
Prophecy Made Simple

Leslie Lamport and Stephan Merz

22 June 2020

Abstract

Prophecy variables were introduced in the paper The Existence of
Refinement Mappings by Abadi and Lamport. They were difficult to
use in practice. We describe a new kind of prophecy variable that we
find much easier to use. We also reformulate ideas from that paper in
a more mathematical way.

Contents

1 Introduction 1

2 Preliminaries 3
2.1 States, Behaviors, and Specifications 3
2.2 State Machines . 4
2.3 Internal Variables . 5

3 Implementation and Refinement Mappings 6
3.1 Specification A . 6
3.2 Specification B . 6
3.3 Implementation and a Refinement Mapping 7
3.4 Finding the Refinement Mapping 10
3.5 Generalization . 11

4 Auxiliary Variables 12
4.1 History Variables . 14
4.2 Simple Prophecy Variables . 15
4.3 Predicting the Impossible . 16
4.4 A Sequence of Prophecies . 18
4.5 A Set of Prophecies . 20
4.6 Further Generalizations of Prophecy Variables 21
4.7 Stuttering Variables . 22

5 Verifying Linearizability 24

6 Prophecy Constants 27

7 The Existence of Refinement Mappings 29

References 30

1 Introduction

Refinement mappings are used to verify that one specification implements
another. They generalize to systems the concept of abstraction function,
introduced by Hoare to define what it means for one input/output relation
to implement another [9]. Refinement mappings are a central concept in
extending Floyd-Hoare state-based reasoning to concurrent systems. They
are crucial to making verification of those systems tractable, whether verifi-
cation is by rigorous proof or model checking.

The Existence of Refinement Mappings by Abadi and Lamport [2] has
become a standard reference for verifying implementation with refinement
mappings in state-based formalisms. That paper, henceforth called ER, was
mostly a synthesis of work that had been done in the preceding decade or
so. It was well known that being able to construct a refinement mapping
often requires adding to a specification a history variable that remembers
information from previous states. The major new concept ER introduced
was prophecy variables that predict future states, which may also be required
to define a refinement mapping. ER showed that refinement mappings can
always be found by adding history and prophecy variables for specifications
satisfying certain conditions.

The prophecy variables defined by ER were elegant, looking like history
variables with time running backwards. In practice, they turned out to be
difficult to use. Defining the prophecy variable needed to verify implemen-
tation was challenging even in simple examples. We were never able to do
it for realistic examples. Here, we describe a new kind of prophecy variable
that we find easier to understand and to use. It makes simple examples
simple and realistic examples not too hard.

We were motivated to take a fresh look at prophecy variables by a rel-
atively recent paper of Abadi [1]. It describes techniques to make ER’s
prophecy variables easier to use, but we found those techniques hard to
understand and prophecy variables still too hard to use. Our experience
writing specifications with TLA, which was developed after ER was written,
gave us a powerful new way to think about prophecy.

TLA is a linear-time temporal logic. A formula in such a logic is a
predicate on sequences of states. In other temporal logics, formulas are built
from predicates on states. TLA formulas are built from actions, which are
predicates on pairs of states. This makes it easy to write as TLA formulas
the state-machine specifications on which ER is based. Earlier temporal
logics could also express actions, but not as conveniently as TLA. They
therefore did not lead one to think in terms of actions.

1

Thinking in terms of actions led us quickly to the simple idea of letting
the value of a prophecy variable predict which one of a set of actions will
be the next one satisfied by a pair of successive states. For example, if each
of the actions describes the sending of a different message, the value of the
prophecy variable predicts which message is the next one to be sent. It
was easy to generalize this idea to a prophecy variable that makes multiple
predictions—even infinitely many.

In addition to explaining our new prophecy variables, we recast the con-
cepts from ER in terms of temporal logic formulas. TLA is an obvious logic
to use since it was devised for representing state machines, but the concepts
should be applicable to any state-based formalism. We assume no prior
knowledge of TLA or of ER. For readers who are familiar with ER, we
point out the correspondence between our definitions and those of ER.

Sections 2, 3, and 4.1 explain how specifications are written, what it
means for one specification to implement another, refinement mappings,
and history variables. They correspond to Sections 2, 3, and 5.1 of ER. The
rest of Section 4 explains prophecy variables and stuttering variables, which
provide part of the functionality of ER’s prophecy variables. Section 5 shows
how a prophecy variable can be used to verify that a concurrent algorithm
implements the specification of a linearizable object [7]. Our method should
be useful for verifying linearizable specifications of other systems.

Section 6 shows how a very simple case of our prophecy variables are
present in TLA and other temporal logics. Section 7 sketches a proof that
the refinement mapping required to verify an implementation can always,
in theory, be obtained by adding history and stuttering variables and those
preexisting simple prophecy variables. However, our more general prophecy
variables are usually more convenient in practice.

Our exposition is as informal as we can make it while trying to be rigor-
ous. TLA+ is a complete specification language based on TLA [11]. Most
of what we describe here has been explained elsewhere in excruciating detail
for TLA+ users [12]. It is easy to write our examples in TLA+, and their
correctness has been checked with the TLA+ tools. Since the examples
are written somewhat informally here, we cannot be sure that they have no
errors.

2

2 Preliminaries

2.1 States, Behaviors, and Specifications

Following Turing and ER, we model the execution of a discrete system as a
sequence of states, which we call a behavior. For mathematical simplicity,
we define a state to be an assignment of values to all possible variables.
Think of a behavior as representing a history of the entire universe. We
specify a system as a predicate on behaviors, which is satisfied by those
behaviors that represent a history in which the system executes the way
it should. Traditional verification methods consider only behaviors that
represent possible executions of a system. We consider all behaviors, where
a behavior is any sequence of states, and a state is any assignment of any
values to variables.

Only a finite number of variables are relevant to a system; the system’s
specification allows behaviors in which other variables can have any values.
For example, if we represent its display with the variable hr , a 12-hour clock
that displays the hour is satisfied by behaviors of the form

[hr : 12], [hr : 1], [hr : 2], . . .(1)

where [hr : i] can be any state that assigns the value i to hr . We call
each pair of successive states in a behavior a step of the behavior. A state
of ER corresponds to an assignment of values to only the variables of the
specification.

Common sense dictates that a specification of an hour clock should not
say that the clock has no alarm, or no radio, or no display showing minutes.
However, between any two steps that change the value of hr , a behavior
representing a universe in which our hour clock also displays minutes must
contain 59 steps in which the minute display changes and the value of hr
remains the same. Therefore, in addition to allowing behaviors of the form
(1), a specification of an hour clock must allow steps in which the value of
hr does not change.

We define a stuttering step of a specification to be one in which both
states assign the same values to the specification’s variables. Two behaviors
are said to be stuttering-equivalent for a specification iff (if and only if)
they both have the same sequence of non-stuttering steps. We often don’t
mention the specification when it is clear from context. We write only
specifications that are stuttering-insensitive, meaning that if two behaviors
are stuttering-equivalent, then one satisfies the specification iff the other
does. All behaviors are infinite. An execution in which a system stops is

3

represented by a behavior ending in an infinite sequence of stuttering steps
of its specification. (The rest of the universe needn’t also stop.)

An event e in an event-based formalism corresponds to a step that sat-
isfies some predicate E on pairs of states. If the events are generated by
transitions in an underlying state machine, then transitions that produce
no event correspond to stuttering steps. In a purely event-based formalism,
special “nothing happened” events correspond to stuttering steps.

Writing stuttering-insensitive specifications allows a simple definition of
implementation (also called refinement). We say that a specification S1
implements a specification S2 iff every behavior satisfying S1 also satisfies
S2. When predicates on behaviors are formulas in a temporal logic, S1
implements S2 means that the formula S1 ⇒ S2 is valid (satisfied by all
behaviors).

