
1

Leslie Lamport

Chapter on TLA+

from

Software Specification Methods

An Overview Using a Case Study

Henri Habrias and Marc Frappier, editors

Hermes, April 2006

Contents

7.1 Overview of TLA+ . 121
7.1.1 TLA . 121
7.1.2 TLA+ versus Z . 122

7.2 A Specification of Case 2 . 123
7.3 The Problematic Case 1 . 130
7.4 Validation of the Specification . 131
7.5 Satisfying the Specification . 132
7.6 The Natural Language Description . 133
7.7 Conclusion . 134

Chapter 7

TLA+

Leslie Lamport

7.1 Overview of TLA+

TLA+ is a formal specification language based on set theory, first-order logic,
and the Temporal Logic of Actions (TLA) [6,4]. In spirit, TLA+ is close to Z.
In fact, some aspects of TLA+ were inspired by Z. I will therefore assume that
the reader has read the chapter on Z, and I will explain the TLA+ specification
largely in terms of how it differs from the Z specification.

For reasons explained below, Case 1 is problematic. I will therefore first
present a complete specification for Case 2 and only afterwards discuss Case 1.

A complete description of TLA+ and its tools can be found in [7]. Here I
begin with a brief description of TLA and then describe the major differences
between TLA+ and Z.

7.1.1 TLA

A TLA specification is a temporal formula, often named Spec. The meaning of
a temporal formula is a predicate on behaviors. A behavior represents a con-
ceivable execution of a system. The behaviors satisfying Spec are the ones that
represent correct behaviors of the system. More precisely, a behavior represents
a conceivable history of a universe that may contain the system. A behavior
satisfying specification Spec represents a history of the universe in which the
system behaves correctly. To make this precise, we need some terminology.

A state is an assignment of values to variables. A step is a pair of states.
A behavior is an infinite sequence of states; the steps of a behavior are its
successive pairs of states. A state predicate is a formula whose meaning is a
predicate (Boolean-valued function) on states. An action is a formula whose
meaning is a predicate on steps. We often conflate a formula and its meaning.
For example, if A is an action, then an A-step is defined to be a step that satisfies
A. (Formally, the step satisfies the meaning of A, not the formula A.)

In TLA, actions are written as formulas containing primed and unprimed
variables. Unprimed variables refer to the variables’ values in the first state of the
step; primed variables refer to their values in the second state. State predicates
are actions with no primed variables.

122 Software Specification Methods

Like most industrial specifications I have seen, the invoice system has the
simplest possible nontrivial TLA specification—namely, it is a temporal formula
Spec defined by

Spec ∆= Init ∧2[Next]〈v1,...,vn 〉

where Init is a state predicate, Next an action, and the v i are the specifica-
tion’s variables. Formula Spec is true of a behavior σ iff Init is true of the first
state of σ and every step (successive pair of states) of σ is either a Next step
(one that satisfies Next) or a “stuttering step” that leaves all the variables v i

unchanged. Nothing happens in a stuttering step, so it is impossible to observe
that such a step has occurred. Hence, a specification should not be able to forbid
stuttering steps. Allowing them permits implementation/refinement to be simple
implication [5], and it permits composition to be conjunction [1]. However, since
the specification exercise includes neither refinement nor composition, stutter-
ing steps are irrelevant and can be ignored—except when a behavior ends in
an infinite sequence of such steps. A behavior that ends this way represents an
execution that terminates. Formula Spec allows terminating executions. Forbid-
ding termination requires conjoining a liveness property [2] to the definition of
Spec. Since there is no liveness requirement for the invoice system, I will ignore
liveness.

A TLA specification consists of the definition of the formula Spec—that is,
the one-line definition given above preceded by the definitions of Init and Next .
These are ordinary mathematical formulas, involving no temporal logic. The 2

in the line above is the only temporal-logic operator in the entire specification.
(If we were specifying liveness properties, temporal operators would appear in
the definitions of those properties as well.)

7.1.2 TLA+ versus Z

The invoice system example reveals the following differences between the usual
way of writing specifications in TLA+ and Z. (There is another style of Z specifi-
cation, not used in this book, in which sequences of states are described explicitly
with ordinary mathematics.)

