v^{\prime}\right)$
Proof：By $\langle 3\rangle 1$ and assumption $\langle 1\rangle$ ，which implies $\neg \mathcal{R}^{\prime}$ ，we have $\left(\neg(\mathcal{R} \vee \mathcal{L}) \wedge M^{+}\right)(r / v) \wedge \neg(\mathcal{R} \vee \mathcal{L})^{\prime} \wedge\left(l^{\prime}=v^{\prime}\right)$ ，which implies $(\neg(\mathcal{R} \vee$ $\left.\mathcal{L}) \wedge M^{+} \wedge \neg(\mathcal{R} \vee \mathcal{L})^{\prime}\right)\left(r / v, l^{\prime} / v^{\prime}\right)$ ，and the level－$\langle 2\rangle$ goal follows from the definition of M^{R} ．
〈4）2．CASE：$\left(L^{+} \wedge \neg \mathcal{L}^{\prime}\right)\left(v^{\prime} / v, l^{\prime} / v^{\prime}\right)$
$\langle 5\rangle 1 . \neg \mathcal{R}^{\prime}\left(l^{\prime} / v^{\prime}\right)$
Proof：Since L equals $\mathcal{L} \wedge M$ ，this follows from assumption $\langle 4\rangle$ and hypothesis 1 （c）．
$\langle 5\rangle 2$ ．$\left(\neg(\mathcal{R} \vee \mathcal{L}) \wedge M^{+} \wedge \neg \mathcal{L}^{\prime}\right)\left(r / v, l^{\prime} / v^{\prime}\right)$
Proof：By（1），$\langle 3\rangle 1$ and assumption $\langle 4\rangle$ imply

$$
\left(\left(\neg(\mathcal{R} \vee \mathcal{L}) \wedge M^{+}\right) \cdot\left(L^{+} \wedge \neg \mathcal{L}^{\prime}\right)\right)\left(r / v, l^{\prime} / v^{\prime}\right)
$$

which by (1) equals

$$
\left(\neg(\mathcal{R} \vee \mathcal{L}) \wedge\left(M^{+} \cdot L^{+}\right) \wedge \neg \mathcal{L}^{\prime}\right)\left(r / v, l^{\prime} / v^{\prime}\right)
$$

The result then follows because $M^{+} \cdot L^{+}$implies $M^{+} \cdot M^{+}$, which implies M^{+}.
$\langle 5\rangle$ 3. Q.E.D.
Proof: The level- $\langle 2\rangle$ goal follows immediately from $\langle 5\rangle 1,\langle 5\rangle 2$, and the definition of M^{R}.
$\langle 4\rangle$ 3. Q.E.D.
Proof: $\langle 2\rangle 2$ implies that cases $\langle 4\rangle 1$ and $\langle 4\rangle 2$ are exhaustive.
$\langle 2\rangle 4 . \bar{v}=r$
$\langle 3\rangle 1$. Case: \mathcal{R}
Proof: Immediate from the definition of \bar{v}.
$\langle 3\rangle 2$. CASE: $\neg \mathcal{R}$
Proof: Assumption $\langle 1\rangle$ implies $\neg \mathcal{L}$ and I^{r}. From $\neg \mathcal{R}, \neg \mathcal{L}$, and the definition of \bar{v} we deduce $\bar{v}=v$. From $\neg \mathcal{R} \wedge I^{r}$ we deduce $r=v$.
$\langle 3\rangle 3$. Q.E.D.
Proof: Immediate from $\langle 3\rangle 1$ and $\langle 3\rangle 2$.
$\langle 2\rangle 5 . \bar{v}^{\prime}=l^{\prime}$
$\langle 3\rangle 1$. CASE: \mathcal{L}^{\prime}
Proof: Assumption $\langle 1\rangle$ implies $\mathcal{L} \wedge M$, which by hypothesis 1 (c) implies $\neg \mathcal{R}^{\prime}$. From $\neg \mathcal{R}^{\prime}, \mathcal{L}^{\prime}$, and definition of \bar{v}, we deduce $\bar{v}^{\prime}=l^{\prime}$.
$\langle 3\rangle 2 . \mathrm{CASE}: \neg \mathcal{L}^{\prime}$
Proof: Assumption $\langle 1\rangle$ implies $\neg \mathcal{R}$ ' and $\left(I^{r}\right)^{\prime}$. From $\neg \mathcal{R}^{\prime}$ and $\neg \mathcal{L}^{\prime}$ we deduce $\bar{v}^{\prime}=v^{\prime}$, and from $\neg \mathcal{L}^{\prime} \wedge\left(I^{r}\right)^{\prime}$ we deduce $l^{\prime}=v^{\prime}$.
$\langle 2\rangle 6$. Q.E.D.
Proof: $\langle 2\rangle 3,\langle 2\rangle 4$, and $\langle 2\rangle 5$.
$\langle 1\rangle 7$. Init $\wedge \square\left[N^{\text {all }}\right]_{\text {all }} \wedge \square I^{\text {all }} \Rightarrow \overline{\text { Init }} \wedge \square\left[\overline{N^{R}}\right]_{\bar{v}}$
$\langle 2\rangle$. Init $\wedge I^{\text {all }} \Rightarrow \overline{\text { Init }}$
Proof: Assumption $\langle 1\rangle$ implies $I^{r} \wedge I^{l}$. By hypothesis 1(a), Init implies $\neg(\mathcal{R} \vee \mathcal{L})$, which by $I^{r} \wedge I^{l}$ implies $(l=v) \wedge(r=v)$, which by definition of \bar{v} implies $\bar{v}=v$, so $\overline{\text { Init }}=$ Init.
$\langle 2\rangle$ 2. Assume: $N^{\text {all }} \wedge I^{\text {all }} \wedge\left(I^{\text {all }}\right)^{\prime}$
Prove: $\left[\overline{N^{R}}\right]_{\bar{v}}$
$\langle 3\rangle 1 . \neg p$
Proof: Assumption $\langle 2\rangle$ implies $N^{\text {all }}$, which implies $\left(v^{\prime} \neq v\right) \wedge N^{p}$, which implies $\neg p$.
$\langle 3\rangle 2$. CASE: $E \wedge \neg R \wedge \neg L$
〈4〉1. Case: $\neg \mathcal{R} \wedge \neg \mathcal{L}$
$\langle 5\rangle$ 1. $\neg \mathcal{R}^{\prime} \wedge \neg \mathcal{L}^{\prime}$
Proof: Assumptions $\langle 3\rangle$ and $\langle 4\rangle$ and hypothesis 1(b) (which
implies $E \wedge \mathcal{L}^{\prime} \Rightarrow \mathcal{L}$ and $\left.E \wedge \mathcal{R}^{\prime} \Rightarrow \mathcal{R}\right)$ ．
〈5〉2．$(\bar{v}=v) \wedge\left(\bar{v}^{\prime}=v^{\prime}\right)$
Proof：$\langle 5\rangle 1$ ，assumption $\langle 4\rangle$ ，and the definition of \bar{v} ．
$\langle 5\rangle$ 3．Q．E．D．
Proof：$\langle 5\rangle 2$ and case assumption $\langle 3\rangle$ imply \bar{E} ，which in turn implies $\overline{N^{R}}$ ．
（4）2．Case： \mathcal{R}
$\langle 5\rangle 1 . \exists u:\left(\neg \mathcal{R} \wedge R^{+}\right)(u / v) \wedge D\left(r / v, u / v^{\prime}\right)$
Proof：Assumption $\langle 2\rangle$ implies $I^{r} \wedge\left(I^{c}\right)^{\prime} \wedge N^{c}$ ．Assumption $\langle 4\rangle$ and I^{r} implies $\rho(r)$ ．The result follows from assumption $\langle 3\rangle$ ， $\left(I^{c}\right)^{\prime} \wedge N^{c}, \rho(r)$ ，and $\langle 1\rangle 1.1$ ．
$\langle 5\rangle 2$ ． \mathcal{R}^{\prime}
Proof：Assumptions $\langle 3\rangle$ and $\langle 4\rangle$ and hypothesis 1（b）．
$\langle 5\rangle 3 . r^{\prime}=$ Choose $u:\left(\neg \mathcal{R} \wedge R^{+}\right)(u / v) \wedge D\left(r / v, u / v^{\prime}\right)$
Proof：Assumption $\langle 2\rangle$（which implies N^{r} and $v^{\prime} \neq v$ ），$\langle 5\rangle 2$ ， assumption $\langle 3\rangle$ ，and the definition of N^{r} ．
〈5〉4．$D\left(r / v, r^{\prime} / v^{\prime}\right)$
Proof：$\langle 5\rangle 1$ and $\langle 5\rangle 3$.
$\langle 5\rangle 5 . \quad(\bar{v}=r) \wedge\left(\bar{v}^{\prime}=r^{\prime}\right)$
Proof：$\langle 5\rangle 2$ ，assumption $\langle 4\rangle$ ，and the definition of \bar{v} ．
〈5〉6．Q．E．D．
Proof：$\langle 5\rangle 4$ and $\langle 5\rangle 5$ imply \bar{D} ，which implies \bar{E}（since D implies $E)$ ，which in turn implies $\overline{N^{R}}$ ．
〈4）3．Case： \mathcal{L}
$\langle 5\rangle 1$ ． \mathcal{L}^{\prime}
Proof：Assumptions $\langle 3\rangle$ and $\langle 4\rangle$ and hypothesis 1（b）．
$\langle 5\rangle 2 . \lambda(l)^{\prime}$
Proof：$\langle 5\rangle 1$ ，assumption $\langle 2\rangle$（which implies $\left.\left(I^{l}\right)^{\prime}\right)$ ，and the def－ inition of I^{l} ．
$\langle 5\rangle 3 . \exists u: \lambda(u) \wedge D\left(u / v, l^{\prime} / v^{\prime}\right)$
Proof：Assumption $\langle 2\rangle$（which implies $\left.\left(I^{c}\right)^{\prime} \wedge N^{c}\right),\langle 5\rangle 2$ ，as－ sumption $\langle 3\rangle$ ，and $\langle 1\rangle 1.2$ ．
$\langle 5\rangle 4 . l=$ ChOOSE $u: \lambda(u) \wedge D\left(u / v, l^{\prime} / v^{\prime}\right)$
Proof：$\langle 3\rangle 1$ ，assumption $\langle 4\rangle$ ，assumption $\langle 3\rangle$ ，assumption $\langle 2\rangle$ （which implies $v \neq v^{\prime}$ and N^{l} ），and the definition of N^{l} ．
〈5〉5．$D\left(l / v, l^{\prime} / v^{\prime}\right)$
Proof：$\langle 5\rangle 3$ and $\langle 5\rangle 4$.
$\langle 5\rangle 6 . \neg \mathcal{R} \wedge \neg \mathcal{R}^{\prime}$
Proof：Assumption $\langle 4\rangle,\langle 5\rangle 1$ ，and hypothesis 1（d）．
〈5〉7．$(\bar{v}=l) \wedge\left(\bar{v}^{\prime}=l^{\prime}\right)$