2.2 State Machines

Following Turing, ER, and common programming languages, we write our
specifications in terms of state machines. A state machine is specified with
two formulas: a predicate Init on states that describes the possible initial
states and a predicate Next on pairs of states that describes how the state
can change. We call a predicate A on pairs of states an action, and we call
a step satisfying A an A step. Let x be the list x 1, . . . , xn of all variables of
the specification, and let UC 〈x〉 be the action satisfied only by stuttering
steps—that is, steps leaving the variables x unchanged. The state machine
specified by Init and Next is satisfied by a behavior s1, s2, . . . iff

SM1. s1 satisfies Init , and

SM2. For all i , the step s i , s i+1 satisfies Next ∨UC 〈x〉.
The disjunct UC 〈x〉 in SM2 ensures that the specification is stuttering-
insensitive. The predicate on behaviors described by SM1 and SM2 is writ-
ten in TLA as this formula:

Init ∧ 2[Next]〈x〉(2)

In TLA, an action is written as an ordinary mathematical formula that may
contain primed and unprimed variables. Unprimed variables refer to the val-
ues of the variables in the first state of a pair of states, and primed variables
refer to their values in the second state. (An action with no primed variables
is a predicate on states.) Thus, UC 〈x〉 equals (x ′1 = x 1) ∧ . . . ∧ (x ′n = xn) .
Our hour-clock specification can be written in TLA as

(hr = 12) ∧ 2[hr ′ = if hr = 12 then 1 else hr + 1)]〈hr 〉

4

This specification allows behaviors in which, at some point, the values of the
variables x never again change—that is, behaviors in which the clock halts.
Allowing halting is a feature, not a problem. Formula (2) expresses a safety
property. If we want the system also to satisfy a liveness property1 L, we
specify it as

Init ∧ 2[Next]〈x〉 ∧ L(3)

Letting L be the TLA formula WF〈hr 〉(Next) makes (3) assert that the state
machine never halts in a state in which a non-stuttering step is possible. For
the hour clock, this implies that the clock never stops.

Safety and liveness properties are verified differently, so it is best to keep
them separate in a specification. We will be concerned only with the safety
part, so we don’t care how L is written. We don’t even require L to be a
liveness property. Following ER, we call it a supplementary property.

2.3 Internal Variables

Specifying a system with a state machine often requires the use of variables
that do not represent the actual state of the system, but serve to describe
how that state changes. We call the variables describing the system’s state
external variables, and we call the additional variables internal variables.
In our specifications, we want to hide the internal variables, leaving only the
external variables visible.

In a linear-time temporal logic, we hide a variable y in a formula F with
the temporal existential quantifier ∃∃∃∃∃∃ . The approximate definition is that
∃∃∃∃∃∃ y :F is true of a behavior σ iff there exist assignments of values to y in
the states of σ (a separate assignment for each state of σ) that make the
resulting behavior satisfy F . This definition is wrong because it doesn’t
ensure that that ∃∃∃∃∃∃ y :F is stuttering-insensitive. The correct definition is
that σ satisfies ∃∃∃∃∃∃ y :F iff there is a behavior τ stuttering-equivalent for F
to σ and assignments of values to y that makes τ satisfy F . For a list y of
variables y1, . . . ym , we define ∃∃∃∃∃∃y :F to equal ∃∃∃∃∃∃ y1 : . . . ∃∃∃∃∃∃ ym :F .

We generalize the form (3) of a specification S to ∃∃∃∃∃∃y : IS , where

IS ∆
= Init ∧ 2[Next]〈x,y〉 ∧ L(4)

and x and y are lists of variables that may appear in Init , Next , and L. The
external variables x are assumed to be different from the internal variables y.
We call IS the internal specification of S.

1The definitions of safety and liveness can be found elsewhere [4]; they are not needed
here.

5

3 Implementation and Refinement Mappings

We explain refinement mappings with an example consisting of a specifica-
tion A, a specification B that implements A, and a refinement mapping that
can be used to verify B ⇒ A .

3.1 Specification A

Specification A describes a system that receives as input a sequence of inte-
gers and, after receipt of each integer, outputs the average of all the integers
received thus far. Receipt of an integer i is represented by the value of the
variable in changing from the special value rdy to i , where we assume rdy

is not a number. Producing an output is represented by the value of in
changing back to rdy and the value of out being set to the output. Initially,
in = rdy and out = 0. Here is the beginning of a behavior that satisfies A :

[in : rdy, out : 0], [in : 3, out : 0], [in : rdy, out : 3],

[in : −2, out : 3], [in : rdy, out : 1
2], . . .

(5)

A is defined to equal ∃∃∃∃∃∃ sum,num : IA , where num is the number of outputs
that have been produced and sum is the sum of the inputs that produced
the most recent output. Here is a behavior satisfying IA which shows that
behavior (5) satisfies A :

[in : rdy, out : 0, num : 0, sum : 0],

[in : 3, out : 0 num : 0, sum : 0],

[in : rdy, out : 3, num : 1, sum : 3],

[in : −2, out : 3, num : 1, sum : 3],

[in : rdy, out : 1
2 , num : 2, sum : 1], . . .

(6)

The complete specification A is defined in Figure 1, where Int is the set of
all integers. A step satisfies the action NextA iff it is an InputA step or an
OutputA step. An InputA step represents the receipt of an input and an
OutputA step represents the production of an output.

3.2 Specification B

Specification B, is a different way of writing the same specification as A.
Instead of variables that record the number of inputs and their sum, the
internal specification IB has a single internal variable seq that records the
entire sequence of inputs received so far. Specification B has the same form

6

A ∆
= ∃∃∃∃∃∃num, sum : IA

IA ∆
= InitA ∧ 2[NextA]〈in,out ,num,sum 〉

InitA
∆
= (in = rdy) ∧ (out = num = sum = 0)

NextA
∆
= InputA ∨ OutputA

InputA
∆
= (in = rdy) ∧ (in ′ ∈ Int) ∧ UC 〈out ,num, sum〉

OutputA
∆
= (in 6= rdy) ∧ (in ′ = rdy)
∧ (sum ′ = sum + in) ∧ (num ′ = num + 1)
∧ (out ′ = sum ′ /num ′)

Figure 1: The definition of specification A.

B ∆
= ∃∃∃∃∃∃ seq : IB

IB ∆
= InitB ∧ 2[NextB]〈in,out ,seq 〉

InitB
∆
= (in = rdy) ∧ (out = 0) ∧ (seq = 〈 〉)

NextB
∆
= InputB ∨ OutputB

InputB
∆
= (in = rdy) ∧ (in ′ ∈ Int)
∧ (seq ′ = Append(seq , in ′)) ∧ (out ′ = out)

OutputB
∆
= (in 6= rdy) ∧ (in ′ = rdy)
∧ (out ′ = Sum(seq)/Len(seq)) ∧ (seq ′ = seq)

Figure 2: The definition of specification B.

as A except its action InputB appends the value being input to seq , and its
OutputB action outputs the average of the numbers in the sequence seq .

To write B, we introduce some notation for sequences. We enclose se-
quences in angle brackets 〈 and 〉, so 〈 〉 is the empty sequence. We define
Len(sq) to equal the length of sequence sq and Append(sq , e) to be the se-
quence obtained by appending e to the end of sequence sq , so Len(〈3, 1〉)
equals 2 and Append(〈3, 1〉, 42) equals 〈3, 1, 42〉. We also define Sum(sq) to
be the sum of the elements of sq , so Sum(〈3, 1, 42〉 equals 46 (which equals
3 + 1 + 42) and Sum(〈 〉) equals 0. Specification B is defined in Figure 2.

3.3 Implementation and a Refinement Mapping

To show B ⇒ A , we must show (∃∃∃∃∃∃ seq : IB)⇒ A . The quantifier ∃∃∃∃∃∃ obeys
the same rules as the quantifier ∃ of ordinary math. By those rules, since

7

seq is not a variable of A, to show (∃∃∃∃∃∃ seq : IB)⇒ A it suffices to show
IB ⇒ A . (This is also easy to see from the definition of ∃∃∃∃∃∃ .)

For any state s, let s[[num ← u, sum ← v]] be the state that is the
same as s except that it assigns the value u to variable num and the value
v to variable sum. Since A equals ∃∃∃∃∃∃num, sum : IA , to show IB ⇒ A , it
suffices to assume that a behavior s1, s2, . . . satisfies IB and find sequences
of values num1, num2, . . . and sum1, sum2, . . . such that the behavior

s1[[num ← num1, sum ← sum1]], s2[[num ← num2, sum ← sum2]], . . .

satisfies IA. We are free to let each num i and sum i depend on the entire
behavior s1, s2, However, we are going to make them depend only on
the state s i . We do that by finding expressions num and sum, containing
only the variables in, out , and seq of IB, and let num i and sum i be the
values of these expressions in state s i .

More precisely, if u and v are expressions (formulas that need not be
Boolean-valued), then let s[[num ← u, sum ← v]] be the state that is the
same as s except that it assigns to the variables num and sum the values of
u and v in state s, respectively. To show IB ⇒ ∃∃∃∃∃∃num, sum : IA , it suffices
to find expressions num and sum, containing only the (unprimed) variables
of IB, such that:

RM. If a behavior s1, s2, . . . satisfies IB, then the behavior

s1[[num ← num, sum ← sum]], s2[[num ← num, sum ← sum]], . . .

satisfies IA.