• A TLA+ specification is a single temporal-logic formula. In Z, there is no
single formula or object that mathematically constitutes the specification.

• One can assert in TLA+ that a specification satisfies a property; Z has no
mechanism for making such an assertion.

• Unlike Z, TLA+ is untyped. Type correctness of a TLA+ specification Spec
is an invariance property asserting that, in every state reached during every
possible execution satisfying Spec, each state variable is an element of an
appropriate set (its type). One finds type errors by checking that invariance
property. In principle, being untyped makes TLA+ significantly more ex-
pressive than Z. In practice, the inexpressiveness of Z’s type system is at

Software Specification Methods 123

worst a minor nuisance for writing the specifications that typically arise in
industry. There are advantages to a typed language, but I have found them
not to be worth the extra complexity that types introduce. (Type checking is
discussed in Section 7.4.) However, eliminating types eliminates type decla-
rations that can contain information helpful to the reader; such information
needs to be included in comments.

• In Z, schemas are distinct from formulas and have their own logic. In TLA+,
there are only formulas. What would be a schema in a Z specification usually
becomes the definition of a formula in the corresponding TLA+ specification.

• While both TLA+ and Z use sets and functions, they have different built-in
operators for describing them. For example, TLA+ has constructs for ma-
nipulating records that Z lacks; Z has a panoply of operators for describing
sets of relations that TLA+ lacks. While TLA+ can easily define Z’s mathe-
matical operators, the Z syntax for them can be more convenient. Syntactic
differences lead to stylistic differences in the specifications. A TLA+ specifi-
cation might use records where a Z specification uses tuples or a schema, and
it might use total functions where a Z specification uses partial functions.

• A TLA+ specification can distinguish between the system’s interface, which
must be implemented, and its internal state, which serves only to specify the
behavior of the interface. This distinction can be made only informally in Z.

The following additional differences between ordinary TLA+ and Z specifications
are not revealed by this simple example.

• TLA+ can be used to specify both safety and liveness properties [2]. Z lacks
anything corresponding to the TLA+ operators for expressing liveness.

• TLA provides a simple mathematical definition of what it means for one
specification to implement another. Implementation is implication. A spec-
ification S1 implements a specification S2 iff S1 ⇒ S2 is a valid formula.
(There is no formal difference between a property and a specification; satis-
fying a property and implementing a specification are synonymous.)

For an engineer, the most significant difference between Z and TLA+ is probably
the set of tools they provide for checking a specification. The tools currently
available for checking TLA+ specifications are the SANY syntactic analyzer and
the TLC model checker, which is described in Section 7.4 below.

7.2 A Specification of Case 2

There is no such thing as the specification of a system. A specification is an
abstraction that describes some aspects of the system and ignores others. It
is like a map. One wants a different map of Texas for driving from Amarillo to
Houston than for finding new deposits of helium. So the first question one should
ask is:

124 Software Specification Methods

Question 1: What is the purpose of the specification?
Answer: This question does not seem to have an answer. The invoice example

is artificial because it does not indicate what the specification is to be used
for. In my experience, engineers are most interested in specifications as a way
of finding errors early in the design process. For that purpose, one writes a
specification of a high-level design and checks that it satisfies certain prop-
erties. The description of the invoice system gives no nontrivial properties
to be checked. Since I am just copying the Z specification, I do not have
to answer this question. I will accept whatever answer is implicit in the Z
specification.

The first question engineers who sit down to write a specification usually ask is:

Question 2: How do we begin?
Answer: Knowing how to begin is probably the hardest part of writing a spec-

ification. My best answer to this question is that one begins by informally
writing a single correct behavior of the system. It can be written either as a
sequence of states or a sequence of events. Doing this determines the grain of
atomicity of the specification. For the invoicing system, it answers questions
such as, is the placing of a new order represented as two events—the user
places the order and the system replies—or as a single event?

Since I am mimicking the Z specification, knowing where to begin is not a
problem. The Z specification tells us that placing an order is represented as a
single event. Thus, the specification cannot describe a scenario in which one
user places an order and, before the system responds, a second user places
another order. If there are multiple users, which is not ruled out by the
system description, such a scenario cannot be avoided. Whether abstracting
away this real possibility ignores an irrelevant complication or hides potential
problems depends on the purpose of the specification.