Proof：Assumption $\langle 4\rangle,\langle 5\rangle 1,\langle 5\rangle 6$ ，and the definition of \bar{v} ． $\langle 5\rangle$ 8．Q．E．D．

Proof：$\langle 5\rangle 5$ and $\langle 5\rangle 7$ imply \bar{D} ，which implies \bar{E}（since D implies
$E)$ ，which in turn implies $\overline{N^{R}}$ ．
$\langle 4\rangle 4$ ．Q．E．D．
Proof：Immediate from $\langle 4\rangle 1,\langle 4\rangle 2$ ，and $\langle 4\rangle 3$ ．
$\langle 3\rangle 3$ ．Case：R
$\langle 4\rangle 1 . r^{\prime}=r$
Proof：Assumption $\langle 2\rangle$ implies N^{r} ，which by assumption $\langle 3\rangle$ （which implies \mathcal{R}^{\prime} ）implies $r^{\prime}=r$ ．
〈4）2． $\bar{v}^{\prime}=r^{\prime}$
Proof：Assumption $\langle 3\rangle$（which implies \mathcal{R}^{\prime} ）and the definition of \bar{v} ．
〈4）3．$\neg \mathcal{L}$
Proof：Assumption $\langle 3\rangle$（which implies \mathcal{R}^{\prime} ）and hypothesis 1（c）．
〈4〉4． $\bar{v}=r$
$\langle 5\rangle 1$ ．Case： \mathcal{R}
Proof：The definition of \bar{v} implies $\bar{v}=r$ ．
$\langle 5\rangle 2$ ．Case：$\neg \mathcal{R}$
Proof：By $\langle 4\rangle 3$ ，the definition of \bar{v} implies $\bar{v}=v$ ．Assumption
$\langle 2\rangle$ implies I^{r} ，which implies $v=r$ ．
$\langle 5\rangle 3$. Q．E．D．
Proof：Immediate from $\langle 5\rangle 1$ and $\langle 5\rangle 2$.
〈4〉5．Q．E．D．
Proof：$\langle 4\rangle 1,\langle 4\rangle 2$ ，and $\langle 4\rangle 4$ imply $\bar{v}^{\prime}=\bar{v}$ ，which implies the level－ $\langle 2\rangle$ goal．
$\langle 3\rangle 4$ ．Case：L
$\langle 4\rangle 1 . \neg \mathcal{R}$
Proof：Assumption $\langle 3\rangle$（which implies \mathcal{L} ）and hypothesis $1(\mathrm{~d})$ ．
〈4）2．$l^{\prime}=l$
Proof：Assumption $\langle 2\rangle$ implies N^{l} ，which by $\langle 3\rangle 1$ and assumption
$\langle 3\rangle$（which implies \mathcal{L} ）implies $l=l^{\prime}$ ．
〈4）3． $\bar{v}=l$
Proof：$\langle 4\rangle 1$ ，assumption $\langle 3\rangle$（which implies \mathcal{L} ），and the definition of \bar{v} ．
〈4〉4． $\bar{v}^{\prime}=l^{\prime}$
$\langle 5\rangle 1 . \neg \mathcal{R}^{\prime}$
Proof：Assumption $\langle 3\rangle$（which implies \mathcal{L} ）and hypothesis $1(\mathrm{c})$ ． $\langle 5\rangle 2$. Case： \mathcal{L}^{\prime}

Proof：$\langle 5\rangle 1$ and the definition of \bar{v} imply $\bar{v}^{\prime}=l^{\prime}$ ．

〈5）3．CASE：$\neg \mathcal{L}^{\prime}$
Proof：$\langle 5\rangle 1$ and the definition of \bar{v} imply $\bar{v}^{\prime}=v^{\prime}$ ．Assumption $\langle 2\rangle$ implies $\left(I^{l}\right)^{\prime}$ ，which implies $l^{\prime}=v^{\prime}$ ，proving $\bar{v}^{\prime}=l^{\prime}$ ．
〈5〉4．Q．E．D．
Proof：Immediate from $\langle 5\rangle 2$ and $\langle 5\rangle 3$ ．
$\langle 4\rangle$ 5．Q．E．D．
Proof：$\langle 4\rangle 2,\langle 4\rangle 3$ ，and $\langle 4\rangle 4$ imply $\bar{v}^{\prime}=\bar{v}$ ，which implies the level－ ＜2 ${ }^{\text {goal．}}$
$\langle 3\rangle 5$ ．Case：X
Proof：Assumption $\langle 2\rangle$ and $\langle 1\rangle 6$ imply $\overline{M^{R}}$ ，which implies the level－ ＜2 ${ }^{\text {g goal．}}$
$\langle 3\rangle 6$ ．Q．E．D．
Proof：Assumption $\langle 2\rangle$ implies N ，which equals $E \vee M$ ，so $\langle 1\rangle 1.4$ implies that cases $\langle 3\rangle 2,\langle 3\rangle 3,\langle 3\rangle 4$ ，and $\langle 3\rangle 5$ are exhuastive．
$\langle 2\rangle 3$ ．$\left[N^{\text {all }} \wedge I^{\text {all }} \wedge\left(I^{\text {all }}\right)^{\prime}\right]_{\text {all }} \Rightarrow\left[\bar{N}^{R}\right]_{\bar{v}}$
Proof：$\langle 2\rangle 2$ ，since the definition of \bar{v} implies $\left(\overline{a l l}^{\prime}=\overline{a l l}\right) \Rightarrow\left(\bar{v}^{\prime}=\bar{v}\right)$ ．
$\langle 2\rangle 4$ ．Q．E．D．
Proof：$\langle 2\rangle 1,\langle 2\rangle 3$ ，and the usual TLA step－simulation rule．
$\langle 1\rangle 8 . \square I^{\text {all }} \Rightarrow \square I(\bar{v} / \widehat{v})$
$\langle 2\rangle 1 . I^{r} \wedge I^{l} \Rightarrow I(\bar{v} / \widehat{v})$
$\langle 3\rangle$ 1．$I^{r} \wedge \mathcal{R} \Rightarrow R^{+}\left(\bar{v} / v, v / v^{\prime}\right) \wedge \neg(\mathcal{R} \vee \mathcal{L})(\bar{v} / v)$
Proof：$I^{r} \wedge \mathcal{R} \Rightarrow \rho(r) \wedge \mathcal{R}$
By definition of I^{r} ．