From conditions SM1 and SM2 of Section 2.2 and the definitions of IA and
IB, we see that RM is implied by:

RM1. For any state s, if s satisfies InitB, then s[[num ← num, sum ←
sum]] satisfies InitA.

RM2. For any states s and t , if step s, t satisfies NextB ∨UC 〈in, out , seq〉 ,
then the pair of states

s[[num ← num, sum ← sum]], t [[num ← num, sum ← sum]]

satisfies NextA ∨UC 〈in, out ,num, sum〉 .

Because num and sum contain only the variables in, out , and seq of IB, if
the step s, t satisfies UC 〈in, out , seq〉, then the step

s[[num ← num, sum ← sum]], t [[num ← num, sum ← sum]]

satisfies UC 〈in, out ,num, sum〉. Therefore, RM2 is automatically satisfied
if s, t is a UC 〈in, out , seq〉 step. This means we can simplify RM2 to:

8

RM2. For any states s and t , if the step s, t satisfies NextB , then the
pair of states

s[[num ← num, sum ← sum]], t [[num ← num, sum ← sum]]

satisfies NextA ∨UC 〈in, out ,num, sum〉 .

Let’s consider RM1. Since InitA is the formula

(in = rdy) ∧ (out = num = sum = 0)

the state s[[num ← num, sum ← sum]] satisfies InitA iff state s satisfies

(in = rdy) ∧ (out = num = sum = 0)(7)

This is the formula obtained by substituting the expression num for the vari-
able num and the expression sum for the variable sum in the formula InitA.
Let’s call that formula (InitA with num ← num, sum ← sum) . RM1 as-
serts that every state satisfying InitB satisfies (7). Therefore, it is equiva-
lent to

RM1. InitB ⇒ (InitA with num ← num, sum ← sum)

As a sanity check on this condition, observe that because the variables in
expressions num and sum are variables of InitB, and the other variables in
and out of InitA are also variables of InitB, the formula (InitA with . . .)
in RM1 contains only variables in InitB. Therefore, RM1 asserts that InitB
implies a formula containing only variables of InitB.

Applying the same reasoning to RM2, and performing the substitution
in the expression UC 〈in, out ,num, sum〉, we see that RM2 is equivalent to

RM2. NextB ⇒
(NextA with num ← num, sum ← sum) ∨ UC 〈in, out ,num, sum〉

Substituting an expression like num for num in NextA means replacing num ′

by num ′. The expression num ′ represents the value of num in the second
state of a step. It is the expression obtained by priming all the variables in
num.

The substitutions num ← num, sum ← sum of expressions containing
variables of IB for the internal variables of IA is what we call a refinement
mapping. In ER, a state of IA or IB would be an assignment of values to
that specification’s variables. The mapping from states of IB to states of IA
that maps s to s[[num ← num, sum ← sum]] is what ER calls a refinement
mapping. Thinking of refinement mappings in terms of formulas instead of
states is better when writing proofs, since proofs are written with formulas.

9

3.4 Finding the Refinement Mapping

Let’s now find the expressions num and sum for the actual formulas defined
in Figures 1 and 2 that satisfy RM1 and RM2. RM2 asserts that a step
satisfying NextB simulates a step satisfying NextA or a stuttering step, where
the values of num and sum are simulated by the values of num and sum. In
this simulation, the variables in and out are simulated by themselves. This
implies that an InputB step must simulate an InputA step, leaving num and
sum unchanged, and an OutputB step must simulate an OutputA step. So,
we should verify RM2 by verifying these two formula:

InputB ⇒ (InputA with num ← num, sum ← sum)(8)

OutputB ⇒ (OutputA with num ← num, sum ← sum)(9)

It’s pretty clear that, after an output step, num should equal Len(seq) and
sum should equal Sum(seq). Since in equals rdy after an OutputA step, this
leads to the following definitions:

num
∆
= if in = rdy then Len(seq) else Len(Front(seq))

sum
∆
= if in = rdy then Sum(seq) else Sum(Front(seq))

where Front(sq) is defined to equal the sequence consisting of the first
Len(sq)− 1 elements of sequence sq , and Front(〈 〉) is defined to equal 〈 〉.

It’s easy to verify RM1, which asserts

(in = rdy) ∧ (out = 0) ∧ (seq = 〈 〉) ⇒
(in = rdy) ∧ (out = num = sum = 0)

It’s not hard to verify (8), since InputB implies Front(seq ′) = seq . Many
readers will also be able to convince themselves that (9) is valid. Those
readers are wrong. For example, there’s no way to show that (9) is true
if in ′ = 42 and seq = 〈rdy〉, since we don’t know what Sum(〈rdy〉) and
Sum(〈rdy, 42〉) equal.

We expect many readers will object that seq can’t equal 〈rdy〉. But, why
can’t it? Nothing in (9) or Figure 2 asserts that seq doesn’t equal 〈rdy〉.
What is true is that the value of seq can’t equal 〈rdy〉 in any state of any
behavior satisfying IB. To show implementation, we don’t have to show
that RM2 is true for all pairs of states. It need only be true for reachable
states, which are states that can occur in a behavior satisfying IB. In fact,
every reachable state of IB satisfies the following formula Inv :

Inv
∆
= (in ∈ Int ∪ {rdy}) ∧ (out ∈ Int) ∧ (seq ∈ Int∗) ∧

((in 6= rdy)⇒ (seq 6= 〈 〉) ∧ (in = Last(seq)))

10

where Int∗ is the set of finite sequences of integers and Last(sq) denotes the
last element of a non-empty sequence sq . A formula that is true in every
reachable state of a specification is called an invariant of the specification.
In temporal logic, the formula 2Inv is satisfied by a behavior iff every state
of the behavior satisfies Inv . Therefore, the assertion that Inv is an invariant
of IB is expressed by IB ⇒ 2Inv .

Since Inv contains only variables of IB, its value is left unchanged by
steps that leave those variables unchanged. To show that Inv is an invariant
of IB, by induction it suffices to show:

I1. InitB ⇒ Inv

I2. Inv ∧NextB ⇒ Inv ′

(Remember that Inv ′ is the formula obtained by priming all the variables in
Inv .) Because Inv is an invariant of IB, instead of showing RM2 we need
only show:

Inv ∧ Inv ′ ∧ NextB ⇒
(NextA with num ← num, sum ← sum) ∨ UC 〈in, out ,num, sum〉

(10)

We leave this to the reader.
Proving invariance by proving I1 and I2 underlies all state-based meth-

ods for proving correctness, including the Floyd-Hoare [6, 10] and Owicki-
Gries [13] methods. ER avoids the explicit use of invariants by restricting a
specification’s set of states to ones that satisfy the needed invariant.

3.5 Generalization

We now generalize what we have done in this section to arbitrary specifica-
tions S1 and S2, with external variables x, defined by

IS1
∆
= Init1 ∧ 2[Next1]〈x,y〉 ∧ L1

IS2
∆
= Init2 ∧ 2[Next2]〈x,z〉 ∧ L2

S1
∆
= ∃∃∃∃∃∃y : IS1 S2

∆
= ∃∃∃∃∃∃ z : IS2

(11)

where the lists y and z of internal variables of S1 and S2 contain no variables
of x. To verify S1 ⇒ S2 , we first define a state predicate Inv , with variables
in x and y, and show it is an invariant of IS1 by showing:

I1. Init1 ⇒ Inv

I2. Inv ∧ Next1 ⇒ Inv ′

11

Then, if z is the list z 1, . . . , zm of variables, we find expressions z1, . . . ,
zm with variables x and y and show the following; where z ← z means
z 1 ← z 1 , . . . , zm ← zm :

RM1. Init1 ⇒ (Init2 with z← z)

RM2. Inv ∧ Inv ′ ∧ Next1 ⇒ ((Next2 with z← z) ∨UC 〈x, z〉)

RM3. Init1 ∧ 2[Next1]〈x,y〉 ∧ L1 ⇒ (L2 with z← z)

When RM1–RM3 hold, we say that IS1 implements IS2 under the refine-
ment mapping z← z .

4 Auxiliary Variables

Sometimes, one specification implements another, but there does not exist
a refinement mapping that shows it. For example, while we showed above
that B implies A, the two specifications are actually equivalent. However,
IA does not implement IB under any refinement mapping because there is
no way to define seq in terms of the variables of A.