The next questions one asks are about the same for a TLA+ specification as for
a Z specification. I will therefore jump directly to an explanation of the complete
specification, which appears in Figures 7.1 and 7.2. (Since the specification is
explained in the text, I have omitted the explanatory comments that should
appear in every specification.) If you have read the Z specification, then you
already know pretty much what the TLA+ specification says. I will therefore just
explain the TLA+ notation and the differences between the two specifications.

TLA+ specifications are organized into modules. This simple specification
consists of a single module named Invoice. The module begins with an extends
statement that imports the standard module Naturals. This module defines the
set Nat of natural numbers and the usual arithmetic operators.

The constant statement declares the constant parameters OrderId and
Product that are the same as in the Z specification. The variables statement
declares the specification’s variables. (Unlike a constant, a variable can change
its value in the course of a behavior.) The variable stock is as in the Z specifi-
cation. I have replaced the two Z variables orders and orderStatus by a single

Software Specification Methods 125

module Invoice
extends Naturals
constants OrderId , Product
variables stock , order , inp, out

ProdOrder ∆= {f ∈ [Product → Nat] : ∃ p ∈ Product : f [p] 6= 0}
Order ∆= [state : {“pending”, “invoiced”}, prods : ProdOrder]

∪ [state : {“none”}]

TypeOK ∆= ∧ stock ∈ [Product → Nat]
∧ order ∈ [OrderId → Order]

Init ∆= ∧ stock = [x ∈ Product 7→ 0]
∧ order = [x ∈ OrderId 7→ [state 7→ “none”]]
∧ inp = 〈“”〉
∧ out = 〈“”〉

InvoiceOrderOp(id) ∆=
∧ inp′ = 〈“Invoice”, id〉
∧ if order [id].state 6= “pending”

then ∧ out ′ = 〈“order not pending”〉
∧ unchanged 〈stock , order〉

else if ∀ p ∈ Product : order [id].prods[p] ≤ stock [p]
then ∧ out ′ = 〈“OK”〉

∧ order ′ = [order except ![id].state = “invoiced”]
∧ stock ′ =

[p ∈ Product 7→ stock [p]− order [id].prods[p]]
else ∧ out ′ = 〈“not enough stock”〉

∧ unchanged 〈stock , order〉
NewOrderOp(pOrder) ∆=
∧ inp′ = 〈“NewOrder”, pOrder〉
∧ ∨ ∃ id ∈ OrderId :

∧ order [id].state = “none”
∧ out ′ = 〈“OK”, id〉
∧ order ′ = [order except ![id] = [state 7→ “pending”,

prods 7→ pOrder]]
∧ unchanged stock

∨ ∧ ∀ id ∈ OrderId : order [id].state 6= “none”
∧ out ′ = 〈“IdError”〉
∧ unchanged 〈stock , order〉

Fig. 7.1. The complete specification (beginning).

126 Software Specification Methods

CancelOrderOp(id) ∆=
∧ inp′ = 〈“CancelOrder”, id〉
∧ if order [id].state = “pending”

then ∧ out ′ = 〈“OK”〉
∧ order ′ = [order except ![id] = [state 7→ “none”]]
∧ unchanged stock

else ∧ out ′ = 〈“order not pending”〉
∧ unchanged 〈stock , order〉

EnterStock(pOrder) ∆=
∧ inp′ = 〈“EnterStock”, pOrder〉
∧ out ′ = 〈“OK”〉
∧ stock ′ = [p ∈ Product 7→ stock [p] + pOrder [p]]
∧ unchanged order

Next ∆=
∨ ∃ id ∈ OrderId : InvoiceOrderOp(id) ∨ CancelOrderOp(id)
∨ ∃ pOrder ∈ ProdOrder : NewOrderOp(pOrder) ∨ EnterStock(pOrder)

Spec ∆= Init ∧2[Next]〈stock , order , inp, out〉

theorem Spec ⇒ 2TypeOK

Fig. 7.2. The complete specification (end).

record-valued variable order , where order .prods replaces orders and order .state
replaces orderStatus. The variables inp and out represent the system’s input
and output. The Z specification assumes that each operation is performed as a
single atomic action at the behest of some external agent. In the TLA+ specifi-
cation, that action sets inp to the agent’s input and out to the system’s output.
There is no variable newids because its value is a simple function of the other
variables—namely, it equals OrderId minus the set of orders that are pending or
invoiced. (Avoiding redundant variables is a stylistic choice; I find that it makes
a specification clearer.)

