
Specifying and Verifying Systems With TLA+

Leslie Lamport
Microsoft Research

John Matthews
HP Labs

Cambridge Research Lab
Cambridge, MA

Mark Tuttle
HP Labs

Cambridge Research Lab
Cambridge, MA

Yuan Yu
Microsoft Research

Abstract

TLA+ is a high-level specification language that has been used
to specify and check the correctness of several hardware protocols.
We expect that it can also be used to specify and check concurrent
algorithms and protocols for software systems.

1. Introduction

Correct code is an important component of software reliability.
Modern operating systems make extensive use of concurrent and
distributed algorithms. These algorithms are subtle and easy to get
wrong, leading to an incorrect high-level design. We are concerned
with formally describing high-level system designs and checking
their correctness. We also address the question of checking that
code implements the high-level design.

Systems should be described in a formal specification lan-
guage to produce unambiguous descriptions that can be checked
with tools. Conventional programming languages are ill-suited
to this task because: (i) they describe one way of doing some-
thing, while a high-level description should allow many implemen-
tations; (ii) the need to generate efficient code makes them compli-
cated; and (iii) they do not provide the mathematical abstractions
required for simple, high-level specifications. We use the language
TLA+. We believe that its simplicity, elegance, and expressiveness
make it ideal for writing high-level descriptions of concurrent and
distributed systems.

We have had considerable experience applying TLA+ to hard-
ware protocols. Our experience suggests that it should be good
for software as well. Section 2 describes TLA+ and its associated
tools and techniques; section 3 describes our experience using it;
and section 4 discusses its potential application to software sys-
tems.

2. TLA +and Friends

2.1. TLA+

TLA+ is a formal specification language based on (untyped) ZF
set theory, first-order logic, and TLA (the Temporal Logic of Ac-
tions) [4, 7]. TLA is a temporal logic developed for describing
and reasoning about concurrent and distributed systems [5]. TLA+

includes modules and ways of combining them to form larger spec-
ifications.

Although TLA+ permits a wide variety of specification styles,
a typical specification has the formInit ∧ 2Next ∧ Liveness,
where:1

Init is the initial-state predicate—a formula describing all legal
initial states.

Next is the next-state relation, which specifies all possible steps
(pairs of successive states) in a behavior of the system. It
is a disjunction of actions that describe the different system
operations. An action is a mathematical formula in which
unprimed variables refer to the first state of a step and primed
variables refer to its second state.

Liveness is a temporal formula that specifies the liveness
(progress) properties of the system as the conjunction of fair-
ness conditions on actions. Although the specifications we
wrote included liveness properties, these properties were not
checked during the verification, so we largely ignore liveness
here.

Such a specification essentially describes a state machine. How-
ever, unlike specifications in methods based on abstract machines
or programming languages, the state predicates and actions in
TLA+ specifications are arbitrary formulas written in a high-level
language with the full power of set theory and predicate logic,
making TLA+very expressive. A TLA+specification consists of a
single mathematical formula.

2.2. TLC

TLC [11] is an on-the-fly model checker for debugging TLA+

specifications. This distinguishes it from almost all other model
checkers, which require specifications to be written in primitive,
low-level languages. No model checker can handle all the speci-
fications that can be written in a language as expressive as TLA+.
However, TLC can handle a subclass of TLA+ specifications that
seems to include the ones that arise in describing actual systems.

Explicit-state model checkers like TLC must generate all reach-
able states. Real system specifications are usually not finite state—
for example, they may contain unspecified sets of processors and

1The formula2Next should actually be2[Next]v , wherev is the tuple of
all variables; we drop such subscripts for simplicity. We also ignore the hiding of
internal variables, expressed with temporal existential quantification.



unbounded message queues. We run TLC on the actual specifica-
tion, using a separate configuration file that specifies a finite-state
instance. TLC can also be used to generate finite-length random
simulations of even infinite-state specifications.

