
Specifying 

LESLIE LAMPORT 

SRI International 

Concurrent Program Modules 

A method for specifying program modules in a concurrent program is described. It is based upon 
temporal logic, but uses new kinds of temporal assertions to make the specifications simpler and 
easier to understand. The semantics of the specifications is described informally, and a sequence of 
examples are given culminating in a specification of three modules comprising the alternating-bit 
communication protocol. A formal semantics is given in the appendix. 

Categories and Subject Descriptors: D.2.1 [Software Engineering]: Requirements/Specifications~ 
methodologies; D.2.4 [Software Engineering]: Program Verification--correctness proofs; F.3.1 
[Logics and MeAnings of Programs]:  Specifying and Verifying and Reasoning about Programs-- 
specification techniques 
General Terms: Verification 

Additional Key Words and Phrases: Multiprocessing, temporal logic, communication protocols 

1. INTRODUCTION 

I n  t h i s  p a p e r ,  we  d e s c r i b e  a m e t h o d  for  spec i fy ing  a m o d u l e  in  a c o n c u r r e n t  
p r o g r a m ,  w h e r e  a m o d u l e  is  a co l l e c t i on  o f  r e l a t e d  s u b r o u t i n e s .  I t  i n v o l v e s  
spec i fy ing  two  k i n d s  o f  p r o p e r t i e s :  

--Safety properties, d e s c r i b i n g  w h a t  t h e  p r o g r a m  is a l l o w e d  to  d o - - o r ,  dua l ly ,  
w h a t  i t  m a y  n o t  do.  

--Liveness properties, d e s c r i b i n g  w h a t  t h e  p r o g r a m  m u s t  do.  

W e  do n o t  spec i fy  o t h e r  k i n d s  o f  p r o p e r t i e s ,  s u c h  as  p e r f o r m a n c e  c h a r a c t e r i s t i c s .  
W e  seek  spec i f i ca t i ons  t h a t  a r e  as  w e a k  as  poss ib le ,  s t a t i n g  o n l y  t h o s e  p r o p e r t i e s  
of  t h e  p r o g r a m  n e c e s s a r y  to  m e e t  t h e  n e e d s  o f  t h e  user .  S u c h  s p e c i f i c a t i o n s  l e a v e  
t h e  i m p l e m e n t e r  f ree  to  choose  t h e  b e s t  p o s s i b l e  i m p l e m e n t a t i o n .  

M a n y  spec i f i c a t i on  m e t h o d s  h a v e  b e e n  p r o p o s e d  for  s e q u e n t i a l  p r o g r a m s .  T h e y  
g e n e r a l l y  spec i fy  a m o d u l e  in  t e r m s  o f  t h e  v a l u e s  r e t u r n e d  b y  i t s  s u b r o u t i n e s .  
H o w e v e r ,  t h i s  is  i n a d e q u a t e  for  a c o n c u r r e n t  p r o g r a m ,  w h e r e  o t h e r  p a r t s  o f  t h e  
p r o g r a m  m a y  be  e x e c u t e d  a t  t h e  s a m e  t i m e  a s  t h e  m o d u l e .  F o r  e x a m p l e ,  c o n s i d e r  
a m o d u l e  to  i m p l e m e n t  a F I F O  queue ,  w i t h  P U T  a n d  G E T  s u b r o u t i n e s  for  
i n se r t i ng  a n d  r e m o v i n g  e l e m e n t s .  I n  a s e q u e n t i a l  p r o g r a m ,  t h i s  m o d u l e  c a n  b e  

This work was supported in part by the National Science Foundation under grants MCS-78-16783 
and MCS-81-04459. 
Author's address: Computer Science Laboratory, SRI International, 333 Ravenswood Avenue, Menlo 
Park, CA 94025. 
Permission to copy without fee all or part of this material is granted prodded that the copies are not 
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the 
publication and its date appear, and notice is given that copying is by permission of the Association 
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific 
permission. 
© 1983 ACM 0164-0925/83/0400-0190 $00.75 

ACM Transactions on Programming Languages and Systems, VoL 5, No. 2, April 1983, Pages 190-222. 



Specifying Concurrent Program Modules • 191 

specified in terms of the values returned by GET as a function of previous calls 
to PUT and GET, where GET returns an error if the queue is empty. However, 
for a concurrent program in which PUT and GET are called by different 
processes, one might want to specify that  the GET operation waits if the queue 
is empty. The concept of waiting cannot be expressed in terms of the values 
returned. 

As this example indicates, a module in a concurrent program must be specified 
in terms of its behavior, rather than the values it returns. Temporal logic has 
proved to be a successful tool in reasoning about the behavior of concurrent 
programs [8, 9], so it is a natural choice as a formalism for specifying concurrent 
program modules. However, the temporal logic that  has been used thus far is not 
convenient for expressing many properties of concurrent programs. We have 
therefore introduced new kinds of temporal assertions to make the specifications 
simpler and easier to understand. 

In this paper, we ignore issues that  have already been studied for sequential 
programs. For example, we assume that the data structures we need, such as 
sequences, have already been defined. A complete specification system would 
include some method for defining data types, probably using an axiomatic 
approach. 

The standard temporal logics that have been employed can only be used to 
specify an entire concurrent program, not part of one, because they consider only 
the changing program states and not the actions that  cause the change. Formal- 
izing our specification method requires a generalization of temporal logic to 
include predicates for describing the actions that  are executed. However, the 
specifications can be understood with no knowledge of the formal temporal logic 
upon which they are based. We therefore give only a brief, informal semantics for 
our specifications in the main body of the paper, leaving a precise formalization 
to the appendix. The rest of the paper is devoted to a sequence of examples, 
including a FIFO queue and culminating in a specification of three modules 
comprising a communication protocol--the familiar alternating-bit protocol 
[1, 2, 11]. 

The specification of a program module may be viewed as a contract between 
the user of the module and its implementer. It must contain all the information 
needed to 

(1) Enable the user to design a program that  uses the module, and verify its 
correctness, without knowing anything about how the module is implemented. 

(2) Enable the implementer to design the module, and verify its correctness, 
without knowing anything about the program that  uses the module. 

It is therefore important that  the specifications not only be easy to write and 
understand, but that  they be easy to use for these two purposes. We show by 
examples that this is true of the specifications produced with our method. In our 
final example, using the specifications of the three modules comprising the 
alteruating-bit protocol, we show that they satisfy the specification of a FIFO 
queue, and thus correctly implement a lossless transmission line. All of our proofs 
are informal. Since the specifications can be translated into temporal logic 
formulas, formal proof methods are possible. However, they are beyond the scope 
of this paper. 

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 2, April 1983. 



192 Leslie Lamport 

Unlike many other  protocol specification methods,  our me thod  specifies not  an 
abstract  protocol but  an actual program module containing subrout ine calls for 
sending and receiving messages. In practice, one is concerned not  with abstract  
protocols but  with the program modules tha t  implement  them. An extra layer of 
formalism relating programs and abst ract  protocols is needed to verify tha t  a 
program module correctly implements  such an abstract  protocol  specification. 
We have avoided this extra layer by specifying the program module  itself. 

The  word "specification" is often used to denote  what  we would call a high- 
level design. A specification of a program describes what  the program should do; 
a high-level design describes how it should do it. This  distinction is not  a formal  
one, since even a machine language program can be made  into a specification by 
prefacing it with "Any program tha t  computes  the same result  as . . . .  " This  
"specification" does not  say how the results are to be computed,  bu t  it would 
certainly bias an implementer  toward a part icular  method.  Any specification will 
probably have some bias toward a certain type  of implementat ion,  so there  is no 
sharp dividing line between specifications and high-level designs. However,  we 
propose tha t  with any t rue specification method,  it should be easy to specify 
programs tha t  cannot  be implemented,  since describing what  should be done 
need not  imply tha t  it can be done. For  example, specifying a program to decide 
if a fmite-state machine will hal t  and specifying a program to decide if a Tur ing  
machine will hal t  should be equally ea sy - - even  though one of the programs can 
be wri t ten and the other  canhot.  

Our specifications do not  distinguish between distr ibuted and nondis t r ibuted 
programs. The  specification of a FIFO queue is the same whether  the P U T  and 
G E T  operations are issued in the same computer ,  making the queue a data  
s t ructure in a nondistr ibuted program, or are issued on separate  computers ,  
making the queue a transmission medium in a distr ibuted program. We feel tha t  
the essential difference between a distr ibuted and a nondis t r ibuted program is in 
their  performance,  which is outside the scope of our specifications. 

2. THE METHOD 

2.1 The Underlying Model 

We assume tha t  the execution of a concurrent  program can be represented  as a 
sequence of state transitions of the form 

S ----> S p, 

which denotes tha t  the action a took the program from state s to s tate  s'. 
Typically, t h i s  transit ion would represent  the  execution of a single atomic 
s ta tement  in some process, in which case s is the state  before the execution, s'  is 
the state immediately after  the execution, and a denotes  the program s ta tement  
being executed. However,  the exact  na ture  of the s tates  and actions does not  
concern us. Concurrency is represented by  the interleaving of concurrent  atomic 
operations. 

We therefore assume a set S of states, a set A of actions, and a set • of program 
execution sequences of the form 

a l  ~2 
S 0  --"> S l  ----> 8 2  " " " ,  

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 2, April 1983. 



Specifying Concurrent Program Modules 193 

where the si are in S and the ai are in A. All execution sequences are infinite; 
terminating programs are represented by having a null action tha t  takes a hal ted 
state into itself. 

We consider the meaning of the program to be the set 5] of all possible execution 
sequences. This  set contains executions starting from every state  in S. For  a 
nondeterminist ic program, there  can be many  sequences in 5] with the  same 
starting state So. 

A state represents  a complete "snapshot"  of the program at  some instant  of 
time. At any point  during the execution, the possible future  behavior  of the 
program must  depend only upon its current  state, and not  upon how it reached 
tha t  state. Thus,  the state must  include not  only the value of program variables, 
but  also the values of processes'  "program counters",  the values of parameter-  
passing stacks, the contents  of message queues, the states of transmission 
lines, etc. 

A state function is a mapping from the set S of states into some set of values. 
A predicate is a boolean-valued state function. The re  are two kinds of primitive 
state functions tha t  we will use: 

Program variables: A program variable x is a state function which assigns to 
any state s the value of x in tha t  state. 

Control predicates: If ~r is some control  point  in the p r o g r a m - - t h a t  is, some 
possible "program counter"  va lue - - t hen  we let  at(~r) denote  
the predicate which is t rue for a s tate  if and only if cont ro l  
is at the point  ~r in tha t  state. 

We can construct  more complex state functions from these primitive ones. For  
example, at(~r) A x > 0 is a predicate tha t  is t rue for a state if and only if control  
is at  the point ~r and the variable x has a positive value in tha t  state. 

2.2 Specifications 

To specify a program, we must  specify the set 5] of all its possible execution 
sequences. A specification consists of a collection of conditions on execution 
sequences. A program satisfies the specification if all of its possible execution 
sequences satisfy each of these conditions. We describe the semantics of these 
specifications informally; a formal definition in terms of tempora l  logic is given in 
the appendix. We advise the reader  to skim quickly through the rest  of this 
section on first reading, and to re turn  to it when studying the examples in the 
following section. 

A specification has the following form: 

s t a t e  f u n c t i o n s :  fl  : R1 . . . . .  f .  : R .  
initial conditions: I1 . . . . .  Im (*) 

p r o p e r t i e s :  PI . . . . .  Pq 

This has the following interpretat ion:  

T H E R E  E X I S T  state functions fl . . . . .  f ,  S U CH  T H A T :  
The  range of ]~ is Ri, for each i, AND 
IF the initial state satisfies 11 . . . . .  Im 
T H E N  propert ies P1 . . . . .  Pq are satisfied th roughout  the execution. 