To show A ⇒ B, we construct a specification Aa from A containing an
additional variable a such that A is equivalent to ∃∃∃∃∃∃ a :Aa , and we show
Aa ⇒ B . This shows A ⇒ B, assuming that a is not an (external) variable
of B. Constructing Aa such that ∃∃∃∃∃∃ a :Aa is equivalent to A is called adding
the auxiliary variable a to A. We define three kinds of auxiliary variables:
history, prophecy, and stuttering variables.

Let specification S have internal specification IS defined by (4). We
define Sa to equal ∃∃∃∃∃∃y : ISa and define

ISa ∆
= Inita ∧ 2[Nexta]〈x,y,a 〉 ∧ L(12)

where Inita and Nexta are obtained from Init and Next by adding speci-
fications of the initial value of a and how a changes. To show that Sa is
obtained by adding a as an auxiliary variable—that is, ∃∃∃∃∃∃ a : Sa is equivalent
to S—we show that ∃∃∃∃∃∃ a : ISa is equivalent to IS. Since ISa and IS have
the same supplementary property L, it suffices to show their equivalence
with L removed. That is, we only have to show that if we hide the variable
a, the state machines of ISa and IS are equivalent. This requires verifying
two conditions:

AV1. Any behavior satisfying SM1 and SM2 for ISa satisfies them for
IS.

12

AV2. From any behavior σ satisfying SM1 and SM2 for IS, we can obtain
a behavior σa satisfying SM1 and SM2 for ISa by adding stuttering
steps and assigning new values to the variable a in the states of the
resulting behavior.

For all our auxiliary variables, Inita is defined by

Inita
∆
= Init ∧ J(13)

where J is an expression containing the variables x, y, and a. To define
Nexta , we write Next as a disjunction of elementary actions, where we con-
sider existential quantification to be a disjunction. For example, we can
consider the elementary actions of

U ∨ V ∨ ∃ i ∈ Int : W (i)(14)

to be U , V , and all W (i) with i ∈ Int . (We could also consider U ∨V and
∃ i ∈ Int : W (i) to be the elementary actions of (14).) We define Nexta by
replacing every elementary action A of Next with an action Aa . For history
and prophecy variables, Aa is defined by letting

Aa ∆
= A ∧ B(15)

where B is an action containing the variables x, y, and a (which may appear
primed or unprimed), and letting a be left unchanged by stuttering steps of
IS. Condition AV1 is implied by (13) and (15). Condition AV2 is implied
by:

AX. For any behavior s1, s2, . . . satisfying SM1 and SM2 for IS, there
exists a behavior sa1 , sa2 , . . . such that each sai is the same as s i
except for the value it assigns to a, and: (1) sa1 satisfies Inita and
(2) for each elementary action A and each step s i , s i+1 that satisfies
A, the step sai , s

a
i+1 satisfies Aa .

We can show that history and prophecy variables satisfy AX. Stuttering
variables can be shown to satisfy AV1 and AV2 directly.

Inspired by Abadi [1], we explain prophecy variables in terms of examples
in which a specification with an undo action that reverses the effect of some
other action implements the same specification without the undo action.
However, there is nothing about undo that makes our prophecy variables
work especially well. We find them just as easy to use on other kinds of
examples.

13

4.1 History Variables

We use a history variable h to show A ⇒ B. A history variable stores infor-
mation from the current and previous states. To be able to find a refinement
mapping that shows IAh ⇒ ∃∃∃∃∃∃ seq : IB , we let h record the sequence of val-
ues input thus far. The initial value of h should obviously be the empty
sequence, so we define

InithA
∆
= InitA ∧ (h = 〈 〉)

The elementary actions of NextA are InputA and OutputA. We let InputhA
append the new input value to h and OutputA leave h unchanged:

InputhA
∆
= InputA ∧ (h ′ = Append(h, in ′))

OutputhA
∆
= OutputA ∧ (h ′ = h)

Finally, we define

NexthA
∆
= InputhA ∨ OutputhA

IAh ∆
= InithA ∧ 2[NexthA]〈in,out ,sum,num,h 〉

Ah ∆
= ∃∃∃∃∃∃ sum,num : IAh

Condition AX is satisfied because, for any behavior s1, s2, . . . satisfying
SM1 and SM2 for IA, we can inductively define the required states shi as
follows: The value of h in sh1 is determined by the condition h = 〈 〉. For
each i , a nonstuttering step s i , s i+1 is a step of one of the two elementary
actions, and we let shi+1 assign to h the value of h ′ determined by the h ′ = . . .
condition of that action. For a stuttering step, h ′ = h.

To show Ah ⇒ B, we let seq equal h; that is, we use the refinement
mapping seq ← h. We must find an invariant Inv of IAh and show:

InithA ⇒ (InitB with seq ← h)

Inv ∧ Inv ′ ∧ InputhA ⇒ (InputB with seq ← h)

Inv ∧ Inv ′ ∧ OutputhA ⇒ (OutputB with seq ← h)

(16)

This is a standard exercise in assertional reasoning. Formulas (16) imply
RM1 and RM2, which imply Ah ⇒ B.

The generalization to an arbitrary internal specification (4) is simple.
We define

Inith
∆
= Init ∧ (h = f)

14

where f is an expression that can contain the variables x and y. For an
elementary action A of Next , we define

Ah ∆
= A ∧ (h ′ = F)

where F is an expression that can contain the variables x and y, both
unprimed and primed, and the unprimed variable h. The general verification
of AX is essentially the same as for our example. (If a step satisfies more
than one elementary action, the value of h ′ determined by Ah for any of
those actions can be used.)

4.2 Simple Prophecy Variables

We now define Ã to be the same spec asA except with the variable in hidden.
That is, Ã equals ∃∃∃∃∃∃ in :A , which equals ∃∃∃∃∃∃ in,num, sum : IA . Thus, Ã is
the same as A except we consider input actions to be internal to the system.

We define C to be the same as Ã, except that after an input is received,
the input action can be “undone”, setting in to rdy, without producing any
output for that input. The definition of C is in Figure 3.

Since out is the only external variable, it’s clear that C allows the same
externally visible behaviors as Ã. An InputA step followed by an UndoC
step produce no change to out , so viewed externally they’re just stuttering
steps. It’s obvious that Ã implements C because IA implies IC. (A behavior
allowed by IA is allowed by IC because IC does not require that any UndoC
steps occur.) However, we can’t show C ⇒ Ã with a refinement mapping,
even by adding history variables.

We can verify that C implements Ã by adding a prophecy variable p
to C and showing that ICp implements IA under a refinement mapping.
The variable p predicts whether or not an input value will be output. More
precisely, its value predicts whether the next OutputA ∨UndoC step will
be an OutputA step or an UndoC step. The initial predicate makes the
first prediction. The next prediction is made after the currently predicted
OutputA or UndoC step occurs.

C ∆
= ∃∃∃∃∃∃ in,num, sum : IC

IC ∆
= InitA ∧ 2[NextC]〈out ,in,num,sum 〉

NextC
∆
= NextA ∨ UndoC

UndoC
∆
= (in 6= rdy) ∧ (in ′ = rdy) ∧ UC 〈out ,num, sum〉

Figure 3: The definition of specification C.

15

Cp ∆
= ∃∃∃∃∃∃ in,num, sum : ICp

ICp ∆
= InitpC ∧ 2[NextpC]〈out ,in,num,sum,p 〉

InitpC
∆
= (p ∈ {do, undo}) ∧ InitA

NextpC
∆
= InputpA ∨ OutputpA ∨ Undop

C

InputpC
∆
= (p′ = p) ∧ InputA

OutputpC
∆
= (p = do) ∧ (p′ ∈ {do, undo}) ∧OutputA

Undop
C

∆
= (p = undo) ∧ (p ′ ∈ {do, undo}) ∧UndoC

Figure 4: The definition of specification Cp .

The specification Cp is defined in Figure 4. The value of the prophecy
variable p is always either do or undo. Initially, p can have either of those
values. If p equals do, then the next OutputA or UndoC step must be an
OutputA step; it must be an UndoC step if p equals undo. In either case, after
that step is taken, p is set to either do or undo. Condition AX is satisfied
because for any behavior s1, s2, . . . satisfying IC, there is a corresponding
behavior sp1 , sp2 , . . . satisfying ICp in which p always makes the correct
prediction.

It’s not hard to see that ICp implements IA under this refinement map-
ping:

in ← if p = undo then rdy else in, num ← num, sum ← sum

The generalization from this example is straightforward. Suppose the next-
state action Next is the disjunction of elementary actions that include a set
of actions Ai for i in some set P . A simple prophecy variable p that predicts
for which i the next Ai step occurs is obtained by:

1. Conjoining p ∈ P to the initial predicate Init .

2. Replacing each Ai by (p = i) ∧ (p ′ ∈ P) ∧ Ai .

3. Replacing each other elementary action B by (p′ = p) ∧ B .

Generalizations of simple prophecy variables and of the prophecy variables
described in Sections 4.4 and 4.5 are discussed in Section 4.6.

