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Abstract

A general algorithm is presented for implementing dataflow computa-
tions with multiple threads that communicate using only reads and writes
of shared memory.
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1 Introduction

A dataflow computation is performed by a set of computing elements that
send one another data values in messages. Each computing element receives
input values from other computing elements and uses them to compute
output values that it then sends to other computing elements. When a
dataflow computation is implemented with a shared-memory multiprocessor,
data values are stored in buffers; processors act as computing elements,
informing one another when a buffer used by one computation is available
for use by another computation. We present a new algorithm for performing
the necessary interprocess synchronization.

We describe multiprocessor dataflow computations by a type of marked
graph [2] called a process marked graph. (Marked graphs are a restricted
class of Petri net [13].) We describe a shared-memory multiprocess imple-
mentation of any process marked graph using only reads and writes. It yields
a method for implementing an arbitrary multiprocessor dataflow computa-
tion by multiple threads that use only reads and writes for synchronization.
The implementation can be chosen to have optimal caching performance.

We begin in Section 2 by informally describing process marked graphs
and how they are used to represent dataflow computations. Section 3 de-
scribes these graphs more precisely and develops the algorithm for using
them to synchronize dataflow computations. The algorithm is applied to
some simple examples, and practical aspects of its implementation are dis-
cussed. Section 4 explains how a computation determines which buffers con-
tain its data. The conclusion summarizes related prior work and describes
some performance tests. The tests indicate that our algorithm should per-
form well. Actual performance will depend very much on the details of the
machine architecture, and there seems to be little point in extensive testing
on any particular current multiprocessor—especially since the algorithm will
probably be of most use in the coming generation of multi-core machines.
The appendix provides formal definitions of the concepts and operators in-
troduced in Section 3.

2 Process Marked Graphs in Pictures

A marked graph consists of a nonempty directed graph and a placement of
tokens on its edges, called a marking. Here is a simple marked graph. marking
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A node in a marked graph is said to be fireable iff there is at least one token
on each of its in-edges. Node p is the only fireable node in marked graph
(1). Firing a fireable node n in a marked graph changes the marking by
removing one token from each in-edge of n and adding one token to each of
its out-edges. Firing node p in marked graph (1) produces:
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An execution of a marked graph consists of a sequence of marked graphs,
each obtained from the previous one by firing a fireable node. For example,
here is one possible 5-step execution of (1).
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The marked graph (1) is a conventional representation of producer/consumer
or bounded buffer synchronization with three buffers [3]. Node p represents
the producer, node c represents the consumer, and the three tokens represent
the three buffers. A buffer is empty if its token is on edge 〈c, p 〉; it is full if
its token is on edge 〈p, c 〉. Firing node p describes the producer filling an
empty buffer; firing node c represents the consumer emptying a full buffer.
(Marked graphs employ the standard interleaving model of concurrency,
in which concurrent actions are represented as happening in an arbitrary
order.)

We now modify this way of representing the producer/consumer problem.
First, we add edges with tokens that represent the processes to obtain:

np
3

nc +j
Y

w w w
w w(2)
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The token on edge 〈p, p 〉 represents the producer process; the one on edge
〈c, c 〉 represents the consumer process. As in (1), the producing and con-
suming operations are represented by the actions of firing nodes p and c,
respectively.

Firing a node is an atomic step. We want to represent the operations
of filling and emptying a buffer as having a finite duration. We therefore
modify (2) by expanding nodes p and c into two-node subgraphs to obtain:
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]

w w w

w w(3)

Firing node p1 in the initial marking produces:
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The token on edge 〈p1, p2 〉 indicates that the producer is performing the
operation of filling the first buffer. Firing node p2 in marking (4) ends that
operation, producing:
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In marked graph (3), the producer and consumer processes are represented
by the tokens on the two subgraphs:
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]

^ ^

]

A token on edge 〈p1, p2 〉 represents the producer performing the operation
of filling a buffer. A token on edge 〈p2, p1 〉 represents the producer waiting
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to fill the next buffer. Similarly, a token on 〈c1, c2 〉 represents the consumer
emptying a buffer, and a token on 〈c2, c1 〉 represents it waiting to empty
the next buffer. We call 〈p1, p2 〉 and 〈c1, c2 〉 computation edges; a token
on one of those edges represents a process performing a computation on a
buffer.

The tokens on the subgraph

np2

np1

nc1

nc2

j

Y

]

^

represent the pool of buffers. A token on 〈c2, p1 〉 represents an empty buffer;
a token on 〈p1, p2 〉 represents one being filled; a token on 〈p2, c1 〉 represents
a full buffer; and a token on 〈c1, c2 〉 represents one being emptied. A token
on edge 〈p1, p2 〉 represents both the producer process and the buffer it is
filling; a token on 〈c1, c2 〉 represents both the consumer and the buffer it is
emptying.

In general, a process marked graph is a marked graph containing disjoint
cycles called processes, each node of the graph belonging to one process,
and whose marking places a single token on each process. (This is the same
definition as the one in [9], except we associate only processes and not their
operations with the nodes.) Certain process edges are called computation computation

edgeedges, but they are irrelevant to our algorithms for executing process marked
graphs.