$$
=R^{+}\left(r / v, v / v^{\prime}\right) \wedge \mathcal{R} \wedge \neg \mathcal{R}(r / v)
$$

By definition of ρ ．
$\Rightarrow R^{+}\left(r / v, v / v^{\prime}\right) \wedge \neg \mathcal{L}(r / v) \wedge \neg \mathcal{R}(r / v)$
Since $R=M \wedge \mathcal{R}^{\prime}$ ，hypothesis $1(\mathrm{c})$ implies $\neg\left(\mathcal{L} \wedge R^{+}\right)$．
$=R^{+}\left(r / v, v / v^{\prime}\right) \wedge \neg(\mathcal{R} \vee \mathcal{L})(r / v)$
By propositional logic．
and \mathcal{R} implies $\bar{v}=r$ by definition of \bar{v} ．
$\langle 3\rangle 2$ ．$I^{l} \wedge \mathcal{L} \Rightarrow L^{+}\left(\bar{v} / v^{\prime}\right) \wedge \neg(\mathcal{R} \vee \mathcal{L})(\bar{v} / v)$
Proof：$I^{l} \wedge \mathcal{L} \Rightarrow \lambda(l)$
By definition of I^{l} ．
$=L^{+}\left(l / v^{\prime}\right) \wedge \neg \mathcal{L}^{\prime}\left(l / v^{\prime}\right)$
By definition of λ ．
$\Rightarrow L^{+}\left(l / v^{\prime}\right) \wedge \neg \mathcal{R}^{\prime}\left(l / v^{\prime}\right) \wedge \neg \mathcal{L}^{\prime}\left(l / v^{\prime}\right)$
Since $L=\mathcal{L} \wedge M$ ，hypothesis 1 （c）implies $\neg\left(L^{+} \wedge \mathcal{R}^{\prime}\right)$ ．
$\Rightarrow L^{+}\left(l / v^{\prime}\right) \wedge \neg\left(\mathcal{R}^{\prime} \vee \mathcal{L}^{\prime}\right)\left(l / v^{\prime}\right)$
By propositional logic．
$=L^{+}\left(l / v^{\prime}\right) \wedge \neg(\mathcal{R} \vee \mathcal{L})(l / v)$
and，by hypothesis 1 （d）， \mathcal{L} implies $\neg \mathcal{R}$ ，so \mathcal{L} implies $\bar{v}=l$ by defini－ tion of \bar{v} ．
$\langle 3\rangle 3 . \neg(\mathcal{R} \vee \mathcal{L}) \Rightarrow(\bar{v}=v)$
Proof：By definition of \bar{v} ．
$\langle 3\rangle 4$ ．Q．E．D．
Proof：Immediate from $\langle 3\rangle 1,\langle 3\rangle 2,\langle 3\rangle 3$ ，and the definition of I ．
$\langle 2\rangle 2$ ．Q．E．D．
Proof：By simple temporal reasoning from $\langle 2\rangle 1$ ．
$\langle 1\rangle 9 . \forall i \in \mathcal{I}: Q \wedge O \wedge \square\left[N^{\text {all }}\right]_{\text {all }} \wedge \square I^{\text {all }} \wedge \square \diamond\left\langle A_{i}\right\rangle_{v} \Rightarrow \square \diamond\left\langle\overline{A_{i}^{R}}\right\rangle_{\bar{v}}$
LET：$T \triangleq Q \wedge O \wedge \square\left[N^{\text {all }}\right]_{\text {all }} \wedge \square I^{\text {all }}$
$\langle 2\rangle$ 1．$\forall i \in \mathcal{I}: T \wedge \square \diamond\left\langle B_{i}\right\rangle_{v} \Rightarrow \square \diamond\left\langle\overline{B_{i}}\right\rangle_{\bar{v}}$
$\langle 3\rangle 1$ ．Assume：$\left(b^{\prime} \in \mathcal{I}\right) \wedge\left\langle N^{\text {all }} \wedge I^{\text {all }} \wedge\left(I^{\text {all }}\right)^{\prime} \wedge B_{b^{\prime}}\right\rangle_{v}$ Prove：$\left\langle\overline{B_{b^{\prime}}}\right\rangle_{\bar{v}}$
$\langle 4\rangle 1 . \neg M$
Proof：Assumption $\langle 3\rangle$ and hypothesis 1（e）．
$\langle 4\rangle 2$ ．$\neg p$
Proof：Assumption $\langle 3\rangle$ ，since $N^{\text {all }}$ implies $\left(v^{\prime} \neq v\right) \wedge N^{p}$ which implies $\neg p$ ．
（4）3．D
〈5〉1．E
Proof：$\langle 4\rangle 1$ ，assumption $\langle 3\rangle$（which implies N ），and the defini－ tion of N ．
$\langle 5\rangle 2$ ．Q．E．D．
Proof：$\langle 5\rangle 1$ ，assumption $\langle 3\rangle$（which implies $B_{b^{\prime}}$ ），and the defi－ nition of D ．
$\langle 4\rangle 4$ ．Case： \mathcal{R}
$\langle 5\rangle 1 . \mathcal{R}^{\prime}$
Proof：$\langle 4\rangle$ 3，assumption $\langle 4\rangle$ and hypothesis 1 （b）（since $D \Rightarrow$ E）．
$\langle 5\rangle 2 . r^{\prime}=$ Choose $u:\left(\neg \mathcal{R} \wedge R^{+}\right)(u / v) \wedge D\left(r / v, u / v^{\prime}\right)$
Proof：$\langle 4\rangle 1$（which implies $\neg R$ ），$\langle 5\rangle 1,\langle 4\rangle 3$（which with assump－ tion $\langle 3\rangle$ implies $\langle E\rangle_{v}$ ），assumption $\langle 3\rangle$（which implies N^{r} ），and the definition of N^{r} ．
$\langle 5\rangle 3 . \exists u:\left(\neg \mathcal{R} \wedge R^{+}\right)(u / v) \wedge D\left(r / v, u / v^{\prime}\right)$
Proof：Assumption $\langle 3\rangle$（which implies $\left(I^{c}\right)^{\prime} \wedge N^{c} \wedge I^{r}$ ），$\langle 4\rangle 3$ （which implies E ），assumption $\langle 4\rangle$（which with I^{r} implies $\rho(r)$ ）， and $\langle 1\rangle 1.1$ ．
〈5〉4．$D\left(r / v, r^{\prime} / v^{\prime}\right)$
Proof：$\langle 5\rangle 2$ and $\langle 5\rangle 3$.
$\langle 5\rangle 5 .\left\langle B_{b^{\prime}}\left(r / v, r^{\prime} / v^{\prime}\right)\right\rangle_{r}$
By assumption $\langle 3\rangle\left(b^{\prime} \in \mathcal{I}\right)$ and the definition of $D,\langle 5\rangle 4$ implies $\left(\left\langle B_{b^{\prime}}\right\rangle_{v}\right)\left(r / v, r^{\prime} / v^{\prime}\right)$.
$\langle 5\rangle 6 . \quad(\bar{v}=r) \wedge\left(\bar{v}^{\prime}=r^{\prime}\right)$
Proof: Assumption $\langle 4\rangle,\langle 5\rangle 1$, and the definition of \bar{v}.
$\langle 5\rangle 7$. Q.E.D.
Proof: The level- $\langle 3\rangle$ goal follows immediately from $\langle 5\rangle 5$ and $\langle 5\rangle 6$.
$\langle 4\rangle$ 5. CaSE: \mathcal{L}
$\langle 5\rangle 1 . \mathcal{L}^{\prime}$
Proof: Assumption $\langle 4\rangle,\langle 4\rangle 3$ (which implies E), and hypothesis 1(b).
$\langle 5\rangle 2 . l=$ ChOOSE $u: \lambda(u) \wedge D\left(u / v, l^{\prime} / v^{\prime}\right)$
Proof: Assumption $\langle 3\rangle$ implies N^{l}. The result then follows from $\langle 4\rangle 2,\langle 4\rangle 5,\langle 4\rangle 1$ (which implies $\neg L$), $\langle 4\rangle 3$ (which by assumption $\langle 3\rangle$ implies $\langle E\rangle_{v}$), and the definition of N^{l}.
$\langle 5\rangle 3$. $\exists u: \lambda(u) \wedge D\left(u / v, l^{\prime} / v^{\prime}\right)$
Proof: Assumption $\langle 3\rangle$ implies $\left(I^{c}\right)^{\prime} \wedge\left(I^{l}\right)^{\prime}$. By $\langle 5\rangle 1,\left(I^{l}\right)^{\prime} \mathrm{im}-$ plies $\lambda(l)^{\prime}$. The result then follows from $\langle 4\rangle 3$ and $\langle 1\rangle 1.2$.
$\langle 5\rangle 4$. $D\left(l / v, l^{\prime} / v^{\prime}\right)$
Proof: $\langle 5\rangle 2$ and $\langle 5\rangle 3$.
$\langle 5\rangle 5$. $\left\langle B_{b^{\prime}}\left(l / v, l^{\prime} / v^{\prime}\right)\right\rangle_{l}$
Proof: $\langle 5\rangle 4$, assumption $\langle 3\rangle$ (which asserts $b^{\prime} \in \mathcal{I}$), and the definition of D imply $\left(\left\langle B_{b^{\prime}}\right\rangle_{v}\right)\left(l / v, l^{\prime} / v^{\prime}\right)$.
$\langle 5\rangle 6 . \quad(\bar{v}=l) \wedge\left(\bar{v}^{\prime}=l^{\prime}\right)$
Proof: Case assumption $\langle 4\rangle,\langle 5\rangle 1$, hypothesis $1(\mathrm{~d})$, and the definition of \bar{v}.
$\langle 5\rangle 7$. Q.E.D.
Proof: The level- $\langle 3\rangle$ goal follows immediately from $\langle 5\rangle 5$ and $\langle 5\rangle 6$.
$\langle 4\rangle$ 6. CASE: $\neg(\mathcal{R} \vee \mathcal{L})$
$\langle 5\rangle 1 . \neg\left(\mathcal{R}^{\prime} \vee \mathcal{L}^{\prime}\right)$
Proof: Assumption $\langle 4\rangle,\langle 4\rangle 3$ (which implies E), and hypothesis 1(b).
$\langle 5\rangle 2 .(\bar{v}=v) \wedge\left(\bar{v}^{\prime}=v^{\prime}\right)$
Proof: Case assumption $\langle 4\rangle,\langle 5\rangle 1$, and the definition of \bar{v}.
$\langle 5\rangle 3$. Q.E.D.
Proof: Assumption $\langle 3\rangle$, which implies $\left\langle B_{b^{\prime}}\right\rangle_{v}$, and $\langle 5\rangle 2$ imply the level- $\langle 3\rangle$ goal.
$\langle 4\rangle 7$. Q.E.D.