4.3 Predicting the Impossible

What if we obtain Sp by adding a prophecy variable p in this way to a
specification S, and p makes a prediction that cannot be fulfilled? It may

16

seem impossible for ∃∃∃∃∃∃ p : Sp to be equivalent to S if this can happen. To
see why this doesn’t affect the equivalence of the two specifications, let’s
consider an especially egregious example. Define S by:

S ∆
= (x = 0) ∧ 2[x ′ = x + 1]〈x〉

Since x ′ = x + 1 equals (x ′ = x + 1) ∨ false , we can rewrite this as:

S ∆
= (x = 0) ∧ 2[(x ′ = x + 1) ∨ false]〈x〉

Following the procedure above, we add a prophecy variable p that predicts
if the next (x ′ = x + 1) ∨ false step is an x ′ = x + 1 step or a false step.

Sp ∆
= Initp ∧ 2[Nextp]〈x ,p〉

Initp
∆
= (p ∈ {go, stop}) ∧ Init

Nextp
∆
= ((p = go) ∧ (x ′ = x + 1) ∧ (p′ ∈ {go, stop}))
∨ ((p = stop) ∧ false ∧ (p′ ∈ {go, stop}))

If p ever becomes equal to stop, then no further Nextp step is possible (since
no step can satisfy false), at which point the behavior must consist entirely
of stuttering steps. In other words, the behavior describes a system that has
stopped. But that’s fine because S allows such behaviors. If we don’t want
S to allow such halting behaviors, we must conjoin to it a supplementary
property such as WF〈x〉(x

′ = x + 1). In that case, Sp becomes

Initp ∧ 2[Nextp]〈x,p〉 ∧ WF〈x〉(x
′ = x + 1)(17)

The conjunct WFx(x ′ = x + 1) implies that a behavior must keep tak-
ing steps that increment x . Formula (17) thus rules out any behavior in
which p ever equals stop, so ∃∃∃∃∃∃ p :Sp ∧WF〈x〉(x

′ = x + 1) is equivalent to
S ∧WF〈x〉(x

′ = x + 1) .
A reader who finds this hard to understand is making the mistake of

thinking of a specification like (17) as a rule for generating behaviors. It’s
not. It’s a predicate on behaviors—a formula that is either satisfied or not
satisfied by a behavior.

A reader who finds the specification (17) weird is making no mistake. It
is weird. In the terminology introduced by ER, it is weird because it is not
machine closed. (Machine closure is explained in ER; it originally appeared
under the name feasibility [5].) Except in rare cases, system specifications
should be machine closed. However, a specification obtained by adding a
prophecy variable is not meant to specify a system. It is used only to verify
the system. Its weirdness is harmless.

17

4.4 A Sequence of Prophecies

We generalize a simple prophecy variable that makes a single prediction to
one that makes a sequence of consecutive predictions. As an example, let
D be the specification that is the same as Ã except instead of alternating
between input and output actions, it maintains a queue inq of unprocessed
input values. An input action appends a value to the end of inq , and an
output action removes the value at the head of the queue and changes sum
and out as in our previous specifications. An input action can be performed
anytime, but an output action can occur only when inq is not empty. The
definition of D is in Figure 5, where for any nonempty sequence sq of values,
Head(sq) is the first element of sq and Tail(sq) is the sequence obtained
from sq by removing its first element, with Tail(〈 〉) = 〈 〉.

As for our previous example, we implement D with a specification E
which also contains an undo action that throws away the first input in inq
instead of processing it. It is specified in Figure 6.

To define a refinement mapping under which E implements D, we add a
prophecy variable whose value is a sequence of predictions, each one predict-
ing whether the corresponding value of inq will be processed by an output
action or thrown away by an undo action. Each prediction is made when
the value is added to inq by an input action. The prediction is forgotten
when the predicted action occurs. The definition of Ep is in Figure 7.

For sequences vsq and dsq of the same length, let OnlyDo(vsq , dsq) be the
subsequence of vsq consisting of all the elements for which the corresponding
element of dsq equals do. For example:

OnlyDo(〈3, 2, 1, 4, 7〉, 〈do, undo, undo, do, undo〉) = 〈3, 4〉

D ∆
= ∃∃∃∃∃∃ inq ,num, sum : ID

ID ∆
= InitD ∧ 2[NextD]〈inq,out ,num,sum 〉

InitD
∆
= (inq = 〈 〉) ∧ (out = num = sum = 0)

NextD
∆
= InputD ∨ OutputD

InputD
∆
= ∃n ∈ Int : (inq ′ = Append(inq ,n)) ∧ UC 〈out ,num, sum〉

OutputD
∆
= (inq 6= 〈 〉) ∧ (inq ′ = Tail(inq))
∧ (sum ′ = sum + Head(inq)) ∧ (num ′ = num + 1)
∧ (out ′ = sum ′ /num ′)

Figure 5: The definition of specification D.

18

E ∆
= ∃∃∃∃∃∃ inq ,num, sum : IE

IE ∆
= InitD ∧ 2[NextE]〈inq,out ,num,sum 〉

NextE
∆
= NextD ∨ UndoE

UndoE
∆
= (inq 6= 〈 〉) ∧ (inq ′ = Tail(inq)) ∧ UC 〈out , sum,num〉

Figure 6: The definition of specification E .

Ep ∆
= ∃∃∃∃∃∃ inq ,num, sum : IEp

IEp ∆
= InitpE ∧ 2[NextpE]〈inq,out ,num,sum,p 〉

InitpE
∆
= (p = 〈 〉) ∧ InitD

NextpE
∆
= InputpE ∨ OutputpE ∨ Undop

E

InputpE
∆
= (∃ d ∈ {do, undo} : p′ = Append(p, d)) ∧ InputD

OutputpE
∆
= (Head(p) = do) ∧ (p ′ = Tail(p)) ∧OutputD

Undop
E

∆
= (Head(p) = undo) ∧ (p′ = Tail(p)) ∧UndoE

Figure 7: The definition of specification Ep .

Specification IE implements ID under this refinement mapping:

inq ← OnlyDo(inq , p), sum ← sum, num ← num

The generalization from this example is straightforward, if we take p = 〈 〉
to mean that there is no prediction being made. Let the next-state action
Next be the disjunction of elementary actions that include a set of actions
Ai for i in a set P . Here is how we add a prophecy variable p that makes a
sequence of predictions of the i for which the next Ai step occurs:

1. Conjoin p = 〈 〉 to the initial predicate Init .

2. Replace each Ai by (p = 〈 〉 ∨ Head(p) = i) ∧ (p′ = Tail(p)) ∧ Ai .

3. Replace each other elementary action B by either (p ′ = p) ∧ B or
(∃ i ∈ P : p ′ = Append(p, i)) ∧ B .

As with simple prophecy variables, AX is satisfied with the required behavior
sp1 , s

p
2 , . . . being one in which all the right predictions are made.

In our definition of Ep , we could eliminate the p = 〈 〉 of condition 2 from
the definitions of OutputpE and Undop

E because IEp implies that p is always
the same length as inq , and OutputD and UndoE both imply inq 6= 〈 〉.

19

4.5 A Set of Prophecies

Our next type of prophecy variable is one that makes a set of concurrent
predictions. Our example specification F is similar to D, except that instead
of a queue inq of inputs, it has an unordered set inset of inputs. An output
action can process any element of inset . Formula F is defined in Figure 8,
where \ is the set difference operator, so Int \ inset is the set of all integers
not in inset .

As before, we add an undo action that can throw away an element in
inset so it is not processed by an output action. The resulting specification
G is defined in Figure 9.

To show that G implements F , we add a prophecy variable p whose value
is always a function with domain inset . For any element n of inset , p(n)
predicts whether that element will be undone or produce an output. To
write the resulting specification Gp , we need some notation for describing
functions:

EmptyFcn The (unique) function whose domain is the empty set.

Extend(f , v ,w) The function f̂ obtained from function f by adding v to its
domain and defining f̂ (v) to equal w .

Remove(f , v) The function obtained from function f by removing v from
its domain.