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 2, April 1983. 



194 • Leslie Lampor t  

In order to verify that  a program satisfies such a specification, one must 
demonstrate the existence of the state functions ~ by defining them as functions 
of the program state. The values assumed by each ]~ must lie in the set Ri. 

The initial conditions/j  are predicates. The specification places constraints 
only on those executions for which each / / i s  true for the initial state So. 

Each property Pj expresses a constraint on the entire execution sequence 

a 2 
SO " ~  81 - ' ' )  S2 " ' ' .  

There are two basic types of properties: safety properties and liveness properties. 

2.2.1 Safety Properties. A safety property asserts that  something must never 
happen. The simplest form of s~fety property is a predicate. If Pj of (*) is a 
predicate, then it asserts the property that  this predicate is true throughout the 
execution--that is, that  Py is true for every state si in the execution sequence. 
Such a property will be called an invariance property. 

Another form of safety property asserts that  a state function cannot change 
when it is not supposed to. It is expressed in the form 

a leaves unchanged f when  Q, 

where a is a set of actions, f is a state function, and Q is a predicate. This has the 
following meaning. 

For every transition s -~ s'  in the execution, i f  

(i) ~ is in a and 
(ii) Q is true on state s, 

then the value of f on state s '  equals its value on state s. 

In other words, this property asserts that  any action in a leaves f unchanged 
when it acts in a starting state satisfying Q. If a is the set of all actions, then the 
"a leaves"  is omitted. If Q is the trivial predicate true, then the " w h e n  Q" is 
omitted. 

Rather than asserting when state functions may not change, we can assert 
when they may change by using the following construction. 

allowed changes  to gl when  Q1, 

gp when Qn: 
al : RI---~ S1, 

au : Ru---, S,, 

where the gi are state functions, the Qi and Rj are predicates, the ay are sets of 
actions, and the Sy are boolean functions on ordered pairs of states. This asserts 
the following for each i: 

For every transition s -~ s'  in the execution, i f  

(i) Qi is true for state s and 
(ii) the value ofgi on state s '  is different from its value on s, 

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 2, April 1983. 



Specifying Concurrent Program Modules • 195 

then there is some j such that 

(i) a is in aj 
(ii) Rj is true for state s 

(iii) Sj is true for the pair of states (s, s'). 

This property constrains the changes to the state functions gi by describing 
exactly what state transitions may change them. Any transition that changes gi 
starting in a state with Qi true must satisfy one of the transition specifications 

ay : Rj---~ Sj. 

In this transition specification, Rj is an enabling predicate, stating what must be 
true of the starting state, and Sj specifies a relation that  must hold between the 
starting state s and the final state s'. We require that if Sj is true for the pair of 
states (s, s'), then Rj must be false for s'. In other words, the enabling condition 
must become false after the transition. This requirement is needed for the formal 
statement of the property in terms of temporal logic that  is given in the appendix. 

The boolean functions Sj are described by expressions involving primed and 
unprimed state functions. When evaluating such an expression on the pair of 
states (s, s'), the unprimed state functions are evaluated on the starting state s, 
and the primed ones on the final state s'. Thus, gl > f '  is true for the pair of 
states (s, s ')  if and only if the value of the state function gl evaluated on state s 
is greater than the value of the state function f evaluated on state s'. 

The expression Sj is often of the form 

gl = g i / k  . . . ,  

indicating that the transition is not allowed to change the value of gi. We make 
the convention that if any of the state functions gi does not appear primed in the 
expression Sj, then Sj is assumed to contain an unwritten conjunctive clause of 
the form gl = gi. Thus, any gi that does not appear in the transition specification 
cannot be changed by the transition. 

As another notational convenience, the " w h e n  Q}' is omitted if Qi is the trivial 
predicate true. 

We sometimes write an "a l lowed  changes"  property in which a transition 
specification has the form 

for  a l l  v: a:R--~S, 

where v may appear as a free variable in the expressions R and S. This means 
that for any value of v, a transition satisfying the transition specification a: R --* 
S for that value of v m a y  change the values of the g~. 

2.2.2 Liveness Properties. Safety properties state what may or may not occur, 
but do not require that anything ever does happen. For example, an "a l lowed  
changes"  property specifies state transitions that may occur in the execution 
sequence; it does not specify that any such transitions actually do occur. Liveness 
properties state what must occur. They are specified using temporal logic asser- 
tions. We shall give here only a brief, informal description of the temporal logic 
assertions we shall need. A more complete discussion of temporal logic is given in 
[6] and [8], and a formal semantics is given in the appendix. (We are using the 
"linear time" logic of [6].) 

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 2, April 1983. 



196 Leslie Lamport 

The  propert ies P1 in the specification (*) are to hold th roughout  the program 
execution. We describe what  it means  for a tempora l  logic assertion to hold at 
" t ime i"  in the execution sequence 

a I a 2 
80 " ->  S l  - - ' )  82 • • • 

- - t h e  t ime right before the (i + 1)st transition, when the program state is si. This  
is done below for four types of assertions, where P denotes  any predicate.  

P :  t rue at  t ime i if and only if it is t rue on state  si. 
[ ]P :  t rue at  t ime i if and only if P is t rue at  all t imes j >_ i. 
~ P :  t rue at t ime i if and only if P is t rue at  some t ime j _ i. 
D<>P: t rue at  t ime i if and only if P is t rue at  infinitely m an y  t imes j _ i. 

We pronounce [] as "hencefor th" ,  ~ as "eventual ly" ,  and []  ~ as "infinitely often".  
All the liveness propert ies  we use will be logical combinat ions of these four 

kinds of assertions. For  example, the p roper ty  D P  D ~ Q  asserts t ha t  at  any t ime 
i, if P is t rue for all states s1 with j _ i, then  Q is t rue for some s ta te  sj with j _ 
i. (Remember  tha t  the propert ies  in specification (.)  are required to hold at  all 
times.) The  tautology 

~ [ ] p  - <>~p 

is very important .  It  states formally the simple observat ion tha t  P is not  always 
t rue if and only if it is eventual ly false. 

We write P ~-~ Q (read " P  leads to Q")  as an abbreviat ion for [ ] (P  D OQ). 
Thus,  the proper ty  P ~-* Q means  tha t  for any t ime at  which P is true, Q must  be 
true then or at  some later  time. 

3. EXAMPLES 

3.1 Subroutines 

In our examples, we specify various program modules, which requires specifying 
how the rest  of the program communicates  with these modules. For  convenience,  
we use a very simple subroutine-calling mechanism. Each  module has one or 
more subroutines tha t  can be called by the rest  of the program. Th e re  can be 
only one invocation of a given subrout ine active at  any instant,  a l though different 
subroutines may  be called concurrently.  Thus,  a subrout ine may  be thought  of as 
being "in-line", appearing only once in the program tha t  calls it. (To allow 
concurrent  invocations of the same subroutine,  we would have to add some 
method  for naming the different invocations.) 

Arguments  and results are passed using global variables. A subrout ine  SUB is 
called with its arguments  placed in the variable SUB.PAR,  and SUB leaves its 
results in tha t  same variable before exiting. Every  subrout ine  SUB therefore  
includes in its specification the state function SUB.PAR,  whose range depends 
upon the types of arguments  and results. For  example, if SUB takes an integer as 
an argument  and re turns  a boolean as a result, then  the range of S U B.P A R is 
i n t e g e r  o r  b o o l e a n ,  denoting the union of the set of integers and the set (true, 
false}. 
A C M  T r a n s a c t i o n s  on P r o g r a m m i n g  L a n g u a g e s  and  Sys t ems ,  Vol. 5, No.  2, Apr i l  1983. 



Specifying Concurrent Program Modules • 197 

state functions: 
S U B . P A R  : . . .  
a t (SUB)  : boolean 
"in(SUB) : b o o l e a n  
after(SUB) :boolean 

i n i t i a l  c o n d i t i o n s :  ~ [ a t ( S U B )  d in (SUB)  v after(SUB)] 

properties: 
1. (a) a [MOD]  leaves unchanged SUB.PAR when ~ in (SUB)  

(b) ~ a [ M O D ]  leaves unchanged SUB.PAR when i n (SUB)  
2. allowed changes to a t (SUB)  

in(SUB) 
after(SUB) 

(a) a[MOD]: in(SUB)---~ ~in(SUB)' A after(SUB)' A ~at(SUB)' 
(b) et[MOD]: at(SUB)-~~at(SUB)' A in(SUB)' 
(c) -a[MOD]: ~in(SUB)--~ in(SUB)' A at(SUB)' A ~after(SUB)' 
(d) -a[M OD ] : after(SUB)-, -after(SUB)' 

Fig. 1. Specification of subroutine SUB of module MOD, 

There are three other state functions that  will be needed for the subroutine 
SUB: the predicates at(SUB), in(SUB), and after(SUB). These predicates are 
functions of the control state of SUB-- that  is, functions of SUB's "program 
counter". The predicate at(SUB) is true if and only if control is at the entry point 
to SUB, and after(SUB) is true if and only if control is at the exit point of SUB-- 
the point reached upon completion of SUB. The predicate in(SUB) is true if 
control is anywhere inside subroutine SUB--including its entry point, but ex- 
cluding the exit point. (These predicates are the same ones used in [5] and [8].) 

We now use our method to specify the relevant properties of the argument/  
result-passing variable SUB.PAR and the three predicates at(SUB), in(SUB), 
and after(SUB). We assume that  the subroutine SUB is part of a module MOD. 
The complete specification is given in Figure 1 and is explained below. 

The state  func t ions  part of the specification is self-evident. The range of 
SUB.PAR will depend upon the particular subroutine SUB. (To improve reada- 
bility, we have eliminated the commas of our general form (.).) The ini t ia l  
condi t ions  specify that in the initial state, control is not in SUB or at its exit. 

In the properties, we have introduced the notation that  a[MOD] denotes the 
set of actions in the module MOD, and ~a[MOD] denotes the complement of 
this set--the set of all program actions not in MOD. Recall that  we can think of 
the actions of a program as the atomic statements of that  program, so a[MOD] 
represents the set of atomic statements in the module MOD. 

Property l(a) states that  no action in MOD can change the value of SUB.PAR 
when control is not in SUB. (MOD can contain other actions besides those of 
SUB.) Property l(b) states that  no action outside of MOD can change SUB.PAR 
when control is in SUB. Note that  although it is written as part of the specification 
of module MOD, property l(b) actually constrains the actions of the environment 
containing MOD. Such a constraint is necessary, since no argument or value 
passing could take place if SUB.PAR could be changed by outside activity during 
the execution of SUB. Property l(b) really represents a constraint on the 
parameter passing mechanism. 

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 2, April 1983. 



198 Leslie Lamport 

i ~ =t(suB) orMovi ot(~uB) 
; . (suB) ~ - -  " " 1  ; . (suB) 

/ / J I o,"oo, 

,1 
otlSUB) - -  ~ aNOD i ~ ,llSUB) 
; . (suB) I" ~ . ,'.(suB) 
° /u , (suB) I ... ,¢, . , (suB) 

Fig. 2. Changes to at(SUB), in(SUB), and after(SUB). 

Property 2 describes how the values of the at, in, and after predicates can 
change. To understand it, let us consider how they should change. The behavior 
we want is indicated by the state-transition diagram of Figure 2. The upper left- 
hand state is the initial one. The only way to leave that  state is to call SUB, 
which causes control to reach the entry point of SUB--indicated by the upper 
right state. This change of state is caused by an action that is not in MOD. From 
the entry point of SUB, there are two possible places to go: "further inside" SUB, 
or directly to the exit. The lower right state is "further inside" SUB, and the 
lower left one is when control is at the exit point of SUB. The rest of the diagram 
should now be clear. 