Proof: Immediate from $\langle 4\rangle 4,\langle 4\rangle 5$, and $\langle 4\rangle 6$.
$\langle 3\rangle 2$. Assume: $i \in \mathcal{I}$
Prove: $\quad T \wedge \square \diamond\left\langle\left(i=b^{\prime}\right) \wedge B_{b^{\prime}}\right\rangle_{v} \Rightarrow \square \diamond\left\langle\overline{B_{i}}\right\rangle_{\bar{v}}$
$\langle 4\rangle$ 1. $\square\left[N^{\text {all }}\right]_{\text {all }} \wedge \square I^{\text {all }} \wedge \square \diamond\left\langle\left(i=b^{\prime}\right) \wedge B_{b^{\prime}}\right\rangle_{v}$

$$
\Rightarrow \square \diamond\left\langle N^{\text {all }} \wedge I^{\text {all }} \wedge\left(I^{\text {all }}\right)^{\prime} \wedge\left(i=b^{\prime}\right) \wedge B_{b^{\prime}}\right\rangle_{v}
$$

Proof: Since (all ${ }^{\prime}=$ all) implies $\left(v^{\prime}=v\right.$), this follows easily from the following three TLA proof rules:

1. $\frac{[A]_{f} \Rightarrow[B]_{g}}{\square[A]_{f} \Rightarrow \square[B]_{g}}$
2. $\square[A]_{f} \wedge \square \mathcal{R} \Rightarrow \square\left[A \wedge \mathcal{R} \wedge \mathcal{R}^{\prime}\right]_{f}$
3. $\square[A]_{f} \wedge \square \diamond\langle B\rangle_{f} \Rightarrow \square \diamond\langle A \wedge B\rangle_{f}$
$\langle 4\rangle$ 2. Q.E.D.
Proof: By $\langle 4\rangle 1$, assumption $\langle 3\rangle$, and $\langle 3\rangle 1$, using the TLA rule

$$
\frac{A \Rightarrow B}{\square \diamond\langle A\rangle_{f} \Rightarrow \square \diamond\langle B\rangle_{f}}
$$

$\langle 3\rangle$ 3. Assume: $i \in \mathcal{I}$
Prove: $T \wedge \square \diamond\left\langle B_{i}\right\rangle_{v} \Rightarrow \square \diamond\left\langle\left(i=b^{\prime}\right) \wedge B_{b^{\prime}}\right\rangle_{v}$ $\langle 4\rangle$ 1. $T \wedge \square \diamond\left\langle B_{i}\right\rangle_{v} \Rightarrow \square \diamond\left\langle E \wedge B_{i}\right\rangle_{v}$

Proof:

$$
\begin{aligned}
T & \wedge \square \diamond\left\langle B_{i}\right\rangle_{v} & & \\
& \Rightarrow \square[N]_{v} \wedge \square \diamond\left\langle B_{i}\right\rangle_{v} & & \text { Definition of } T \\
& \Rightarrow \square \diamond\left\langle N \wedge B_{i}\right\rangle_{v} & & \text { TLA reasoning. } \\
& \Rightarrow \square \diamond\left\langle E \wedge B_{i}\right\rangle_{v} & &
\end{aligned}
$$

the last step following from hypothesis 1(e) and assumption $\langle 3\rangle$, which imply $N \wedge B_{i} \equiv E \wedge B_{i}$.
$\langle 4\rangle 2 . T \wedge \square \diamond\left\langle E \wedge B_{i}\right\rangle_{v} \Rightarrow \vee \square \diamond\left\langle\left(i=b^{\prime}\right) \wedge E \wedge B_{b^{\prime}}\right\rangle_{v}$

$$
\begin{aligned}
\vee & \wedge \square \diamond\left\langle E \wedge B_{i} \wedge\left(i \neq b^{\prime}\right)\right\rangle_{\langle v, b, c\rangle} \\
& \wedge \diamond \square\left[E \wedge B_{i} \Rightarrow\left(i \neq b^{\prime}\right)\right]_{\langle v, b, c\rangle}
\end{aligned}
$$

$\langle 5\rangle 1$.

$$
\begin{aligned}
\nabla \diamond\left\langle E \wedge B_{i}\right\rangle_{v} \Rightarrow & \vee \square \diamond\left\langle\left(i=b^{\prime}\right) \wedge E \wedge B_{b^{\prime}}\right\rangle_{v} \\
& \vee \wedge \square \diamond\left\langle E \wedge B_{i} \wedge\left(i \neq b^{\prime}\right)\right\rangle_{v} \\
& \wedge \diamond \square\left[E \wedge B_{i} \Rightarrow\left(i \neq b^{\prime}\right)\right]_{v}
\end{aligned}
$$