Following the purely decorative horizontal line come definitions of two con-
stant sets, ProdOrder and Order . The set ProdOrder represents the set of all
nonempty bags of products. It would be easy to define a bag as a partial function,
the way Z does. (The standard module Bags does just that.) However, here it’s
more convenient to represent a bag of products as a function b whose domain is
the set Product of all products, where b[p] is the number of copies of p in bag b,
for any p in Product . The set Order is the set of all possible values of order [id]
for an id in OrderId . If id is an unused OrderId , then order [id] is a record with
just a state component whose value is the string “none”. Otherwise it is a record
whose state component is either “pending” or “invoiced” and whose prods field is
an element of ProdOrder . (In TLA+, one typically uses a string like “pending”

Software Specification Methods 127

instead of introducing an unspecified constant pending as in the Z spec.) The
definitions of ProdOrder and Order use the following TLA+ notation:

• {v ∈ S : P(v)} is the subset of S containing all elements v satisfying P(v).

• [S → T] is the set of all functions with domain S and range a subset of T .

• [l1 : S1, . . . , ln : Sn] is the set of all records r with fields l1, . . . , ln such that
r .l i ∈ S i for each i . (A record is a function whose domain is the finite set of
strings consisting of the names of its fields.)

The module next defines the type-correctness predicate TypeOK and the initial
predicate Init . A type-correctness predicate asserts that each variable is an el-
ement of some set that is usually called its “type”. This predicate is not part
of the specification, meaning that it is not used in defining Spec. A theorem at
the end of the module asserts that TypeOK is an invariant of Spec. It’s helpful
to state a type invariant early in the specification, because knowing the types
of the variables makes the specification easier to read. I haven’t bothered to
specify the types of inp and out , since knowing their types isn’t important for
understanding the specification. The initial predicate Init specifies the initial
values of the variables. The initial values of inp and out don’t matter and could
be left unspecified. However, the TLC model checker requires that all variables
be initialized. Since the specification’s actions always set inp and out to equal
tuples, we initialize the variables to 1-tuples for uniformity. Predicate Init as-
serts that each variable equals a single value; an initial predicate often asserts
that a variable is an element of some set. The definitions of Init and TypeOK
introduce the following TLA+ notation.

• A list bulleted by ∧ or ∨ represents the conjunction or disjunction of the
items. Indentation is used to eliminate parentheses in nested lists of conjunc-
tions and/or disjunctions. This makes large formulas easier to read. We can
also use ∧ and ∨ as the customary infix operators.

• [x ∈ S 7→ e(x)] is the function f with domain S such that f [x] = e(x) for
all x in S .

• 〈e1, . . . , en 〉 is an n-tuple, for any natural number n.

• [l1 7→ e1, . . . , ln 7→ en] is the record r with fields l1, . . . , ln such that
r .l i = ei for each i .

The next section of the module defines the next-state action Next , which spec-
ifies the allowed steps of the system. Jumping to the actual definition of Next ,
we see that it is a disjunction of a collection of actions. (I consider existen-
tial quantification to be a form of disjunction.) It defines a Next step to be
an InvoiceOrderOp(id) or CancelOrderOp(id) step for some id in OrderId , or
else a NewOrderOp(pOrder) or EnterStock(pOrder) step for some pOrder in
ProdOrder . There is no formal significance to the names of these actions, or to

128 Software Specification Methods

this particular way of writing Next as a disjunction. We could write the defini-
tion of Next in any number of equivalent ways—for example, by eliminating the
definitions of InvoiceOrderop, etc. and defining Next as one large formula.

Of course, I defined Next in this way to mimic the Z specification. There is
the following correspondence between the TLA+ actions and the Z operations:

• Action InvoiceOrderOp(id) corresponds to an InvoiceOrderOp operation
with its input id? equal to id .

• Action NewOrderOp(pOrder) corresponds to any Z operation NewOrderOp
whose input order? equals pOrder . (There may be many such operations—
one for each possible output value id !.)

