Proof of the TLA Reduction Theorem

Leslie Lamport

Tue 20 Jan 1998 [16:50]

 $R \stackrel{\Delta}{=} M \wedge \mathcal{R}'$ **Theorem 3** Define: $L \stackrel{\Delta}{=} \mathcal{L} \wedge M$ $X \stackrel{\Delta}{=} (\neg \mathcal{L}) \land M \land (\neg R')$ $M^{R} \stackrel{\Delta}{=} \neg(\mathcal{R} \lor \mathcal{L}) \land M^{+} \land \neg(\mathcal{R} \lor \mathcal{L})'$ $\stackrel{\Delta}{=} M \lor E$ N $N^R \stackrel{\Delta}{=} M^R \lor E$ $\stackrel{\Delta}{=}$ Init $\wedge \Box[N]_v$ S $S^R \stackrel{\Delta}{=} Init \wedge \Box [N^R]_v$ $I \stackrel{\Delta}{=} \land \mathcal{R} \Rightarrow R^+(\hat{v}/v, v/v')$ $\wedge \mathcal{L} \Rightarrow L^+(\widehat{v}/v')$ $\wedge \neg (\mathcal{R} \lor \mathcal{L}) \Rightarrow (\hat{v} = v)$ $\wedge \neg (\mathcal{R} \lor \mathcal{L})(\widehat{v}/v)$ $Q \stackrel{\Delta}{=} \vee \Box \Diamond \neg \mathcal{L}$ $\lor \diamond \Box [\text{FALSE}]_v \land \diamond \Box E \text{NABLED} (L^+ \land \neg \mathcal{L}')$ $A_i \stackrel{\Delta}{=} B_i \lor (\Delta_i \land M)$ $A_i^R \stackrel{\Delta}{=} B_i \lor (\Delta_i \land M^R)$ $O \stackrel{\Delta}{=} (\exists i \in \mathcal{I} : \Delta_i) \land \Box \diamondsuit \langle R \rangle_v \Rightarrow \Box \diamondsuit \neg \mathcal{R}$ Assume: 1. (a) $Init \Rightarrow \neg(\mathcal{R} \lor \mathcal{L})$ (b) $E \Rightarrow (\mathcal{R}' \equiv \mathcal{R}) \land (\mathcal{L}' \equiv \mathcal{L})$ (c) $\neg (\mathcal{L} \land M \land \mathcal{R}')$ (d) $\neg(\mathcal{R} \land \mathcal{L})$ 2. (a) $R \cdot E$ $\Rightarrow E \cdot R$ $\Rightarrow L \cdot E$ (b) $E \cdot L$ (c) $\forall i \in \mathcal{I} : R \cdot \langle E \wedge B_i \rangle_v \Rightarrow \langle E \wedge B_i \rangle_v \cdot R$ (d) $\forall i \in \mathcal{I} : \langle E \wedge B_i \rangle_v \cdot L \Rightarrow L \cdot \langle E \wedge B_i \rangle_v$

 $Prove: \ S \land Q \land O \ \Rightarrow \ \exists \, \widehat{v} \ : \ \Box I \land \widehat{S^R} \land (\forall \, i \in \mathcal{I} \ : \ \Box \diamondsuit \langle A_i \rangle_v \Rightarrow \Box \diamondsuit \langle \widehat{A_i^R} \rangle_{\widehat{v}}).$

Proof of the Theorem

Let $m, r_1, \ldots, r_k, p, n$ and l_1, \ldots, l_k be variables distinct from the variables of v and \hat{v} , let r equal $\langle r_1, \ldots, r_k \rangle$, and l equal $\langle l_1, \ldots, l_k \rangle$. We also let udenote a k-tuple of bound variables, distinct from all the other variables.

We first define a temporal formula H^c which asserts that b and c are history variables chosen as follows. The initial condition I^c asserts, and it will remain true forever, that c is an infinite sequence of elements of \mathcal{I} in which each element appears infinitely many times. (Such a sequence exists because \mathcal{I} is at most countably infinite.) The initial value of b doesn't matter; we take it to be an arbitrary element of \mathcal{I} . We choose b' to be the first element i in the sequence c such that the current step is a $E \wedge B_i$ step. We define c' to be the sequence obtained from c by deleting the element b'. (If there is no such i, we let c' = c and let b' be an arbitrary element \top not in \mathcal{I} .)

$$\begin{array}{rcl} \top & \triangleq & \text{CHOOSE } i : i \notin \mathcal{I} \\ I^c & \triangleq & \wedge c \in [Nat \to \mathcal{I}] \\ & \wedge \forall n \in Nat, i \in \mathcal{I} : \exists m \in Nat : (m > n) \land (c[m] = i) \\ & \wedge b \in \mathcal{I} \cup \{\top\} \end{array}$$

$$\begin{array}{rcl} Pos(i) & \triangleq & \min\{n \in Nat : c[n] = i\} \\ N^c & \triangleq & \text{if } E \land (\exists i \in \mathcal{I} : \langle B_i \rangle_v) \\ & & \text{then } \land b' = \text{CHOOSE } i : \land (i \in \mathcal{I}) \land \langle B_i \rangle_v \\ & & \land \forall j \in \mathcal{I} : \langle B_j \rangle_v \Rightarrow (Pos(i) \leq Pos(j)) \\ & \land c' = [n \in Nat \mapsto \text{if } n < Pos(b') \text{ then } c[n] \\ & & \text{else } c[n+1]] \end{array}$$

$$\begin{array}{rcl} \text{else } \land b' = \text{if } v' = v \text{ then } b \text{ else } \top \\ & \land c' = c \end{array}$$

$$H^c & \triangleq & I^c \land \Box[N^c]_{\langle v, b, c \rangle} \end{array}$$

Note that the initial predicate I^c is actually an invariant of H^c . For convenience, we define the action D by

 $D \stackrel{\Delta}{=} \mathbf{if} \ b' = \top \mathbf{then} \ E \ \mathbf{else} \ E \land \langle B_{b'} \rangle_v$

We next define a temporal formula H^r , which asserts that r is a history variable, and a predicate I^r that we will prove is an invariant of H^r . Note

that $\rho(u)$ is a state predicate, if u is a k-tuple of state functions.

$$\begin{array}{rcl} \rho(u) & \triangleq & (\neg \mathcal{R} \wedge R^{+})(u/v, v/v') \\ N^{r} & \triangleq \\ & r' = \mathbf{if} \ \neg \mathcal{R}' \ \mathbf{then} \ v' \\ & & \mathbf{else} \ \mathbf{if} \ R \ \mathbf{then} \ r \\ & & \mathbf{else} \ \mathbf{if} \ \langle E \rangle_{v} \ \mathbf{then} \ \mathrm{CHOOSE} \ u : \\ & & (\neg \mathcal{R} \wedge R^{+})(u/v) \wedge D(r/v, u/v') \\ & & \mathbf{else} \ r \\ H^{r} & \triangleq & (r = v) \wedge \Box [N^{r} \wedge (v' \neq v)]_{\langle v, r \rangle} \\ I^{r} & \triangleq & \wedge \neg \mathcal{R} \Rightarrow (r = v) \\ & \wedge \mathcal{R} \Rightarrow \rho(r) \end{array}$$

Next, we define \mathcal{R}^p and \mathcal{R}^l , which assert that p, n, and l are prophecy variables. The prophecy variable p is an "infinite prophecy" of the form $\Box(p = F)$ for a temporal formula F. For a prophecy variable like l, the invariant I^l is part of the formula that describes the variable.

Note that the symmetric relation between the history variable r and the prophecy variable p becomes more apparent if, in the definition of N^r , we replace the expression $R^+(u/v)$ with the equivalent expression $\rho(u)'$. (The

expressions are equivalent because the bound variable u in the expression CHOOSE $u : \ldots$ is by definition a constant, so u' = u.)

We also define the action N^p and predicate I^p , which play the role of next-state relation and invariant for P^p .

$$\begin{array}{rcl} N^p & \triangleq & \wedge p \Rightarrow (v'=v) \\ & \wedge (v'=v) \Rightarrow (p'=p) \\ I^p & \triangleq & p \Rightarrow (\exists \ u \ : \ \lambda(u)) \end{array}$$

For convenience, we combine all these next-state relations and invariants with the following definitions

$$\begin{array}{lll} all & \triangleq & \langle v, b, c, r, p, l \rangle \\ N^{all} & \triangleq & (v' \neq v) \land N \land N^c \land N^r \land N^p \land N^l \\ I^{all} & \triangleq & I^c \land I^r \land I^l \end{array}$$

We also define X by

$$X \stackrel{\Delta}{=} \neg \mathcal{L} \land M \land \neg \mathcal{R}'$$

Finally, we define our refinement mapping \overline{v} by

$$\overline{v} \stackrel{\Delta}{=} \mathbf{if} \ \mathcal{R} \ \mathbf{then} \ r$$

else if $\mathcal{L} \ \mathbf{then} \ l \ \mathbf{else} \ v$

We use the following simple observations. If v is the tuple of all variables that appear in the actions A and B, then for any u_1 and u_2 ,

$$(A \cdot B)(u_1/v, u_2/v') \equiv \exists w : A(u_1/v, w/v') \land B(w/v, u_2/v')$$
(1)

The proof of the theorem follows.

$$\begin{split} &\langle 1\rangle 1. \ 1. \ (I^c)' \wedge N^c \wedge E \wedge \rho(r) \Rightarrow \exists u : (\neg \mathcal{R} \wedge R^+)(u/v) \wedge D(r/v, u/v') \\ &2. \ (I^c)' \wedge N^c \wedge E \wedge \lambda(l)' \Rightarrow \exists u : \lambda(u) \wedge D(u/v, l'/v') \\ &3. \forall u : (R^+(u/v, v/v') \Rightarrow \neg \mathcal{L}) \\ &4. \ M \equiv R \lor X \lor L \\ &\langle 2\rangle 1. \ \text{Assume:} \ (I^c)' \wedge N^c \wedge E \wedge \rho(r) \\ &\text{PROVE:} \ \exists u : (\neg \mathcal{R} \wedge R^+)(u/v) \wedge D(r/v, u/v') \\ &\langle 3\rangle 1. \ R \cdot D \Rightarrow D \cdot R \\ &\text{PROOF:} \ \text{Assumption} \ \langle 2\rangle \ (\text{which implies } b' \in \mathcal{I} \cup \{\top\}), \text{ the definition} \\ &\text{of } D, \text{ and hypotheses } 2(a) \ (\text{if } b' = \top) \text{ and } 2(c) \ (\text{if } b' \in \mathcal{I}). \\ &\langle 3\rangle 2. \ R^+ \cdot D \Rightarrow D \cdot R^+ \\ &\text{PROOF:} \ \text{By induction from } \langle 3\rangle 1 \ \text{and the associativity of "."}. \\ &\langle 3\rangle 3. \ (\neg \mathcal{R} \wedge R^+) \cdot D \Rightarrow D \cdot (\neg \mathcal{R} \wedge R^+) \end{split}$$