There are six transitions in Figure 2, representing all the allowed changes to 
the predicates at(SUB), in(SUB), and after(SUB). We could describe this with 
an a l lowed  changes  property containing six transition specifications. However, 
we can simplify this by observing that the two transitions to the lower left state 
can be combined into a single transition specification, stating that starting in a 
state with control in SUB--whether  or not control is at the entry point--an 
action of MOD can make control reach the exit point. This is specified in the 
transition specification (a) of Property 2 in Figure 1. Similarly, the two transitions 
leading to the upper right state have been combined in the transition specification 
(c). The two remaining transitions are described by (b) and (d). Note that in (b), 
the fact that after(SUB) does not appear means that  the transition must leave it 
unchanged. Similarly, (d) specifies a transition that leaves at(SUB) and in(SUB) 
unchanged. 

It is interesting to note that from this specification, we can derive the following 
two properties: 

at(SUB) D in(SUB). 

after(SUB) D ~in(SUB). 

In other words, these two predicates will be true for every state reached during 
ACM Transactions on Programming Languages and Systems, Vol. 5, No. 2, April 1983. 



Specifying Concurrent Program Modules • 199 

the execution. To prove this, we first observe that their conjunction is implied by 
the initial conditions, so it is true for the initial state. Next, we note that  this 
conjunction is not changed by any transition that does not change at(SUB), 
in(SUB), or after(SUB). Hence, we need only show that the truth of the 
conjunction is preserved by each of the four kinds of transitions allowed by 
Property 2, which is easily done. This illustrates how safety properties are derived 
from a specification. 

Whenever we specify a module with one or more subroutines, we shall assume 
that the state functions, initial conditions, and properties of Figure 1--with 
"MOD" and "SUB" replaced by the appropriate names--are an implicit part of 
the module's specification. Notice that the two properties of this specification are 
both safety properties. 

The reader may find it strange that the specification of a subroutine specifies 
properties of actions outside that subroutineunamely,  Properties l(a), 2(c), and 
2(d). This is not necessary for sequential programs because there are no other 
actions taking place while a subroutine is being executed. In sequential programs, 
the result of executing a subroutine depends only on the state in which it is begun. 
This is not true for concurrent programs, since the behavior of a subroutine can 
be affected by the actions of concurrently executing processes. The subroutine 
cannot be expected to behave properly under completely arbitrary actions of 
other processes--for example, if they change the values of its local variables. This 
type of interference is ruled out by most programming languages. The specifica- 
tion of Figure 1 describes the properties of a programming language's subroutine 
mechanism required for our examples. 

3.2 A Simple Subroutine 

As a very simple example, we consider a module containing only the single 
subroutine SQUARE, which takes an integer argument and returns its square. 
To specify this subroutine, we must first decide what state functions are needed 
(besides the functions SQUARE.PAR,  at(SQUARE),  in(SQUARE), and 
after(SQUARE), which we do not explicitly mention). We specify a single state 
function val which, at any point during the execution of SQUARE, equals the 
value that SQUARE will return. Since the state at any instant determines the 
future behavior of SQUARE, including the value that it will return, it must 
always be possible to define such a state function. 

The complete specification is given in Figure 3. Since the implicit initial 
condition states that control is outside the SQUARE subroutine, we need make 
no initial hypothesis about the value of val. Hence, there are no explicit initial 
conditions. For convenience, we separate the safety and liveness properties as 
indicated. Properties 1 and 2 state the relations between the value of the 
argument/result-passing variable SQUARE. PAR and the final output value val. 
Property 3 states that the value of val does not change during the execution of 
SQUARE. Combining these three properties, we see that if control is at the entry 
point of SQUARE (at(SQUARE) true) with SQUARE.PAR = v, then if control 
reaches the exit point (after(SQUARE) true), at the instant it reaches the exit 
point SQUARE. PAR will equal v 2. Thus, Properties 1-3 express the usual partial 
correctness conditions for SQUARE. 

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 2, April 1983. 



200 Leslie Lamport 

Fig. 3. Specification of the SQUARE 
subroutine. 

module  SQUARE wi th  subrou t ine  SQUARE: 

state functions:  

val : in teger  

initial  conditions: 

safe ty  properties: 
1. at(SQUARE) D val ffi SQUARE.PAR ~ 
2. after(SQUARE) D SQUARE.PAR = val 
3. u n c h a n g e d  val w h e n  in(SQUARE) 

Hveness properties: 

4. in(SQUARE) ~-~ after(SQUARE) 

subroutine SQUARE 
declare x, y integer ;  
beg in  

a: {x :ffi ]SQUARE.PAR[); 
b: (y :ffi x); 
c: (SQUARE.PAR := 0); 

whi le  d: (y - 1) 
do e: (SQUARE.PAR :ffi SQUARE.PAR + x); 

f: (y : f f i y -  1) 
od 

g: 
end 

Fig. 4. Implementation of 
the SQUARE subroutine. 

These safety properties imply that SQUARE cannot reach its exit point without 
producing the correct result. However, they do not imply that  SQUARE ever will 
reach its exit point. Liveness Property 4 expresses the requirement that  SQUARE 
must always terminate. It states that  if control is ever in SQUARE, then it must 
eventually reach the exit point. 

We now indicate how one verifies that  a particular program meets this speci- 
fication. We consider the simple program of Figure 4. The angle brackets enclose 
the atomic program actions. It is assumed that  SQUARE.PAR is declared 
externally to be an integer variable. There are six control points (possible program 
counter values) inside the subroutine--the points labeled a-f.  The control point 
g is the exit point of the subroutine. 

To prove that  this program meets the specification, we must define the state 
functions of the specification in terms of the program state. The control predicates 
are defined in the obvious manner as follows: 

at(SQUARE) -- at (a) .  

in(SQUARE) -- a t (a )  V a t (b)  V "'" V a t ( f ) .  

a f t e r ( S Q U A R E )  - a t ( g ) .  

(Recall that  at (a )  is the predicate that  is true ff and only if program control is at 
control point a.) 
ACM Transactions on Programming Languages and Systems, Vol. 5, No. 2, April 1983. 



Specifying Concurrent Program Modules 201 

The definition of the state function val  is more difficult, and is given below: 

val -~ i f  at(a) V at(b) 
then SQUARE. PAR 2 
else SQUARE.PAR + (27 * x) 

where 27 =- if at (f) then y - 1 
e lse  y. 

We now have to show that  the properties of the specification are satisfied with 
these definitions. We do not attempt to describe any formal method for doing 
this, but simply sketch an informal proof. We must first verify the implicit part 
of the specification, given by Figure 1. 

For the initial conditions, which state that  control is not initially in or after 
SQUARE, to be true, we need an assumption about the programming language 
stating that program control is not initially at any of the points a-g.  Property 
l(a) of Figure 1 for subroutine SQUARE is obvious, since the subroutine cannot 
take any action unless program control is inside it. Property l(b) must be achieved 
by some kind of programming language rule or convention to prohibit any 
concurrently executed program from modifying SQUARE. PAR while control is 
in subroutine SQUARE. Property 2 follows from the ordinary rules for program 
control. The verification of the properties specified in Figure 1 is essentially the 
same for any subroutine, and will not be repeated for subsequent examples. 

We must next verify the explicit part of the specification given in Figure 3. 
Property 1 follows immediately, since val  is defined to equal SQUARE.PAR 2 
when program control is at a. Property 2 follows from the easily verified fact that  
)7 = y = 0 when program control is at g. Finally, to verify Property 3, one must 
show that the value of val  cannot change when control is in the subroutine. This 
requires first of all that  no action by any other subprogram can change val  while 
control is in SQUARE, for which we must assume that  the programming language 
prevents any other subprogram from modifying the local variables x and y. (We 
have already assumed that  no other subprogram can change SQUARE.PAR 
while control is in SQUARE.) Next, we must show that no action in the subroutine 
SQUARE can change the value of val. This is done by examining the effect of 
executing each of the six atomic actions of the program (five statements plus the 
evaluation of the while  condition), and showing that  none of them changes the 
value of val. Verifying Liveness Property 4 requires an ordinary termination 
proof. 

The reader will note that  the proof of the safety properties resembles a standard 
assertional proof of partial correctness. Property 3, stating that  val  is unchanged, 
plays the part of the attached assertions in the Floyd method. It is characteristic 
of our specification method that proving safety properties of an implementation 
involves an assertional correctness proof. 

3.3 An Unimplementable Specification 

We can easily modify the specification of the SQUARE subroutine in Figure 3 to 
specify a square-root subroutine. In addition to the obvious name changes, we 
simply change Property 1 to 

at(SQUARE__ROOT) D val  e = SQUARE__ROOT.PAR. 
ACM Transactions on Programming Languages and Systems, Vol. 5, No. 2, April 1983. 



202 • Leslie Lamport 

This means that if SQUARE__ROOT is called with any integer argument v, then 
it must eventually terminate (by Property 4), producing an integer result equal 
to the square root of v. 

Since not every integer has an integer square root, such a subroutine cannot be 
implemented. However, it is important to observe exactly why it cannot be 
implemented. At first glance, one might suppose that the specification is self- 
contradictory. One can easily write self-contradictory specifications--for example, 
by including contradictory properties such as f >  0 and f <  0. However, this is not 
the case with the S Q U A R E _ R O O T  specification. This specification is not 
contradictory, but rather implies the property 

at(SQUARE__ROOT) D SQUARE__ROOT.PAR is a perfect square, 

meaning that the SQUARE ROOT subroutine is called only with an argument 
that is a perfect square. 

When we say that the S Q U A R E _ R O O T  specification is not implementable, 
we mean that we cannot write a subroutine that meets the specification regardless 
of the environment in which it is placed. The specifications we write for a module 
do not specify the behavior of just that module; they specify the behavior of the 
entire program--for example, Property 3 of Figure 3 states that val is left 
unchanged not just by the SQUARE subroutine, but  by the rest of the program 
as well. Any method for specifying a module in a concurrent program must permit 
the specification of what the rest of the program can do, since other subprograms 
can be executed concurrently with the module. (No module can behave correctly 
if concurrently executed subprograms can arbitrarily change the value of its 
variables.) We consider a module to meet a specification only if the specification 
is satisfied by any program that includes the module. This means that the 
programming language in which the module is implemented must permit the 
appropriate encapsulation of the module's variables. 

3.4 A Queue 

3.4.1 The Specification. We now specify a module that involves concurrent 
processing, having two subroutines that  can be called concurrently. The QUEUE 
module provides a FIFO queue, having two subroutines: P U T  that inserts an 
element at the taft of the queue, and GET that removes the element from the 
head of the queue. We require that if the queue is empty, then the GET 
subroutine must wait until an element is inserted by a call to the P U T  subroutine. 
We also require that the queue have a capacity of at least m elements, but  do not 
place any upper bound on its capacity. 

The crucial part of writing the specification is deciding what the state functions 
should be. The state functions will have to be definable in terms of the program 
state of the implementation. To obtain the most general specification--one 
permitting the widest variety of implementationsmone must choose state func- 
tions that can be defined for any possible implementation. One natural choice is 
a state function queue indicating the current contents of the queue. When a call 
of the PUT subroutine is being executed with an argument v-- the element to be 
put on the queue--there will be a period of time between entering the subroutine 
and placing v on the queue. We need a state function parg  to indicate the value 
ACM Transactions on Programming Languages and Systems, Vol. 5, No. 2, April 1983. 



