
SRC Technical Note
1998 - 004

March 11, 1998

Substitution: Syntactic versus Semantic

Leslie Lamport

d i g i t a l
Systems Research Center

130 Lytton Avenue
Palo Alto, California 94301

http://www.research.digital.com/SRC/

Copyright c©Digital Equipment Corporation 1998. All rights reserved

Substitution: Syntactic versus Semantic

Leslie Lamport

March 11, 1998

Abstract

A formalism with quantifiers permits two kinds of substitution: syntactic
substitution that allows the capture of bound variables and semantic substi-
tution that does not. When quantification is explicit, all substitution can be
made semantic. When quantification is implicit, as in some formalisms used
to reason about programs, both types of substitution are needed.

Consider the following definitions:

x �= r ∗ cos θ F �= ∃ θ : x �= tan θ (1)

What does F equal? It should equal the result of substituting r ∗ cos θ for x in
∃ θ : x �= tan θ . Naive substitution makes F equal to ∃ θ : r∗cos θ �= tan θ , which
is how most readers would probably interpret (1). However, naive substitution can
lead to problems. Naively substituting tan θ for x in the formula ∃ θ : x �= tan θ ,
which is valid for any x , yields the invalid formula ∃ θ : tan θ �= tan θ . Validity
is lost because the free variable θ is “captured” by the quantifier ∃ θ . Logicians
therefore define substitution so it renames bound variables, when necessary, to
prevent the capture of variables. Under this kind of substitution, (1) defines F to
equal ∃φ : r ∗ cos θ �= tan φ. I refer to naive substitution as uniform substitution,
and I call the logician’s definition contextual substitution.

Substitution in predicate logic is well understood. An easy way to avoid con-
fusion is to use the following rule: a symbol may not be used as a bound variable
if it already has a meaning. The definition of F in (1) violates this rule because
θ already has a meaning—otherwise, the definition of x would be meaningless.
Instead of (1), we can write

x (θ)
�= r ∗ cos θ F �= ∃ θ : x (θ) �= tan θ

assuming now that θ does not already have a meaning. For predicate logic, the rule
guarantees that uniform and contextual substitution are equivalent.

1

The distinction between uniform and contextual substitution cannot be elim-
inated so easily in all formalisms. Uniform substitution is defined by letting the
result of substituting in o(e1, . . . , en), for any operator o, equal o(ê1, . . . , ên),
where êi is the result of substituting in ei . Thus by definition, uniform substitution
distributes over the formalism’s operators. If a formalism also has a definition of
contextual substitution, then the two will be equivalent iff contextual substitution
distributes over all operators of the formalism. If we consider ∃ θ to be an opera-
tor, we can say that the two types of substitution differ in predicate logic because
contextual substitution does not distribute over ∃ θ . The formula ∃ θ : P need not
be equivalent to ∃ θ : P , where overbar () denotes some specific contextual
substitution.

If a formalism for reasoning about programs has a definition of contextual sub-
stitution, then contextual substitution is likely to differ from uniform substitution.
In particular, if the formalism has a semicolon (;) operator that corresponds to the
semicolon of ordinary programming languages, then S ;T need not equal S ;T for
formulas S and T . More precisely, I will show that contextual substitution does
not distribute over semicolon in a formalism in which x := x + 1; x := x + 1 is
equivalent to x := x + 2, where x := . . . denotes the formula corresponding to
the assignment statement.

What does it mean to substitute an expression like r ∗cos θ for x in x := x+1,
and why should we care? Substitution arises when implementing (or refining)
one program with another. If the specification of a program is that it satisfy a
postcondition S , then an implementation in which x is refined by r ∗cos θ is correct
iff it satisfies the postcondition S , where the substitution is x ← r ∗ cos θ [1]. If
S is a formula that represents a program, then implementing S under a refinement
means implementing S .

To see how such substitution is performed, consider a program with two vari-
ables x and y whose values represent the cartesian coordinates of a point in a plane.
We can obtain an equivalent program with variables r and θ whose values repre-
sent polar coordinates by performing the substitution x ← r ∗cos θ , y ← r ∗sin θ .
To compute the formula x := x + 1 obtained from x := x+1 by this substitution,
we can write x := x + 1 as the relation (x′ = x + 1) ∧ (y ′ = y) between the old
and new (primed) values of the variables, and substitute to obtain

(r ′ ∗ cos θ ′ = r ∗ cos θ + 1) ∧ (r ′ ∗ sin θ ′ = r ∗ sin θ)

Solving for r′ and θ ′ in terms of r and θ then allows us to write x := x + 1 as a
multiple assignment of the form r , θ := (When y = 0 and x = −1, this will
be a nondeterministic assignment that sets r to 0 and θ to any value in its range.)