PROOF: $(\neg \mathcal{R} \wedge R^+) \cdot D \equiv \neg \mathcal{R} \wedge (R^+ \cdot D)$ By (1). $\Rightarrow \neg \mathcal{R} \wedge (D \cdot R^+)$ By $\langle 3 \rangle 2$. $\equiv (\neg \mathcal{R} \wedge D) \cdot R^+$ By (1). $\Rightarrow (D \land \neg \mathcal{R}') \cdot R^+$ By hypothesis 1(b), since $D \Rightarrow E$. $\equiv D \cdot (\neg \mathcal{R} \wedge R^+)$ By (1). $\langle 3 \rangle 4.$ Q.E.D. **PROOF:** By assumption $\langle 2 \rangle$, since $\rho(r) \wedge E$ $\Rightarrow \rho(r) \wedge D$ Assumption $\langle 2 \rangle$ and def of N^c . $\equiv (\neg \mathcal{R} \wedge R^+)(r/v, v/v') \wedge D$ Definition of ρ . $\Rightarrow ((\neg \mathcal{R} \land R^+) \cdot D)(r/v)$ By (1). $\Rightarrow (D \cdot (\neg \mathcal{R} \wedge R^+))(r/v)$ By $\langle 3 \rangle 3$. $\equiv \exists u : D(r/v, u/v') \land (\neg \mathcal{R} \land R^+)(u/v)$ By (1). $\langle 2 \rangle 2$. Assume: $(I^c)' \wedge N^c \wedge E \wedge \lambda(l)'$ PROVE: $\exists u : (\lambda(u) \land D)(u/v, l'/v')$ $\langle 3 \rangle 1. \quad D \cdot L \Rightarrow L \cdot D$ **PROOF:** Assumption $\langle 2 \rangle$ (which implies $b' \in \mathcal{I} \cup \{\top\}$), the definition of D, and Hypotheses 2(b) (if $b' = \top$) and 2(d) (if $b' \in \mathcal{I}$). $\langle 3 \rangle 2. \quad D \cdot L^+ \Rightarrow L^+ \cdot D$ **PROOF:** By induction from $\langle 3 \rangle 1$ and the associativity of ".". $\langle 3 \rangle 3. \ \forall u, w : D(u/v, w/v') \land \neg \mathcal{L}(w/v) \Rightarrow \neg \mathcal{L}(u/v)$ PROOF: Hypothesis 1(b) (which implies $E \wedge \mathcal{L} \Rightarrow \mathcal{L}'$), since assumption $\langle 2 \rangle$ and the definition of D imply $D \Rightarrow E$. $\langle 3 \rangle 4.$ Q.E.D. **PROOF:** By assumption $\langle 2 \rangle$, since $(\lambda(l))' \wedge E$ $\Rightarrow (\lambda(l))' \wedge D$ Assumption $\langle 2 \rangle$ and def of N^c . $\equiv L^+(v'/v, l'/v') \wedge \neg \mathcal{L}(l'/v) \wedge D$ By definition of λ . $\Rightarrow (D \cdot L^+)(l'/v') \wedge \neg \mathcal{L}(l'/v)$ By (1). $\Rightarrow (L^+ \cdot D)(l'/v') \wedge \neg \mathcal{L}(l'/v)$ By $\langle 3 \rangle 2$. $\Rightarrow \exists u : L^+(u/v') \land D(u/v, l'/v') \land \neg \mathcal{L}(l'/v)$ By (1). $\Rightarrow \exists u : L^+(u/v') \land D(u/v, l'/v') \land \neg \mathcal{L}(u/v)$ By $\langle 3 \rangle 3$ $\equiv \exists u : \lambda(u) \wedge D(u/v, l'/v')$ By definition of λ . $\langle 2 \rangle 3$. Assume: u a k-tuple of constants PROVE: $R^+(u/v, v/v') \Rightarrow \neg \mathcal{L}$ $\langle 3 \rangle 1. \ R(u/v, v/v') \Rightarrow \neg \mathcal{L}$ **PROOF:** By definition, R implies \mathcal{R}' , so R(u/v, v/v') implies \mathcal{R} , which by hypothesis 1(d) implies $\neg \mathcal{L}$. $\langle 3 \rangle 2.$ Q.E.D.

PROOF: $\langle 3 \rangle 1$, by induction on k. $\langle 2 \rangle 4. \quad M \equiv R \lor X \lor L$ PROOF: $M \equiv (\neg \mathcal{L} \land M \land \mathcal{R}') \lor (\neg \mathcal{L} \land M \land \neg \mathcal{R}') \lor (\mathcal{L} \land M)$ Propositional logic. $\equiv (M \land \mathcal{R}') \lor (\neg \mathcal{L} \land M \land \neg \mathcal{R}') \lor (\mathcal{L} \land M)$ Hypothesis 1(c). $\equiv R \lor X \lor L$ Definitions of R, X, and L. $\langle 2 \rangle 5.$ Q.E.D. PROOF: $\langle 2 \rangle 1$, $\langle 2 \rangle 2$, $\langle 2 \rangle 3$, and $\langle 2 \rangle 4$. $\langle 1 \rangle 2. \ P^p \Rightarrow \Box [N^p]_{\langle v, p \rangle} \land \Box I^p$ $\langle 2 \rangle 1. P^p \Rightarrow \Box[N^p]_{\langle v,p \rangle}$ **PROOF:** This is semantically obvious, since v = v' implies ENABLED $(L^+ \land \neg \mathcal{L}') \equiv (\text{ENABLED} (L^+ \land \neg \mathcal{L}'))'$ but I don't know how to derive it from more primitive proof rules. $\langle 2 \rangle 2. P^p \Rightarrow \Box I^p$ **PROOF:** Follows from the definitions of P^p and I^p by simple temporal reasoning, since ENABLED $(L^+ \land \neg \mathcal{L}')$ is equivalent to $\exists u : \lambda(u)$. $\langle 2 \rangle 3.$ Q.E.D. **PROOF:** $\langle 2 \rangle 1$ and $\langle 2 \rangle 2$. $\langle 1 \rangle 3. \exists b, c : H^c \land \Box I^c$ $\langle 2 \rangle 1. \ \exists b, c : H^c$ PROOF: By the standard rule for adding history variables. $\langle 2 \rangle 2. \quad H^c \Rightarrow \Box I^c$ $\langle 3 \rangle 1. \ I^c \wedge [N^c]_{\langle v, c \rangle} \Rightarrow (I^c)'$ **PROOF:** Immediate from the definitions. $\langle 3 \rangle 2.$ Q.E.D. **PROOF:** $\langle 3 \rangle 1$ and the TLA invariance rule. $\langle 2 \rangle 3.$ Q.E.D. **PROOF:** $\langle 2 \rangle 1$, $\langle 2 \rangle 2$, and predicate logic. $\langle 1 \rangle 4. \ \Box I^c \wedge H^c \wedge S \Rightarrow \exists r : H^r \wedge \Box I^r$ $\langle 2 \rangle 1. \exists r : H^r$ **PROOF**: By the rules for history variables. $\langle 2 \rangle 2. \ \Box I^c \wedge H^c \wedge S \wedge H^r \Rightarrow \Box I^r$ $\langle 3 \rangle$ 1. ASSUME: $(I^c)' \wedge N^c \wedge N \wedge N^r \wedge (v' \neq v) \wedge I^r$ PROVE: $(I^r)'$ $\langle 4 \rangle$ 1. CASE: $E \land \neg R$ $\langle 5 \rangle$ 1. CASE: \mathcal{R} $\langle 6 \rangle 1. \mathcal{R}'$ **PROOF:** Assumptions $\langle 5 \rangle$ and $\langle 4 \rangle$ and hypothesis 1(b) (which implies $E \wedge \mathcal{R} \Rightarrow \mathcal{R}'$).

 $\langle 6 \rangle 2. \ r' = \text{CHOOSE} \ u : (\neg \mathcal{R} \land R^+)(u/v) \land D(r/v, u/v')$

PROOF: $\langle 6 \rangle 1$, assumption $\langle 4 \rangle$ $(\neg R)$, assumption $\langle 3 \rangle$ (which asserts $(v' \neq v) \land N^r$), and the definition of N^r .

 $\langle 6 \rangle 3. \ \rho(r)$

PROOF: Assumptions $\langle 5 \rangle$ and $\langle 3 \rangle$ (which asserts I^r), and the definition of I^r .

 $\langle 6 \rangle 4. \ (\neg \mathcal{R} \wedge R^+)(r'/v)$

PROOF: $\langle 6 \rangle 2$, $\langle 6 \rangle 3$, assumptions $\langle 3 \rangle$ (which asserts $(I^c)' \wedge N^c$) and $\langle 4 \rangle$, and $\langle 1 \rangle 1.1$.

 $\langle 6 \rangle 5.$ Q.E.D.

PROOF: $\langle 6 \rangle 4$ implies $\rho(r)'$, since $(\neg \mathcal{R} \land R^+)(r'/v) = (\neg \mathcal{R} \land R^+)(r'/v, v'/v') = (\neg \mathcal{R} \land R^+)(r/v, v/v')' = \rho(r)'$. The level- $\langle 3 \rangle$ goal then follows from $\langle 6 \rangle 1$ and the definition of I^r .

 $\langle 5 \rangle 2$. CASE: $\neg \mathcal{R}$

 $\langle 6 \rangle 1. \neg \mathcal{R}'$

PROOF: Assumptions $\langle 5 \rangle$ and $\langle 4 \rangle$ and hypothesis 1(b) (which implies $E \wedge \mathcal{R}' \Rightarrow \mathcal{R}$).

(6)2. r' = v'

PROOF: $\langle 6 \rangle 1$, assumption $\langle 3 \rangle$ (which asserts N^r), and the definition of N^r .

 $\langle 6 \rangle 3.$ Q.E.D.

PROOF: $\langle 6 \rangle 1$, $\langle 6 \rangle 2$, and the definition of I^r imply the level- $\langle 3 \rangle$ goal.

$\langle 5 \rangle 3.$ Q.E.D.

PROOF: Immediate from $\langle 5 \rangle 1$ and $\langle 5 \rangle 2$.

$\langle 4 \rangle 2$. Case: R

 $\langle 5 \rangle 1. \ r' = r$

PROOF: Assumption $\langle 3 \rangle$ (which asserts N^r), assumption $\langle 4 \rangle$, which by definition of R implies \mathcal{R}' , and the definition of N^r .

$\langle 5 \rangle 2$. CASE: \mathcal{R}

$$\begin{array}{ll} \langle 6 \rangle 1. \ \rho(r) \wedge R \Rightarrow \rho(r)' \\ \text{PROOF:} \\ \rho(r) \wedge R \equiv (\neg \mathcal{R} \wedge R^+)(r/v, v/v') \wedge R & \text{By definition of } \rho. \\ \Rightarrow ((\neg \mathcal{R} \wedge R^+) \cdot R)(r/v) & \text{By (1).} \\ \equiv (\neg \mathcal{R} \wedge (R^+ \cdot R))(r/v) & \text{By (1).} \\ \Rightarrow (\neg \mathcal{R} \wedge R^+)(r/v) & \text{By definition of }^+. \\ \equiv (\neg \mathcal{R} \wedge R^+)(r/v, v'/v') & \text{By definition of }^+. \\ \equiv (\rho(r))' & \text{By definition of } \rho. \\ \langle 6 \rangle 2. \text{ Q.E.D.} \end{array}$$

PROOF: Assumptions $\langle 5 \rangle$ and $\langle 3 \rangle$ (which asserts I^r) imply $\rho(r)$. The level- $\langle 3 \rangle$ goal then follows from assumption $\langle 4 \rangle$ (which, by definition of R, implies \mathcal{R}'), step $\langle 6 \rangle 1$, and the definition of I^r .

 $\langle 5 \rangle 3$. CASE: $\neg \mathcal{R}$

 $\langle 6 \rangle 1. \ r = v$

PROOF: Assumptions $\langle 5 \rangle$ and $\langle 3 \rangle$ (which asserts I^r) and the definition of I^r .

(6)2. R(r'/v, v'/v')

PROOF: By assumption $\langle 4 \rangle$, since $\langle 6 \rangle 1$ and $\langle 5 \rangle 1$ imply r' = v. $\langle 6 \rangle 3$. $\rho(r)'$

PROOF: By assumption $\langle 5 \rangle$ and $\langle 6 \rangle 2$, since R implies R^+ and $(\neg \mathcal{R} \wedge R^+)(r'/v, v'/v') = (\neg \mathcal{R} \wedge R^+)(r/v, v/v')' = \rho(r)'$.

 $\langle 6 \rangle 4.$ Q.E.D.

PROOF: $\langle 6 \rangle 3$, assumption $\langle 4 \rangle$ (which implies \mathcal{R}'), and the definition of I^r imply the level- $\langle 3 \rangle$ goal.

 $\langle 5 \rangle 4.$ Q.E.D.

PROOF: Immediate from $\langle 5 \rangle 2$ and $\langle 5 \rangle 3$.

 $\langle 4 \rangle$ 3. CASE: $\neg \mathcal{R}'$

 $\langle 5 \rangle 1. \ r' = v'$

PROOF: Assumption $\langle 3 \rangle$ (which asserts N^r), assumption $\langle 4 \rangle$, and the definition of N^r .

 $\langle 5 \rangle 2$. Q.E.D.

PROOF: $\langle 5 \rangle 1$, assumption $\langle 4 \rangle$, and the definition of I^r imply our level- $\langle 3 \rangle$ goal.

 $\langle 4 \rangle 4$. Q.E.D.