The specification Gp is defined in Figure 10. As before, AX holds with
sp1 , s

p
2 , . . . a behavior having all the right predictions. Specification IGp

implements IF under this refinement mapping:

inset ← {n ∈ inset : p(n) = do}, sum ← sum, num ← num

F ∆
= ∃∃∃∃∃∃ inset ,num, sum : IF

IF ∆
= InitF ∧ 2[NextF]〈inset ,out ,num,sum 〉

InitF
∆
= (inset = { }) ∧ (out = num = sum = 0)

NextF
∆
= (∃n ∈ Int \ inset : InputF (n)) ∨ (∃n ∈ inset : OutputF (n))

InputF (n)
∆
= (inset ′ = inset ∪ {n}) ∧ UC 〈out ,num, sum〉

OutputF (n)
∆
= (inset ′ = inset \ {n})
∧ (sum ′ = sum + n) ∧ (num ′ = num + 1)
∧ (out ′ = sum ′ /num ′)

Figure 8: The definition of specification F .

20

G ∆
= ∃∃∃∃∃∃ inset ,num, sum : IG

IG ∆
= InitF ∧ 2[NextG]〈inset ,out ,num,sum 〉

NextG
∆
= NextF ∨ (∃n ∈ inset : UndoG(n))

UndoG(n)
∆
= (inset ′ = inset \ {n}) ∧ UC 〈out , sum,num〉

Figure 9: The definition of specification G

Gp ∆
= ∃∃∃∃∃∃ inset ,num, sum : IGp

IGp ∆
= InitpG ∧ 2[NextpG]〈inset ,out ,num,sum,p 〉

InitpG
∆
= (p = EmptyFcn) ∧ InitF

NextpG
∆
= (∃n ∈ Int \ inset : InputpG(n))

∨ (∃n ∈ inset : OutputpG(n) ∨ Undop
G(n))

InputpG(n)
∆
= (∃ d ∈ {do, undo} : p′ = Extend(p,n, d)) ∧ InputF (n)

OutputpG(n)
∆
= (p(n) = do) ∧ (p ′ = Remove(p,n)) ∧OutputF (n)

Undop
G

∆
= (p(n) = undo) ∧ (p′ = Remove(p,n)) ∧UndoG(n)

Figure 10: The definition of specification Gp .

which assigns to the variable inset of IF the subset of inset consisting of
all elements n with p(n) = do.

The only nontrivial part of the generalization from this example to an
arbitrary set of prophecies is that p should make no prediction for a value
not in its domain. Usually, as in our example, the actions to which the
prediction apply are not enabled for a value not in the domain of p. If
that’s not the case, then the condition conjoined to an action to enforce the
prediction should equal true if the prediction is being made for a value not
in the domain of p.

4.6 Further Generalizations of Prophecy Variables

Prophecy variables making sequences and sets of predictions can be gen-
eralized to prophecy variables whose predictions are organized in any data
structure—even an infinite one. A data structure can be represented as a
function. For example, a sequence of length n is naturally represented as a
function with domain the set {1, 2, . . . ,n} . The generalization is described
in detail in [12]. The basic ideas are:

21

• A prediction predicts a value i for which the next step satisfying an
action ∃ i ∈ P : Ai satisfies Ai . To add the prophecy variable, each
Ai is modified to enforce this prediction.

• An action or an initial condition that makes a prediction must allow
any value i in P to be predicted.

• Any action may remove a prediction and/or make a new prediction.
An action that fulfills a prediction must remove that prediction and
may replace it with a new prediction. Any other action may leave the
prediction unchanged.

Whether or not a particular prophecy is made is often indicated by the
data structure containing the prophecies. In the example of Section 4.5,
whether a prediction is made for an integer n depends on whether or not n
is in the domain of p. Sometimes it is convenient to indicate the absence
of a prophecy by a special value none that is not an element of the set P
of possible predictions. In the example of a simple prophecy variable in
Section 4.2, we could let the Output and Undo actions remove the prophecy
by setting p to none, and have the Input action make the prophecy by setting
p to do or undo. Handling none values is straightforward.

4.7 Stuttering Variables

Usually, when S1 implements S2, specification S1 takes more steps than S2.
Those extra steps simulate stuttering steps of S2 under a refinement map-
ping. If S2 takes more steps than S1 to perform some operation, then defin-
ing a refinement mapping requires an auxiliary variable that adds stuttering
steps to S1. For example, our specification of an hour clock implements
the specification of an hour-minute clock with the variable describing the
minute display hidden. Defining a refinement mapping to show this requires
an auxiliary variable that adds to the hour-clock specification 59 stuttering
steps between every change to the variable hr . ER used prophecy variables
for this. We find it more convenient to use another type of auxiliary variable,
which we obviously call a stuttering variable.

It’s easy to make up examples like the hour clock implementing the hour-
minute clock where a stuttering variable is clearly required. In practice,
stuttering variables are often used in more subtle ways. A realistic use
appears in Section 5 below. A more surprising use is that in the three
examples of prophecy variables in Sections 4.2, 4.4, and 4.5, we can use
stuttering variables instead of the prophecy variables. We simply add a

22

stuttering step before each output-action step, and we define the refinement
mapping to make that stuttering step implement the input step. For the last
two of those examples, the refinement mapping maps each behavior of the
specification with undo to a behavior in which there is never more than one
value in the internal queue or set. We can use stuttering variables instead of
prophecy variables in these examples only because they unrealistically make
input steps internal while output steps are externally visible.

We add stuttering steps before and/or after elementary actions of the
next-state action. An easy way to do it is to let the value of the stuttering
variable s be a natural number. Normally s equals 0; it is set to a positive
integer to take stuttering steps, the value of s being used to count the number
of steps remaining. For example, consider the specification Init ∧2[Next]x ,
where x is the tuple of all the specification’s variables (internal and external);
and let Next equal A ∨ B ∨ C . A stuttering variable s that adds 4 stuttering
steps after each C step can be defined by:

Inits
∆
= Init ∧ (s = 0) Nexts

∆
= As ∨ B s ∨ C s

As ∆
= (s = s ′ = 0) ∧A B s ∆

= (s = s ′ = 0) ∧ B

C s ∆
= ((s = 0) ∧ (s ′ = 4) ∧ C) ∨ ((s > 0) ∧ (s ′ = s − 1) ∧UC 〈x〉)

To add 4 stuttering steps before each C step, we have to write C in the
form E ∧D , where E is a state predicate and D is an action that is enabled
in every state satisfying E—which means that for every state s satisfying
E there is a state t such that the step s, t is a D step. Most elementary
actions in specifications can easily be written in this form. (In TLA+, we
can always let E equal Enabled C and let D equal C .) We can then define

C s ∆
= ((s = 0) ∧ E ∧ (s ′ = 4) ∧ UC 〈x〉)
∨ ((s > 1) ∧ (s ′ = s − 1) ∧ UC 〈x〉)
∨ ((s = 1) ∧ (s ′ = 0) ∧ D)

It is not hard to see that both of these constructions satisfy AV1 and AV2.
We don’t have to use natural numbers for counting stuttering states.

For example, we can add stuttering steps both before and after an action by
using negative integers to count the steps after the action, counting up to 0.
Often, we let s take values that help define the refinement mapping. For
example, suppose we want to take stuttering steps so the refinement mapping
can implement an action by each process satisfying some condition. We can
let s always be a sequence of processes, where the empty sequence is the
normal value of s, and counting down is done by s ′ = Tail(s).

23

A single variable s can be used to add stuttering steps before and/or
after multiple actions. For example, we can let the normal value of s be 〈 〉,
add stuttering steps to an action A by letting s assume values of the form
〈“A”, i 〉 for a number i , and add stuttering steps to an action B by letting
s assume values of the form 〈“B”, q 〉 for q a sequence of processes.

To handle the unusual case when S1 implements S2 but it has internal
behaviors that halt while the corresponding internal behaviors of S2 must
take additional steps, we add an infinite stuttering variable s to S1 that
simply keeps changing forever. We do this by conjoining WF〈s 〉(s

′ 6= s) to
the internal specification of S1.

5 Verifying Linearizability

Linearizability has become a standard way of specifying an object shared by
multiple processes [7]. A process’s operation Op is described by a sequence of
three steps: a BeginOp step that provides the operation’s input, a DoOp step
that performs the operation by reading and/or modifying the object, and an
EndOp step that reports the operation’s output. The BeginOp and EndOp
steps are externally visible, meaning that they change external variables.
The DoOp step is internal, meaning it modifies only internal variables.

We illustrate our use of auxiliary variables for verifying a linearizability
specification with the atomic snapshot algorithm of Afek et al. [3]. Our
discussion is informal; formal TLA+ specifications are in [12]. The algorithm
implements an array of memory registers accessed by a set of writer processes
and a set of reader processes, with one register for each writer. A writer
can perform write operations to its register. A reader can perform read
operations that return a “snapshot” of the memory—that is, the values of
all the registers.