• Action CancelOrderOp(id) corresponds to a CancelOrderOp operation with
input id? equal to id .

• Action EnterStock(pOrder) corresponds to any EnterStock operation with
input newstock? equal to pOrder .

Knowing the meaning of the Z operations, you should be able to understand
the definitions of these actions. The only new TLA+ notation used in these
definitions is the except construct. The instances of this construct that are
used here are explained by:

• [f except ![i] = e] is the function g that is the same as f , except with
g [i] = e.

• [r except ! .l = e] is the record s that is the same as r , except with s.l = e.

• [f except ![i].l = e] equals [f except ![i] = [f [i] except ! .l = e]] .

Observe that the actions all set the variables inp and out to tuples—either pairs
or one-tuples. It is generally best to have the values of a variable all of a uniform
“type”. This is why, for example, the EnterStock(pOrder) action sets out to the
one-tuple 〈“OK”〉 rather than simply to the string “OK”.

The expected definition of Spec follows the definition of Next . Formula Spec is
the specification of the invoice system. However, it is not a satisfactory specifica-
tion for several reasons. The first has to do with stuttering. Consider a behavior
in which the action NewOrderOp(π) is executed twice in a row, with the same
product order π, when there is no unused OrderId . Both executions set inp to
〈“NewOrder”, π 〉, set out to 〈“IdError”〉, and leave stock and order unchanged.
The second execution leaves all four variables unchanged, so it is a stuttering
step. Since stuttering steps are unobservable, the second execution essentially
never happens. Execution of the other actions could also produce a stuttering
step in case of an error. The specification should distinguish between nothing
happening and a second NewOrderOp(π) operation being performed. For it to
make this distinction, we must ensure that executing an action always changes
the value of some variable. An easy way to do this is by adding another compo-
nent to the tuple inp and/or out that is changed with every input or output. For

Software Specification Methods 129

example, we could let inp have a Boolean first component that is complemented
on each action. In TLA+, the i th element of a tuple t is t [i], so the first conjunct
of NewOrderOp(pOrder) could then be written

inp′ = 〈¬inp[1], “NewOrder”, pOrder 〉
We would also have to modify the definition of Init , for example to assert that
inp equals 〈true〉.

Modifying the specification in this way highlights its second problem: the
encoding of inputs and outputs is rather arbitrary. It would be more elegant
simply to say that a NewOrderOp(pOrder) step is performed by providing as
input the operation name “NewOrder” and the product order pOrder , without
specifying how those inputs are encoded in the value of inp. It is easy to do
this in TLA+; Section 5.1 of [7] shows how. However, such elegance is of little
concern to engineers.

The final problem with Spec as a specification of the invoice system is that
it specifies the possible sequences of values assumed by all four variables stock ,
order , inp, out . A straightforward interpretation of the invoice system’s descrip-
tion implies that only inp and out are directly visible. The values of variables
stock and order can only be inferred from observing the inputs and outputs. An
implementation must implement the input and output described by the vari-
ables inp and out , but it is under no obligation to implement stock and order .
A philosophically correct specification would hide those two variables. Such a
specification is written informally as

∃∃∃∃∃∃ stock , order : Spec

where ∃∃∃∃∃∃ is temporal existential quantification [6]. TLA+ does not allow one to
write this formula because its meaning is not at all clear. The problem with it
has nothing to do with temporal logic; the meaning would be equally unclear
with ordinary quantification and a non-temporal formula Spec. Logicians seem
to be unaware of the problem because they never try to define formally what a
definition means. The correct way to hide internal variables in TLA+ is explained
in Section 4.3 of [7]. However, engineers are not concerned with philosophical
correctness and don’t bother hiding internal variables.

A comparison of the TLA+ and Z specifications may lead one to ask:

Question 3: The Z specification decomposes the operations into conjunctions
and disjunctions of simpler operations. Why doesn’t the TLA+ specification
decompose the action definitions in a similar way.

Answer: It would have been easy to define the actions in terms of simpler ones.
However, there is no point doing so for such simple actions. For most systems,
the next-state action is naturally written as the disjunction of actions that
each describe some single class of system events. Sometimes those actions
may be grouped in a natural way, leading to a hierarchical definition of the
next-state action as a disjunction of disjunctions. However, I have found that

130 Software Specification Methods

there is seldom anything to be gained by writing an action as the conjunction
of separately-defined actions.