 $\begin{array}{ll} \langle 5 \rangle 1. & N \equiv (E \wedge \neg R) \lor R \lor (M \wedge \neg \mathcal{R}') \\ & \text{PROOF: } N \equiv E \lor M & \text{By definition of } N. \\ & \equiv E \lor (M \wedge \mathcal{R}') \lor (M \wedge \neg \mathcal{R}') & \text{By predicate logic.} \\ & \equiv E \lor R \lor (M \wedge \neg \mathcal{R}') & \text{By definition of } R. \\ & \equiv (E \wedge \neg R) \lor R \lor (M \wedge \neg \mathcal{R}') & \text{By propositional logic.} \\ & \langle 5 \rangle 2. & \text{Q.E.D.} \end{array}$

PROOF: By $\langle 5 \rangle 1$ and assumption $\langle 3 \rangle$ (which asserts N), cases $\langle 4 \rangle 1$, $\langle 4 \rangle 2$, and $\langle 4 \rangle 3$ are exhaustive.

 $\langle 3 \rangle 2. \ I^r \wedge \text{UNCHANGED} \ \langle v, r \rangle \Rightarrow (I^r)'$

PROOF: Immediate, since v and r are the only free variables of I^r . (3)3. Q.E.D.

PROOF: By $\langle 3 \rangle 1$, $\langle 3 \rangle 2$, the definition of H^r , and the usual TLA invariance rule.

 $\langle 2 \rangle 3.$ Q.E.D.

PROOF: $\langle 2 \rangle 1$ and $\langle 2 \rangle 2$ and predicate logic. $\langle 1 \rangle 5. \ \Box I^c \wedge H^c \wedge S \wedge Q \Rightarrow \exists p, l : P^p \wedge P^l$ $\langle 2 \rangle 1. \exists p : P^p$ PROOF: By the following rule for adding "infinite prophecy" variables: If p does not occur free in the temporal formula F, then $\exists p$: $\Box(p=F).$ $\langle 2 \rangle 2. \ \Box I^c \wedge H^c \wedge Q \wedge S \wedge P^p \Rightarrow \exists l : P^l$ $\langle 3 \rangle 1. \ I^p \wedge p \Rightarrow I^l$ $\langle 4 \rangle 1. \ I^p \wedge p \Rightarrow \lambda(l_{final})$ PROOF: By definition of I^p and l_{final} . $\langle 4 \rangle 2. \ \lambda(l_{final}) \Rightarrow \mathcal{L}$ PROOF: By definition of λ , since L^+ equals $(\mathcal{L} \wedge M)^+$ (by definition of L), which implies \mathcal{L} . $\langle 4 \rangle 3.$ Q.E.D. **PROOF:** $\langle 4 \rangle 1$, $\langle 4 \rangle 2$, and the definition of I^l $\langle 3 \rangle 2. \quad Q \land P^p \Rightarrow \Box \diamondsuit (\exists ! u : I^l(u/l))$ $\langle 4 \rangle 1. \ \Box I^p \land \Box \Diamond \neg \mathcal{L} \Rightarrow \Box \Diamond (\exists ! u : I^l(u/l))$ $\langle 5 \rangle 1. \ I^p \wedge \neg \mathcal{L} \Rightarrow \neg p$ PROOF: $I^p \wedge p \Rightarrow (\exists u : \lambda(u)) \Rightarrow L^+ \Rightarrow \mathcal{L}.$ $\langle 5 \rangle 2. \ I^p \land \neg \mathcal{L} \Rightarrow (\exists ! u : I^l(u/l))$ **PROOF:** (5)1 and the definition of I^l imply $I^l(u/l) \equiv (u = v)$. $\langle 5 \rangle 3.$ Q.E.D. **PROOF:** $\langle 5 \rangle 2$ and temporal reasoning. $\langle 4 \rangle 2. \ \Box I^p \land \Box p \Rightarrow \Box (\exists ! u : I^l(u/l))$ $\langle 5 \rangle 1. \ I^l \wedge p \Rightarrow (l = l_{final})$ PROOF: Definition of I^l $\langle 5 \rangle 2. \ I^p \wedge p \Rightarrow (\exists ! u : I^l(u/l))$ **PROOF:** Immediate from $\langle 5 \rangle 1$ and $\langle 3 \rangle 1$. $\langle 5 \rangle 3.$ Q.E.D. **PROOF:** $\langle 5 \rangle 2$ and simple temporal reasoning. $\langle 4 \rangle 3. \ Q \land P^p \Rightarrow (\Box \diamondsuit \neg \mathcal{L}) \lor \diamondsuit \Box p$ **PROOF:** By definition of Q and P^p . $\langle 4 \rangle 4$. Q.E.D. **PROOF:** By $\langle 4 \rangle 1$, $\langle 4 \rangle 2$, $\langle 4 \rangle 3$, $\langle 1 \rangle 2$ (which implies $P^p \Rightarrow \Box I^p$), and simple temporal reasoning. $\langle 3 \rangle 3. \ \Box I^c \wedge H^c \wedge S \wedge P^p \Rightarrow \Box [(I^l)' \wedge (v' \neq v) \Rightarrow \exists u : N^l(u/l) \wedge I(u/l)]_v$ $\langle 4 \rangle 1$. Assume: $(I^c)' \wedge N^c \wedge N \wedge I^p \wedge N^p \wedge (I^l)' \wedge (v' \neq v)$ PROVE: $\exists u : N^l(u/l) \land I^l(u/l)$ $\langle 5 \rangle 1. \neg p$

PROOF: Assumption $\langle 4 \rangle$, since $N^p \wedge (v' \neq v)$ implies $\neg p$. $\langle 5 \rangle 2$. CASE: $\neg \mathcal{L}$

 $\langle 6 \rangle 1. \ I^l(v/l) \wedge N^l(v/l)$

PROOF: $\langle 5 \rangle 1$, assumption $\langle 5 \rangle$, and the definitions of I^l and N^l . $\langle 6 \rangle 2$. Q.E.D.

PROOF: Immediate from $\langle 6 \rangle 1$.

 $\langle 5 \rangle$ 3. CASE: \mathcal{L}

 $\langle 6 \rangle$ 1. CASE: $E \land \neg L$

 $\langle 7 \rangle 1. \mathcal{L}'$

PROOF: Assumptions $\langle 6 \rangle$ and $\langle 5 \rangle$ and hypothesis 1(b) (which implies $E \wedge \mathcal{L} \Rightarrow \mathcal{L}'$).

 $\langle 7 \rangle 2. \exists u : \lambda(u) \wedge D(u/v, l'/v')$

PROOF: $\langle 7 \rangle 1$ and assumption $\langle 4 \rangle$ (which asserts $(I^l)'$) imply $\lambda(l)'$. The result follows from $\lambda(l)'$, assumptions $\langle 6 \rangle$ and $\langle 4 \rangle$ (which implies $(I^c)' \wedge N^c$), and $\langle 1 \rangle 1.2$.

 $\langle 7 \rangle 3.$ Q.E.D.

Let: $u \stackrel{\Delta}{=} \text{ choose } u : \lambda(u) \wedge D(u/v, l'/v')$

 $\langle 8 \rangle 1. \ N^l \equiv (l = u)$

PROOF: $\langle 5 \rangle 1$, assumption $\langle 5 \rangle$, assumption $\langle 6 \rangle$, assumption $\langle 4 \rangle$ (which implies $v' \neq v$), and the definition of N^l .

 $\langle 8 \rangle 2. \ N^l(u/l)$

Proof: By $\langle 8 \rangle 1$.

 $\langle 8 \rangle 3. \lambda(u)$

PROOF: $\langle 7 \rangle 2$ and the definition of u.

 $\langle 8 \rangle 4. I^l(u/l)$

PROOF: $\langle 8 \rangle 3$, assumption $\langle 5 \rangle$, $\langle 5 \rangle 1$, and the definition of I^l .

 $\langle 8 \rangle$ 5. Q.E.D.

PROOF: $\langle 8 \rangle 2$ and $\langle 8 \rangle 4$ imply the level- $\langle 4 \rangle$ goal.

 $\langle 6 \rangle 2$. CASE: L

 $\langle 7 \rangle$ 1. CASE: \mathcal{L}'

 $\langle 8 \rangle 1. \ (\lambda(l))' \wedge L \Rightarrow \lambda(l')$

PROOF: $(\lambda(l))' \wedge L$ $\equiv L^+(v'/v, l'/v') \land \neg \mathcal{L}(l'/v) \land L$ By definition of λ $\Rightarrow (L \cdot L^+)(l'/v') \wedge \neg \mathcal{L}(l'/v)$ By (1). $\Rightarrow (L^+)(l'/v') \land \neg \mathcal{L}(l'/v)$ By definition of A^+ for an action A. $\equiv \lambda(l')$ By definition of λ $\langle 8 \rangle 2. \lambda(l')$

PROOF: Assumption $\langle 4 \rangle$ implies $(I^l)'$, which by assumption $\langle 7 \rangle$ implies $(\lambda(l))'$. By $\langle 8 \rangle 1$, $(\lambda(l))'$ and assumption $\langle 6 \rangle$ imply $\lambda(l')$.

 $\langle 8 \rangle 3. I^l(l'/l)$

PROOF: (5)1 and assumption (5) imply $I^l \equiv \lambda(l)$, so (8)2implies $I^l(l'/l)$.

 $\langle 8 \rangle 4. \ N^{l}(l'/l)$

PROOF: $\langle 5 \rangle 1$, assumptions $\langle 5 \rangle$ and $\langle 6 \rangle$ imply $N^l \equiv (l =$ l'), so $N^{l}(l'/l) \equiv (l' = l')$.

 $\langle 8 \rangle 5.$ Q.E.D.

PROOF: $\langle 8 \rangle 3$ and $\langle 8 \rangle 4$ imply the level- $\langle 4 \rangle$ goal.

 $\langle 7 \rangle 2$. CASE: $\neg \mathcal{L}'$

 $\langle 8 \rangle 1. \ l' = v'$

PROOF: Assumption $\langle 4 \rangle$ (which implies $(I^l)'$), assumption $\langle 7 \rangle$, and the definition of I^l .

 $\langle 8 \rangle 2. \ \lambda(v')$

PROOF: Assumption $\langle 6 \rangle$ implies L^+ , which with assumption $\langle 7 \rangle$ implies $(L^+ \wedge \neg \mathcal{L}')(v'/v')$, which equals $\lambda(v')$.

 $\langle 8 \rangle 3. I^l(v'/l)$

PROOF: (5)1 and assumption (5) imply $I^l \equiv \lambda(l)$, so (8)2implies $I^l(v'/l)$.

 $\langle 8 \rangle 4. \ N^{l}(v'/l)$

PROOF: (5)1, assumption (5), and assumption (6) imply $N^{l} \equiv (l = l')$. By (8)1, this implies $N^{l} \equiv (l = v')$, so $N^{l}(v'/l) \equiv (v' = v').$

$$\langle 8 \rangle 5.$$
 Q.E.D

PROOF: $\langle 8 \rangle 3$ and $\langle 8 \rangle 4$ imply the level- $\langle 4 \rangle$ goal.

 $\langle 7 \rangle 3.$ Q.E.D.

PROOF: Immediate from $\langle 7 \rangle 1$ and $\langle 7 \rangle 2$.

 $\langle 6 \rangle 3.$ Q.E.D.

Proof: $N \equiv E \lor M$ By definition of N. $\equiv E \lor (\mathcal{L} \land M)$ By assumption $\langle 5 \rangle$. $\equiv E \lor L$ By definition of L. $\equiv (E \land \neg L) \lor L$ By propositional logic. Therefore, cases $\langle 6 \rangle 1$ and $\langle 6 \rangle 2$ are exhaustive. $\langle 5 \rangle 4.$ Q.E.D. **PROOF:** $\langle 5 \rangle 3$ and $\langle 5 \rangle 2$. $\langle 4 \rangle 2. \ (I^c)' \wedge [N^c]_{\langle v, b, c \rangle} \wedge [N]_v \wedge I^p \wedge [N^p]_{\langle v, p \rangle} \Rightarrow$ $[(I^l)' \land (v' \neq v) \Rightarrow \exists u : N^l(u/l) \land I^l(u/l)]_v$ PROOF: $\langle 4 \rangle 1$, since v' = v implies $[\ldots]_v$. $\langle 4 \rangle 3. \ \Box I^c \land \Box [N^c]_{\langle v, b, c \rangle} \land \Box [N]_v \land \Box I^p \land \Box [N^p]_{\langle v, p \rangle} \Rightarrow$ $\Box[(I^l)' \land (v' \neq v) \Rightarrow \exists u : N^l(u/l) \land I^l(u/l)]_v$ **PROOF:** $\langle 4 \rangle 2$ and simple TLA reasoning. $\langle 4 \rangle 4$. Q.E.D. **PROOF:** $\langle 4 \rangle 3$ and $\langle 1 \rangle 2$. $\langle 3 \rangle 4$. Q.E.D.