This particular substitution does distribute over semicolon. It is easy to show
that the substitution x ← z , y ← z does not. However, I will construct a

2

more plausible example for which x := x + 1; x := x + 1 is not equivalent to
x := x + 2. The example is the same as the preceding one, except r and θ are
hyperbolic coordinates. The substitution is x ← r ∗ cosh θ , y ← r ∗ sinh θ , where
r and θ are real numbers. Since (cosh θ)2 ≥ (sinh θ)2 if θ is real, |x | ≥ |y| for
all x and y . (Hyperbolic coordinates can represent only points whose cartesian
coordinates satisfy |x | ≥ |y|.) When we compute x := x + 1, we obtain solutions
for r ′ and θ ′ iff |x + 1| ≥ |y |. The formula x := x + 1 therefore is undefined
when |x + 1| < |y|.1 In particular, x := x + 1 is undefined if x = −1 and y = 1.
Hence, x := x + 1; x := x + 1 is also undefined in this case. However, a similar
calculation shows that x := x + 2 is undefined iff |x + 2| < |y|, so it is defined
when x = −1 and y = 1. Therefore, x := x + 1; x := x + 1 is not equiva-
lent to x := x + 2, so contextual substitution does not distribute over semicolon if
x := x + 1; x := x + 1 is equivalent to x := x + 2.

Contextual substitution does not distribute over semicolon because semicolon
involves an implicit quantification over the intermediate values of variables, and
free variables are captured by the implicit quantifiers. Programming logics typ-
ically have operators with implicit quantification—for example, the wp (weakest
precondition) and sp (strongest postcondition) operators—and substitution does
not distribute over them.

Substitution arises when proving that one program or system specification im-
plements another. It does not occur in the standard theories of program correctness
in which one proves that a program satisfies a property, not that one program im-
plements another. In reasoning about concurrent systems, one does prove that one
system specification implements another. As observed in [2, Section 8.3.3], substi-
tution does not distribute over the ENABLED operator of TLA, nor over the weak
and strong fairness operators WF and SF defined in terms of it. The same problem
should arise in any method in which liveness properties are specified as fairness
conditions on actions. Although such fairness conditions are often used in describ-
ing systems, TLA appears to be the only specification method employing them that
has been sufficiently well formalized so the problem is evident.

The rule given above for making contextual and uniform substitution the same
in predicate logic does not work when the quantifiers are implicit. There does not
even seem to be any common notation to distinguish the two. In the definitions

x �= r ∗ cosh θ Twice(A)
�= A;A

y �= r ∗ sinh θ B �= Twice(x := x + 1)

(2)

1More precisely, it represents a statement whose execution is undefined when |x + 1| < |y |.
Depending on the formalism, executing a statement when it is undefined might mean that the program
waits, that execution aborts, or that the program is illegal.

3

does B equal x := x + 1; x := x + 1 or x := x + 1; x := x + 1? The first
interpretation, based on uniform substitution, is the more natural one. If we choose
this interpretation, then we must introduce some additional notation for contextual
substitution.

Should substitution be uniform or contextual? The answer is yes. Both types
of substitution are needed. We want to derive new theorems from existing ones
by substitution, and we can do this only with contextual substitution. In theory,
contextual substitution should suffice; in practice it does not. We build a complex
formula from simple pieces through a sequence of definitions. As (1) and (2) indi-
cate, it is much easier to see what we are defining when definitions are expanded
by uniform substitution. If uniform and contextual substitution are not equivalent,
a practical formalism should provide both.

Acknowledgments Gordon Plotkin and Peter Hancock provided helpful com-
ments on an earlier version. The terms uniform and contextual substitution are
based on suggestions by David Gries and Fred Schneider.

References

[1] C. A. R. Hoare. Proof of correctness of data representations. Acta Informatica,
1:271–281, 1972.

[2] Leslie Lamport. The temporal logic of actions. ACM Transactions on Pro-
gramming Languages and Systems, 16(3):872–923, May 1994.

4