Question 4: But isn’t modularity helpful—for example, in re-using specifica-
tions?

Answer: Almost everything you have learned about modularity and re-use is
irrelevant for specification. Almost every TLA+ specification ever written
is no longer than about two thousand lines (excluding comments). I have
found that engineers usually want to specify their systems in as much detail
as possible. However, they can’t understand specifications that are longer
than about two thousand lines. If a specification starts becoming too long,
an engineer starts over again and writes a less detailed, higher-level specifi-
cation.

The TLA+ module system permits the same kind of modularity that is
provided by Z’s schemas (and more). However, I have yet to see an engineer
break up a specification into modules. Breaking definitions into simpler de-
finitions within a single module provides all the modularity one needs for a
2000-line specification. This is in large part because TLA+ has a let. . . in
construct that permits definitions that are local to a formula, so one can
hierarchically structure a single definition.

Re-use of specifications is also a non-issue in practice. The hard part of
specifying a system is understanding it and finding a suitable level of ab-
straction. The effort of writing 2000 lines of formulas is minor. There is little
point trying to make a specification reusable. If in the future we want to write
a specification similar to that of the invoice system, we can just modify the
invoice system’s specification.

The specification ends with a theorem asserting type correctness. The temporal
formula 2TypeOK is true of a behavior σ iff every state of σ satisfies the state
predicate TypeOK . The formula Spec ⇒ 2TypeOK asserts of a behavior σ that,
if σ satisfies Spec, then it satisfies 2TypeOK . The theorem asserts that this
formula is true for all behaviors. (Remember that a behavior is any sequence of
states, not just one that satisfies some specification.)

7.3 The Problematic Case 1

A TLA+ specification describes a complete system and its environment. Thus
far, I have been describing closed-system specifications that are satisfied by all
behaviors in which both the system and its environment perform correctly. The
distinction between the system and the environment is informal, and we must
read the comments to discover which actions are to be implemented as part of
the system and which are to be performed by the environment.

We can also write open-system specifications, also called rely/guarantee spec-
ifications, that are satisfied by all behaviors in which the system performs cor-
rectly as long as the environment does. The system and environment are then

Software Specification Methods 131

formally distinguished and the specification describes exactly what the system’s
implementer must implement. As explained in Section 10.7 of [7], transform-
ing a closed-system specification to an open-system one, or vice-versa, is usu-
ally trivial. It generally requires changing about three lines of the specification.
Closed-system specifications are conceptually a bit simpler; they are the only
ones that engineers write—largely because they’re the only ones that TLC can
check directly.

Our specification of the invoice system is unusual because a single step rep-
resents both an operation performed by the environment (providing input) and
one performed by the system (changing the system state and producing output).
By choosing such a representation, we committed ourselves to a closed-system
specification that cannot be transformed into an open-system one.

The problem with Case 1 is that it does not ask for a description of a com-
plete invoice system. Instead, it asks for a description of one operation of such a
system. We could transform this into a system-specification exercise by defining
a system that performs only the invoicing operation and is used in an environ-
ment that performs the other operations of the invoicing system. To write such a
specification, we would have to decide how abstractly to represent this “environ-
ment”. If we represent those other operations at the same level of abstraction
as we did in Case 2, then a closed-system specification for Case 1 becomes
identical to our closed-system specification for Case 2. All we change are the
comments, indicating that all actions are performed by the “environment” ex-
cept for InvoiceOrderOp actions, which are performed jointly by the “system”
and the “environment”. Had we written an open-system specification for Case 2,
we could have obtained the specification for Case 1 by modifying it slightly to
attribute all but the invoice system’s invoicing actions to the environment.

While we could do all this, it is quite unnatural to consider the invoicing
operation by itself to form a separate system. A more sensible interpretation of
Case 1 is that it asks for just the one part of a larger specification that describes
the invoicing operation. The definition of InvoiceOrderOp in the Invoice module
provides such a description.