Proof: For any action A and predicate q, we have $\square \diamond\langle A\rangle_{v}$
$\equiv \wedge \square \diamond\langle A\rangle_{v} \quad \square \diamond F \vee \diamond \square \neg F$, for any F
$\wedge \square \diamond\langle A \wedge q\rangle_{v} \vee \diamond \square[\neg A \vee \neg q]_{v}$
$\Rightarrow \vee \square \diamond\langle A \wedge q\rangle_{v} \quad$ Propositional logic.
$\vee \diamond \square[\neg A \vee \neg q]_{v} \wedge \square \diamond\langle A\rangle_{v}$
$\Rightarrow \vee \square \diamond\langle A \wedge q\rangle_{v} \quad \diamond \square[B]_{v} \wedge \square \diamond\langle C\rangle_{v} \Rightarrow$
$\vee \diamond \square[\neg A \vee \neg q]_{v} \wedge \square \diamond\langle A \wedge \neg q\rangle_{v} \quad \square \diamond\langle B \wedge C\rangle_{v}$ for any B, C.
$\langle 5\rangle 2 . \quad T \Rightarrow$

$$
\wedge \square \diamond\left\langle\left(i=b^{\prime}\right) \wedge E \wedge B_{b^{\prime}}\right\rangle_{v} \equiv \square \diamond\left\langle\left(i=b^{\prime}\right) \wedge E \wedge B_{b^{\prime}}\right\rangle_{\langle v, b, c\rangle}
$$

$$
\wedge \diamond \square\left[E \wedge B_{i} \Rightarrow\left(i \neq b^{\prime}\right)\right]_{v} \equiv \diamond \square\left[E \wedge B_{i} \Rightarrow\left(i \neq b^{\prime}\right)\right]_{\langle v, b, c\rangle}
$$

$\langle 6\rangle 1 . N^{c} \wedge\left(v^{\prime}=v\right) \Rightarrow\left(\langle v, b, c\rangle^{\prime}=\langle v, b, c\rangle\right)$
Proof: By definition of N^{c}.
$\langle 6\rangle 2$. For any action A,

$$
\begin{aligned}
\square\left[N^{c}\right]_{\langle v, b, c\rangle} \Rightarrow & \wedge \diamond \square[A]_{v} \equiv \diamond \square[A]_{\langle v, b, c\rangle} \\
& \wedge \square \diamond[A]_{v} \equiv \square \diamond[A]_{\langle v, b, c\rangle}
\end{aligned}
$$

Proof: By $\langle 6\rangle 1$, using the follow rules, among others

$$
\frac{[A]_{f} \wedge[B]_{g} \Rightarrow[C]_{h}}{\square[A]_{f} \wedge \square[B]_{g} \Rightarrow \square[C]_{h}} \quad \frac{[A]_{f} \wedge\langle B\rangle_{g} \Rightarrow\langle C\rangle_{h}}{\left.\square[A]_{f} \wedge \diamond[B]_{g} \Rightarrow \diamond\langle C\rangle_{h}\right)}
$$

$\langle 6\rangle$ 3. Q.E.D.
Proof: By $\langle 6\rangle 2$, since T implies $\square\left[N^{c}\right]_{\langle v, b, c\rangle}$
$\langle 5\rangle 3$. Q.E.D.
Proof: Immediate from $\langle 5\rangle 1$ and $\langle 5\rangle 2$
$\langle 4\rangle$ 3. $T \Rightarrow \neg\left(\wedge \square \diamond\left\langle E \wedge B_{i} \wedge\left(i \neq b^{\prime}\right)\right\rangle_{\langle v, b, c\rangle}\right.$

$$
\left.\wedge \diamond \square\left[\left(E \wedge B_{i}\right) \Rightarrow\left(i \neq b^{\prime}\right)\right]_{\langle v, b, c\rangle}\right)
$$

$\langle 5\rangle 1 . I^{c} \wedge N^{c} \wedge E \wedge B_{i} \wedge\left(i \neq b^{\prime}\right) \Rightarrow \operatorname{Pos}(i)^{\prime}<\operatorname{Pos}(i)$
Proof: $I^{c} \wedge N^{c} \wedge E \wedge B_{i}$ imply $b^{\prime} \in \mathcal{I}$. From $b^{\prime} \in \mathcal{I}, i \in \mathcal{I}$ (assumption $\langle 3\rangle$), $E \wedge B_{i}$, and N^{c}, we deduce $\operatorname{Pos}\left(b^{\prime}\right)<\operatorname{Pos}(i)$, which by N^{c} implies $c^{\prime}[\operatorname{Pos}(i)-1]=i$. By definition of Pos, this implies $\operatorname{Pos}(i)^{\prime}<\operatorname{Pos}(i)$.
$\langle 5\rangle 2 . \square I^{c} \wedge \square\left[N^{c}\right]_{\langle v, b, c\rangle} \wedge \square\left[\left(E \wedge B_{i}\right) \Rightarrow\left(i \neq b^{\prime}\right)\right]_{\langle v, b, c\rangle}$

$$
\Rightarrow \square\left[\operatorname{Pos}(i)^{\prime} \leq \operatorname{Pos}(i)\right]_{\langle v, b, c\rangle}
$$

$\langle 6\rangle$ 1. $I^{c} \wedge N^{c} \wedge \neg\left(E \wedge B_{i}\right) \Rightarrow \operatorname{Pos}(i)^{\prime} \leq \operatorname{Pos}(i)$
$\langle 7\rangle 1$. Case: $E \wedge \exists j \in \mathcal{I}: B_{j}$
Proof: In this case, I^{c} and N^{c} imply $c^{\prime}[\operatorname{Pos}(i)]=i$ or $c^{\prime}[\operatorname{Pos}(i)-1]=i$, either case implying $\operatorname{Pos}(i)^{\prime} \leq \operatorname{Pos}(i)$.
$\langle 7\rangle 2$. Case: $\neg\left(E \wedge \exists j \in \mathcal{I}: B_{j}\right)$
Proof: In this case, $c^{\prime}=c$, so $\operatorname{Pos}(i)^{\prime}=\operatorname{Pos}(i)$.
$\langle 7\rangle 3$. Q.E.D.
Proof: Immediate from $\langle 7\rangle 1$ and $\langle 7\rangle 2$.
$\langle 6\rangle$ 2. $I^{c} \wedge\left[N^{c}\right]_{\langle v, b, c\rangle} \wedge\left[\left(E \wedge B_{i}\right) \Rightarrow\left(i \neq b^{\prime}\right)\right]_{\langle v, b, c\rangle}$

$$
\Rightarrow\left[\operatorname{Pos}(i)^{\prime} \leq \operatorname{Pos}(i)\right]_{\langle v, b, c\rangle} .
$$

Proof: $\langle 5\rangle 1,\langle 6\rangle 1$, and propositional logic.
$\langle 6\rangle 3$. Q.E.D.
Proof: By $\langle 6\rangle 2$ and the TLA rules

$$
\frac{I \wedge I^{\prime} \wedge[A]_{f} \Rightarrow[B]_{g}}{\square I \wedge \square[A]_{f} \Rightarrow \square[B]_{g}} \frac{[A]_{f} \wedge[B]_{g} \equiv[C]_{h}}{\square[A]_{f} \wedge \square[B]_{g} \equiv \square[C]_{h}}
$$

〈5〉3.

$$
\begin{aligned}
& I^{c} \wedge \square\left[N^{c}\right]_{\langle v, b, c\rangle} \wedge \square \diamond\left\langle E \wedge B_{i} \wedge\left(i \neq b^{\prime}\right)\right\rangle_{\langle v, b, c\rangle} \\
& \Rightarrow \square \diamond\left\langle\operatorname{Pos}(i)^{\prime}<\operatorname{Pos}(i)\right\rangle_{\langle v, b, c\rangle}
\end{aligned}
$$