Specifying Concurrent Program Modules • 203 

module QUEUE with subroutines PUT, GET 

state functions: 
queue: sequence  o f  elements 
parg : element or NULL 
gval : element or NULL 

initial conditions: 

[queue[ = 0 

safety properties: 
1. (a) at(PUT) Dparg= PUT.PAR 

(b) after(PUT) Dparg ffi NULL 
2. (a) at(GET) Dgval ffi NULL 

(b) after(GET) D GET.PAR = gval 
3. a l lowed changes  to queue 

parg when in(PUT) 
gval when/n(GET) 

(a) a[QUEUE]:in(PUT) A parg ~ NULL --* 
parg' = N U L L / k  queue' -- queue * parg 

(b) a[QUEUE] :in(GET)/k gval ffi NULL/~  [queue[ > 0 -* 
gval' ~ N U L L / k  queue = gval' * queue' 

l iveness  properties: 

4. in(PUT)/~ Iqueuel < m ~-~ after(PUT) 
5. in(GET)/k Iqueuel > 0 ,-~ after(GET) 

Fig. 5. Specification of a 
FIFO queue. 

of the element  tha t  is about  to be put  on the queue. When  control  is a t  the ent ry  
point, this value will equal the value of the program variable P U T .  PAR. However,  
the argument  may  be moved out  of P U T .  PA R before being placed on the queue, 
so p a r g  wi l l  not  necessarily equal P U T .  PAR after  leaving the ent ry  point. We let  
p a r g  a s s u m e  the value N U L L  when the e lement  is placed on the queue. 

We use a similar state function g v a l  to  indicate the value tha t  the  G E T  
subroutine has just  taken  off the queue and is about  to re turn  as its result. We let  
g v a l  have the N U L L  value before G E T  has removed an e lement  f rom the  queue. 

The  specification of the Q U E U E  module is given in Figure 5. We let [ q u e u e [  

denote  the length of the queue and let * denote  concatenation,  where the head of 
the queue is on the left. The  initial condition simply states t ha t  the queue is 
initially empty.  Propert ies  l(a) and (b) s tate  tha t  p a r g  equals the  argument  to 
P U T  when at  the ent ry  point, and is N U L L  when at  the exit point. Since a N U L L  

value of p a r g  denotes tha t  the argument  has already been pu t  on the queue, 
Proper ty  l(b) states tha t  the P U T  subroutine cannot  exit before it has pu t  its 
e lement  on the queue. Propert ies  2(a) and (b) are the analogous ones for GET.  

Proper ty  3 specifies when these values may  change. T h e  value of  p a r g  is  

meaningful only when control  is in P U T  or a t  its exit point, and Proper ty  l(b) 
defines its value at  the exit point. Hence,  we need only specify how p a r g  changes 
when control is in PUT,  which explains the " w h e n  i n (P U T)"  of P roper ty  3. 
Similar reasoning applies to g v a l .  The re  are two changes tha t  can occur: the first 
when an element  is pu t  on the queue by PUT,  and the  second when an e lement  
is removed from the queue by  GET.  The  la t ter  change can occur only when the 
queue is nonempty.  

Propert ies  1-3 are safety properties,  and they  do not  imply tha t  P U T  and G E T  
actually do anything. For  tha t  we need liveness properties.  T h e  liveness propert ies  

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 2, April 1983. 



204 Leslie Lamport 

for P U T  specify under  wha t  c i rcumstances  a call to P U T  mus t  succeed in put t ing  
its a rgument  into the queue and returning. We do not  want  to require  t ha t  P U T  
always do this, because a p rogram could call P U T  arbi t rar i ly  m a n y  t imes  wi thout  
ever  calling GET.  Requir ing P U T  always to re tu rn  would require  t ha t  the  queue 
be able to hold arbi t rar i ly  m a n y  elements,  which is not  possible for any  real  
implementat ion.  We therefore  require in Liveness  P rope r ty  4 only t ha t  P U T  
mus t  re turn  {which by  Proper t ies  1 and 3(a) it can only do af ter  put t ing  its 
a rgument  into the queue} if there  are fewer t han  m e lements  in the  queue, for 
some constant  m. This  means  tha t  in any  implementa t ion ,  the  queue m u s t  have  
room for a t  least  m elements.  P rope r ty  5 s ta tes  the  analogous requ i rements  for 
the G E T  subroutine.  

Note  tha t  had  we used a t ( P U T )  ra the r  t han  in (PUT} in P rope r ty  4, we would 
have  obta ined too weak a proper ty ,  for the  following reason.  I f  P U T  were called 
with m e lements  in the  queue, and left its en t ry  point  before any  e lements  were 
removed  f rom the queue, then  the weaker  p rope r ty  would imply  nothing abou t  
the future  behavior  of  the P U T  subroutine.  Even  if G E T  were called repea ted ly  
to remove  all the e lements  of the  queue, P U T  would not  be required to do 
anything. 

We specified a m i n i m u m  capaci ty  of m for the  queue,  bu t  did not  specify any  
m a x i m u m  capacity.  H a d  we wanted  to specify t ha t  the  queue should hold no 
more  than  n elements,  we could ei ther  have  added the  p rope r ty  I queue  I <- n or 
else added the  clause I queue  I < n to the  enabl ing condit ion of t ransi t ion 
specification (a) in P rope r ty  3. We would then  get a specification in which the  
P U T  subrout ine mus t  wait  until  there  are fewer t han  n e lements  in the  queue ' 
before it can add its a rgumen t  and return.  

We specified t ha t  the G E T  subrout ine  m u s t  wai t  until  there  is an e lement  in 
the queue. I t  is jus t  as easy to write a different specification in which G E T  mus t  
re turn  a special value if it finds the  queue empty .  We suggest  this as an exercise 
for the  reader.  

3.4.2 A n  I m p l e m e n t a t i o n .  In  this specification, we have  required t ha t  the  
queue behave  as if adding or removing an e lement  f rom it were a tomic  operat ions.  
This  does not  mean  tha t  the  entire P U T  and G E T  subrout ines  have  to be 
implemented  as single a tomic  actions. I t  does m e a n  tha t  when  the  P U T  opera t ion  
is adding an e lement  to the  queue, there  m u s t  be some ins tan t  a t  which t ha t  
e lement  becom es  visible to the  G E T  subrout ine,  and similarly some ins tan t  a t  
which the  G E T  operat ion finishes removing the  e lement  f rom the queue.  I f  there  
were not  such an instant,  t hen  the  G E T  subrout ine  migh t  t ry  to r emove  an 
e lement  tha t  the P U T  subrout ine  had  not  finished put t ing  in the  queue, obtaining 
only pa r t  of  the element.  1 

We il lustrate this wi th  the  implementa t ion  in Figure 6, where  we assume tha t  
the queue e lements  are N-bi t  integers. T h e  a r ray  Q is used as a ring buffer,  wi th  
H E A D  pointing to the e lement  holding the  head  of the  queue,  and  T A I L  point ing 

We could actually write a somewhat more general specification in which an element "flickered" for 
a while after it was put in the queue, and while it was "flickering" the GET subroutine nondetermin- 
isticaliy might or might not s e e  i t .  However, this generalization is of little practical interest. 

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 2, April 1983. 



Specifying Concurrent Program Modules 205 

module QUEUE 
global variables 
Q : array indexed by 0: m - 1 of n-bit numbers 
HEAD :integer initially 0 
TAIL :integer initially 0 

begin subroutine PUT 
declare I integer; 
while a: {TAIL - HEAD -- m) do b: {skip) od; 

c: (I := 0); 
whiled: (I < N) 

do e: {shift.left I (Q[TAIL mod m], PUT.PAR)); 
f: (I:ffiI+ 1) od; 

g: {TAIL := TAIL + 1) 
h: 

end subroutine 

begin subroutine GET 
declare J integer; 
while r: {TAIL - HEAD = 0) do s: {skip) od; 

t: (J := 0); 
whileu: (J < N) 

do v: {shift.right 1 (Q[I~EAD mod m], GET.PAR)) 
w: (J:= J+ 1) od; 

x: (HEAD := HEAD + 1) 
y: 

end subroutine 

end module 

Fig. 6. An implemen- 
tation of the QUEUE 

module. 

to the element holding its tail. For  simplicity, we let H E A D  and T A I L  be integers, 
and use their x/alues modulo rn as pointers. In  a more realistic implementation,  
they would be integers modulo 2m, but  this makes the reasoning slightly more 
complicated. To emphasize that  the adding and removing of elements from the 
queue need not  be atomic, these operations are performed by shifting the elements 
one bit at a time out of or into the ". P A R "  variable. This is done with shift, left 
and shift, right operations, whose meaning should be obvious. Atomic operations 
are enclosed by angle brackets. Note tha t  the queue has space for only m 
elements, and a P U T  operation must  wait until there is room to add the element. 

To prove that  this implementat ion meets the specification of Figure 5, we must  
first define the state functions queue, parg, and gval  in terms of the program 
state. This requires deciding at what  point during the execution of each subroutine 
the change to ' the  queue is considered to have taken place. I t  is most  convenient  
to consider the queue to change when H E A D  or T A I L  is incremented. This leads 
to the following definitions, where 

right.half(shift.right i (p, q)) 

denotes the right half  of the double-length word obtained by applying the 
shift, right i operation to the double-length word (p, q), and 

left.half(shift.left i (p, q)) 

has the analogous meaning. 

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 2, April 1983. 



206 Leslie Lamport 

parg •- i f  at(a) V at(b) V at(c) 
then' PUT. PAR 
e l s e  f i a t (d )  V at(e) V a t ( f )  V at(g) 

t h e n  right.half(shift.fight 7 (Q[TAIL mod m]~ PUT.PAR)) 
e l se  N U L L  

where I -- i f  at (f) t h e n  I + 1 
e l s e  I. 

gval  =- f i a t ( y )  t h e n  GET.PAR 
e l s e  NULL.  

queue -- if at(u) V at(v) V at(w) vat(x) 
then  left.half(shift.left J (Q[HEAD rood m], GET.PAR)) 

* Q[HEAD - I m o d m ]  * . . .  * Q[TAIL m o d m ]  
e l s e  (~[HEAD mod m] * . . .  * Q[TAIL mod m] 

where J -= if at(w) then J + 1 
e l s e  J. 

The initial condition and Properties 1 and 2 follow immediately from these 
definitions. To prove Property 3, we must show that  every atomic action of each 
process either does not change the value of any of the state functions, or else 
changes them as prescribed by one of the two transition specifications. We leave 
the details of this to the reader. Note that  such a proof is essentially an invariant 
assertion proof of the program's safety properties. 

A method for proving liveness properties such as Properties 4 and 5 is described 
in [8] and is not discussed here. 

In the above proof, we relied upon the fact that  the operations of incrementing 
HEAD and TAIL were taken to be atomic. This same basic algorithm can be 
used even when the only atomic operations are reads and writes of single bits, 
using the techniques of [7] to implement the tests for whether the queue is empty 
or full (actions a and r). The state function definitions for this finer-grained 
implementation are more complicated, but the basic idea remains the same--we 
first choose when the change to the queue is considered to have taken place, and 
define the state functions accordingly. This choice is somewhat arbitrary, and 
there will be many possible ways to define the state functions which satisfy the 
specification. 

Defining the state functions for an implementation essentially requires finding 
the invariants for its correctness proof. This is more difficult for a finer-grained 
implementation than for a coarser-grained one, since the freer-grained program 
has more possible execution sequences and is therefore harder to prove correct. 

3.5 A Lossy Transmission Protocol 

We now specify a message transmission protocol, in which messages are sent by 
calling a subroutine TMT and are received by calling a subroutine RCV. Messages 
are to be queued and delivered in the order in which they are sent. However, 
messages are allowed to be lost. 

Were we to require that  no messages be lost, then the QUEUE module would 
provide such a protocol, with PUT serving as TMT and GET serving as RCV. 
(Although we gave an implementation as a two-process shared memory program, 
nothing in the specification prevents an implementation with the PUT and GET 
subroutines in two separate computers.) An examination of Figure 5 reveals that  
to allow messages to be lost, we need merely add to Property 3 a transition 
ACM Transactions on Programming Languages and Systems, Vol. 5, No. 2, April 1983. 