7.4 Validation of the Specification

We check a specification by checking that it satisfies certain desired properties.
Most often checked in practice are invariance properties. With TLA+, a property
can be an ordinary specification—that is, a formula of the same form Init ∧
2[Next]〈...〉 as Spec. If the specification includes liveness requirements, we can
also check that it satisfies liveness properties.

The description of the invoicing system provides no properties that it should
satisfy. Indeed, the system is so simple that it would be hard to find properties
to check that would increase our confidence that the specification says what we
want it to. The only thing we can check is the invariance property 2TypeOK .
Checking that Spec satisfies 2TypeOK essentially tells us that the specification

132 Software Specification Methods

is type correct. Invariance of a type-correctness predicate is a stronger property
than is provided by automatic type checking in a typed language. For example,
if s is a variable that has some sequence type, then the operation that assigns
the tail of s to s will satisfy an automatic type checker. However, it will violate a
type-correctness invariant if that operation can ever be executed when s equals
the empty sequence.

I developed the logic TLA to provide a simple and elegant way of formalizing
the correctness proofs of concurrent algorithms—the kind of proofs I had been
writing for about 15 years. TLA+ is well-suited to writing formal proofs; an ex-
ample of a formal hand proof written in TLA+ appears in [3]. However, very few
engineers have the time or the training to write rigorous mathematical proofs.
A couple of TLA+ proofs have been checked mechanically by hand-translating
them into the logic of a mechanical theorem prover, but there is not yet a me-
chanical proof checker for TLA+.

Model checking is the most attractive form of verification for engineers, usu-
ally yielding by far the greatest confidence for the amount of effort expended.
The TLC model checker, written by Yuan Yu, is described in Chapter 14 of [7]. It
can check a finite model of a specification obtained by instantiating the constant
parameters and, if necessary, specifying constraints to make the set of reachable
states finite. One obtains a finite model of the invoice specification as follows,
for particular values of α and β:

• Substituting specific finite sets for the parameters OrderId and Product .

• Replacing the set ProdOrder with the set of product orders containing at
most α copies of any one item.

• Constraining TLC to examine only states in which stock [p] ≤ β for all
products p.

With OrderId and Product each containing two elements, α = 2, and β = 3,
TLC finds about 70000 reachable states and checks the type invariant in less
than 30 seconds on my laptop. In the course of checking invariance, TLC also
checks for the absence of deadlock—meaning that the system never reaches a
state in which no action is enabled.

For most specifications, the kind of error that would be found by automatic
type checking when using a typed language is found by TLC in a few seconds
with a very small model.

7.5 Satisfying the Specification

After writing a specification, the next step is to implement it. We would natu-
rally like to check that the implementation satisfies the specification. In TLA,
implementation, satisfaction, and refinement all mean the same thing: logical
implication. We can check that one TLA+ specification implies another—either
by writing a proof or by using TLC.

Software Specification Methods 133

In principle, it is straightforward to check that a TLA+ model of an im-
plementation satisfies a TLA+ specification. This works quite well in practice
for concurrent algorithms. One writes a simple TLA+ specification of what the
algorithm is supposed to do, writes a TLA+ description of the algorithm, and
shows that the algorithm implements its specification—see [3] for an example.
The same idea can work for high-level system designs. One can write a TLA+

specification of what the system is supposed to do, write a TLA+ description
of the design, and check that the design satisfies its specification. However, I
have found that this is seldom done for real systems—with TLA+ or any other
language. Engineers usually specify only the high-level design and check that
it satisfies a few properties rather than a complete specification. I hope this
changes as engineers gain more experience with specifications.

Ultimately, most systems must be implemented in a programming language
or hardware-design language. One would also like to check that this implemen-
tation satisfies the TLA+ specification. In principle, this can be done by using
a TLA+ representation of the implementation, obtained from a TLA+-based
formal semantics of the implementation language. In practice, this kind of ver-
ification is economically feasible only for small, extremely critical applications.
TLA+ now has no tools to support such low-level verification, so it is probably
not an appropriate language for the task.

For most applications, the only feasible way of checking that an implemen-
tation satisfies a higher-level specification is by testing. This can be done by
translating executions of the implementation into the corresponding higher-level
behaviors and using TLC to check that those behaviors satisfy the TLA+ spec-
ification. The translation is performed by instrumenting the implementation in
some way. There is no tool to help with the instrumentation, but engineers seem
to find it easy to do on an ad hoc basis.