TLC can be used to check safety and liveness properties of a
specification written in the formInit ∧ 2Next ∧ Liveness. For
safety properties, TLC explores all reachable states in the model,
looking for one in which an invariant is not satisfied or deadlock
occurs (there is no possible next state). For liveness properties,
TLC uses the standard tableau method described in [9]. TLC
avoids the tableau construction of the temporal formula if it con-
tains only temporal subformulas of the form23A or 32A, where
A is a state or action predicate. This allows it to handle SF (strong
fairness) and WF (weak fairness) properties more efficiently. Be-
cause the state graph constructed for liveness checking can easily
be too large for TLC to handle, TLC periodically checks the live-
ness properties on the partial state graph constructed so far. When
TLC detects an error, a state trace that exhibits the error is printed
as part of the error report. For a violation of a safety property, the
error trace is guaranteed to be minimal-length.

There are a number of interesting features that makes TLC a
useful tool.

• TLC keeps all of its internal data structures for invariant
checking on disk, using main memory as a cache to pro-
vide efficient implementation of those data structures. This
allows us to explore large state spaces—eliminating the com-
mon way in which explicit-state model checkers run out of
memory. (The largest state space TLC has checked so far
contains about 900 million distinct reachable states.)

• TLC can run in multi-threaded mode to make use of multi-
processors, and in distributed mode to make use of multiple
machines. It obtains a speedup that is nearly linear in the
number of processors. TLC users routinely check their spec-
ifications using large multiprocessor systems and/or multiple
machines.

• TLC periodically generates checkpoints during its runs. A
checkpoint can be used to resume an old run after a system
crash, or even after correcting a minor error found by TLC.
Because its checkpointing is very fast, TLC can afford to take
checkpoints fairly frequently during a long run. TLC users
have found this feature quite useful.

• TLC allows a user to specify symmetries in a specification by
providing a group of symmetry-preserving permutations. It
then applies the standard symmetry-reduction techniques to
explore only the quotient state space modulo the permutation
group.

Because TLA+ is such a high-level language, we expect TLC to
be slower than comparable model checkers—perhaps by a factor of
ten in the single-threaded mode, although we have not made any
real effort to compare it with other systems. But TLC can make
use of multiprocessors and multiple machines when better perfor-
mance is needed. Symbolic model checkers outperform explicit-
state ones on many problems. A new TLA+ model checker based
on satisfiability solving is therefore being written.

2.3. Hierarchical Proofs

In many cases, a model checker cannot handle a large enough
instance of a specification to provide enough confidence in its cor-
rectness. When model checking does not suffice, we must use
proof. Because TLA+ specifications are mathematical formulas,
correctness properties are expressed directly as mathematical theo-
rems. The advantage is that there is no need to generate verification
conditions; what you see is what you prove.

To prove that a state predicateI is an invariant of a specifica-
tion S, we must proveS ⇒ 2I, where2I is the temporal for-
mula asserting thatI is always true. WhenS has the usual form
Init ∧ 2Next, this is proved by finding a formulaInv, called an
invariant ofNext, that satisfiesInit ⇒ Inv, Inv∧Next ⇒ Inv′,
andInv ⇒ I, whereInv′ is the formula obtained fromInv by
priming all variables.

To prove that a specificationS1 implements another specifica-
tion S2, we must express the variables ofS2 as functions of the
variables ofS1 and proveS1 ⇒ S2, whereS2 is formulaS2 with
its variables replaced by the corresponding functions of the vari-
ables ofS1. The proof rules of TLA reduce all proofs to reasoning
about individual states or pairs of states, using ordinary, nontem-
poral mathematical reasoning. Over the years, such state-based
reasoning has been found to be more reliable than behavioral rea-
soning, in which one reasons directly about the entire execution.

The theorems that express correctness may be hundreds or thou-
sands of lines long, and their proofs are long and complex. We
have developed a hierarchical proof method in which the structure
of the formula to be proved largely determines the structure of the
proof [2, 6]. For example, the proof ofA ⇒ B ∧ C consists of
the two lower-level stepsA ⇒ B andA ⇒ C, and the proof of
A ∨B ⇒ C consists of the stepsA ⇒ C andB ⇒ C.