PROOF: By $\langle 3 \rangle 2$, $\langle 3 \rangle 3$, and the following rule for adding prophecy variables.

Let w be an m-tuple of variables, let x be an n-tuple of variables distinct from the variables of w, let I be a predicate and N an action, where all the free variables of I and N are included in w and x. Then

$$\wedge \Box \diamond (\exists ! a : I(a/x)) \wedge \Box [I' \land (w' \neq w) \Rightarrow (\exists a : N(a/x) \land I(a/x))]_w \Rightarrow \exists x : \Box I \land \Box [N \land (w' \neq w)]_{\langle w, x \rangle}$$

where $\exists ! a$ means there exists a unique a:

 $\exists !a : F(a) \triangleq \exists a : F(a) \land (\forall b : F(b) \Rightarrow (b = a))$

$\langle 2 \rangle 3.$ Q.E.D.

 $\langle 3 \rangle 1. \ \Box I^c \wedge H^c \wedge Q \wedge S \wedge P^p \Rightarrow \exists l : (P^p \wedge P^l)$

PROOF: By $\langle 2 \rangle 2$ and temporal predicate logic, since *l* does not occur free in P^p .

 $\langle 3 \rangle 2.$ ($\exists p : \Box I^c \land H^c \land Q \land S \land P^p$) $\Rightarrow \exists p, l : (P^p \land P^l)$

PROOF: By $\langle 3 \rangle 1$ and temporal predicate logic.

 $\langle 3 \rangle 3.$ ($\exists p : \Box I^c \land H^c \land Q \land S \land P^p$) $\equiv \Box I^c \land H^c \land Q \land S$ PROOF: By $\langle 2 \rangle 2$ and temporal predicate logic, since p does not occur

free in $\Box I^c \wedge H^c \wedge Q \wedge S$.

 $\langle 3 \rangle 4.$ Q.E.D.

PROOF: By $\langle 3 \rangle 2$ and $\langle 3 \rangle 3$.

 $\langle 1 \rangle 6$. Assume: $N^{all} \wedge I^{all} \wedge (I^{all})' \wedge X$

PROVE: $\overline{M^R}$

 $\langle 2 \rangle$ 1. $(\neg \mathcal{R} \land (r = v)) \lor (\neg \mathcal{R} \land R^+)(r/v, v/v')$

PROOF: Assumption $\langle 1 \rangle$ implies I^r , and the conclusion follows from I^r and the definition of $\rho(r)$.

 $\langle 2 \rangle 2. \ (\neg \mathcal{L}' \land (l' = v')) \lor (L^+ \land \neg \mathcal{L}')(v'/v, l'/v')$

PROOF: Assumption $\langle 1 \rangle$ implies $(I^l)'$, and the conclusion follows from $(I^l)'$ and the definition of $\lambda(l)$.

- $\langle 2 \rangle 3. \ M^{R}(r/v, l'/v')$
 - $\langle 3 \rangle 1. \ (\neg (\mathcal{R} \lor \mathcal{L}) \land M^+)(r/v)$
 - $\langle 4 \rangle$ 1. CASE: $\neg \mathcal{R} \land (r = v)$

PROOF: Assumption $\langle 1 \rangle$ implies $\neg \mathcal{L} \wedge M$, from which we deduce $\neg(\mathcal{R} \vee \mathcal{L}) \wedge M \wedge (r = v)$, which implies the level- $\langle 3 \rangle$ goal because M implies M^+ .

$$\langle 4 \rangle 2$$
. CASE: $(\neg \mathcal{R} \land R^+)(r/v, v/v')$

 $\langle 5 \rangle 1. \neg \mathcal{L}(r/v)$

PROOF: Since R equals $M \wedge \mathcal{R}'$, this follows from assumption $\langle 4 \rangle$ and hypothesis 1(c).

 $\langle 5 \rangle 2. \ (\neg \mathcal{R} \wedge M^+)(r/v)$

PROOF: Assumption $\langle 1 \rangle$ implies M. Since R^+ implies M^+ , assumption $\langle 4 \rangle$ implies $(\neg \mathcal{R} \wedge M^+)(r/v, v/v')$. From (1), we then deduce $(\neg \mathcal{R} \wedge (M^+ \cdot M))(r/v)$, which implies the desired result since $M^+ \cdot M$ implies M^+ .

 $\langle 5 \rangle 3.$ Q.E.D.

PROOF: The result follows immediately from $\langle 5 \rangle 1$ and $\langle 5 \rangle 2$. (4)3. Q.E.D.

1/0. Q.L.D. DROOF, /2

PROOF: $\langle 2 \rangle 1$ implies that cases $\langle 4 \rangle 1$ and $\langle 4 \rangle 2$ are exhaustive. $\langle 3 \rangle 2$. Q.E.D.

 $\langle 4 \rangle$ 1. CASE: $\neg \mathcal{L}' \land (l' = v')$

PROOF: By $\langle 3 \rangle 1$ and assumption $\langle 1 \rangle$, which implies $\neg \mathcal{R}'$, we have $(\neg (\mathcal{R} \lor \mathcal{L}) \land M^+)(r/v) \land \neg (\mathcal{R} \lor \mathcal{L})' \land (l' = v')$, which implies $(\neg (\mathcal{R} \lor \mathcal{L}) \land M^+ \land \neg (\mathcal{R} \lor \mathcal{L})')(r/v, l'/v')$, and the level- $\langle 2 \rangle$ goal follows from the definition of M^R .

 $\langle 4 \rangle 2$. CASE: $(L^+ \wedge \neg \mathcal{L}')(v'/v, l'/v')$

 $\langle 5 \rangle 1. \neg \mathcal{R}'(l'/v')$

PROOF: Since L equals $\mathcal{L} \wedge M$, this follows from assumption $\langle 4 \rangle$ and hypothesis 1(c).

 $\langle 5 \rangle 2. \ (\neg (\mathcal{R} \lor \mathcal{L}) \land M^+ \land \neg \mathcal{L}')(r/v, l'/v')$

PROOF: By (1), $\langle 3 \rangle$ 1 and assumption $\langle 4 \rangle$ imply $((\neg(\mathcal{R} \lor \mathcal{L}) \land M^+) \cdot (L^+ \land \neg \mathcal{L}'))(r/v, l'/v')$

which by (1) equals $(\neg(\mathcal{R} \lor \mathcal{L}) \land (M^+ \cdot L^+) \land \neg \mathcal{L}')(r/v, l'/v')$ The result then follows because $M^+ \cdot L^+$ implies $M^+ \cdot M^+$, which implies M^+ . $\langle 5 \rangle 3.$ Q.E.D. **PROOF:** The level- $\langle 2 \rangle$ goal follows immediately from $\langle 5 \rangle 1$, $\langle 5 \rangle 2$, and the definition of M^R . $\langle 4 \rangle 3.$ Q.E.D. **PROOF:** $\langle 2 \rangle 2$ implies that cases $\langle 4 \rangle 1$ and $\langle 4 \rangle 2$ are exhaustive. $\langle 2 \rangle 4. \ \overline{v} = r$ $\langle 3 \rangle$ 1. CASE: \mathcal{R} **PROOF:** Immediate from the definition of \overline{v} . $\langle 3 \rangle 2$. CASE: $\neg \mathcal{R}$ **PROOF:** Assumption $\langle 1 \rangle$ implies $\neg \mathcal{L}$ and I^r . From $\neg \mathcal{R}$, $\neg \mathcal{L}$, and the definition of \overline{v} we deduce $\overline{v} = v$. From $\neg \mathcal{R} \wedge I^r$ we deduce r = v. $\langle 3 \rangle 3$. Q.E.D. **PROOF:** Immediate from $\langle 3 \rangle 1$ and $\langle 3 \rangle 2$. $\langle 2 \rangle 5. \ \overline{v}' = l'$ $\langle 3 \rangle 1.$ CASE: \mathcal{L}' **PROOF:** Assumption (1) implies $\mathcal{L} \wedge M$, which by hypothesis 1(c) implies $\neg \mathcal{R}'$. From $\neg \mathcal{R}'$, \mathcal{L}' , and definition of \overline{v} , we deduce $\overline{v}' = l'$. $\langle 3 \rangle 2$. CASE: $\neg \mathcal{L}'$ **PROOF:** Assumption $\langle 1 \rangle$ implies $\neg \mathcal{R}'$ and $(I^r)'$. From $\neg \mathcal{R}'$ and $\neg \mathcal{L}'$ we deduce $\overline{v}' = v'$, and from $\neg \mathcal{L}' \wedge (I^r)'$ we deduce l' = v'. $\langle 2 \rangle 6.$ Q.E.D. PROOF: $\langle 2 \rangle 3$, $\langle 2 \rangle 4$, and $\langle 2 \rangle 5$. $\begin{array}{l} \langle 1 \rangle 7. \quad Init \land \Box [N^{all}]_{all} \land \Box I^{all} \Rightarrow \overline{Init} \land \Box [\overline{N^R}]_{\overline{v}} \\ \langle 2 \rangle 1. \quad Init \land I^{all} \Rightarrow \overline{Init} \end{array}$ **PROOF:** Assumption (1) implies $I^r \wedge I^l$. By hypothesis 1(a), Init implies $\neg(\mathcal{R} \lor \mathcal{L})$, which by $I^r \land I^l$ implies $(l = v) \land (r = v)$, which by definition of \overline{v} implies $\overline{v} = v$, so $\overline{Init} = Init$. $\langle 2 \rangle 2$. Assume: $N^{all} \wedge I^{all} \wedge (I^{all})'$ PROVE: $[\overline{N^R}]_{\overline{v}}$ $\langle 3 \rangle 1. \neg p$ PROOF: Assumption $\langle 2 \rangle$ implies N^{all} , which implies $(v' \neq v) \wedge N^p$, which implies $\neg p$. $\langle 3 \rangle 2$. CASE: $E \wedge \neg R \wedge \neg L$ $\langle 4 \rangle$ 1. CASE: $\neg \mathcal{R} \land \neg \mathcal{L}$ $\langle 5 \rangle 1. \neg \mathcal{R}' \land \neg \mathcal{L}'$ **PROOF:** Assumptions $\langle 3 \rangle$ and $\langle 4 \rangle$ and hypothesis 1(b) (which