Proof: By $\langle 5\rangle 1$, the TLA rules

$$
\frac{I \wedge[A]_{f} \wedge\langle B\rangle_{g} \Rightarrow\langle C\rangle_{h}}{\square I \wedge \square[A]_{f} \wedge \diamond\langle B\rangle_{g} \Rightarrow \diamond\langle C\rangle_{h}} \quad \frac{F \Rightarrow G}{\square F \Rightarrow \square G}
$$

and the rule that \square distributes over \wedge.
$\langle 5\rangle 4$. Q.E.D.
$\langle 6\rangle 1 . \wedge T$
$\wedge \square \diamond\left\langle E \wedge B_{i} \wedge\left(i \neq b^{\prime}\right)\right\rangle_{\langle v, b, c\rangle}$
$\left.\wedge \diamond \square\left[\left(E \wedge B_{i}\right) \Rightarrow\left(i \neq b^{\prime}\right)\right]_{\langle v, b, c\rangle}\right)$
$\Rightarrow \wedge \square\left[\operatorname{Pos}(i)^{\prime} \leq \operatorname{Pos}(i)\right]_{\langle v, b, c\rangle}$
$\wedge \square \diamond\left\langle\operatorname{Pos}(i)^{\prime}<\operatorname{Pos}(i)\right\rangle_{\langle v, b, c\rangle}$
Proof: $\langle 5\rangle 2$ and $\langle 5\rangle 3$
$\langle 6\rangle 2$. Q.E.D.
Proof: the formula

$$
\begin{aligned}
& \wedge \square(\operatorname{Pos}(i) \in \operatorname{Nat}) \\
& \wedge \square\left[\operatorname{Pos}(i)^{\prime} \leq \operatorname{Pos}(i)\right]_{\langle v, b, c\rangle} \\
& \wedge \square \diamond\left\langle\operatorname{Pos}(i)^{\prime}<\operatorname{Pos}(i)\right\rangle_{\langle v, b, c\rangle}
\end{aligned}
$$

asserts that $\operatorname{Pos}(i)$ is decremented infinitely many times and remains a natural number, which is impossible. Since T implies I^{c}, which implies $\square(\operatorname{Pos}(i) \in N a t),\langle 6\rangle 1$ implies the level(4) goal.
$\langle 4\rangle$ 4. Q.E.D.
Proof: By propositional logic from $\langle 4\rangle 1,\langle 4\rangle 2$, and $\langle 4\rangle 3$.
$\langle 3\rangle 4$. Q.E.D.
Proof: By $\langle 3\rangle 2$ and $\langle 3\rangle 3$.
$\langle 2\rangle$ 2. $\left(\exists i \in \mathcal{I}: \Delta_{i}\right) \wedge T \wedge \square \diamond\langle M\rangle_{v} \Rightarrow \square \diamond\left\langle\overline{M^{R}}\right\rangle_{\bar{v}}$
$\langle 3\rangle 1 . T \wedge \square \diamond\langle X\rangle_{v} \Rightarrow \square \diamond\left\langle\overline{M^{R}}\right\rangle_{\bar{v}}$
Proof: From the general rule

$$
\square I \wedge \square[A]_{v} \wedge \square \diamond\langle B\rangle_{v} \Rightarrow \square \diamond\left\langle I \wedge I^{\prime} \wedge A \wedge B\right\rangle_{v}
$$

and $\square\left[N^{\text {all }}\right]_{\text {all }} \Rightarrow \square\left[N^{\text {all }}\right]_{v}$ (which follows from $\left[N^{\text {all }}\right]_{\text {all }} \Rightarrow\left[N^{\text {all }}\right]_{v}$), we deduce that $T \wedge \square \diamond\langle X\rangle_{v}$ implies $\square \diamond\left\langle N^{\text {all }} \wedge I^{\text {all }} \wedge\left(I^{\text {all }}\right)^{\prime} \wedge X\right\rangle_{v}$.
The result then follows from $\langle 1\rangle 6$.
$\langle 3\rangle 2 .\left(\exists i \in \mathcal{I}: \Delta_{i}\right) \wedge T \wedge \square \diamond\langle R\rangle_{v} \Rightarrow \square \diamond\left\langle\overline{M^{R}}\right\rangle_{\bar{v}}$
$\langle 4\rangle$ 1. $\left(\exists i \in \mathcal{I}: \Delta_{i}\right) \wedge T \wedge \square \diamond\langle R\rangle_{v} \Rightarrow \square \diamond \neg \mathcal{R}$
Proof: By definition of O (which is implied by T).
$\langle 4\rangle 2 . \square[N]_{v} \wedge \square \diamond\langle R\rangle_{v} \wedge \square \diamond \neg \mathcal{R} \Rightarrow \square \diamond\langle X\rangle_{v}$
$\langle 5\rangle 1$.
Proof: Since R implies \mathcal{R}^{\prime}, we infer that $\square \diamond\langle R\rangle_{v}$ implies $\square \diamond \mathcal{R}$,
and the result follows from the general rule

$$
\square \diamond P \wedge \square \diamond \neg P \Rightarrow \square \diamond\left\langle P \wedge \neg P^{\prime}\right\rangle_{P}
$$

plus the observation that $\square \diamond\left\langle\mathcal{R} \wedge \neg \mathcal{R}^{\prime}\right\rangle_{\mathcal{R}}$ implies $\square \diamond\left\langle\mathcal{R} \wedge \neg \mathcal{R}^{\prime}\right\rangle_{v}$ because $\mathcal{R}^{\prime} \neq \mathcal{R}$ implies $v^{\prime} \neq v$（because v contains all the variables that occur free in \mathcal{R} ）．
$\langle 5\rangle 2 . \square[N]_{v} \wedge \square \diamond\left\langle\mathcal{R} \wedge \neg \mathcal{R}^{\prime}\right\rangle_{v} \Rightarrow \square \diamond\langle X\rangle_{v}$
〈6〉1．$N \wedge \mathcal{R} \wedge \neg \mathcal{R}^{\prime} \Rightarrow X$

$$
\text { Proof: } \begin{array}{rlrl}
N \wedge \mathcal{R} \wedge \neg \mathcal{R}^{\prime} & \equiv(M \vee E) \wedge \mathcal{R} \wedge \neg \mathcal{R}^{\prime} & \text { Definition of } N . \\
& \equiv M \wedge \mathcal{R} \wedge \neg \mathcal{R}^{\prime} & & \text { Hypothesis } 1(\mathrm{~b}) . \\
& \Rightarrow M \wedge \neg \mathcal{L} \wedge \neg \mathcal{R}^{\prime} & & \text { Hypothesis } 1(\mathrm{~d}) . \\
& =X & & \text { Definition of } X
\end{array}
$$

$\langle 6\rangle 2$ ．Q．E．D．
Proof：From $\langle 6\rangle 1$ by the general rule

$$
\frac{[N]_{v} \wedge\langle A\rangle_{v} \Rightarrow\langle B\rangle_{v}}{\square[N]_{v} \wedge \square \diamond\langle A\rangle_{v} \Rightarrow \square \diamond\langle B\rangle_{v}}
$$