Specifying Concurrent Program Modules • 207 

module XMIT with subroutines TMT, RCV 

state functions: 
queue: sequence of elements 
targ :element or N U L L  
rval :element or  N U L L  

initial conditions: 
[queue[ = 0 

safety properties: 
1. (a) at(TMT) D targ ffi TMT.PAR 

(b) after(TMT) D targ = N U L L  
2. (a) at(RCV) D rval = N U L L  Fig. 7. Specification of a trans- 

(b) after(RCV) D R C V . P A R  = rval mission protocol. 
3. allowed changes to queue 

targ when in (TMT) 
rval when in (RCV) 

(a) a [ X M I T ] : i n ( T M T )  A targ ~ N U L L  - .  
targ' = N U L L  A queue' = queue * targ 

(b) a[XMIT]: in(RCV) A rval = N U L L  A ]queue[ > 0 --, 
rval'  ~ N U L L  A queue = rval'  * queue' 

(c) for all Q : a[XMIT]  : queue = Q --* queue' < Q 

Hveness properties: 
4. /n(TMT) A [queue[ < m ~,  a f ter (TMT)  

5. /n(RCV) A DO[queue[ > 0 ~-, after(RCV) 

specification in which an e lement  is r emoved  f rom the  queue. (Note t ha t  adding 
a p roper ty  s t rengthens  a specification, while adding a t ransi t ion specification to 
an a l l o w e d  c h a n g e s  p roper ty  weakens the  specification.) Th i s  is done in Figure 
7, where we have  named  the module  X M I T  and changed P U T  and G E T  to T M T  
and RCV. In  the new Prope r ty  3(c), < denotes  the  relat ion "is a p roper  subse- 
quence of" .  

We have  made  one addit ional  change to the Q U E U E  specification in Figure 7: 
we have  weakened  Liveness P rope r ty  5. P rope r ty  5 for the  Q U E U E  module  s ta tes  
tha t  if control is in the G E T  subrout ine  and  the  queue is nonempty ,  then  G E T  
mus t  eventual ly  remove  an e lement  f rom the queue. This  r equ i remen t  cannot  be 
me t  if the queue can lose elements,  since control  can be in RCV when  the  queue 
is nonempty ,  but  all the e lements  could disappear  f rom the queue b e f o r e t h e  RCV 
subrout ine had  a chance to r emove  one. In  order  for the  protocol  to be  useful, we 
need a liveness condition which guarantees  t ha t  some messages  are eventual ly  
received. (Otherwise, an implementa t ion  t ha t  s imply  th rew away  all messages  
would be correct.) The re  are a n u m b e r  of  possible condit ions we could require.  
The  one we choose s ta tes  t ha t  if the queue is infinitely of ten nonempty ,  then  a 
message will be received. Thus,  if the  sender  keeps  issuing T M T  calls, t hen  
eventual ly a message will be received. 

Any single message sent  with a T M T  call could be  lost. However ,  if the  sender  
keeps  calling T M T  to send the  same  message,  and  the  receiver  keeps  calling 
RCV, then  the  message will eventual ly  be received. Thi~ is expressed formal ly  by  
the  following property:  

ML. E ] O i n  (TMT)  A [3 (a t (TMT)  D T M T . P A R  = m s g )  A E ] O i n  (RCV) 
a f t e r  (RCV) A RCV.  P A R  = m s g .  

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 2, April 1983. 



208 Leslie Lamport 

To see why this always holds, observe that  D<>in (RCV) means that  either (i) 
RCV is entered and exits infinitely many times, or (ii) eventually RCV is entered 
and never exits. Suppose that  (ii) holds. Then by Property 5, this means that  
E]<>lqueue I > 0 is false, which implies that  eventually a time is reached after 
which the queue remains empty forever. However, Property 4 and the hypothesis 
D<>in (TMT) then imply that  TMT must eventually add an element to the queue, 
which is a contradiction. Hence, (ii) is impossible, so control must enter and exit 
RCV infinitely many times. Each time RCV exits, it removes an element from 

• the queue. Since the queue can have only a finite number of elements different 
from msg,  eventually RCV must remove rnsg from the queue and exit with 
RCV. PAR = msg,  proving the property. The proof lattice method of [8] can be 
used to convert this informal reasoning into a formal temporal logic proof. 

Property ML also holds after RCV has exited with the value msg,  so RCV 
must eventually exit again with the same value. In fact, the same message must 
be received an infinite number of times. Hence, the following stronger version of 
ML must hold. 

ML'. [3<>in(TMT)/k D(at(TMT) D TMT.PAR = m s g ) / k  EJ<>in(RCV) 
~., F3<>(after(RCV) /k RCV.PAR = msg) .  

Liveness Properties ML and ML' may not seem very interesting, since in real 
programs the sender does not keep transmitting the same message forever. 
However, we shall see below how they can be quite useful for reasoning about a 
more realistic protocol. 

3.6 The Alternating-Bit Protocol 

As our final example, we consider a standard problem from the domain of 
protocols: the specification of an "alternating-bit" communication protocol. We 
must specify three separate modules. 

--A SENDER module, with a SEND subroutine that  is used to send messages. 
--A RECEIVER module, with a RECEIVE subroutine that  is used to receive 

messages. 
--A TRANSMISSION__MEDIUM module, used by the SENDER and RE- 

CEIVER modules to communicate messages and acknowledgments. 

The SEND and RECEIVE subroutines must implement a lossless, queued 
transmission line--that is, they must satisfy the specifications for the PUT and 
GET subroutines of the QUEUE module. Hence, these three modules must 
together implement the QUEUE module. 

In the terminology generally used to describe protocols [1], the specification of 
the QUEUE module is the "service specification", and the specifications of the 
SENDER, RECEIVER, and TRANSMISSION__MEDIUM modules comprise 
the "protocol specification". We specify these three modules, and sketch a proof 
that  they implement the QUEUE module. 

We let the TRANSMISSION__MEDIUM module consist of two "copies" of 
the XMIT module--a module MXMIT by which the sender sends messages to 
the receiver, and a module AXMIT by which the receiver sends acknowledgments 
ACM Transactions on Programming Languages and Systems, Vol. 5, No. 2, April 1983. 



Specifying Concurrent Program Modules 209 

module  MXMIT wi th  subrou t ines  MTMT, MRCV 

state  functions:  
m q u e u e : s e q u e n c e  o f  ( in teger  mod  2, message) 
mtarg : { integer  mod  2, message) or  NULL 
mrval : {integer mod  2, message) or  NULL 

module  AXMIT wi th  subrou t ines  ATMT, ARCV 

state  functions:  
aqueue: sequence  o f  in teger  rood 2 
atarg : in teger  rood 2 or  NULL 
arval : in teger  mod  2 or  NULL 

Fig. 8. The TRANSMISSION__ 
MEDIUM module. 

SEND 

sender 
. . . . . . . . . . . .  - - I  

] I 

i" MTMT 'i ) 
I 
I 

SENDER J $ 
} 

ARCV 
I 

1 
. . . . . . . . . . . . .  J 

transmission medium 

MXMIT ( MRCV 

I AXMIT L ATMT 

r 

receiver 

RECEIVER 

! 

Fig. 9. The modules of the alternating-bit protocol. 

RECEIVE 

to the sender. 2 The TRANSMISSION__MEDIUM module thus provides lossy 
two-way transmission between the sender and receiver. 

Figure 8 indicates how the subroutines and state functions of these modules 
are named. The initial conditions and properties are obtained from Figure 7 by 
the obvious renamings. Figure 9 shows the different modules and the subroutine 
calls by which they interact. 

The sender maintains a queue of messages waiting to be sent. It transmits a 
messag e M from this queue by sending the message ( b, M) ,  where b is a sequence 
number equal to either zero or one. The sender repeatedly sends this same 
message (b, M)  until it receives the acknowledgment message b. It then removes 
the message M from its queue and transmits the next message M'  from the queue 
by sending {b + 1, M ' ) - -where  addition is modulo two. The sender transmits 
messages by calling MTMT, and receives acknowledgments by calling ARCV. 
Messages to be sent are added to its queue by calls to the SEND subroutine. 

When the receiver gets a message (b, M),  it places it on a queue of received 
messages and sends the acknowledgment message b. It  ignores any messages with 
the same message number b as it waits for the next message (b + 1, M') .  The 
receiver obtains the messages by calling MRCV, and sends acknowledgments by 

2 Although we have not formally defined the concept of a module composed of submodules, it should 
be self-evident. 

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 2, April 1983. 



210 Leslie Lamport 

module  SENDER w i t h  subrout ine  SEND 

state functions: 

s q u e u e  : sequence  of  m e s s a g e s  
s n u m  : i n t ege r  m o d  2 
s a r g  : m e s s a g e  or  N U L L  
s t m t a r g :  ( i n t ege r  m o d  2, m e s s a g e )  or  N U L L  
s r c v v a l  : i n t ege r  m o d  2 or  N U L L  

initial  conditions: 

1. Isqueuel  -- 0 
2. s n u m  ffi 0 

3. s t m t a r g  = N U L L  A s r c v v a l  = N U L L  

safety  properties: 

1. (a) at(SEND) D s a r g  ffi SEND.PAR 
(b) a f t e r ( S E N D )  D s a r g  = N U L L  

2. (a) a t (MTMT) D M T M T . P A R f f i s t m t a r g ~ N U L L  

(b) a f t e r ( M T M T )  D s t m t a r g  = N U L L  

3. (a) at(ARCV) D s r c v v a l  = N U L L  

(b) a f t e r ( A R C V )  D s r c v v a l  = ARCV.PAR 

4. a l lowed  c h a n g e s  t o s q u e u e  

s n u m  
s a r g  w h e n i n ( S E N D )  
s r c v v a l w h e n  ~in  (ARCV) 

(a) a[SENDER]: in(SEND) A s a r g  ~ N U L L  
s a r g '  ffi N U L L  A s q u e u e '  = s q u e u e  * s a r g  

(b) a[SENDER]: ~ i n  (ARCV) A s r c v v a l  = s n u m  
s r c v v a l '  -- N U L L  A s q u e u e '  ffi t a i l ( s q u e u e )  A s n u m '  ffi s n u m  + 1 

(c) a[SENDER]: ~in(ARCV) A s r c v v a l  ~ N U L L  A s r c v v a l  ~ s n u m  
s r c v v a l '  = N U L L  

5. a l lowed changes  to stmtarg w h e n  ~in (MTMT)  

" a [ S E N D E R ]  : s t m t a r g  = N U L L  A Isqueue  I > 0 ~ s t m t a r g '  ffi ( s n u m ,  h e a d  ( squeue)  ) 

l iveness  properties: 
6. in(SEND) A I squeue  I < s m  ~ ,  a f t e r ( S E N D )  

7. ~ /n(MTMT) A [:]lsqueue I > 0 ~-* a t (MTMT) 

8. ~in(ARCV) A [:] Isqueuel  > 0 ~-~ at(ARCV) 

9. a f t e r ( A R C V )  ~ ,  s r c v v a l  = N U L L  

Fig. 10. Specification of the SENDER module. 

calling ASND. Messages are removed from its queue by calls to the RECEIVE 
subroutine. 

3.6.1 Specification of the Sender. The specification of the sender is given in 
Figure 10. The state functions have the following meanings. 

squeue: The sender's queue of messages still to be sent. Its head will contain the 
message currently being sent. 

snum: The sequence number of the message currently being sent. 
sarg: Plays the same role for the SEND subroutine that parg  does for the 

PUT subroutine. 
stmtarg: The argument of the next call to MTMT, or NULL if the argument for 

the next call has not yet been determined. 
ACM Transactions on Programming Languages and Systems, Vol. 5, No. 2, April 1983. 