implies $E \wedge \mathcal{L}' \Rightarrow \mathcal{L}$ and $E \wedge \mathcal{R}' \Rightarrow \mathcal{R}$). $\langle 5 \rangle 2. \ (\overline{v} = v) \land (\overline{v}' = v')$ **PROOF:** $\langle 5 \rangle 1$, assumption $\langle 4 \rangle$, and the definition of \overline{v} . $\langle 5 \rangle 3.$ Q.E.D. **PROOF:** $(5)^2$ and case assumption (3) imply \overline{E} , which in turn implies $\overline{N^R}$. $\langle 4 \rangle 2$. Case: \mathcal{R} $\langle 5 \rangle 1. \exists u : (\neg \mathcal{R} \land R^+)(u/v) \land D(r/v, u/v')$ **PROOF:** Assumption $\langle 2 \rangle$ implies $I^r \wedge (I^c)' \wedge N^c$. Assumption (4) and I^r implies $\rho(r)$. The result follows from assumption (3), $(I^c)' \wedge N^c, \rho(r), \text{ and } \langle 1 \rangle 1.1.$ $\langle 5 \rangle 2. \mathcal{R}'$ **PROOF:** Assumptions $\langle 3 \rangle$ and $\langle 4 \rangle$ and hypothesis 1(b). $\langle 5 \rangle 3. \ r' = \text{CHOOSE} \ u : (\neg \mathcal{R} \land R^+)(u/v) \land D(r/v, u/v')$ **PROOF:** Assumption $\langle 2 \rangle$ (which implies N^r and $v' \neq v$), $\langle 5 \rangle 2$, assumption $\langle 3 \rangle$, and the definition of N^r . $\langle 5 \rangle 4. D(r/v, r'/v')$ **PROOF:** $\langle 5 \rangle 1$ and $\langle 5 \rangle 3$. $\langle 5 \rangle 5. \ (\overline{v} = r) \land (\overline{v}' = r')$ **PROOF:** $\langle 5 \rangle 2$, assumption $\langle 4 \rangle$, and the definition of \overline{v} . $\langle 5 \rangle 6.$ Q.E.D. **PROOF:** (5)4 and (5)5 imply \overline{D} , which implies \overline{E} (since D implies E), which in turn implies $\overline{N^R}$. $\langle 4 \rangle 3$. CASE: \mathcal{L} $\langle 5 \rangle 1. \mathcal{L}'$ **PROOF:** Assumptions $\langle 3 \rangle$ and $\langle 4 \rangle$ and hypothesis 1(b). $\langle 5 \rangle 2. \ \lambda(l)'$ **PROOF:** (5)1, assumption (2) (which implies $(I^l)'$), and the definition of I^l . $\langle 5 \rangle 3. \exists u : \lambda(u) \land D(u/v, l'/v')$ PROOF: Assumption $\langle 2 \rangle$ (which implies $(I^c)' \wedge N^c$), $\langle 5 \rangle 2$, assumption $\langle 3 \rangle$, and $\langle 1 \rangle 1.2$. $\langle 5 \rangle 4.$ $l = CHOOSE u : \lambda(u) \wedge D(u/v, l'/v')$ **PROOF:** $\langle 3 \rangle 1$, assumption $\langle 4 \rangle$, assumption $\langle 3 \rangle$, assumption $\langle 2 \rangle$ (which implies $v \neq v'$ and N^l), and the definition of N^l . $\langle 5 \rangle 5. D(l/v, l'/v')$ **PROOF:** $\langle 5 \rangle 3$ and $\langle 5 \rangle 4$. $\langle 5 \rangle 6. \neg \mathcal{R} \land \neg \mathcal{R}'$ **PROOF:** Assumption $\langle 4 \rangle$, $\langle 5 \rangle 1$, and hypothesis 1(d). $\langle 5 \rangle 7. \ (\overline{v} = l) \land (\overline{v}' = l')$

15

PROOF: Assumption $\langle 4 \rangle$, $\langle 5 \rangle 1$, $\langle 5 \rangle 6$, and the definition of \overline{v} . $\langle 5 \rangle 8.$ Q.E.D. PROOF: $\langle 5 \rangle 5$ and $\langle 5 \rangle 7$ imply \overline{D} , which implies \overline{E} (since D implies E), which in turn implies $\overline{N^R}$. $\langle 4 \rangle 4$. Q.E.D. **PROOF:** Immediate from $\langle 4 \rangle 1$, $\langle 4 \rangle 2$, and $\langle 4 \rangle 3$. $\langle 3 \rangle 3$. CASE: R $\langle 4 \rangle 1. \ r' = r$ **PROOF:** Assumption $\langle 2 \rangle$ implies N^r , which by assumption $\langle 3 \rangle$ (which implies \mathcal{R}') implies r' = r. $\langle 4 \rangle 2. \ \overline{v}' = r'$ **PROOF:** Assumption $\langle 3 \rangle$ (which implies \mathcal{R}') and the definition of \overline{v} . $\langle 4 \rangle 3. \neg \mathcal{L}$ **PROOF:** Assumption $\langle 3 \rangle$ (which implies \mathcal{R}') and hypothesis 1(c). $\langle 4 \rangle 4. \ \overline{v} = r$ $\langle 5 \rangle$ 1. CASE: \mathcal{R} PROOF: The definition of \overline{v} implies $\overline{v} = r$. $\langle 5 \rangle 2$. CASE: $\neg \mathcal{R}$ **PROOF:** By $\langle 4 \rangle$ 3, the definition of \overline{v} implies $\overline{v} = v$. Assumption $\langle 2 \rangle$ implies I^r , which implies v = r. $\langle 5 \rangle 3.$ Q.E.D. **PROOF:** Immediate from $\langle 5 \rangle 1$ and $\langle 5 \rangle 2$. $\langle 4 \rangle 5.$ Q.E.D. **PROOF:** $\langle 4 \rangle 1$, $\langle 4 \rangle 2$, and $\langle 4 \rangle 4$ imply $\overline{v}' = \overline{v}$, which implies the level- $\langle 2 \rangle$ goal. $\langle 3 \rangle 4$. Case: L $\langle 4 \rangle 1. \neg \mathcal{R}$ **PROOF:** Assumption $\langle 3 \rangle$ (which implies \mathcal{L}) and hypothesis 1(d). $\langle 4 \rangle 2. \quad l' = l$ **PROOF:** Assumption $\langle 2 \rangle$ implies N^l , which by $\langle 3 \rangle 1$ and assumption $\langle 3 \rangle$ (which implies \mathcal{L}) implies l = l'. $\langle 4 \rangle 3. \ \overline{v} = l$ **PROOF:** $\langle 4 \rangle 1$, assumption $\langle 3 \rangle$ (which implies \mathcal{L}), and the definition of \overline{v} . $\langle 4 \rangle 4. \ \overline{v}' = l'$ $\langle 5 \rangle 1. \neg \mathcal{R}'$ **PROOF:** Assumption $\langle 3 \rangle$ (which implies \mathcal{L}) and hypothesis 1(c). $\langle 5 \rangle 2$. CASE: \mathcal{L}' **PROOF:** $\langle 5 \rangle 1$ and the definition of \overline{v} imply $\overline{v}' = l'$.

 $\langle 5 \rangle 3$. CASE: $\neg \mathcal{L}'$

PROOF: (5)1 and the definition of \overline{v} imply $\overline{v}' = v'$. Assumption $\langle 2 \rangle$ implies $(I^l)'$, which implies l' = v', proving $\overline{v}' = l'$.

 $\langle 5 \rangle 4$. Q.E.D.

PROOF: Immediate from $\langle 5 \rangle 2$ and $\langle 5 \rangle 3$.

 $\langle 4 \rangle 5.$ Q.E.D.

PROOF: $\langle 4 \rangle 2$, $\langle 4 \rangle 3$, and $\langle 4 \rangle 4$ imply $\overline{v}' = \overline{v}$, which implies the level- $\langle 2 \rangle$ goal.

 $\langle 3 \rangle 5.$ Case: X

PROOF: Assumption $\langle 2 \rangle$ and $\langle 1 \rangle 6$ imply $\overline{M^R}$, which implies the level- $\langle 2 \rangle$ goal.

 $\langle 3 \rangle 6.$ Q.E.D.

PROOF: Assumption $\langle 2 \rangle$ implies N, which equals $E \vee M$, so $\langle 1 \rangle 1.4$ implies that cases $\langle 3 \rangle 2$, $\langle 3 \rangle 3$, $\langle 3 \rangle 4$, and $\langle 3 \rangle 5$ are exhuastive. $\langle 2 \rangle 3$. $[N^{all} \wedge I^{all} \wedge (I^{all})']_{all} \Rightarrow [\overline{N^R}]_{\overline{v}}$

PROOF: $\langle 2 \rangle 2$, since the definition of \overline{v} implies $(\overline{all}' = \overline{all}) \Rightarrow (\overline{v}' = \overline{v})$. $\langle 2 \rangle 4.$ Q.E.D.

PROOF: $\langle 2 \rangle 1$, $\langle 2 \rangle 3$, and the usual TLA step-simulation rule.

 $\langle 1 \rangle 8. \ \Box I^{all} \Rightarrow \Box I(\overline{v}/\widehat{v})$

 $\langle 2 \rangle 1. \ I^r \wedge I^l \Rightarrow I(\overline{v}/\hat{v})$ $\langle 3 \rangle 1. \ I^r \wedge \mathcal{R} \Rightarrow R^+(\overline{v}/v, v/v') \wedge \neg(\mathcal{R} \vee \mathcal{L})(\overline{v}/v)$ PROOF: $I^r \wedge \mathcal{R} \Rightarrow \rho(r) \wedge \mathcal{R}$ By definition of I^r .

$$= R^+(r/v, v/v') \land \mathcal{R} \land \neg \mathcal{R}(r/v)$$

By definition of a

$$\Rightarrow R^+(r/v, v/v') \land \neg \mathcal{L}(r/v) \land \neg \mathcal{R}(r/v) \text{Since } R = M \land \mathcal{R}', \text{ hypothesis 1(c) implies } \neg(\mathcal{L} \land R^+) \\ = R^+(r/v, v/v') \land \neg(\mathcal{R} \lor \mathcal{L})(r/v)$$

$$R^+(r/v, v/v) \land \neg (R \lor L)(r)$$

By propositional logic.

and \mathcal{R} implies $\overline{v} = r$ by definition of \overline{v} .

 $\langle 3 \rangle 2. \quad I^l \wedge \mathcal{L} \Rightarrow L^+(\overline{v}/v') \wedge \neg(\mathcal{R} \vee \mathcal{L})(\overline{v}/v)$ PROOF: $I^l \wedge \mathcal{L} \Rightarrow \lambda(l)$

By definition of I^{l} .

$$= L^+(l/v') \wedge \neg \mathcal{L}'(l/v')$$

By definition of λ .

$$\Rightarrow L^+(l/v') \wedge \neg \mathcal{R}'(l/v') \wedge \neg \mathcal{L}'(l/v')$$

Since $L = \mathcal{L} \wedge M$, hypothesis 1(c) implies $\neg (L^+ \wedge M)$

 \mathcal{R}').

$$\Rightarrow L^+(l/v') \land \neg(\mathcal{R}' \lor \mathcal{L}')(l/v')$$

By propositional logic.

$$= L^+(l/v') \land \neg(\mathcal{R} \lor \mathcal{L})(l/v)$$

tion of \overline{v} . $\langle 3 \rangle 3. \neg (\mathcal{R} \lor \mathcal{L}) \Rightarrow (\overline{v} = v)$ **PROOF:** By definition of \overline{v} . $\langle 3 \rangle 4.$ Q.E.D. **PROOF:** Immediate from $\langle 3 \rangle 1$, $\langle 3 \rangle 2$, $\langle 3 \rangle 3$, and the definition of *I*. $\langle 2 \rangle 2$. Q.E.D. **PROOF:** By simple temporal reasoning from $\langle 2 \rangle 1$. $\langle 1 \rangle 9. \ \forall \, i \in \mathcal{I} \, : \, Q \, \land \, O \, \land \, \Box[N^{all}]_{all} \, \land \, \Box I^{all} \, \land \, \Box \Diamond \langle A_i \rangle_v \Rightarrow \, \Box \Diamond \langle \overline{A_i^R} \rangle_{\overline{v}}$ Let: $T \triangleq Q \land O \land \Box [N^{all}]_{all} \land \Box I^{all}$ $\begin{array}{l} \langle 2 \rangle 1. \ \forall \ i \in \mathcal{I} \ : \ T \land \Box \diamondsuit \langle B_i \rangle_v \Rightarrow \Box \diamondsuit \langle \overline{B_i} \rangle_{\overline{v}} \\ \langle 3 \rangle 1. \ \text{Assume:} \ (\underline{b' \in \mathcal{I}}) \land \langle N^{all} \land I^{all} \land (I^{all})' \land B_{b'} \rangle_v \end{array}$ PROVE: $\langle \overline{B_{b'}} \rangle_{\overline{v}}$ $\langle 4 \rangle 1. \neg M$ **PROOF:** Assumption $\langle 3 \rangle$ and hypothesis 1(e). $\langle 4 \rangle 2. \neg p$ **PROOF:** Assumption (3), since N^{all} implies $(v' \neq v) \land N^p$ which implies $\neg p$. $\langle 4 \rangle 3. D$ $\langle 5 \rangle 1. E$ **PROOF:** $\langle 4 \rangle 1$, assumption $\langle 3 \rangle$ (which implies N), and the definition of N. $\langle 5 \rangle 2$. Q.E.D. **PROOF:** (5)1, assumption (3) (which implies $B_{b'}$), and the definition of D. $\langle 4 \rangle 4$. Case: \mathcal{R} $\langle 5 \rangle 1. \mathcal{R}'$ **PROOF:** (4)3, assumption (4) and hypothesis 1(b) (since $D \Rightarrow$ E). $\langle 5 \rangle 2$. $r' = \text{CHOOSE } u : (\neg \mathcal{R} \land R^+)(u/v) \land D(r/v, u/v')$ **PROOF:** $\langle 4 \rangle 1$ (which implies $\neg R$), $\langle 5 \rangle 1$, $\langle 4 \rangle 3$ (which with assumption $\langle 3 \rangle$ implies $\langle E \rangle_v$, assumption $\langle 3 \rangle$ (which implies N^r), and the definition of N^r . $\langle 5 \rangle 3. \exists u : (\neg \mathcal{R} \land R^+)(u/v) \land D(r/v, u/v')$ **PROOF:** Assumption (3) (which implies $(I^c)' \wedge N^c \wedge I^r$), (4)3 (which implies E), assumption $\langle 4 \rangle$ (which with I^r implies $\rho(r)$), and $\langle 1 \rangle 1.1$. $\langle 5 \rangle 4. D(r/v, r'/v')$ PROOF: $\langle 5 \rangle 2$ and $\langle 5 \rangle 3$.

and, by hypothesis 1(d), \mathcal{L} implies $\neg \mathcal{R}$, so \mathcal{L} implies $\overline{v} = l$ by defini-

 $\langle 5 \rangle 5. \langle B_{b'}(r/v, r'/v') \rangle_r$

By assumption $\langle 3 \rangle$ $(b' \in \mathcal{I})$ and the definition of D, $\langle 5 \rangle 4$ implies $(\langle B_{b'} \rangle_v)(r/v, r'/v')$.