We have only minimal tool support, in the form of Emacs
macros, to help with hand proofs. One interesting application of
TLC is to debug these theorems before proving them, and to debug
the proofs as they are written. We have not explored the use of
mechanical proof systems for real system specifications.

3. Experience

3.1. Wildfire

In the fall of 1996, three of us began a project to verify the
cache-coherence protocol of an EV6-based multiprocessor [3].
(EV6 and EV7 are the internal names for the Alpha 21264 and
21364 processors.) We spent about three months writing a TLA+

specification of the protocol, starting with a stack of detailed,
incomplete, and inconsistent design documents. Interacting fre-
quently with the system’s designers by email and telephone, we
produced a 1900 line specification. We also wrote a high-level
TLA+ specification of the Alpha memory model, which the pro-
tocol was supposed to implement. The memory model and a sim-
plified version of the protocol specification are available on the
web [8].

TLC was not yet written, so our only reasonable option for ver-
ifying the protocol was to write a hand proof. We did not have
the resources to write a complete proof, so we decided to find



an invariant of the protocol and prove its invariance. We wrote
about 1000 lines of informal state predicates that formed the major
part of a complete (inductive) invariant. (Although it would have
been straightforward, we decided not to spend the time writing the
invariant in TLA+.) We selected two conjuncts, each about 150
lines long, as the part of the invariant most likely to reveal an er-
ror. We completed the proof for one of the conjuncts; it was about
2000 lines long and 13 levels deep. The proof of the second con-
junct would have been about twice as long, but we stopped about
halfway through because we decided that the likelihood of its dis-
covering an error was too small to justify further effort. We spent
about seven months on these two proofs.

We also wrote an informal higher-level proof of one crucial as-
pect of the protocol. It was about 550 lines long and had a maxi-
mum depth of 10 levels.

We found two ways in which the protocol did not implement
the Alpha memory model. One was deemed to be an error in the
memory model, which was subsequently changed in [1]. The other
was a genuine bug in the protocol—an easily-fixed error in one en-
try of one table. The simplest scenario displaying the bug required
four processors, two memory locations, and over 15 messages. We
believe that this error could have been found only by writing a
proof; an instance of the protocol exhibiting the error would have
too many states to be checked exhaustively by a model checker.

Perhaps the major achievement of the project was to subject the
protocol to a level of rigorous analysis that significantly increased
the designer’s confidence in its correctness. The designers were
quite happy with our work.

3.2. EV7

Influenced by our effort on the EV6 protocol, engineers decided
to use TLA+ to verify the cache-coherence protocol of the EV7.
This project began in the spring of 1998 and is not yet finished.
This time, the specification was written by an engineer who re-
ceived a few hours instruction on TLA+. (At the time, there was
no language manual.) His specification was about 1800 lines long.

Meanwhile, the TLC model checker was being written. By the
fall of 1998, it was ready to be applied to the TLA+ specification.
TLC was able to handle the specification; no modifications were
required. The largest instances it was feasible to check with TLC
had one cache line, two data values, and three processors. These
instances had about 12 million distinct reachable states and origi-
nally took several days to run. Improvements to TLC have since
reduced that time to a few hours.

We had planned to use TLC to check the RTL implementation
by translating runs of the RTL simulator into behaviors at the level
of the TLA+ specification, and using TLC to check those behav-
iors. That idea was put aside, and is only now being implemented,
because the engineers discovered another way to use TLC for RTL-
level testing. The error traces that TLC produced in the course of
debugging the specification often exhibited corner cases not con-
sidered by the designers. So, the verification team translated those
traces into input stimuli for the verification team’s RTL simulator.
The translation was then automated and TLC was used to generate
randomly chosen traces. The RTL input from such traces is better

than purely random input because it satisfies the TLA+ specifica-
tion.