Specifying Concurrent Program Modules • 211 

srcvval: The value returned by the last call to ,~RCV that is waiting to be 
examined, or N U L L  if that value was already processed. 

For a truly general specification, the state functions should describe information 
that must be contained in the program state of any real implementation. It is 
reasonably clear that for any implementation, it must be possible to define the 
queue of messages waiting to be sent and the current sequence number. The need 
for a state function describing the argument of the current call to SEND was 
explained in the discussion of the QUEUE module. 

There must be some point in the execution at which the argument for the next 
call of MTMT is chosen, and the value of that argument must then be derivable 
from the program state until MTMT is called. When it first becomes different 
from NULL,  the value of stmtarg should equal (snum, head (squeue)), but snum 
and squeue could change before M T M T  is actually called. Similarly, the value 
returned by the most recent call to ARCV must be derivable from the state until 
that value is acted upon. 

It is important to realize that the implementation need not contain any explicit 
data structures corresponding to these state functions. Instead of keeping the 
sequence number of the next message to be sent, the implementation might have 
a program variable that holds the sequence number of the last message sent. 
Instead of a queue of messages waiting to be sent, the implementation might 
have a queue of unsent messages plus a buffer to hold the last message sent. 
However, we believe that in any implementation satisfying the above informal 
description of what the sender does, these five state functions will be definable in 
terms of the program state. Actually defining these state functions is tantamount 
to proving the correctness of the implementation, and can be fairly difficult. 

The initial conditions are reasonably obvious. The choice of zero as the initial 
value of snum is arbitrary, but we wish to specify the first sequence number that 
will be sent so that we can specify the first sequence number that  the receiver 
should expect. 

Property 1 is the obvious analogue of Property 1 of the QUEUE module's 
specification. Property 2 is a similar property for the stmtarg function. However, 
note that whereas sarg is "getting its value from" SEND. PAR, stmtarg is "giving 
its value to" MTMT.PAR.  Property 2(a) states that stmtarg is the value with 
which MTMT is called, and Property 2(b) states that stmtarg should be "reset to 
NU LL"  by the execution of MTMT. Property 3 is a similar property for srcvval, 
which "obtains its value from" ARCV. PAR upon exit from the ARCV subroutine. 
Property 3(a) means that ARCV is not called until the last value returned by 
ARCV has been processed. 

Property 4 is obtained by considering when squeue is allowed to change. 
Elements are added to squeue only by calls to SEND, and this possibility is 
indicated by transition specification 4(a). It is the analogue of 3(a) of the QUEUE 
specification, and is the only way in which sarg can change while control is in the 
SEND subroutine. Elements are deleted from squeue only when an acknowledg- 
ment is received containing the current sequence number. This is indicated by 
transition specification 4(b). This transition also increments snum and sets 
srcvval to NULL,  indicating that the last acknowledgment received has been 
processed. This is the only occasion on which snum can change. Finally, the only 
other time that srcvval can change when control is not in ARCV is when an 

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 2, April 1983. 



212  • Les l ie  Lampor t  

acknowledgment for a previous message is processed, and this is indicated by 
transition specification 4(c). We do not specify what value srcvval should have 
when control is inside ARCV. 

Note that we have specified that  the sender never ignore an acknowledgment 
for the current message. The protocol would still work-- that  is, it would still 
implement the QUEUE module--even if the sender threw away some acknowl- 
edgments. We could have allowed that  possibility in our specification, but chose 
not to for simplicity. 

The only state function not constrained by Property 4 is stmtarg. When control 
is not in the MTMT subroutine, it can change only when the SENDER module 
determines the value of the next call to MTMT, as indicated by Property 5. We 
do not constrain the value of stmtarg when control is in MTMT. 

Liveness Property 6 is the analogue of Property 4 of the QUEUE module, 
where sm denotes the minimum capacity of the sender's queue. Property 7 states 
that the sender must keep sending messages as long as its queue is not empty. To 
see why the " 0 "  is necessary, consider the situation in which the last call to 
MTMT has exited and the queue has a single element, but before the sender 
decides to call MTMT again it receives an acknowledgment and deletes the one 
remaining message from the queue. Without the "[:]", Property 7 would force the 
sender to call MTMT again, even though it has nothing more to send. Remem- 
bering the definition of ~-), we can rewrite Property 7 as 

[3[~in(MTMT) D (Oat(MTMT) V (>1 squeuel -- 0)], 

which the reader may find more agreeable. 
Property 8 similarly states that  the sender must keep calling ARCV to receive 

acknowledgments when its queue is nonempty. Finally, Property 9 states that  
the sender must eventually process the acknowledgment that  it receives. 

3.6.2 Specification of the Receiver. The receiver's specification is given in 
Figure 11. The state functions have the following interpretations. 

rqueue: The queue of messages received from the sender. 
mum: The sequence number of the most recent message received. 
rval: Similar to gval for the GET subroutine. 
rtrntarg'. The argument for the next Call of ATMT, or N U L L  if that  argument 

has not yet been determined. 
rrcvval: The last message received that  is waiting to be processed, or N U L L  if 

there is no such unprocessed message. 

The specifications of the sender and the receiver are symmetric, so we do not 
explain this specification. The only asymmetry is in Liveness Property 7, which 
states that  the receiver must eventually send an acknowledgment after receiving 
a message. 

3.6.3 Correctness of the Protocol. We now sketch the proof that  the three 
modules TRANSMISSION__MEDIUM, SENDER, and RECEIVER correctly 
implement the QUEUE module, with SEND as the PUT subroutine and RE- 
CEIVE as the GET subroutine. To do this, we must first define the state functions 
of the QUEUE module in terms of the state functions of the three implementing 
modules. This is done as follows. 
ACM Transactions on Programming Languages and Systems, Vol. 5, No. 2, April 1983. 



Specifying Concurrent Program Modules • 213 

module RECEIVER with subroutine RECEIVE 

state functions: 
rqueue  : sequence of m e s s a g e s  
m u m  :integer mod 2 
r v a l  : m e s s a g e  or N U L L  
r t m t a r g : i n t e g e r  rood 2 or N U L L  
r rcvva l  : (integer mod 2, m e s s a g e )  or N U L L  

initial conditions: 
1. Irqueuel = 0 
2. m u m  ffi 1 

2. r t m t a r g  = N U L L  A r r e v v a l  ffi N U L L  

safety properties: 

1. (a) at(RECEIVE) D r v a l =  N U L L  

(b) a f t e r ( R E C E I V E )  D r v a l  = RECEIVE.PAR ~ N U L L  
2. (a) at(ATMT) D ATMT.PAR ffi r t m t a r g  ~ N U L L  

(b) a f t e r ( A T M T )  D r t m t a r g  = N U L L  
3. (a) at(MRCV) D r r e v v a l  = N U L L  

(b) a f t e r ( M R C V )  D r r c v v a l  ffi MRCV.PAR 

4. allowed changes to r q u e u e  
m u m  

r v a l  when in  (RECEIVE) 
r r c v v a l  when ~in (MRCV) 

(a) a[RECEIVER]:in(RECEIVE) A r v a l  = N U L L  A lrqueuel  > 0 - *  
r v a l '  ~ N U L L  A r q u e u e  = r v a l '  * r q u e u e '  

(b) a [ R E C E I V E R ] : - i n ( M R C V )  A r r c v v a l  ~ N U L L  A f i r s t ( r rcvva l )  ~ m u m  -*  
r r c v v a l '  = N U L L  A r q u e u e '  = r q u e u e  * s e c o n d ( r r c v v a l )  
A m u m '  = f i r s t ( r r c v v a l )  

(c) a[RECEIVER] :~in(MRCV) A r r e v v a l  ~ N U L L  A f i r s t ( r r e v v a l )  ffi m u m  
--~ r r c v v a l '  ffi N U L L  

5. allowed changes to r t m t a r g  when ~in(ATMT) 
a[RECEIVER] : r t m t a r g  ffi N U L L  --* r t m t a r g '  = m u m  

liveness properties: 
6. in(RECEIVE) A Irqueuel  > 0 ~,* a f t e r ( R E C E I V E )  

7. a f t e r ( M R C V )  ~-, at(ATMT) 
8. -in(MRCV) A [] Irqueuel  < rm ~-~ at(MRCV) 
9. a f t e r ( M R C V )  ~-~ r r c v v a l  = N U L L  

Fig. 11. Specification of the RECEIVER module. 

q u e u e  -~ i f  s n u m  ~ m u m  

t h e n  r q u e u e  * s q u e u e  
else r q u e u e  * t a i l ( s q u e u e ) .  

p a r g  -~ s a r g .  
g v a l  •- s v a l .  

I t  is easy to see t h a t  the  in i t i a l  cond i t ions  for the  S E N D E R  a n d  R E C E I V E R  
modu le s  imp ly  t h a t  q u e u e  is in i t i a l ly  empty ,  which  is t he  in i t i a l  c o n d i t i o n  for the  
Q U E U E  module .  

P rope r t i e s  I a n d  2 of the  Q U E U E  m o d u l e  follow i m m e d i a t e l y  f rom P r o p e r t y  1 
of the  S E N D  m o d u l e  a n d  P r o p e r t y  1 of the  R E C E I V E  module ,  respec t ive ly .  

T o  prove  P r o p e r t y  3 of the  Q U E U E  module ,  we first  observe  t h a t  changes  to 
q u e u e ,  p a r g ,  a n d  g v a l  can  be  caused  on ly  by  changes  to  s q u e u e ,  s n u m ,  r q u e u e ,  

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 2, April 1983. 



214 Leslie Lamport 

a nd  m u m .  A l l  the allowed changes to these latter state functions are specified in 
Property 4 of the SENDER and RECEIVER modules. We therefore have to 
show that the only changes to q u e u e ,  p a r g ,  a n d  g v a l  allowed by Property 4 of the 
SENDER and RECEIVER are changes that  are allowed by Property 3 of the 
QUEUE module. 

It is easy to verify that  transitions allowed by the SENDER's transition 
specification 4(a) cause changes to q u e u e  a n d  p a r g  that  are allowed by the 
QUEUE's transition specification 3(a). Similarly, 4(a) of the RECEIVER allows 
only transitions that are allowed by 3(b) of the QUEUE. Transition specifications 
4(c) of both the SENDER and the RECEIVER obviously do not allow any 
changes to the state functions of the QUEUE. 

To complete the verification of the QUEUE's safety properties, we must prove 
that  transition specifications 4(b) of both the SENDER and the RECEIVER do 
not change the value of q u e u e .  Proving this for 4(b) of the sender essentially 
shows that the sender does not delete a message from its queue until it has been 
received by the receiver, and proving it for 4(b) of the receiver shows that  the 
receiver adds to its queue only messages that  it has not already received. Thus, 
these proofs demonstrate that  the alternating-bit protocol does not lose messages 
or create duplicate messages. These are the basic safety properties of the protocol, 
and we should not expect the proofs to be trivial. 

We begin by defining a state function x q u e u e  for the XMIT module (Figure 7) 
"extending" the module's queue with the element that  has just been removed 
from it and the element about to be added to i t -- if  there are such elements. It is 
defined formally as follows. 

xqueue -~ x h e a d  * queue * x ta i l  
where x h e a d  =- i f  in(RCV) then rval  

else N U L L  
x ta i l  ~ if in(TMT) then targ  

else N U L L .  

The state function x q u e u e  represents the value that  the queue would have if 
elements were added to the queue immediately upon entry to the TMT subrou- 
tine, and not removed from the queue until exit from the RCV subroutine. It is 
useful for proving safety properties of programs that  use the XMIT module 
because it describes what the queue looks like to these programs. 