 $\langle 5 \rangle 6. \ (\overline{v} = r) \land (\overline{v}' = r')$

PROOF: Assumption $\langle 4 \rangle$, $\langle 5 \rangle 1$, and the definition of \overline{v} .

 $\langle 5 \rangle$ 7. Q.E.D.

PROOF: The level- $\langle 3 \rangle$ goal follows immediately from $\langle 5 \rangle 5$ and $\langle 5 \rangle 6$.

 $\langle 4 \rangle 5$. Case: \mathcal{L}

 $\langle 5 \rangle 1. \mathcal{L}'$

PROOF: Assumption $\langle 4 \rangle$, $\langle 4 \rangle 3$ (which implies E), and hypothesis 1(b).

 $\langle 5 \rangle 2.$ $l = CHOOSE u : \lambda(u) \wedge D(u/v, l'/v')$

PROOF: Assumption $\langle 3 \rangle$ implies N^l . The result then follows from $\langle 4 \rangle 2$, $\langle 4 \rangle 5$, $\langle 4 \rangle 1$ (which implies $\neg L$), $\langle 4 \rangle 3$ (which by assumption $\langle 3 \rangle$ implies $\langle E \rangle_v$), and the definition of N^l .

 $\langle 5 \rangle 3. \exists u : \lambda(u) \land D(u/v, l'/v')$

PROOF: Assumption $\langle 3 \rangle$ implies $(I^c)' \wedge (I^l)'$. By $\langle 5 \rangle 1$, $(I^l)'$ implies $\lambda(l)'$. The result then follows from $\langle 4 \rangle 3$ and $\langle 1 \rangle 1.2$.

 $\langle 5 \rangle 4. \ D(l/v, l'/v')$

PROOF: $\langle 5 \rangle 2$ and $\langle 5 \rangle 3$.

 $\langle 5 \rangle 5. \langle B_{b'}(l/v, l'/v') \rangle_l$

PROOF: $\langle 5 \rangle 4$, assumption $\langle 3 \rangle$ (which asserts $b' \in \mathcal{I}$), and the definition of D imply $(\langle B_{b'} \rangle_v)(l/v, l'/v')$.

 $\langle 5 \rangle 6. \ (\overline{v} = l) \land (\overline{v}' = l')$

PROOF: Case assumption $\langle 4 \rangle$, $\langle 5 \rangle 1$, hypothesis 1(d), and the definition of \overline{v} .

 $\langle 5 \rangle$ 7. Q.E.D.

PROOF: The level- $\langle 3 \rangle$ goal follows immediately from $\langle 5 \rangle 5$ and $\langle 5 \rangle 6$.

 $\langle 4 \rangle 6.$ Case: $\neg(\mathcal{R} \lor \mathcal{L})$

 $\langle 5 \rangle 1. \neg (\mathcal{R}' \lor \mathcal{L}')$

PROOF: Assumption $\langle 4 \rangle$, $\langle 4 \rangle 3$ (which implies E), and hypothesis 1(b).

 $\langle 5 \rangle 2. \ (\overline{v} = v) \land (\overline{v}' = v')$

PROOF: Case assumption $\langle 4 \rangle$, $\langle 5 \rangle 1$, and the definition of \overline{v} .

 $\langle 5 \rangle 3.$ Q.E.D.

PROOF: Assumption $\langle 3 \rangle$, which implies $\langle B_{b'} \rangle_v$, and $\langle 5 \rangle_2$ imply the level- $\langle 3 \rangle$ goal.

 $\langle 4 \rangle$ 7. Q.E.D.

PROOF: Immediate from $\langle 4 \rangle 4$, $\langle 4 \rangle 5$, and $\langle 4 \rangle 6$.

 $\langle 3 \rangle 2$. Assume: $i \in \mathcal{I}$

PROVE: $T \land \Box \diamond \langle (i = b') \land B_{b'} \rangle_v \Rightarrow \Box \diamond \langle \overline{B_i} \rangle_{\overline{v}}$ $\langle 4 \rangle 1. \ \Box [N^{all}]_{all} \land \Box I^{all} \land \Box \diamond \langle (i = b') \land B_{b'} \rangle_v$ $\Rightarrow \Box \diamond \langle N^{all} \wedge I^{all} \wedge (I^{all})' \wedge (i = b') \wedge B_{b'} \rangle_{v}$ **PROOF:** Since (all' = all) implies (v' = v), this follows easily from the following three TLA proof rules: 1. $\frac{[A]_f \Rightarrow [B]_g}{\Box[A]_f \Rightarrow \Box[B]_g}$ 2. $\Box[A]_f \land \Box \mathcal{R} \Rightarrow \Box[A \land \mathcal{R} \land \mathcal{R}']_f$ 3. $\Box[A]_f \land \Box \diamondsuit \langle B \rangle_f \Rightarrow \Box \diamondsuit \langle A \land B \rangle_f$ $\langle 4 \rangle 2.$ Q.E.D. **PROOF:** By $\langle 4 \rangle 1$, assumption $\langle 3 \rangle$, and $\langle 3 \rangle 1$, using the TLA rule $\frac{A \Rightarrow B}{\Box \Diamond \langle A \rangle_f \Rightarrow \Box \Diamond \langle B \rangle_f}$ $\langle 3 \rangle 3$. Assume: $i \in \mathcal{I}$ PROVE: $T \land \Box \diamondsuit \langle B_i \rangle_v \Rightarrow \Box \diamondsuit \langle (i = b') \land B_{b'} \rangle_v$ $\langle 4 \rangle 1. \quad T \land \Box \diamondsuit \langle B_i \rangle_v \Rightarrow \Box \diamondsuit \langle E \land B_i \rangle_v$ **PROOF:** $T \wedge \Box \diamondsuit \langle B_i \rangle_v$ $\Rightarrow \Box[N]_v \land \Box \diamondsuit \langle B_i \rangle_v$ Definition of T $\Rightarrow \Box \diamondsuit \langle N \land B_i \rangle_v$ TLA reasoning $\Rightarrow \Box \Diamond \langle E \land B_i \rangle_v$ the last step following from hypothesis 1(e) and assumption $\langle 3 \rangle$, which imply $N \wedge B_i \equiv E \wedge B_i$. $\langle 4 \rangle 2. \ T \land \Box \diamondsuit \langle E \land B_i \rangle_v \Rightarrow \lor \Box \diamondsuit \langle (i = b') \land E \land B_{b'} \rangle_v$ $\vee \wedge \Box \diamondsuit \langle E \land B_i \land (i \neq b') \rangle_{\langle v, b, c \rangle}$ $\wedge \Diamond \Box [E \land B_i \Rightarrow (i \neq b')]_{\langle v, b, c \rangle}$ $\langle 5 \rangle 1. \ \Box \Diamond \langle E \land B_i \rangle_v \Rightarrow \lor \Box \Diamond \langle (i = b') \land E \land B_{b'} \rangle_v$ $\vee \wedge \Box \diamondsuit \langle E \land B_i \land (i \neq b') \rangle_v$ $\wedge \diamond \Box [E \land B_i \Rightarrow (i \neq b')]_v$ **PROOF:** For any action A and predicate q, we have $\Box \diamondsuit \langle A \rangle_v$ $\equiv \land \Box \diamondsuit \langle A \rangle_{v}$ $\Box \diamond F \lor \diamond \Box \neg F$, for any F $\wedge \Box \diamond \langle A \land q \rangle_v \lor \diamond \Box [\neg A \lor \neg q]_v$ $\Rightarrow \lor \Box \diamondsuit \langle A \land q \rangle_v$ Propositional logic. $\lor \diamondsuit \Box [\neg A \lor \neg q]_v \land \Box \diamondsuit \langle A \rangle_v$ $\Rightarrow \lor \Box \diamondsuit \langle A \land q \rangle_v$ $\Diamond \Box [B]_v \land \Box \Diamond \langle C \rangle_v \Rightarrow$ $\vee \Diamond \Box [\neg A \vee \neg q]_v \land \Box \Diamond \langle A \land \neg q \rangle_v$ $\Box \diamondsuit \langle B \land C \rangle_v \text{ for any } B, C.$

 $\langle 5 \rangle 2. T \Rightarrow$ $\wedge \Box \diamondsuit \langle (i = b') \land E \land B_{b'} \rangle_{v} \equiv \Box \diamondsuit \langle (i = b') \land E \land B_{b'} \rangle_{\langle v, b, c \rangle}$ $\wedge \Diamond \Box [E \land B_i \Rightarrow (i \neq b')]_v \equiv \Diamond \Box [E \land B_i \Rightarrow (i \neq b')]_{\langle v, b, c \rangle}$ $\langle 6 \rangle 1. \ N^c \wedge (v' = v) \Rightarrow (\langle v, b, c \rangle' = \langle v, b, c \rangle)$ PROOF: By definition of N^c . $\langle 6 \rangle 2$. For any action A, $\Box[N^c]_{\langle v,b,c\rangle} \Rightarrow \land \Diamond \Box[A]_v \equiv \Diamond \Box[A]_{\langle v,b,c\rangle}$ $\wedge \ \Box \diamondsuit [A]_v \equiv \Box \diamondsuit [A]_{\langle v, b, c \rangle}$ **PROOF:** By $\langle 6 \rangle$ 1, using the follow rules, among others $\frac{[A]_f \wedge [B]_g \Rightarrow [C]_h}{\Box [A]_f \wedge \Box [B]_g \Rightarrow \Box [C]_h} \quad \frac{[A]_f \wedge \langle B \rangle_g \Rightarrow \langle C \rangle_h}{\Box [A]_f \wedge \Diamond [B]_g \Rightarrow \Diamond \langle C \rangle_h)}$ $\langle 6 \rangle 3.$ Q.E.D. **PROOF:** By $\langle 6 \rangle 2$, since T implies $\Box[N^c]_{\langle v, b, c \rangle}$ $\langle 5 \rangle 3.$ Q.E.D. **PROOF:** Immediate from $\langle 5 \rangle 1$ and $\langle 5 \rangle 2$ $\langle 4 \rangle 3. \quad T \Rightarrow \neg (\land \Box \diamondsuit \langle E \land B_i \land (i \neq b') \rangle_{\langle v, b, c \rangle}$ $\wedge \Diamond \Box [(E \land B_i) \Rightarrow (i \neq b')]_{\langle v, b, c \rangle})$ $\langle 5 \rangle 1. \ I^c \wedge N^c \wedge E \wedge B_i \wedge (i \neq b') \Rightarrow Pos(i)' < Pos(i)$ PROOF: $I^c \wedge N^c \wedge E \wedge B_i$ imply $b' \in \mathcal{I}$. From $b' \in \mathcal{I}$, $i \in \mathcal{I}$ (assumption $\langle 3 \rangle$), $E \wedge B_i$, and N^c , we deduce Pos(b') < Pos(i), which by N^c implies c'[Pos(i) - 1] = i. By definition of Pos, this implies Pos(i)' < Pos(i). $\langle 5 \rangle 2. \ \Box I^c \land \Box [N^c]_{\langle v, b, c \rangle} \land \Box [(E \land B_i) \Rightarrow (i \neq b')]_{\langle v, b, c \rangle}$ $\Rightarrow \Box [Pos(i)' \le Pos(i)]_{\langle v, b, c \rangle}$ $\langle 6 \rangle 1. \ I^c \wedge N^c \wedge \neg (E \wedge B_i) \Rightarrow Pos(i)' \leq Pos(i)$ $\langle 7 \rangle$ 1. CASE: $E \land \exists j \in \mathcal{I} : B_j$ **PROOF:** In this case, I^c and N^c imply c'[Pos(i)] = i or c'[Pos(i) - 1] = i, either case implying $Pos(i)' \leq Pos(i)$. $\langle 7 \rangle 2$. CASE: $\neg (E \land \exists j \in \mathcal{I} : B_j)$ PROOF: In this case, c' = c, so Pos(i)' = Pos(i). $\langle 7 \rangle 3.$ Q.E.D. **PROOF:** Immediate from $\langle 7 \rangle 1$ and $\langle 7 \rangle 2$. $\langle 6 \rangle 2. \ I^c \wedge [N^c]_{\langle v, b, c \rangle} \wedge [(E \wedge B_i) \Rightarrow (i \neq b')]_{\langle v, b, c \rangle}$ $\Rightarrow [Pos(i)' \le Pos(i)]_{\langle v, b, c \rangle}$ **PROOF:** $\langle 5 \rangle 1$, $\langle 6 \rangle 1$, and propositional logic. $\langle 6 \rangle 3.$ Q.E.D. **PROOF:** By $\langle 6 \rangle$ 2 and the TLA rules $\frac{I \wedge I' \wedge [A]_f \Rightarrow [B]_g}{\Box I \wedge \Box [A]_f \Rightarrow \Box [B]_g} \quad \frac{[A]_f \wedge [B]_g \equiv [C]_h}{\Box [A]_f \wedge \Box [B]_g \equiv \Box [C]_h}$