〈5〉3．Q．E．D．
Proof：By propositional logic from $\langle 5\rangle 1$ and $\langle 5\rangle 2$ ．
$\langle 4\rangle$ 3．Q．E．D．
Proof：By propositional logic from $\langle 4\rangle 1,\langle 4\rangle 2$ ，and $\langle 3\rangle 1$ ，since T implies $\square\left[N^{\text {all }}\right]_{\text {all }}$ which implies $\square[N]_{v}$ ．
$\langle 3\rangle 3$ ．$T \wedge \square \diamond\langle L\rangle_{v} \Rightarrow \square \diamond\left\langle\overline{M^{R}}\right\rangle_{\bar{v}}$
$\langle 4\rangle$ 1．$T \wedge \square \diamond\langle L\rangle_{v} \Rightarrow \square \diamond(\neg \mathcal{L})$
Proof：By definition of Q（which is implied by T ），since $\square \diamond\langle L\rangle_{v} \Rightarrow \square \diamond\langle\text { TRUE }\rangle_{v}=\square \neg \square[\text { FALSE }]_{v}=\neg \diamond \square[\text { FALSE }]_{v}$.
（4）2．$(\neg \mathcal{L}) \wedge \square[N \wedge \neg X]_{v} \Rightarrow \square(\neg \mathcal{L})$
$\langle 5\rangle$ 1．$\neg \mathcal{L} \wedge[N \wedge \neg X]_{v} \Rightarrow \neg \mathcal{L}^{\prime}$
$\langle 6\rangle 1 . \neg \mathcal{L} \wedge E \Rightarrow \neg \mathcal{L}^{\prime}$
Proof：Hypothesis 1（b）．
$\langle 6\rangle 2 . \neg \mathcal{L} \wedge R \Rightarrow \neg \mathcal{L}^{\prime}$
Proof：By definition of R（which implies \mathcal{R}^{\prime} ）and hypothesis 1（d）．
$\langle 6\rangle 3 . \neg \mathcal{L} \wedge L \Rightarrow \neg \mathcal{L}^{\prime}$
Proof：By definition of L（which implies \mathcal{L} ）．
$\langle 6\rangle 4 . \neg \mathcal{L} \wedge\left(v^{\prime}=v\right) \Rightarrow \neg \mathcal{L}^{\prime}$
Proof：By the hypothesis that the tuple v contains all the free variables of \mathcal{L} ．
$\langle 6\rangle 5$ ．Q．E．D．
Proof：By $\langle 6\rangle 1,\langle 6\rangle 2,\langle 6\rangle 3,\langle 6\rangle 4$ ，since $\langle 1\rangle 1.4$ and the defini－ tion of N imply that $N \wedge \neg X$ equals $E \vee R \vee L$ ．
$\langle 5\rangle 2$. Q.E.D.
Proof: By $\langle 5\rangle 1$ and the standard TLA invariance rule.
$\langle 4\rangle 3$. $\square \diamond\langle L\rangle_{v} \wedge \square \diamond \neg \mathcal{L} \Rightarrow \square \diamond\langle\neg N \vee X\rangle_{v}$
$\langle 5\rangle 1 . \diamond \mathcal{L} \Rightarrow \diamond\langle\neg N \vee X\rangle_{v} \vee \mathcal{L}$
Proof: By $\langle 4\rangle 2$, since $\neg \square[N \wedge \neg X]_{v}$ is equivalent to $\diamond\langle\neg N \vee X\rangle_{v}$.
$\langle 5\rangle 2 . \square \diamond \mathcal{L} \Rightarrow \square \diamond\langle\neg N \vee X\rangle_{v} \vee \diamond \square \mathcal{L}$
Proof: By $\langle 5\rangle 1$ and the proof rules

$$
\frac{F \Rightarrow G}{\square F \Rightarrow \square G} \quad \square(\diamond F \vee G) \Rightarrow \square \diamond F \vee \diamond \square G
$$

$\langle 5\rangle 3$. Q.E.D.
Proof:
$\square \diamond\langle L\rangle_{v} \wedge \square \diamond \neg \mathcal{L}$
$\Rightarrow \square \diamond \mathcal{L} \wedge \square \diamond \neg \mathcal{L} \quad$ Since $L \Rightarrow \mathcal{L}$.
$\Rightarrow\left(\square \diamond\langle\neg N \vee X\rangle_{v} \vee \diamond \square \mathcal{L}\right) \wedge \square \diamond \neg \mathcal{L}$ By $\langle 5\rangle 2$.
$\Rightarrow \square \diamond\langle\neg N \vee X\rangle_{v} \quad$ Since $\square \diamond \neg \mathcal{L} \equiv \neg \diamond \square \mathcal{L}$.
$\langle 4\rangle$ 4. $T \wedge \square \diamond\langle L\rangle_{v} \Rightarrow \square \diamond\langle X\rangle_{v}$
$\langle 5\rangle 1 . T \wedge \square \diamond\langle L\rangle_{v} \Rightarrow \square \diamond\langle\neg N \vee X\rangle_{v}$
Proof: $\langle 4\rangle 1$ and $\langle 4\rangle 3$.
$\langle 5\rangle 2 . \square[N]_{v} \wedge \square \diamond\langle\neg N \vee X\rangle_{v} \Rightarrow \square \diamond\langle X\rangle_{v}$
Proof: By the TLA rule $\square[A]_{v} \wedge \diamond\langle B\rangle_{v} \Rightarrow \diamond\langle A \wedge B\rangle_{v}$.
$\langle 5\rangle$ 3. Q.E.D.
Proof: $\langle 5\rangle 1$ and $\langle 5\rangle 2$, since T implies $\square[N]_{v}$.
$\langle 4\rangle 5$. Q.E.D.
Proof: $\langle 4\rangle 4$ and $\langle 3\rangle 1$.
$\langle 3\rangle 4$. Q.E.D.
Proof: $\langle 3\rangle 1,\langle 3\rangle 2,\langle 3\rangle 3$, and $\langle 1\rangle 1.4$, since $\square \diamond$ distributes over disjunction.
$\langle 2\rangle$ 3. Q.E.D.
Proof: $\langle 2\rangle 1$ and $\langle 2\rangle 2$ and definition of A_{i}, since $\Delta_{i} \wedge \square \diamond\langle M\rangle_{v}$ equals $\square \diamond\left\langle\Delta_{i} \wedge M\right\rangle_{v}$ (because Δ_{i} is a constant), and $\square \diamond(F \vee G)$ is equivalent to $(\square \diamond F) \vee(\square \diamond G)$ for any temporal formulas F and G.
$\langle 1\rangle 10$. Q.E.D.
$\langle 2\rangle 1 . S \wedge H^{c} \wedge \square I^{c} \wedge H^{r} \wedge \square I^{r} \wedge P^{p} \wedge P^{l} \Rightarrow \square I^{\text {all }} \wedge \square\left[N^{\text {all }}\right]_{\text {all }}$
$\langle 3\rangle 1 .\left(v^{\prime}=v\right) \wedge I^{r} \wedge I^{l} \wedge\left(I^{l}\right)^{\prime} \wedge N^{c} \wedge N^{r} \wedge N^{p} \wedge N^{l} \Rightarrow($ all $=$ all $)$
$\langle 4\rangle 1 .\left(v^{\prime}=v\right) \wedge N^{c} \Rightarrow\langle b, c\rangle^{\prime}=\langle b, c\rangle$
Proof: By definition of N^{c}.
〈4)2. $I^{r} \wedge\left(v^{\prime}=v\right) \wedge N^{r} \Rightarrow\left(r^{\prime}=r\right)$
Proof: Follows from the definitions of I^{r} and N^{r}, and the hypothesis that the free variables of \mathcal{R} are included in the tuple of
variables v ，which implies $\left(v^{\prime}=v\right) \Rightarrow\left(\mathcal{R}^{\prime}=\mathcal{R}\right)$ ．
〈4〉3．$\left(v^{\prime}=v\right) \wedge N^{p} \Rightarrow\left(p^{\prime}=p\right)$
Proof：Immedate from the definition of N^{p} ．
〈4〉4．$\left(v^{\prime}=v\right) \wedge N^{p} \wedge I^{l} \wedge\left(I^{l}\right)^{\prime} \wedge N^{l} \Rightarrow\left(l^{\prime}=l\right)$
$\langle 5\rangle 1$. CASE：p
$\langle 6\rangle 1 . I^{l} \Rightarrow\left(l=l_{\text {final }}\right)$
Proof：Assumption $\langle 5\rangle$ and definition of I^{l} ．
$\langle 6\rangle 2 .\left(v^{\prime}=v\right) \wedge N^{p} \Rightarrow p^{\prime}$
Proof：Assumption $\langle 5\rangle$ and definition of N^{p} ．
$\langle 6\rangle 3 .\left(I^{l}\right)^{\prime} \wedge p^{\prime} \Rightarrow\left(l^{\prime}=l_{\text {final }}^{\prime}\right)$
Proof：By definition of I^{l} ．
$\langle 6\rangle 4 . \quad\left(v=v^{\prime}\right) \Rightarrow\left(l^{\prime}\right.$ final $\left.=l_{\text {final }}\right)$
Proof：By definition of $l_{\text {final }}$ ，since，for any constant tuple u ， v are the only free variables of $\lambda(u)$ ．
$\langle 6\rangle 5$ ．Q．E．D．
Proof：The level－$\langle 4\rangle$ goal follows from $\langle 6\rangle 1,\langle 6\rangle 2,\langle 6\rangle 3$ ，and $\langle 6\rangle 4$.
$\langle 5\rangle 2$ ．CASE：$\neg p$
$\langle 6\rangle 1 . N^{p} \Rightarrow \neg p^{\prime}$
Proof：Assumption $\langle 5\rangle$ and the definition of N^{p} ．
$\langle 6\rangle 2$ ．CASE：$\neg \mathcal{L}$
Proof：In this case，$\left(v^{\prime}=v\right)$ implies $\neg \mathcal{L}^{\prime}$ ，so by $\langle 6\rangle 1, I^{l} \wedge$ $\left(I^{l}\right)^{\prime} \wedge N^{p} \wedge\left(v^{\prime}=v\right)$ implies $l=v=v^{\prime}=l^{\prime}$.
$\langle 6\rangle 3$. Case： \mathcal{L}
Proof：In this case，assumption $\langle 5\rangle$ implies $\left(v^{\prime}=v\right) \wedge N^{l} \Rightarrow$ $\left(l=l^{\prime}\right)$ ．
$\langle 6\rangle 4$. Q．E．D．
Proof：Cases $\langle 6\rangle 2$ and $\langle 6\rangle 3$ are exhaustive．
$\langle 5\rangle 3$ ．Q．E．D．
Proof：By $\langle 5\rangle 1$ and $\langle 5\rangle 2$ ．
〈4〉5．Q．E．D．
Proof：By $\langle 4\rangle 1,\langle 4\rangle 2,\langle 4\rangle 3,\langle 4\rangle 4$ ，and the definition of all．
$\langle 3\rangle 2 . \square[N]_{v} \wedge \square I^{r} \wedge \square I^{l} \wedge \square\left[N^{c}\right]_{\langle v, b, c\rangle} \wedge \square\left[N^{r} \wedge\left(v^{\prime} \neq v\right)\right]_{\langle v, r\rangle}$
$\wedge \square\left[N^{p}\right]_{\langle v, p\rangle} \wedge \square\left[N^{l} \wedge\left(\langle p, v\rangle^{\prime} \neq\langle p, v\rangle\right]_{\langle v, b, c, p, l\rangle} \Rightarrow \square\left[N^{\text {all }}\right]_{\text {all }}\right.$
Proof：By the definition of $N^{\text {all }},\langle 3\rangle 1$ ，repeated application of the rule