To my surprise, I have found that engineers are not very interested in this
kind of checking. They seem confident in their ability to determine if an execution
is correct without checking it against the specification. Instead, they want to use
the specification to help generate tests. A promising approach that has been
investigated is to use the specification to improve test coverage. Test executions
are translated to behaviors that are used as input to TLC. However, instead
of just checking that they satisfy the specification, TLC keeps track of which
reachable high-level states the behaviors have not reached. This information
is used to generate additional tests that drive the implementation into those
unreached states [8].

7.6 The Natural Language Description

No complicated formal specification can be understood without a natural lan-
guage explanation. That explanation normally appears in comments within the
module. The TLATEX program described in Chapter 13 of [7] can be used to
typeset the commented ascii specification in a more readable format. Figures 7.1

134 Software Specification Methods

and 7.2 were generated automatically by TLATEX from the uncommented ascii
specification—the exact specification on which TLC was run. (However, that
specification resided in an Emacs buffer while I wrote this chapter, so anything
might have happened to it since TLC checked it.)

7.7 Conclusion

The simple invoice specification gives little insight into what TLA+ is like in
practice. For example, when first viewing TLA+, a common complaint is the need
for unchanged conjuncts in the actions. The invoice specification might make
that complaint seem justified, since 13% of its lines are unchanged conjuncts. In
a typical specification, the figure is more like 4%. One must use TLA+ to realize
that rather than being overhead, those unchanged conjuncts provide useful
redundancy. They allow TLC to discover if we have inadvertently neglected to
specify the new value of a variable.

Significantly absent from the invoice example is concurrency. Concurrency
is not mentioned in the example’s description, and it is excluded from the Z
specification. TLA+ was designed for specifying and reasoning about concur-
rent systems. From a practical point of view, the differences between the TLA+

and Z specifications of the invoice system are largely stylistic. The differences
would be more significant for a concurrent system—especially if liveness were
important. Liveness properties of sequential systems tend to be simple, asserting
that an input action must be followed by the corresponding output action. An
informal treatment of liveness is usually satisfactory. Liveness properties of con-
current systems can be subtle and can often be made clear only through formal
specification.

In principle, a language’s inability to express liveness could be a handicap.
In practice, it seldom is. Experience has shown that most errors are violations
of safety properties. Moreover, the computational complexity of model check-
ing is larger for liveness properties than for safety properties. This means that
model checking liveness properties is usually feasible only for small models—ones
that may be too small to find subtle errors. The importance of liveness is more
philosophical than practical.

References

1. Mart́ın Abadi and Leslie Lamport. Conjoining specifications. ACM Transactions
on Programming Languages and Systems, 17(3):507–534, May 1995.

2. Bowen Alpern and Fred B. Schneider. Defining liveness. Information Processing
Letters, 21(4):181–185, October 1985.

3. Eli Gafni and Leslie Lamport. Disk paxos. Distributed Computing, 16(1):1–20, 2003.
4. Leslie Lamport. TLA—temporal logic of actions. A web page, a link to which can

be found at URL http://lamport.org. The page can also be found by searching the
Web for the 21-letter string formed by concatenating uid and lamporttlahomepage.

Software Specification Methods 135

5. Leslie Lamport. What good is temporal logic? In R. E. A. Mason, editor, Infor-
mation Processing 83: Proceedings of the IFIP 9th World Congress, pages 657–668,
Paris, September 1983. IFIP, North-Holland.

6. Leslie Lamport. The temporal logic of actions. ACM Transactions on Programming
Languages and Systems, 16(3):872–923, May 1994.

7. Leslie Lamport. Specifying Systems. Addison-Wesley, Boston, 2003. Also available
on the Web via a link at http://lamport.org.

8. Serdar Tasiran, Yuan Yu, Brannon Batson, and Scott Kreider. Using formal spec-
ifications to monitor and guide simulation: Verifying the cache coherence engine
of the Alpha 21364 microprocessor. In In Proceedings of the 3rd IEEE Workshop
on Microprocessor Test and Verification, Common Challenges and Solutions. IEEE
Computer Society, 2002.