 $\langle 5 \rangle 3. \ \Box I^c \land \Box [N^c]_{\langle v, b, c \rangle} \land \Box \diamondsuit \langle E \land B_i \land (i \neq b') \rangle_{\langle v, b, c \rangle}$ $\Rightarrow \Box \diamondsuit \langle Pos(i)' < Pos(i) \rangle_{\langle v, b, c \rangle}$ PROOF: By $\langle 5 \rangle 1$, the TLA rules $\frac{I \wedge [A]_f \wedge \langle B \rangle_g \Rightarrow \langle C \rangle_h}{\Box I \wedge \Box [A]_f \wedge \Diamond \langle B \rangle_g \Rightarrow \Diamond \langle C \rangle_h} \qquad \frac{F \Rightarrow G}{\Box F \Rightarrow \Box G}$ and the rule that \Box distributes over \wedge . $\langle 5 \rangle 4.$ Q.E.D. $\langle 6 \rangle 1. \wedge T$ $\wedge \Box \diamondsuit \langle E \land B_i \land (i \neq b') \rangle_{\langle v, b, c \rangle}$ $\land \diamondsuit \Box[(E \land B_i) \Rightarrow (i \neq b')]_{\langle v, b, c \rangle})$ $\Rightarrow \land \Box[Pos(i)' \leq Pos(i)]_{\langle v, b, c \rangle}$ $\wedge \Box \diamondsuit \langle Pos(i)' < Pos(i) \rangle_{\langle v, b, c \rangle}$ **PROOF:** $\langle 5 \rangle 2$ and $\langle 5 \rangle 3$ $\langle 6 \rangle 2$. Q.E.D. **PROOF:** the formula $\wedge \Box(Pos(i) \in Nat)$ $\wedge \Box [Pos(i)' \le Pos(i)]_{\langle v, b, c \rangle}$ $\wedge \Box \diamondsuit \langle Pos(i)' < Pos(i) \rangle_{\langle v, b, c \rangle}$ asserts that Pos(i) is decremented infinitely many times and remains a natural number, which is impossible. Since T implies I^c , which implies $\Box(Pos(i) \in Nat), \langle 6 \rangle$ 1 implies the level-

 $\langle 4 \rangle$ goal.

 $\langle 4 \rangle 4$. Q.E.D.

PROOF: By propositional logic from $\langle 4 \rangle 1$, $\langle 4 \rangle 2$, and $\langle 4 \rangle 3$. $\langle 3 \rangle 4$. Q.E.D. PROOF: By $\langle 3 \rangle 2$ and $\langle 3 \rangle 3$. $\langle 2 \rangle 2$. $(\exists i \in \mathcal{I} : \Delta_i) \wedge T \wedge \Box \Diamond \langle M \rangle_v \Rightarrow \Box \Diamond \langle \overline{M^R} \rangle_{\overline{v}}$

 $\langle 3 \rangle 1. \ T \land \Box \diamondsuit \langle X \rangle_v \Rightarrow \Box \diamondsuit \langle \overline{M^R} \rangle_{\overline{v}}$

PROOF: From the general rule

 $\Box I \wedge \Box [A]_v \wedge \Box \diamond \langle B \rangle_v \Rightarrow \Box \diamond \langle I \wedge I' \wedge A \wedge B \rangle_v$ and $\Box [N^{all}]_{all} \Rightarrow \Box [N^{all}]_v$ (which follows from $[N^{all}]_{all} \Rightarrow [N^{all}]_v$), we deduce that $T \wedge \Box \diamond \langle X \rangle_v$ implies $\Box \diamond \langle N^{all} \wedge I^{all} \wedge (I^{all})' \wedge X \rangle_v$. The result then follows from $\langle 1 \rangle 6$.

 $\langle 3 \rangle 2. \ (\exists i \in \mathcal{I} : \Delta_i) \land T \land \Box \Diamond \langle R \rangle_v \Rightarrow \Box \Diamond \langle \overline{M^R} \rangle_{\overline{v}}$

 $\langle 4 \rangle 1. \ (\exists i \in \mathcal{I} : \Delta_i) \land T \land \Box \Diamond \langle R \rangle_v \Rightarrow \Box \Diamond \neg \mathcal{R}$

PROOF: By definition of O (which is implied by T).

 $\langle 4 \rangle 2. \ \Box[N]_v \land \Box \diamondsuit \langle R \rangle_v \land \Box \diamondsuit \neg \mathcal{R} \Rightarrow \Box \diamondsuit \langle X \rangle_v$

$$\langle 5 \rangle 1. \ \Box \Diamond \langle R \rangle_v \land \Box \Diamond \neg \mathcal{R} \Rightarrow \Box \Diamond \langle \mathcal{R} \land \neg \mathcal{R}' \rangle_v$$

PROOF: Since R implies \mathcal{R}' , we infer that $\Box \diamondsuit \langle R \rangle_v$ implies $\Box \diamondsuit \mathcal{R}$,

and the result follows from the general rule

 $\Box \Diamond P \land \Box \Diamond \neg P \Rightarrow \Box \Diamond \langle P \land \neg P' \rangle_P$

plus the observation that $\Box \diamondsuit \langle \mathcal{R} \land \neg \mathcal{R}' \rangle_{\mathcal{R}}$ implies $\Box \diamondsuit \langle \mathcal{R} \land \neg \mathcal{R}' \rangle_{v}$ because $\mathcal{R}' \neq \mathcal{R}$ implies $v' \neq v$ (because v contains all the variables that occur free in \mathcal{R}).

 $\begin{array}{ll} \langle 5 \rangle 2. & \Box[N]_v \land \Box \diamondsuit \langle \mathcal{R} \land \neg \mathcal{R}' \rangle_v \Rightarrow \Box \diamondsuit \langle X \rangle_v \\ \langle 6 \rangle 1. & N \land \mathcal{R} \land \neg \mathcal{R}' \Rightarrow X \\ \text{PROOF: } N \land \mathcal{R} \land \neg \mathcal{R}' \equiv & (M \lor E) \land \mathcal{R} \land \neg \mathcal{R}' & \text{Definition of } N. \\ & \equiv & M \land \mathcal{R} \land \neg \mathcal{R}' & \text{Hypothesis 1(b).} \\ & \Rightarrow & M \land \neg \mathcal{L} \land \neg \mathcal{R}' & \text{Hypothesis 1(d).} \\ & = & X & \text{Definition of } X \end{array}$

 $\langle 6 \rangle 2.$ Q.E.D.

PROOF: From $\langle 6 \rangle 1$ by the general rule

$$\frac{[N]_v \land \langle A \rangle_v \Rightarrow \langle B \rangle_v}{\Box[N]_v \land \Box \diamondsuit \langle A \rangle_v \Rightarrow \Box \diamondsuit \langle B \rangle_v}$$

 $\langle 5 \rangle 3.$ Q.E.D.

PROOF: By propositional logic from $\langle 5 \rangle 1$ and $\langle 5 \rangle 2$.

 $\langle 4 \rangle 3.$ Q.E.D.

PROOF: By propositional logic from $\langle 4 \rangle 1$, $\langle 4 \rangle 2$, and $\langle 3 \rangle 1$, since T implies $\Box[N^{all}]_{all}$ which implies $\Box[N]_v$.

 $\langle 3 \rangle 3. \quad T \land \Box \diamondsuit \langle L \rangle_v \Rightarrow \Box \diamondsuit \langle M^R \rangle_{\overline{v}}$ $\langle 4 \rangle 1. \quad T \land \Box \diamondsuit \langle L \rangle_v \Rightarrow \Box \diamondsuit (\neg \mathcal{L})$ **PROOF:** By definition of Q (which is implied by T), since $\Box \diamondsuit \langle L \rangle_v \Rightarrow \Box \diamondsuit \langle \text{TRUE} \rangle_v = \Box \neg \Box [\text{FALSE}]_v = \neg \diamondsuit \Box [\text{FALSE}]_v.$ $\langle 4 \rangle 2. \ (\neg \mathcal{L}) \land \Box [N \land \neg X]_v \Rightarrow \Box (\neg \mathcal{L})$ $\langle 5 \rangle 1. \neg \mathcal{L} \land [N \land \neg X]_v \Rightarrow \neg \mathcal{L}'$ $\langle 6 \rangle 1. \neg \mathcal{L} \wedge E \Rightarrow \neg \mathcal{L}'$ PROOF: Hypothesis 1(b). $\langle 6 \rangle 2. \neg \mathcal{L} \land R \Rightarrow \neg \mathcal{L}'$ **PROOF:** By definition of R (which implies \mathcal{R}') and hypothesis 1(d). $\langle 6 \rangle 3. \neg \mathcal{L} \wedge L \Rightarrow \neg \mathcal{L}'$ **PROOF:** By definition of L (which implies \mathcal{L}). $\langle 6 \rangle 4. \neg \mathcal{L} \land (v' = v) \Rightarrow \neg \mathcal{L}'$ **PROOF:** By the hypothesis that the tuple v contains all the free variables of \mathcal{L} . $\langle 6 \rangle 5.$ Q.E.D. **PROOF:** By $\langle 6 \rangle 1$, $\langle 6 \rangle 2$, $\langle 6 \rangle 3$, $\langle 6 \rangle 4$, since $\langle 1 \rangle 1.4$ and the defini-

tion of N imply that $N \wedge \neg X$ equals $E \lor R \lor L$.