In this way, we define the functions m x q u e u e  a n d  a x q u e u e  for the modules 
MXMIT and AXMIT, respectively. We further extend m x q u e u e  to the state 
function x m x q u e u e  by including the next message that  the SENDER has decided 
to transmit and the last message that  the RECEIVER has received but not yet 
processed. This is done as follows. 

xmxqueue  •-- x h e a d  * mxqueue  * x m t a i l  
where x m h e a d  e if ~in(MRCV) then rrcvval  

else N U L L  
x m t a i l  -= if -in(MTMT) then s tm tva l  

else N U L L .  

We similarly extend a x q u e u e  as follows. 

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 2, April 1983. 



Specifying Concurrent Program Modules 215 

x a x q u e u e  =- x a h e a d  * a x q u e u e  * x a t a i l  
where x a h e a d  =- if  -in(ARCV) then  s r cvva l  

else N U L L  
x a t a i l  ---- i f  ~in(ATMT) then  r t m t v a l  

else N U L L .  

The  hear t  of the  proof  consists of proving the following invar iance proper ty:  

XQ. T h e r e  e x i s t  n a t u r a l  n u m b e r s  a,  b, c, d a n d  a m e s s a g e  x s u c h  t h a t  

x m x q u e u e  = ( m u m ,  X )  a * { s n u m ,  h e a d ( s q u e u e )  )b 

a n d  

x a x q u e u e  = ( s n u m  + 1) c * m u m  d, 

where yZ denotes  a string consisting of z copies of  y. To  prove  tha t  XQ is t rue  
th roughout  the execution, we show tha t  it is t rue  in the initial state,  and tha t  it 
is left unchanged by  every allowed transit ion. 

I t  is easy to see tha t  XQ is t rue initially with a = b = c = d = 0. To  show tha t  
XQ cannot  be made  false by  any  allowed transit ion, we observe t ha t  the  only 
transit ions tha t  can change x m x q u e u e  a r e  the ones allowed by  the  following 
transit ion specifications: 

• 3(c) of the M X M I T  m o d u l e - - w h i c h  deletes an element .  
• 5 of the S E N D E R - - w h i c h  inserts  an element .  
• 4(b) and (c) of the R E C E I V E R - - w h i c h  remove  an element.  

Similarly, the only transi t ions t ha t  can change x a x q u e u e  a re  the  ones allowed by  
the following t ransi t ion specifications: 

• 3(c) of the A X M I T  m o d u l e - - w h i c h  deletes an element .  
• 5 of the  R E C E I V E R - - w h i c h  inserts  an element.  
• 4(b) and (c) of the  S E N D E R - - w h i c h  remove  an element .  

The  proof  tha t  these t ransi t ions leave XQ true  is easy, except  for 4(b) of the 
S E N D E R  and R E C E I V E R .  For  a t ransi t ion allowed by  4(b) of the  S E N D E R ,  
note tha t  if XQ holds in the  initial state, t hen  the enabling condit ion s r c v v a l  = 

s n u m  implies tha t  c = 0 and m u m  = s n u m  in the initial state.  We can therefore  
take b = 0 in the initial state. Condit ion XQ then  reads  

x m x q u e u e  = ( m u m ,  x )  a. 

x a x q u e u e  = m u m  d. 

Since 4(b) does not  permi t  any  change to x m x q u e u e ,  x a x q u e u e ,  or m u m ,  XQ 
mus t  hold for the final s ta te  of  the transit ion. For  a t ransi t ion allowed by  4(b) of 
the R E C E I V E R ,  we similarly observe t ha t  the  enabling condit ion f i r s t ( r r c v v a l )  

m u m  implies t ha t  a -- 0 and s n u m  ~ m u m  in the  initial state.  We can therefore  
take d = 0, and XQ holds af ter  the transit ion. This  comple tes  the  proof  of the  
invariance proper ty  XQ. 

To  complete  our proof  of  Safety  P rope r ty  3 for the  Q U E U E  module,  we mus t  
use p roper ty  XQ to show tha t  any  t ransi t ion allowed by  4(b) of  the S E N D E R  or 

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 2, April 1983. 



216 Leslie Lamport 

RECEIVER leaves q u e u e  unchanged. For the SENDER, observe that  the truth 
of the enabling condition and the definition of x a x q u e u e  imply that  s r c v v a l  is 
equal to the head of x a x q u e u e .  Since the enabling condition states that  s r c v v a l  
= s n u m ,  Property XQ implies that c = 0 and s n u m  = m u m .  It then follows easily 
from the definition of q u e u e  that it is not changed by the transition. 

Similarly, for a transition allowed by 4(b) of the receiver, the enabling condition 
implies that the head of x m x q u e u e  equals r r c v v a l ,  which is not equal to r n u m .  
Property XQ then implies that a = 0 and m u m  ~ s n u m ,  and it follows that  the 
transition does not change the value of queue .  This completes the proof of the 
QUEUE module's safety properties. 

We now sketch the proof of the QUEUE module's Liveness Property 4. Observe 
that by Property 6 of the SENDER, it suffices to prove 

in(SEND) A I q u e u e  l < m ~ I s q u e u e  l < sm .  

To do this, we show that  if 

in(SEND)/~ l q u e u e  I < m A I s q u e u e l  >_ s m  (1) 

holds, then eventually an element is removed from s q u e u e .  The proof is by 
contradiction. We assume that  (1) holds but no element is ever removed from 
squeue ,  and arrive at a contradiction. 

Since m = s m  + rm,  it follows from the definition of q u e u e  that  I s q u e u e  I >- s m  
and t s q u e u e l  < m imply 

1. r r q u e u e l  < r m  A s n u m  ~ m u m ,  or 
2. I r q u e u e  I <- r m  A s n u m  = r n u m .  

We now show that if 1 holds, then eventually 2 will hold. Assume the contrary, 
that 1 holds but 2 never does. Property 7 of the SENDER then implies that  
whenever control is not in M T M T  it will eventually be in MTMT,  which means 
that control must infinitely often be in MTMT,  so we have 

[:3<>in(MTMT). 

Property 4 of the SENDER implies that  s n u m  can change only when an element 
is removed from s q u eu e ,  so our assumption that  no element is removed from 
s q u e u e  means that s n u m  does not change. Hence, the SENDER keeps calling 
M T M T  with the same value, and we must eventually have 

N(at(MTMT) 3 MTMT.PAR -- ( s n u m ,  h e a d ( q u e u e ) ) ) .  

Since 2 never holds and s n u m  never changes, this means that  m u m  never changes 
and no new elements are ever added to r q u e u e .  This in turn means that  
[] I r q u e u e  I < rm, so we can can conclude from Property 8 of the receiver that  

[](>in(MRCV). 

Combining these three properties with liveness property ML of the MXMIT 
module shows that eventually MRCV returns the value ( s n u m ,  h e a d ( q u e u e ) )  
which leads to condition 2--contradicting our assumption that  2 never holds. 

Finally, assume that  2 holds. Again, if no element is removed from s q u e u e ,  

then s n u m  never changes. By the same reasoning as above, this implies that  the 
SENDER calls M T M T  infinitely often with the same message. Applying Property 
ACM Transactions on Programming Languages and Systems, Vol. 5, No. 2, April 1983. 



Specifying Concurrent Program Modules 21 7 

ML' of the MXMIT module, we conclude that 

[ - ] ~ a f t e r ( M R C V ) .  

From Property 8 of the RECEIVER, we then obtain 

[:]Oat(ATMT). 

In our proof of the safety properties of the QUEUE module, we showed that  if 
s n u m  = m u m ,  then s q u e u e  is nonempty. (Otherwise, our definition of q u e u e  

would not make sense.} It then follows from the first part of Property XQ that  
when s n u m  = m u m ,  m u m  cannot change until s n u m  does. Hence, m u m  never 
changes, so we eventually must have 

D(at(ATMT) D ATMT.PAR = m u m }  

for the constant value of m u m .  Combining these properties with Property 7 of 
the RECEIVER, we can apply Property ML of the AXMIT module to conclude 
that the ARCV subroutine eventually returns with the value m u m  = s n u m .  It 
then follows from the properties of the SENDER that  an element must be deleted 
from s q u e u e ,  which is the required contradiction. 

The proof of Property 5 of the QUEUE module is similar. Note the strong 
reliance upon proof by contradiction, which is typical of temporal logic liveness 
proofs. It is because of this reductio ad absurdum style of reasoning that  properties 
ML and ML' of the XMIT module can be used. 

4. CONCLUSION 

We have chosen the alternating-bit protocol as our major example because it has 
also been specified using a number of other methods. We briefly discuss a few of 
these methods here, and refer the reader to [10] for a more complete survey. 

There are two basic ways to specify a program: 

- -By an abstract program that  describes its behavior. 
- -By a collection of properties that it must satisfy. 

The first kind of specification, which includes state machine [4] and Petri net [3] 
specifications, has usually proved to be easier to understand, since writing 
programs provides a natural method for describing programs. However, this tends 
to produce overly restrictive specifications that  describe how the program should 
be implemented rather than what it should do. If one chooses an implementation 
different from the one envisioned when writing the specification, then verifying 
its correctness becomes a difficult problem of proving the equivalence of two 
concurrent programs, and requires complex reasoning about behaviors. 

In principle, we find the idea of specifying a program in terms of the properties 
it must satisfy to be very attractive. Moreover, temporal logic seems to be a very 
convenient tool for expressing these properties. However, we have found previous 
specification methods using temporal logic to be unsatisfactory. The method of 
Schwartz and Melliar-Smith [11] requires complicated temporal logic expres- 
s ions- in  particular, expressions involving nested "until" operators. Not only are 
these expressions hard to understand, but we have found that  it is difficult to use 
them for reasoning about the program. Such expressions are obtained because 
specification of the program state is replaced by temporal specifications. For 

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 2, April 1983. 



218 Leslie Lamport 

example, to specify the safety properties of the SQUARE subroutine, instead of 
using the state function val, Schwartz and Melliar-Smith would simply assert 
that control cannot reach the exit with a result v unless it had entered the 
subroutine with an argument a such that  v = a 2. They  feel that  theirs is a more 
abstract specification because it does not mention the program state. This is true 
only if abstractness is taken to be an undefinable aesthetic property, since their 
specification is no more general than ours. Any implementation satisfying their 
purely temporal specification will also satisfy our specification; it will be possible 
to define the state function val because the value that  the subroutine eventually 
returns must be determined by its current state. 

The method of Hailpern and Owicki [2], which uses histories, produces speci- 
fications that  are quite simple and easy to understand. They  would specify the 
SQUARE subroutine by stating that  each element in the sequence of returned 
values is the square of the corresponding element in the sequence of arguments 
with which the subroutine is called. Their  specifications look even simpler than 
the ones produced by our method. However, a specification should not be judged 
on how simple it looks, but on how easy it is to use. There are two ways in which 
the formal specification of a module is used: 

- -To  determine the correctness of an implementation of the module. 
- -To  prove properties of programs using the module. 

To prove that a program implements a specification based upon histories, one 
must change the program by adding dummy history variables and assignments to 
them--for  example, a variable that  records the sequence of values returned by a 
subroutine. These dummy variables and statements have nothing to do with the 
behavior of the program, and they are not needed for reasoning about it. Similarly, 
the histories are irrelevant for reasoning about a program that  uses the specified 
module. Moreover, we feel that the presence of histories in the module specifi- 
cation will encourage behavioral reasoning about the program, and experience 
has shown that such reasoning leads to more complicated proofs--proofs more 
likely to contain errors-- than does assertional reasoning. 