We let LinearSnap be a linearizable specification of what a snapshot al-
gorithm should do. It uses an internal variable mem, where mem(w) equals
the value of writer w ’s register. A DoWrite step modifies mem(w) for a
single writer w . A single DoRead step reads the value of mem. Another
internal variable maintains a process’s state while it is performing an op-
eration, including whether the DoOp action has been performed and, for a
reader, what value of mem was read by DoRead and will be returned by
EndRead . An external variable describes the BeginOp and EndOp actions.

We consider a simplified version of the Afek et al. snapshot algorithm
we call SimpleAfek . It maintains an internal variable imem. A writer w
writes a value v on its i th write by setting imem(w) to the pair 〈i , v 〉. A

24

reader does a sequence of reads of imem, each of those reads reading the
values of imem(w) for all writers w in separate actions, executed in any
order. If the reader obtains the same value of imem on two successive reads,
it returns the obvious snapshot contained in that value of imem. If not,
it keeps reading. SimpleAfek does not guarantee termination. The actual
algorithms add a way to have reading terminate after at most three reads,
and a way to replace the unbounded write numbers by a bounded set of
values. These more complicated versions can be handled in the same way
as SimpleAfek .

SimpleAfek implements LinearSnap, but constructing a refinement map-
ping to show that it does requires predicting the future. To see why, assume a
refinement mapping under which SimpleAfek implements LinearSnap. Since
BeginOp and EndOp actions of LinearSnap modify external variables, there
is no choice of which SimpleAfek actions implement them under a refine-
ment mapping. Only the choice of which SimpleAfek action implements
DoOp depends on the refinement mapping. Consider the following scenario,
in which we conflate actions of LinearSnap with the actions of SimpleAfek
that simulate them.

The scenario begins with no operation in progress. A reader performs a
BeginRead action, completes one read of imem, and then begins its sec-
ond read by reading imem(w), obtaining the same value as in its first
read. Writer w then performs its BeginWrite action, writes a new value in
imem(w), and is about to perform its EndWrite action. If no other writer
performs a DoWrite, then the reader will complete its second read of imem,
obtaining a snapshot containing the old value of mem(w). This requires
that its DoRead must occur before the DoWrite of w . However, suppose
another writer u does perform BeginWrite after w performs the DoWrite
and writes imem(u) before the reader reads it, and no more write operations
are performed. In that case, the reader will read imem two more times and
then return a snapshot containing the value of imem(w) just written by w ,
so the DoRead must occur after the DoWrite by w . Thus, knowing whether
the DoRead occurs before or after the DoWrite of w requires knowing what
writes occur in the future. Constructing the refinement mapping requires
predicting the future.

Linearizability provides a simple, uniform way of specifying data ob-
jects; but it provides little insight into what state must be maintained by
an implementation. Whether this is a feature or a flaw depends on what
the specification is used for. We present an equivalent snapshot specifica-
tion NewLinearSnap that can make verifying correctness of an implementa-
tion easier. We verify that SimpleAfek implements LinearSnap by verifying

25

that it implements NewLinearSnap and that NewLinearSnap implements
LinearSnap.

In addition to the internal variable mem of LinearSnap, NewLinearSnap
uses an internal variable isnap such that isnap(r) is the sequence of snap-
shots (values of mem) that a read by r can return. The BeginRead action
sets isnap(r) to a one-element sequence containing the current value of mem.
The writer actions are the same as in LinearSnap, except that a DoWrite
action appends the new value of mem to isnap(r) for all readers r that have
executed a BeginRead action but not the corresponding EndRead . The
EndRead action of reader r returns a nondeterministically chosen element
of the sequence isnap(r). There is no DoRead action.

To verify that SimpleAfek implements NewLinearSnap, we add to it a
history variable that has the same value as variable isnap of NewLinearSnap.
Translating an understanding of why the algorithm is correct into an invari-
ant of SimpleAfek and a refinement mapping under which it implements
NewLinearSnap is then a typical exercise in assertional reasoning about
concurrent algorithms, requiring no prophecy variable.

Although NewLinearSnap is equivalent to LinearSnap, to verify Simple-
Afek we need only verify that it implements LinearSnap. This is done by
first adding to it a prophecy variable p so that p(r) predicts which element
of the sequence isnap(r) of snapshots will be chosen by the EndRead action.
The value of p(r) is set to an arbitrary positive integer by r ’s BeginRead
action and is reset to none by its EndRead action. We then add a stuttering
variable that adds a single stuttering step after r ’s BeginRead action if
p(r) = 1 and adds stuttering steps after a DoWrite action—one stuttering
step for every read r for which the write adds the p(r)th element to isnap(r).
Each of those stuttering steps will simulate a DoRead step for one reader.
To add the stuttering step after a BeginRead step, the stuttering variable
simply counts down from 1. To add the stuttering steps after a DoWrite
step, it counts down using the set of readers whose DoRead the steps will
simulate. Requiring the stuttering steps to simulate those DoRead actions
makes it clear how to define the refinement mapping.

This technique of verifying linearizability by verifying an equivalent spec-
ification should often be applicable. In their paper defining linearizability [7],
Herlihy and Wing specify a linearizable FIFO queue and show an implemen-
tation in which defining a refinement mapping requires predicting the future.
As with the snapshot example, we can write a new specification of the queue
that is equivalent to the linearizable specification, and then verify that the
Herlihy-Wing algorithm implements that new specification without needing

26

a prophecy variable. Instead of maintaining a totally ordered queue of el-
ements, the new specification maintains a partially ordered set, where the
partial order describes constraints on the order in which items may be de-
queued. To define a refinement mapping showing that the new specification
implements the original one, we add a prophecy variable that predicts the
order in which items will be dequeued.

6 Prophecy Constants

In addition to variables and constants like 0, a temporal logic formula can
contain constant parameters. The sets of readers and writers in the Simple-
Afek specification are examples of constant parameters. While the value of
a variable can be different in different states of a behavior, the value of a
constant parameter is the same throughout any behavior. (Logicians call
constant parameters rigid variables, and what we call variables they call
flexible variables.)

In addition to quantifiers over variables, temporal logic has quantifiers ∃
and ∀ over constant parameters. A behavior σ satisfies the formula ∃n :F
iff there is a value of the constant parameter n (the same value in every state
of σ) for which σ satisfies F . We let ∃n ∈ P :F equal ∃n : (n ∈ P) ∧ F ,
where P is a constant expression (one containing only constants and constant
parameters) not containing n. The following simple rule of ordinary logic
holds for any temporal logic formulas F and G and constant expression P .

∃ Elimination To prove (∃n ∈ P :F)⇒ G , it suffices to assume n ∈ P
and prove F ⇒ G .

The following example from Section 5.2 of ER shows how this rule can be
used to construct refinement mappings that require predicting the future,
without adding a prophecy variable.

Specification S1 is satisfied by behaviors that begin with x = 0, repeat-
edly increment x by 1, and eventually stop (take only stuttering steps).
It has no internal variables. Specification S2 has external variable x and
internal variable y . Its internal specification is satisfied by behaviors that
begin with x = 0 and y any element of the set Nat of natural numbers, take
steps that increment x by 1 and decrement y by 1, and stop when y = 0.
The TLA specifications of S1 and S2 are in Figure 11, where formula Stops
asserts that the value of x eventually stops changing.

Clearly S1 and S2 are equivalent, since both are satisfied by behaviors in
which x is incremented a finite number of times (possibly 0 times) and then

27

Init1
∆
= x = 0 Next1

∆
= x ′ = x + 1

Stops
∆
= 32[x ′ = x]〈x 〉

S1
∆
= Init1 ∧ 2[Next1]〈x 〉 ∧ Stops

Init2
∆
= (x = 0) ∧ (y ∈ Nat)

Next2
∆
= (y > 0) ∧ (x ′ = x + 1) ∧ (y ′ = y − 1)

IS2
∆
= Init2 ∧ 2[Next2]〈x ,y 〉

S2
∆
= ∃∃∃∃∃∃ y : IS2

Figure 11: The definitions of specification S1 and S2.

stop. ER observes that S1 ⇒ S2 cannot be verified using their prophecy
variables because S1 doesn’t satisfy a condition they call finite internal non-
determinism. We can prove it using the ∃ Elimination rule.