 $\langle 5 \rangle 2$. Q.E.D. **PROOF:** By $\langle 5 \rangle$ 1 and the standard TLA invariance rule. $\langle 4 \rangle 3. \ \Box \Diamond \langle L \rangle_v \land \Box \Diamond \neg \mathcal{L} \Rightarrow \Box \Diamond \langle \neg N \lor X \rangle_v$ $\langle 5 \rangle 1. \ \Diamond \mathcal{L} \Rightarrow \Diamond \langle \neg N \lor X \rangle_v \lor \mathcal{L}$ PROOF: By $\langle 4 \rangle 2$, since $\neg \Box [N \land \neg X]_v$ is equivalent to $\Diamond \langle \neg N \lor X \rangle_v$. $\langle 5 \rangle 2. \ \Box \Diamond \mathcal{L} \Rightarrow \Box \Diamond \langle \neg N \lor X \rangle_v \lor \Diamond \Box \mathcal{L}$ **PROOF:** By $\langle 5 \rangle 1$ and the proof rules $F \Rightarrow G \qquad \Box(\Diamond F \lor G) \Rightarrow \Box \Diamond F \lor \Diamond \Box G$ $\overline{\Box F \Rightarrow \Box G}$ $\langle 5 \rangle 3.$ Q.E.D. PROOF: $\Box \diamondsuit \langle L \rangle_v \land \Box \diamondsuit \neg \mathcal{L}$ $\Rightarrow \Box \Diamond \mathcal{L} \land \Box \Diamond \neg \mathcal{L}$ Since $L \Rightarrow \mathcal{L}$. $\Rightarrow (\Box \diamondsuit \langle \neg N \lor X \rangle_v \lor \diamondsuit \Box \mathcal{L}) \land \Box \diamondsuit \neg \mathcal{L}$ By (5)2. $\Rightarrow \Box \Diamond \langle \neg N \lor X \rangle_v$ Since $\Box \diamond \neg \mathcal{L} \equiv \neg \diamond \Box \mathcal{L}$. $\langle 4 \rangle 4. \quad T \land \Box \diamondsuit \langle L \rangle_v \Rightarrow \Box \diamondsuit \langle X \rangle_v$ $\langle 5 \rangle 1. \quad T \land \Box \diamondsuit \langle L \rangle_v \Rightarrow \Box \diamondsuit \langle \neg N \lor X \rangle_v$ **PROOF:** $\langle 4 \rangle 1$ and $\langle 4 \rangle 3$. $\langle 5 \rangle 2. \ \Box[N]_v \land \Box \diamondsuit \langle \neg N \lor X \rangle_v \Rightarrow \Box \diamondsuit \langle X \rangle_v$ PROOF: By the TLA rule $\Box[A]_v \land \Diamond \langle B \rangle_v \Rightarrow \Diamond \langle A \land B \rangle_v$. $\langle 5 \rangle 3.$ Q.E.D. **PROOF:** $\langle 5 \rangle 1$ and $\langle 5 \rangle 2$, since T implies $\Box[N]_v$. $\langle 4 \rangle 5.$ Q.E.D. **PROOF:** $\langle 4 \rangle 4$ and $\langle 3 \rangle 1$. $\langle 3 \rangle 4.$ Q.E.D. **PROOF:** $\langle 3 \rangle 1$, $\langle 3 \rangle 2$, $\langle 3 \rangle 3$, and $\langle 1 \rangle 1.4$, since $\Box \diamondsuit$ distributes over disjunction. $\langle 2 \rangle 3.$ Q.E.D. **PROOF:** $\langle 2 \rangle 1$ and $\langle 2 \rangle 2$ and definition of A_i , since $\Delta_i \wedge \Box \diamondsuit \langle M \rangle_v$ equals $\Box \diamondsuit \langle \Delta_i \land M \rangle_v$ (because Δ_i is a constant), and $\Box \diamondsuit (F \lor G)$ is equivalent to $(\Box \diamond F) \lor (\Box \diamond G)$ for any temporal formulas F and G. $\langle 1 \rangle 10.$ Q.E.D. $\langle 2 \rangle 1. \ S \wedge H^c \wedge \Box I^c \wedge H^r \wedge \Box I^r \wedge P^p \wedge P^l \Rightarrow \Box I^{all} \wedge \Box [N^{all}]_{all}$ $\langle 3 \rangle 1.$ $(v' = v) \wedge I^r \wedge I^l \wedge (I^l)' \wedge N^c \wedge N^r \wedge N^p \wedge N^l \Rightarrow (all' = all)$

- $\langle 4 \rangle 1. \ (v' = v) \land N^c \Rightarrow \langle b, c \rangle' = \langle b, c \rangle$
 - PROOF: By definition of N^c .

 $\langle 4 \rangle 2. \ I^r \wedge (v' = v) \wedge N^r \Rightarrow (r' = r)$

PROOF: Follows from the definitions of I^r and N^r , and the hypothesis that the free variables of \mathcal{R} are included in the tuple of

variables v, which implies $(v' = v) \Rightarrow (\mathcal{R}' = \mathcal{R})$. $\langle 4 \rangle 3. \ (v' = v) \land N^p \Rightarrow (p' = p)$ **PROOF:** Immedate from the definition of N^p . $\langle 4 \rangle 4. \ (v' = v) \land N^p \land I^l \land (I^l)' \land N^l \Rightarrow (l' = l)$ $\langle 5 \rangle 1$. CASE: p $\langle 6 \rangle 1. \ I^l \Rightarrow (l = l_{final})$ **PROOF:** Assumption $\langle 5 \rangle$ and definition of I^l . $\langle 6 \rangle 2. \ (v' = v) \land N^p \Rightarrow p'$ **PROOF:** Assumption $\langle 5 \rangle$ and definition of N^p . $\langle 6 \rangle 3. \ (I^l)' \wedge p' \Rightarrow (l' = l'_{final})$ PROOF: By definition of I^l . $\langle 6 \rangle 4. \ (v = v') \Rightarrow (l'_{final} = l_{final})$ PROOF: By definition of l_{final} , since, for any constant tuple u, v are the only free variables of $\lambda(u)$. $\langle 6 \rangle 5.$ Q.E.D. **PROOF:** The level- $\langle 4 \rangle$ goal follows from $\langle 6 \rangle 1$, $\langle 6 \rangle 2$, $\langle 6 \rangle 3$, and $\langle 6 \rangle 4.$ $\langle 5 \rangle 2$. CASE: $\neg p$ $\langle 6 \rangle 1. \ N^p \Rightarrow \neg p'$ **PROOF:** Assumption $\langle 5 \rangle$ and the definition of N^p . $\langle 6 \rangle 2$. CASE: $\neg \mathcal{L}$ **PROOF:** In this case, (v' = v) implies $\neg \mathcal{L}'$, so by $\langle 6 \rangle 1$, $I^l \wedge$ $(I^l)' \wedge N^p \wedge (v' = v)$ implies l = v = v' = l'. $\langle 6 \rangle$ 3. CASE: \mathcal{L} PROOF: In this case, assumption (5) implies $(v' = v) \land N^l \Rightarrow$ (l = l'). $\langle 6 \rangle 4.$ Q.E.D. **PROOF:** Cases $\langle 6 \rangle 2$ and $\langle 6 \rangle 3$ are exhaustive. $\langle 5 \rangle 3.$ Q.E.D. **PROOF:** By $\langle 5 \rangle 1$ and $\langle 5 \rangle 2$. $\langle 4 \rangle 5.$ Q.E.D. **PROOF:** By $\langle 4 \rangle 1$, $\langle 4 \rangle 2$, $\langle 4 \rangle 3$, $\langle 4 \rangle 4$, and the definition of all. $\langle 3 \rangle 2. \ \Box[N]_v \land \Box I^r \land \Box I^l \land \Box[N^c]_{\langle v, b, c \rangle} \land \Box[N^r \land (v' \neq v)]_{\langle v, r \rangle}$ $\wedge \Box [N^p]_{\langle v, p \rangle} \wedge \Box [N^l \wedge (\langle p, v \rangle) \neq \langle p, v \rangle]_{\langle v, b, c, p, l \rangle} \Rightarrow \Box [N^{all}]_{all}$ **PROOF:** By the definition of N^{all} , $\langle 3 \rangle 1$, repeated application of the rule

and the usual TLA rules

$$\Box I \land \Box [A]_f \Rightarrow \Box [I \land I' \land A]_f \quad \frac{[A]_f \land [B]_g \Rightarrow [C]_h}{\Box [A]_f \land \Box [B]_g \Rightarrow \Box [C]_h}$$

 $\langle 3 \rangle 3$. Q.E.D.

PROOF: Follows easily from $\langle 3 \rangle 2$, $\langle 1 \rangle 2$, the definitions, and the rule that \Box distributes over \wedge . $\langle 2 \rangle 2. \ S \wedge Q \wedge O \wedge H^c \wedge \Box I^c \wedge H^r \wedge \Box I^r \wedge P^p \wedge P^l$ $\Rightarrow \overline{S^R} \land \Box I(\overline{v}/\hat{v}) \land (\forall i \in \mathcal{I} : \Box \diamond \langle A_i \rangle_v \Rightarrow \Box \diamond \langle \overline{A_i^R} \rangle_{\overline{v}})$ **PROOF:** $\langle 2 \rangle 1$, $\langle 1 \rangle 7$, $\langle 1 \rangle 8$, $\langle 1 \rangle 9$, and the definition of S^R . $\langle 2\rangle 3. \ S \wedge Q \wedge O \wedge H^c \wedge \Box I^c \wedge H^r \wedge \Box I^r \wedge P^p \wedge P^l$ $\Rightarrow \exists \hat{v} : \widehat{S^R} \land \Box I \land (\forall i \in \mathcal{I} : \Box \Diamond \langle A_i \rangle_v \Rightarrow \Box \Diamond \langle \widehat{A_i^R} \rangle_{\widehat{v}})$ **PROOF:** $\langle 2 \rangle 2$ and (temporal) predicate logic. $\langle 2 \rangle 4. S \wedge Q \wedge O \wedge (\exists b, c, r, p, l : H^c \wedge \Box I^c \wedge H^r \wedge \Box I^r \wedge P^p \wedge P^l)$ $\Rightarrow (\exists \hat{v} : \widehat{S^R} \land \Box I \land (\forall i \in \mathcal{I} : \Box \Diamond \langle A_i \rangle_v \Rightarrow \Box \Diamond \langle \widehat{A_i^R} \rangle_{\widehat{v}}))$ **PROOF:** $\langle 2 \rangle 3$ and (temporal) predicate logic, since b, c, r, p, and l do not occur free in S, Q, O, or $\exists \, \widehat{v} \, : \, \widehat{S^R} \, \wedge \, \Box I \, \wedge \, (\forall \, i \in \mathcal{I} \, : \, \Box \diamondsuit \langle A_i \rangle_v \Rightarrow \Box \diamondsuit \langle \widehat{A_i^R} \rangle_{\widehat{v}})$ $\langle 2 \rangle 5. S \wedge Q \Rightarrow (\exists b, c, r, p, l : H^c \wedge \Box I^c \wedge H^r \wedge \Box I^r \wedge P^p \wedge P^l)$ $\langle 3 \rangle 1. \ H^c \wedge \Box I^c \wedge S \Rightarrow \exists r : H^c \wedge \Box I^c \wedge H^r \wedge \Box I^r$ **PROOF:** By $\langle 1 \rangle 4$, since r does not occur free in H^c and I^c . $\langle 3 \rangle 2. \quad H^c \wedge \Box I^c \wedge S \wedge Q \Rightarrow \exists p, l : P^p \wedge P^l$ PROOF: $\langle 1 \rangle 5$. $(3)3. \quad H^c \wedge \Box I^c \wedge S \wedge Q \Rightarrow \exists r, p, l : H^c \wedge \Box I^c \wedge H^r \wedge \Box I^r \wedge P^p \wedge P^l$ **PROOF:** (3)1 and (3)2, since r does not occur free in P^p or P^l , and p and l do not occur free in H^c , $\Box I^c$, H^r , or $\Box I^r$. (We are using the rule that if x does not occur free in F, then $(\exists x : F \land G) \equiv F \land (\exists x : G).)$ $\langle 3 \rangle 4. S \land Q \land (\exists b, c : H^c \land \Box I^c) \Rightarrow \exists b, c, r, p, l : H^c \land \Box I^c \land H^r \land$ $\Box I^r \wedge P^p \wedge P^l$ **PROOF:** By $\langle 3 \rangle 3$, since b and c do not occur free in S or Q. (We are using the rule that if x does not occur free in F, then $(\exists x : F \land G) \equiv$ $F \wedge (\exists x : G).)$ $\langle 3 \rangle 5.$ Q.E.D. **PROOF:** By $\langle 3 \rangle 4$ and $\langle 1 \rangle 5$. $\langle 2 \rangle 6.$ Q.E.D.

PROOF: $\langle 2 \rangle 4$ and $\langle 2 \rangle 5$.