$$
\begin{aligned}
& \wedge\left(g=g^{\prime}\right) \wedge A \Rightarrow\left(f=f^{\prime}\right) \\
& \wedge\left(f=f^{\prime}\right) \wedge B \Rightarrow\left(g=g^{\prime}\right) \\
& \hline[A]_{f} \wedge[B]_{g} \equiv[A \wedge B]_{\langle f, g\rangle}
\end{aligned}
$$

and the usual TLA rules

$$
\square I \wedge \square[A]_{f} \Rightarrow \square\left[I \wedge I^{\prime} \wedge A\right]_{f} \frac{[A]_{f} \wedge[B]_{g} \Rightarrow[C]_{h}}{\square[A]_{f} \wedge \square[B]_{g} \Rightarrow \square[C]_{h}}
$$

$\langle 3\rangle 3$. Q.E.D.
Proof: Follows easily from $\langle 3\rangle 2,\langle 1\rangle 2$, the definitions, and the rule that \square distributes over \wedge.
$\langle 2\rangle 2 . S \wedge Q \wedge O \wedge H^{c} \wedge \square I^{c} \wedge H^{r} \wedge \square I^{r} \wedge P^{p} \wedge P^{l}$

$$
\Rightarrow \overline{S^{R}} \wedge \square I(\bar{v} / \widehat{v}) \wedge\left(\forall i \in \mathcal{I}: \square \diamond\left\langle A_{i}\right\rangle_{v} \Rightarrow \square \diamond\left\langle\overline{A_{i}^{R}}\right\rangle_{\bar{v}}\right)
$$

Proof: $\langle 2\rangle 1,\langle 1\rangle 7,\langle 1\rangle 8,\langle 1\rangle 9$, and the definition of S^{R}.
$\langle 2\rangle$ 3. $S \wedge Q \wedge O \wedge H^{c} \wedge \square I^{c} \wedge H^{r} \wedge \square I^{r} \wedge P^{p} \wedge P^{l}$

$$
\Rightarrow \exists \widehat{v}: \widehat{S^{R}} \wedge \square I \wedge\left(\forall i \in \mathcal{I}: \square \diamond\left\langle A_{i}\right\rangle_{v} \Rightarrow \square \diamond\left\langle\widehat{A_{i}^{R}}\right\rangle_{\widehat{v}}\right)
$$

Proof: $\langle 2\rangle 2$ and (temporal) predicate logic.
$\langle 2\rangle$ 4. $S \wedge Q \wedge O \wedge\left(\exists b, c, r, p, l: H^{c} \wedge \square I^{c} \wedge H^{r} \wedge \square I^{r} \wedge P^{p} \wedge P^{l}\right)$

$$
\Rightarrow\left(\exists \widehat{v}: \widehat{S^{R}} \wedge \square I \wedge\left(\forall i \in \mathcal{I}: \square \diamond\left\langle A_{i}\right\rangle_{v} \Rightarrow \square \diamond\left\langle\widehat{A_{i}^{R}}\right\rangle_{\widehat{v}}\right)\right)
$$

Proof: $\langle 2\rangle 3$ and (temporal) predicate logic, since b, c, r, p, and l do not occur free in S, Q, O, or

$$
\exists \widehat{v}: \widehat{S^{R}} \wedge \square I \wedge\left(\forall i \in \mathcal{I}: \square \diamond\left\langle A_{i}\right\rangle_{v} \Rightarrow \square \diamond\left\langle\widehat{A_{i}^{R}}\right\rangle_{\widehat{v}}\right)
$$

$\langle 2\rangle 5 . S \wedge Q \Rightarrow\left(\exists b, c, r, p, l: H^{c} \wedge \square I^{c} \wedge H^{r} \wedge \square I^{r} \wedge P^{p} \wedge P^{l}\right)$
$\langle 3\rangle 1 . H^{c} \wedge \square I^{c} \wedge S \Rightarrow \exists r: H^{c} \wedge \square I^{c} \wedge H^{r} \wedge \square I^{r}$
Proof: By $\langle 1\rangle 4$, since r does not occur free in H^{c} and I^{c}.
$\langle 3\rangle 2 . H^{c} \wedge \square I^{c} \wedge S \wedge Q \Rightarrow \exists p, l: P^{p} \wedge P^{l}$
Proof: $\langle 1\rangle 5$.
$\langle 3\rangle 3 . H^{c} \wedge \square I^{c} \wedge S \wedge Q \Rightarrow \exists r, p, l: H^{c} \wedge \square I^{c} \wedge H^{r} \wedge \square I^{r} \wedge P^{p} \wedge P^{l}$
Proof: $\langle 3\rangle 1$ and $\langle 3\rangle 2$, since r does not occur free in P^{p} or P^{l}, and p and l do not occur free in $H^{c}, \square I^{c}, H^{r}$, or $\square I^{r}$. (We are using the rule that if x does not occur free in F, then $(\exists x: F \wedge G) \equiv F \wedge(\exists x: G)$.) $\langle 3\rangle 4$. $S \wedge Q \wedge\left(\exists b, c: H^{c} \wedge \square I^{c}\right) \Rightarrow \exists b, c, r, p, l: H^{c} \wedge \square I^{c} \wedge H^{r} \wedge$ $\square I^{r} \wedge P^{p} \wedge P^{l}$
Proof: By $\langle 3\rangle 3$, since b and c do not occur free in S or Q. (We are using the rule that if x does not occur free in F, then $(\exists x: F \wedge G) \equiv$ $F \wedge(\exists x: G)$.
$\langle 3\rangle 5$. Q.E.D.
Proof: By $\langle 3\rangle 4$ and $\langle 1\rangle 5$.
$\langle 2\rangle 6$. Q.E.D.
Proof: $\langle 2\rangle 4$ and $\langle 2\rangle 5$.