In developing our method, we have been guided by our experience in verifying 
concurrent programs. While specifications written with other methods may 
appear simpler, we do not think that  they will be easier to use. In our examples, 
we have not just written specifications, but also indicated how those specifications 
can be used. For the SQUARE and QUEUE modules, we showed how nontrivial 
implementations can be proved to correctly implement the specifications. In the 
alternating-bit protocol example, we showed how the specifications of the four 
modules could be used to prove properties of a program containing them- -  
namely, that the SEND and RECEIVE subroutines implement a lossless trans- 
mission line. The proof may have seemed rather difficult for such a simple 
protocol. However, we believe that  the alternating-bit protocol, like many inno- 
cent-looking concurrent programs, is more complicated than it appears. We do 
not expect any other specification method will permit a simpler proof for speci- 
fications as general as our SENDER and RECEIVER modules. 

We feel that our proofs demonstrate the feasibility of reasoning with these 
specifications. However, the proofs were informal. Proofs of liveness properties 
can be formalized using the approach of [8]. Formalizing the proofs of safety 

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 2, April 1983. 



Specifying Concurrent Program Modules 219 

properties requires formal methods for reasoning about l eaves  u n c h a n g e d  and 
a l lowed c ha nges  properties. Such formal methods do exist, and we believe that  
they can be used to provide reasonably simple formal proofs. However, further 
work is needed to demonstrate this. 

In our method, we have tried to combine the best features of state machine 
and temporal logic methods. We have restricted the temporal logic formulas in 
our specifications to ones that  do not use nested "untils". This requires that  the 
specification include a complete set of state functions--complete in the sense that  
any property can be expressed in terms of the current program state. There are 
two new ideas that we have introduced in doing this: 

--Action sets. 
- -The  a l lowed changes  construction. 

We had to introduce action sets in order to specify a module without specifying 
the entire program. This was because the specification had to state properties of 
the whole program, so some method was needed to indicate which actions were 
caused by the module and which by the rest of the program. 

We have found the a l lowed  changes  properties to be easy to understand 
because they look like descriptions of programs. However, they have a corre- 
sponding drawback: they make it easy to write a specification that  is essentially 
an abstract program, rather than one stating the properties the program must 
satisfy. This is avoided by using a minimal set of state functions, so no state 
function appears in the specification unless it can be defined for every implemen- 
tation. 

The example of the alternating-bit protocol illustrates the problem. We expect 
that the reader will find our specifications of the SENDER and RECEIVER to 
be reasonably easy to understand, and will be convinced that  they specify 
behavior consistent with the informal description of the protocol. However, 
because the specifications involve a fairly arbitrary choice of state functions, we 
do not expect him to find it obvious that they are very general. Given the informal 
description of the protocol, he would probably write a specification that  uses 
different state functions and looks quite different from ours. However, we believe 
that the two specifications would be equivalent. Such an equivalence is demon- 
strated by showing that each specification is a correct implementation of the 
other-- that  is, that  each one's state functions can be defined in terms of the 
other's state functions in such a way that its properties can be proved from the 
other's properties. 

Any powerful specification method will permit equivalent specifications that 
look quite different. Moreover, as with programs written in a sufficiently expres- 
sive programming language, the general problem of determining the equivalence 
of two specifications will be recursively unsolvable. Hence, we cannot be surprised 
if two people do not write identical specifications for the same program. 

APPENDIX. FORMAL SEMANTICS 

A program is a triple (S, A, ~), where S is a set of states, A is a set of actions, and 
is a set of infinite sequences of the form 

~1 a2 
a ~  So---) .  S l - . ~  S2 . . .  

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 2, April 1983. 



220 Leslie Lamport 

with the Si in S and the  ai in A. For  any  such a in 5], the  sequence 

t~n+ 2 
0 + n  ~ S n  a ' ~ l  S n + l  ~ S n + 2  * " • 

must  also be in ~], for any  n _> 0. 
A state  function is a function whose domain  is S and whose range is a subset  

of  some set  V of values containing the  e lements  true and false. A sta te  predicate  
is a s tate  function whose range is included in (true, false}. We assume a first- 
order predicate  calculus with equal i ty for s ta te  functions, allowing quant i f icat ion 
over  V. We write s ~ P to denote  the value of the s ta te  predicate  P on the  e lement  
s of S. 

An action predicate  is a boolean function on A. We let  a ~ Q denote  the  value 
of the action predicate  Q on the e lement  a of  A. 

The  formulas  of  t empora l  logic are constructed f rom s ta te  predicates  and  act ion 
predicates  using ordinary logical opera tors  - a n d / / ,  quantif icat ion over  V, and  
the binary connective _<3. We inductively define the relat ion a ~ P, read  " P  is 
valid for the sequence o", for any  sequence 

O" ~ S 0  ~ S l  - -O  8 2  • • • 

in 5] and t empora l  logic formula  P as follows. 

G ~ P = So ~ P if P is a s ta te  predicate  

a ~ P -- al ~ P if P is an act ion predicate  

a ~ ~P -- -(a ~ P) 

o ~  ( P v  Q) ~- ( o ~ P )  V ( o ~  Q) 

o ~ V v : P  = V v E V : o ~ P  

o ~ P ~ _ Q  - V n > O : ( V m : O < _ m < _ n D o + m ~ P )  D o + n ~ Q  

The  formula  P is said to be valid for the p rog ram (S, A, 5]), wri t ten s imply  ~ P, 
if o ~ P is t rue for all o in ~. In  [6], the opera to r  _~ was denoted  by  El. T h e  reason  
for this new nota t ion  will become appa ren t  below. 

The  unary  opera tors  [] and  O are defined by  

[]P =- true ~_ P. 

OP - -E]-P.  

We also define the b inary  opera tor  <3 by  

P < 3 Q = ( P v ~ Q ) ~  Q. 

I t  follows f rom the definition of o ~ P ~ Q tha t  

o ~  P <3Q-'= Vn >_O:(Vm:O<_m < n  D o+m~ P) D o+n~ Q. 

Thus,  P _~ Q asserts  t ha t  Q is t rue  a t  least  as long as P, and  P <3 Q asser ts  t h a t  
Q is t rue a t  least  one s tep longer than  P - - w h e r e  "one step longer than"  forever  
is still forever. I t  is easy to r e m e m b e r  their  meaning  by  thinking o f ~  as " t rue  for 
a _< durat ion",  and <3 as " t rue  for a < durat ion".  T h e  two opera tors  satisfy the  
expected t ransi t iv i ty  r e la t ions - - fo r  example,  P ~  Q and Q <~ R imply P <3 R. 
ACM Transactions on Programming Languages and Systems, Vol. 5, No. 2, April 1983. 



Specifying Concurrent Program Modules 221 

The specification (*) is interpreted as the following (second-order) temporal  
logic formula: 

: I f ,  . . . . .  f n :E ] ( f ,  E R,  A . . .  A fn E R . )  A [ I ,  A . . .  A Im D I-I(P, A . . .  A Pa)], 

where 1~ E Ri is a state predicate which, when applied to a state s, has the value 
t rue  if and only if ~(s) is an element of Ri .  

We now interpret the properties Pj  as temporal logic formulas. Liveness 
properties are already written as temporal logic formulas, so we need only 
interpret our three kinds of safety properties. An invariance property is just  a 
predicate, which is already a temporal  logic formula. The formula 

a leaves unchanged f when Q 

is interpreted to be the temporal logic formula 

Vv:  ( f  = v) ~ [ ( a A  Q) <] ( f  = v)], 

where we consider the "set of actions" a to be the action predicate which is true 
for any action a if and only if a E a. 

Finally, we define the property 

allowed changes to gl when Q1, 

al : R1 --* $1, 

a, : Ru --~ S,  

gp when Qp: 

to be the conjunction of p al lowed changes  to properties, one for each gi,  all 
having the same transition specifications. Hence, we need only consider the 
property 

allowed changes to g when Q: 
al : R1--* $1, 

a, ,:R.  --* Su (**) 

We can replace any single transition specification 

a v b : R - - . S  

in (**) by the two transition specifications 

a:R---> S. 

b : R - *  S. 

This allows us to rewrite (**) in such a way tha t  all the ai in (**) are disjoint. 
Similarly, we can replace the single transition specification 

a : ( R v R ' ) - . S  

by the two transition specifications 

a:R--*  S. 

a : R ' - *  S. 

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 2, April 1983. 



222 Leslie Lamport 

We can therefore assume tha t  all the formulas ai/k Ri in (**) are disjoint. We 
then define (**) to be the conjunction of the clause 

V v : [ g  = v] D [~( (a l /k  R1) k/ " '"  V (au/k R,))]  < 3 [ g =  v] 

and u clauses defined as follows, for i = 1 . . . . .  u :  

Vvi . . .  Vvr:[(hI = vi) /k . . .  /k (hr = Vr) /k a i /kRi]  

D [ai/k Ri] <3 [(Ri/x, g = v) k~ ( - R i / k  S,')], 

where the hr are all the state functions mentioned (with or without  primes) in the 
S,--including g - - a n d  S,'. is the predicate obtained by substi tuting vj for hj and hj 
for h~ in Si, for each j.  

ACKNOWLEDGMENTS 

The generalized version of temporal  logic described in this paper was developed 
jointly with Susan Owicki. The work has also been influenced by discussions with 
Nissim Francez, Shmuel  Katz, K. J. Koomen, P. M. Melliar-Smith, Richard 
Schwartz, Michel Sintzoff, and J. Sifakis. 

REFERENCES 

1. BOCHMANN, G., AND SUNSHINE, C. Formal methods in communication protocol design. IEEE 
Trans. Commun. Com-28, 4 (Apr. 1980), 624-631. 

2. HAILPERN, B.T., AND OWICKI, S.S. Verifying network protocols using temporal logic. In Pro- 
ceedings Trends and Applications 1980: Computer Network Protocols. IEEE Computer Society, 
1980, pp. 18-28. 

3. HERZOG, O. Static analysis of concurrent processes for dynamic properties using Petri nets. In 
Lecture Notes in Computer Science, vol. 70: Semantics of Concurrent Computation, G. Kahn 
(Ed.). Springer-Verlag, Berlin, 1979, pp. 66-90. 

4. INTERNATIONAL ORGANIZATION FOR STANDARDIZATION TC97/SC16/WG1 SUBGROUP B ON 
STATE MACHINES. A FDT based on an extended state transition model. Working draft of tech. 
rep., Dec. 1981. 

5. LAMPORT, L. The "Hoare logic" of concurrent programs. Acta Inf. 14, 1 (June 1980), 21-37. 
6. LAMPORT, L. "Sometime" is sometimes "not never": On the temporal logic of programs. In 

Conference Record of the 7th Annual ACM Symposium on Principles of Programming Languages, 
Las Vegas, Nev., Jan. 28-30, 1980, pp. 174-185. 

7. LAMPORT, L. Concurrent reading and writing. Commun. ACM 20, 11 (Nov. 1977), 806-811. 
8. OWICKI, S., AND LAMPORT, L. Proving liveness properties of concurrent programs. ACM Trans. 

Program. Lang. Syst. 4, 3 (July 1982), 455-495. 
9. PNUELI, A. The temporal logic of programs. In 18th Annual Symposium on Foundations of 

Computer Science, Providence, R.I., Oct. 31-Nov. 2, 1977, pp. 46-57. 
10. SCHWARTZ, R., AND MELLIAR-SMITI-I, P.M. From state machines to temporal logic: Specification 

methods for protocol standards. IEEE Trans. Commun. Corn-30, 11 (Nov. 1982). 
11. SCHWARTZ, R.L., AND MELLIAR-SMITH, P.M. Temporal logic specification of distributed systems. 

In Proceedings of the 2nd International Conference on Distributed Computing Systems. IEEE 
Computer Society Press, 1981, pp. 446-454. 

Received January 1982; revised June 1982; accepted July 1982 

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 2, April 1983. 