As another example of a process marked graph, we expand the pro-
ducer/consumer system by adding another consumer. The producer writes
into a buffer, and the contents of that buffer are read, perhaps concurrently,
by the two consumers. This system is represented by the following marked
graph.

np2
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nc2

j
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^

]

^

]

w w w

w w
nd1

nd2

^

] w

j

Y
w w w

(5)

The additional consumer processes is represented by the subgraph containing
nodes d1 and d2 and the edges joining them. Edge 〈d1, d2 〉 is an additional
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computation edge. The buffer pool is represented by the subgraph:
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Here is a five-step execution of this marked graph, where we have labeled
each token with the number of the buffer that it represents.
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The last state is one in which the producer is writing into buffer 1 and both
consumers are reading from buffer 0.

Our next example is a system with two producers and one consumer. The
two producers write into separate pools of buffers, one buffer pool containing
three buffers and the other containing two. The consumer’s computation
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reads one buffer written by each producer.
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The underlying graph is isomorphic to that of (6), and it has the analo-
gous three processes. There are two buffer pools, represented by these two
subgraphs:
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Our final example is barrier synchronization. In barrier synchronization, barrier syn-
chronizationa set of processes repeatedly execute a computation such that, for each i ≥ 1,

every process must complete its i th execution before any process begins its
(i +1)st execution. For three processes, barrier synchronization is described
by the following process marked graph
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where the processes are the three cycles:
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Edges 〈a2, a1 〉, 〈b2, b1 〉, 〈c2, c1 〉, are computation edges; a token on any of
these edges represents the process performing its computation.1 There are
no buffers in this problem. The 6 edges not belonging to a process effect
barrier synchronization by ensuring that none of the nodes a2, b2, and c2

are fireable for the (i + 1)st time until all three nodes a1, b1 and c1 have
fired i times.

When modeling a system by a process marked graph, we are interested
only in tokens on computation edges. Two process marked graphs whose
executions place and remove tokens on these edges in the same sequence are
equivalent models. For example, here is another way to represent barrier
synchronization for three processes.
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It guarantees barrier synchronization because none of the nodes a2, b3, and
c2 are fireable for the (i + 1)st time before b2 has fired i times, which can

1It would be more natural to describe barrier synchronization with a marked graph
in which processes are not initially performing their computations, the initial marking
instead having tokens on all the non-computation edges. However, it’s easier to draw a
graph with only three tokens instead of nine.
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occur only after all three nodes a1, b1, and c1 have fired i times. Applying
our algorithm for implementing a process marked graph to the graphs (7)
and (8) yields different barrier synchronization algorithms.

3 Implementing A Process Marked Graph

We now develop our algorithm for implementing a process marked graph.
We begin in Section 3.1 by introducing some mathematical notation and sta-
ting some simple facts about modular arithmetic needed in our derivation.
Section 3.2 provides more rigorous definitions of marked graphs and their
executions. Section 3.3 develops our algorithm through a sequence of infor-
mal refinements of a very simple algorithm. Sections 3.4 and 3.5 apply the
algorithm to the simple producer/consumer system (3), with an arbitrary
number of buffers, and to barrier synchronization, with an arbitrary num-
ber of processors. Section 3.6 discusses how the algorithm is implemented
on modern memories with weak semantics that require additional operations
to implement conventional read/write synchronization. Section 3.7 discusses
the caching behavior of the algorithm.

3.1 Preliminaries

3.1.1 Notation

We use fairly standard mathematical notation. For example, ∀ x ∈ S : P(x )
is the formula that is true iff P(x ) is true for all x in the set S .

We use square brackets to denote function application, writing f [x ] for
the value obtained by applying function f to value x . We use the terms
array and function interchangeably, an array indexed by a set S being a
function with domain S .

We let i . . j be the set of all integers k such that i ≤ k ≤ j . For any
integer a and positive integer b, we define a % b to be the integer in 0 . . (b−1) %
that is congruent to a modulo b.

We define the finite sequence 〈s1, . . . , sk 〉 to be a function σ with domain
1 . . k such that σ[i ] equals s i for all i in 1 . . k . A pair 〈a, b 〉 is a sequence
of length 2.

We define a directed graph Γ to consist of a set Γ.nodes of nodes and a
set Γ.edges of edges, where an edge is an ordered pair of nodes. We say that
an edge 〈m,n 〉 is an in-edge of node n and an out-edge of node m, and that
m is the source and n the destination of 〈m,n 〉. We define a simple cycle simple cycle
of Γ to consist of a non-empty finite sequence 〈p1, . . . , pk 〉 of distinct nodes
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such that 〈pi , p(i%k)+1 〉 is an edge for all i ∈ 1 . . k . (In particular, 〈pk , p1 〉
is an edge of Γ.)

3.1.2 Some Facts About Modular Arithmetic

We now assert some properties of modular arithmetic that we will need
later. We assume that N is a fixed positive integer, and we let ⊕ and ª be ⊕, ª
addition and subtraction modulo N . In other words,

a ⊕ b = (a + b)%N a ª b = (a − b)%N

for any integers a and b.
The first two facts are straightforward properties of the operator %.