Work is continuing on combining model checking and simula-
tion more systematically [10]. A translator from output of the RTL
simulator to behaviors at the level of the TLA+specification is be-
ing written. TLC will then be used to check that the RTL code
implements the TLA+specification during simulations. In the pro-
cess of checking simulation steps, TLC also collects information
about the TLA+specification states visited. TLC can then generate
traces to interesting but unvisited specification states. These traces
can be used to direct the RTL simulation towards coverage gaps.

An invariance proof was also written for the specification. TLC
was used extensively to debug the invariant.

As soon as we started using TLC, we found many errors in the
TLA+specification. Not counting simple mistakes that were easily
corrected, we found about 70 errors. About 90% of them were
discovered by TLC; the rest were found by a human reading the
specification. Most of the errors were introduced when translating
from the informal specification; they demonstrate the ambiguity
inherent in such specifications. Five design/implementation errors
were discovered—one directly by TLC, the other four by using
TLC error traces to generate simulator input.

The engineers were quite happy with TLA+. The verification
group preferred the TLA+ specification to the informal English
one. The EV8 designers were planning to use a TLA+ specifi-
cation rather than an English one as the “official” cache-coherence
protocol specification. However, the EV8 was cancelled. The en-
gineers from that project, who are now at Intel, are continuing to
use TLA+. They report that TLA+and TLC are starting to become
widely used within the former Alpha group at Intel, and they are
generating significant interest in other groups.

3.3. Itanium

We have also applied TLA+ to the cache-coherence protocols
for multiprocessors based on the Intel Itanium processor. These
systems have components that were designed elsewhere and there-
fore had to be modeled very abstractly. Simply writing the spec-
ifications uncovered many ambiguities in the English descriptions
and suggested two small design changes.

TLC could not check the TLA+specification of these protocols
on large enough instances to give us adequate confidence in the
design. This was because (i) the highly abstract models of com-
ponents designed elsewhere allowed many more interleavings than
any actual implementation would, and (ii) the design appeared to
require at least four processors to produce interesting scenarios.
However, we were able to run meaningful tests by having TLC
generate random simulations of large instances of the specifica-
tion. We are currently exploring ways of model checking larger
instances.

As part of this effort, we wrote a TLA+ specification of the Ita-
nium memory model, which we hope to release in the near future.
In addition to serving as a correctness condition for hardware im-
plementations, this specification could be used for analyzing the
correctness of software systems intended to run on Itanium-based
systems.

In this project, we were separated from the design team by sev-



eral thousand miles. The fact that an engineer could make so much
progress with TLA+ and TLC in relative isolation re-enforced our
confidence in the ability of engineers to use these tools.

3.4. Other Projects

We have also applied TLA+ in a number of smaller projects.
Disk Paxos [2] was developed for use in a project; to explain the
algorithm in its full generality, we described it to the engineers with
a TLA+specification. We used TLA+and TLC to find bugs in pro-
posals submitted to the working group for the PCI-X bus protocol.
For a database system project, we used TLC to check database re-
covery and cache-management protocols. We now routinely use
TLC to check the concurrent algorithms we write in the course of
our research.

4. Software

The major industrial applications of TLA+ have been in the
realm of hardware. Hardware engineers routinely use tools based
on formal methods to check lower-level designs. They are not ac-
customed to using tools to check their high-level designs. How-
ever, they do write careful informal specifications of those designs.
Engineers are aware that, with the increasing complexity of hard-
ware, errors in their high-level designs are becoming an important
concern. We have found them receptive to the idea of using TLA+

at the protocol level.
At the highest level, there is no fundamental difference between

hardware and software. The EV6 and EV7 cache-coherence pro-
tocols, which send messages that can be reordered in flight, look
very much like distributed algorithms in which separate comput-
ers communicate over a local area network. So TLA+, which has
proven useful for hardware, should be just as useful for software.
However, there does seem to be a cultural difference between hard-
ware and software engineers. Software engineers do not have the
same tradition of relying on specifications that hardware engineers
do.