Specification S1 implies that the value of x is bounded, which means
that there is some natural number n for which x ≤ n is an invariant. This
means that the following theorem is true:

S1 ⇒ ∃n ∈ Nat : 2(x ≤ n)(18)

Define T 1(n) to equal S1 ∧ 2(x ≤ n). Formula (18) implies that S1 equals
∃n ∈ Nat : T 1(n). By the ∃ Elimination rule, this implies that to prove
S1 ⇒ S2, it suffices to assume n ∈ Nat and prove T 1(n) ⇒ S2, which can
be done with the refinement mapping y ← n − x . The proof of S1 ⇒ S2
can be made completely rigorous in TLA and presumably in other temporal
logics.

In general, we prove S1 ⇒ S2 by finding a formula T 1(n) such that S1
implies ∃n ∈ P : T 1(n) for some constant set P , and we then prove n ∈ P
implies T 1(n) ⇒ S2. We can view this method in two ways. The first
is that instead of proving S1 ⇒ S2 with a single refinement mapping, we
prove T 1(n) ⇒ S2 by using a separate refinement mapping for each value
of n. The second is that the constant parameter n is equivalent to a simple
prophecy variable that predicts an action that never occurs, so its value
never changes. This is because ∃n ∈ P : T 1(n) is equivalent to

∃∃∃∃∃∃ p : (p ∈ P) ∧2[p′ = p]p ∧ T 1(p)(19)

For our example, this formula is equivalent to

∃∃∃∃∃∃ p : ((p ∈ Nat) ∧ Init1) ∧ 2[(p′ = p) ∧Next1]〈x ,p 〉 ∧ Stops

28

This is the formula we get by observing that Next1 is equivalent to

Next1 ∨ (∃n ∈ Nat : (x = n) ∧ false)

and adding a simple prophecy variable p to predict for which value of n the
next (x = n) ∧ false step occurs.

When a constant parameter n is used in this way, we call it a prophecy
constant. The equivalence of (19) and ∃n ∈ P : T 1(p) means that a ver-
ification using a prophecy constant can be done using a simple prophecy
variable, but there’s no reason to do so.

Prophecy constants are useful for predicting the infinite future—that is,
making predictions that depend on the entire behavior. Section 6 of ER
provides an example in which they cannot prove S1 ⇒ S2 with a refinement
mapping because the supplementary property of S2 implies that the initial
value of an internal variable depends on whether or not the behavior termi-
nates, violating a condition they call internal continuity. It is easy to find
the refinement mapping by adding a prophecy constant that predicts if the
behavior terminates—a prediction about the entire behavior.

7 The Existence of Refinement Mappings

There is a completeness result stating that for any specification S1 of the
form ∃∃∃∃∃∃y : Init ∧ 2[Next]〈x,y〉 ∧ L , if S1 implements S2, then we can add
history, prophecy, and stuttering variables to S1 to obtain an equivalent
specification Sa1 for which there exists a refinement mapping showing that Sa1
implements S2. In fact, we can use prophecy constants instead of prophecy
variables. We need only assume that the language for defining auxiliary
variables and writing proofs is sufficiently expressive. (TLA+ is such a
language.)

This result has been known for almost two decades. Our prophecy con-
stants are essentially what Hesselink called eternity variables [8]. His proof
of completeness for eternity variables can be translated directly to the fol-
lowing proof for prophecy constants.

Let IS1 and IS2 be the internal specifications of S1 and S2. To simplify
the proof, we assume that the next-state action Next of IS1 allows stuttering
steps, replacing it by Next ∨UC 〈x,y〉 if necessary; and we assume IS1
never halts, adding an infinite stuttering variable if it may halt.2 Let ISh1
be obtained from IS1 by adding a history variable h that initially equals 1

2This also allows us to avoid Hesselink’s “preservation of quiescence” assumption.

29

and is incremented by 1 with every Next step. Letting σ[i] be the i th state

of a behavior σ, specification ISh1 equals

∃σ ∈ P : ISh1 ∧2(〈x,y〉 = σ[h])

where P is the set of all behaviors satisfying ISh1 . We define a refinement
mapping that depends on the specific behavior σ.

Since S1 implements S2, for each σ in P there exists a behavior f (σ) of
IS2 that σ simulates. We define the refinement mapping for σ so that it
maps the state σ[h] in the behavior of ISh1 to the corresponding state f (σ)[g]
of IS2, for some g . In the absence of stuttering steps, g would equal h.
To define g in general, we first make the externally visible steps of σ and
f (σ) match up by adding stuttering steps to σ and/or f (σ). Since IS2 is
stuttering insensitive, we can assume that f (σ) already has the necessary
stuttering steps. We define IShs1 by adding a stuttering variable s to ISh1
that adds those stuttering steps needed to make the externally visible steps
of σ match those of f (σ). We can then define g to be a function of h, s, σ,
and f (σ).

What this proof shows is that prophecy constants allow embedding be-
havioral reasoning about a specification into state-based reasoning about
another specification. That just places a state-based veneer over a behav-
ioral proof, and presents a state-based tool like a model checker with a
specification whose states are impossibly complex. It defeats the purpose
of refinement mappings, which is to extend the Floyd-Hoare state-based
approach to systems.

A prophecy constant makes a single prediction. When prophecy is
needed in practice, as with the Afek et al. algorithm, repeated predictions
are almost always required. Making multiple predictions with a constant
parameter requires encoding some aspect of the system’s behavior in the
value of that constant. Our prophecy variables allow that to be avoided.

References

[1] Mart́ın Abadi. The prophecy of undo. In Alexander Egyed and Ina
Schaefer, editors, Fundamental Approaches to Software Engineering,
volume 9033 of Lecture Notes in Computer Science, pages 347–361,
Berlin Heidelberg, 2015. Springer.

[2] Mart́ın Abadi and Leslie Lamport. The existence of refinement map-
pings. Theoretical Computer Science, 82(2):253–284, May 1991.

30

[3] Yehuda Afek, Hagit Attiya, Danny Dolev, Eli Gafni, Michael Merritt,
and Nir Shavit. Atomic snapshots of shared memory. Journal of the
ACM, 40(4):873–890, September 1993.

[4] Bowen Alpern and Fred B. Schneider. Defining liveness. Information
Processing Letters, 21(4):181–185, October 1985.

[5] Krzysztof R. Apt, Nissim Francez, and Shmuel Katz. Appraising fair-
ness in languages for distributed programming. Distributed Computing,
2:226–241, 1988.

[6] R. W. Floyd. Assigning meanings to programs. In Proceedings of the
Symposium on Applied Math., Vol. 19, pages 19–32. American Mathe-
matical Society, 1967.

[7] Maurice P. Herlihy and Jeannette M. Wing. Linearizability: A correct-
ness condition for concurrent objects. ACM Transactions on Program-
ming Languages and Systems, 12(3):463–492, January 1990.

[8] Wim H. Hesselink. Eternity variables to prove simulation of specifica-
tions. ACM Trans. Comput. Log., 6(1):175–201, 2005.

[9] C. A. R. Hoare. Proof of correctness of data representations. Acta
Informatica, 1:271–281, 1972.

[10] C.A.R. Hoare. An axiomatic basis for computer programming. Com-
munications of the ACM, 12(10):576–583, October 1969.

[11] Leslie Lamport. Specifying Systems. Addison-Wesley, Boston, 2003.
Also available on the Web via a link at http://lamport.org.

[12] Leslie Lamport and Stephan Merz. Auxiliary variables in TLA+.
arXiv:1703.05121 (https://arxiv.org/abs/1703.05121) Also avail-
able, together with TLA+ specifications, at http://lamport.

azurewebsites.net/tla/auxiliary/auxiliary.html.

[13] Susan Owicki and David Gries. Verifying properties of parallel
programs: An axiomatic approach. Communications of the ACM,
19(5):279–284, May 1976.

31

http://lamport.org
https://arxiv.org/abs/1703.05121
http://lamport.azurewebsites.net/tla/auxiliary/auxiliary.html
http://lamport.azurewebsites.net/tla/auxiliary/auxiliary.html

	Introduction
	Preliminaries
	States, Behaviors, and Specifications
	State Machines
	Internal Variables

	Implementation and Refinement Mappings
	Specification
	Specification
	Implementation and a Refinement Mapping
	Finding the Refinement Mapping
	Generalization

	Auxiliary Variables
	History Variables
	Simple Prophecy Variables
	Predicting the Impossible
	A Sequence of Prophecies
	A Set of Prophecies
	Further Generalizations of Prophecy Variables
	Stuttering Variables

	Verifying Linearizability
	Prophecy Constants
	The Existence of Refinement Mappings
	References