An important lesson we have learned is that moving formal
methods from the research community to the engineering commu-
nity requires patience and perseverance. Engineers are under se-
vere constraints when designing a system. Speed is of the essence,
and they never have as many people as they can use. Engineers
must be convinced that formal methods will help before they will
risk using them.

We plan to explore the use of TLA+ for specifying and checking
the high-level design of concurrent software systems. We believe
that TLA+ is ideal for specifying these systems. We expect that
the methods of generating tests and of checking an implementation
against the higher-level specification, developed for the EV7, can
be used for software as well. We hope to work with engineers
to discover how best to use TLA+ in the software development
process.

Acknowledgments

We were assisted by many colleagues in this work. On the EV6
project: Madhumitra Sharma helped us to understand the proto-

col and write its high-level proof; and Paul Harter helped write
the low-level proof. On the EV7 project: Joshua Scheid wrote the
specification; Homayoon Akhiani and Jonathan Nall implemented
the TLA+ to RTL translator; Damien Doligez wrote the invari-
ance proof; and Serdar Tasiran has been implementing the RTL
to TLA+ translation. On the Itanium project: Jae Yang helped
specify the cache-coherence protocol and Gil Neiger helped us
specify the Itanium memory model. On other projects: Thomas
Rodeheffer worked on the PCI-X bus protocol; and David Lomet
worked on the database protocols. Rajeev Joshi helped us to build
a satisfiability-based model checker for TLA+.

References

[1] Alpha Architecture Committee.Alpha Architecture Reference Man-
ual. Digital Press, Boston, third edition, 1998.

[2] E. Gafni and L. Lamport. Disk paxos. Technical Report
163, Compaq Systems Research Center, July 2000. To ap-
pear in Distributed Computing. Currently available on the
web at http://gatekeeper.dec.com/pub/DEC/SRC
/research-reports/abstracts/src-rr% -163.
html .

[3] K. Gharachorloo, M. Sharma, S. Steely, and S. V. Doren. Archi-
tecture and design of AlphaServer GS320. In A. Gupta, editor,
Proceedings of the Ninth International Conference on Architectural
Support for Programming Languages and Operating Systems (ASP-
LOS IX), pages 13–24, Nov. 2000.

[4] L. Lamport. TLA—temporal logic of actions. A web page, a link to
which can be found at URLhttp://lamport.org . The page
can also be found by searching the Web for the 21-letter string
formed by concatenatinguid andlamporttlahomepage .

[5] L. Lamport. The temporal logic of actions.ACM Trans. Prog. Lang.
Syst., 16(3):872–923, May 1994.

[6] L. Lamport. How to write a proof.American Mathematical Monthly,
102(7):600–608, August-September 1995.

[7] L. Lamport. Specifying Systems. Addison-Wesley, Boston, 2002.
[8] L. Lamport, M. Sharma, M. Tuttle, and Y. Yu. The wildfire verifi-

cation challenge problem. At URLhttp://www.research.
compaq.com/SRC/tla/wildfire-challenge.html on
the World Wide Web. It can also be found by searching the Web
for the 24-letter stringwildfirechallengeproblem .

[9] Z. Manna and A. Pnueli.The Temporal Logic of Reactive and Con-
current Systems. Springer-Verlag, New York, 1991.

[10] S. Tasiran, Y. Yu, B. Batson, and S. Kreider. Using formal specifi-
cations to monitor and guide simulation: Verifying the cache coher-
ence engine of the Alpha 21364 microprocessor. InIn Proceedings
of the 3rd IEEE Workshop on Microprocessor Test and Verification,
Common Challenges and Solutions. IEEE Computer Society, 2002.
To appear as an HP technical report.

[11] Y. Yu, P. Manolios, and L. Lamport. Model checking TLA+ spec-
ifications. In L. Pierre and T. Kropf, editors,Correct Hardware
Design and Verification Methods, volume 1703 ofLecture Notes
in Computer Science, pages 54–66, Berlin, Heidelberg, New York,
Sept. 1999. Springer-Verlag. 10th IFIP wg 10.5 Advanced Research
Working Conference, CHARME ’99.