Mathematicians would express the first by saying that % is a homomorphism
from the integers to the integers modulo N .

Fact 1 For any integers a, b,

(a ⊕ b) = ((a%N ) ⊕ (b%N ))
(a ª b) = ((a%N ) ª (b%N ))

Fact 2 For any integers a, b, and p, if 0 ≤ p < N and a ∈ b . . (b + p),
then a = b + p iff a %N = b ⊕ p.

The next two facts involve % and the operator d eQ , where dieQ is defined d eQ
to be the smallest multiple of Q that is greater than or equal to i , for any
natural number i . In other words, dieQ = Q ∗ di/Qe, where di/Qe is the
smallest integer greater than or equal to i/Q .

Fact 3 For any integers a and Q with 0 < Q ≤ N , if Q divides N , then
daeQ %N = da%N eQ %N .

Fact 4 For any integers a, b, Q , and B with 0 < Q ≤ N and 0 < B ≤ N ,
if B ∗Q divides N , then

((daeQ/Q) + b)%B = ((da %N eQ/Q) + b)%B

We omit the proofs of these facts.
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--algorithm MGSpec
variable µ = µ0 ;
process Node ∈ Γ.nodes

begin lab : while true do
when ∀ e ∈ InEdges(self ) : µ[e] > 0 ;
µ : = Fire(self , µ) ;

end while
end process

end algorithm

Figure 1: The algorithm describing all possible executions of the marked
graph 〈Γ, µ0〉.

3.2 Marked Graphs in Mathematics

A marked graph is a pair 〈Γ, µ0 〉, where Γ is a directed graph and µ0 is the
initial marking that assigns to every edge e of Γ a natural number µ0[e],
called the number of tokens on e. We assume a fixed Γ and µ0. Γ, µ0

In general, a marking µ of a marked graph is a function that assigns a
non-negative integer µ[e] to every edge e. A node n is fireable in a marking
µ iff µ[e] > 0 for every in-edge e of n. Let InEdges(n) be the set of all InEdges
in-edges of n. The condition for n to be fireable in µ is then

∀ e ∈ InEdges(n) : µ[e] > 0

Let Fire(n, µ) be the marking obtained by firing n in marking µ. (The Fire
precise definitions of Fire and all other operators we use appear in the
appendix.)

The algorithm MGSpec that defines the execution of 〈Γ, µ0 〉 is given in
Figure 1. It is written in the +cal algorithm language [5]. The value of
variable µ is the current marking; it is initialized with the value µ0. Each
node is described by a separate process. The process statement contains
the code for Node process self , where self is in the set Γ.nodes of nodes. A
single atomic step of a +cal algorithm consists of an execution of a process
from one label to the next. An atomic step of a Node process therefore
consists of an execution from label lab back to lab—that is, an execution
of the body of the while loop. The when statement can be executed only
when its expression is true; so a step of process self can be executed only
when node self is fireable in marking µ.

A +cal algorithm is translated into a TLA+ specification that can be
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executed or model checked with the TLC model checker [10].2 (Model check-
ing essentially involves checking all possible executions.) In the actual +cal
code, ∀ is written \A, the symbol ∈ is written \in, and µ, µ0, and Γ must
be replaced by ascii identifiers. Similar replacements must be made for
additional notation that appears in other algorithms given below.

We now make certain observations about marked graphs. The marked
graph 〈Γ, µ0 〉 is said to be live iff all its executions are deadlock-free, meaning live
that they can be extended indefinitely. A finite marked graph is live iff every
cycle contains at least one token. We assume that 〈Γ, µ0 〉 is live.

For a marking µ, we can consider µ[e] to be the length of edge e, thereby
defining a distance function on the nodes. Let δµ(m,n) be the distance from δµ

node m to node n (the length of the shortest-length path from m to n). This
distance operator δµ is non-commutative (δµ(m,n) need not equal δµ(n,m)),
but it satisfies the triangle inequality δµ(m, p) ≤ δµ(m,n)+δµ(n, p), for any
nodes m, n, and p.

At any point during an execution of 〈Γ, µ0 〉, let #(n) be the number of #
times that node n has been fired thus far. Let 〈m,n 〉 be an edge of Γ with
m 6= n, and let π be a path from n to m. Firing m adds a token to 〈m,n 〉
and removes one from π; firing n removes a token from 〈m,n 〉 and adds one
to π. This implies:

Observation 1. For any edge 〈m,n 〉 of Γ, throughout any execution
of 〈Γ, µ0 〉:

(a) µ[〈m,n 〉] = µ0[〈m,n 〉] + #(m)−#(n)
(b) #(n)−#(m) ∈ −δµ0(n,m) . . µ0[〈m,n 〉]

3.3 Implementing a Process Marked Graph

The easiest way to implement a marked graph is with message passing.
A token on an edge 〈m,n 〉 from process π1 to a different process π2 is
represented by a message that is sent by π1 to π2 when the token is put on the
edge; the message is removed by π2 from its message buffer when the token
is removed. By Observation 1(b), a buffer of capacity δµ0(n,m)+µ0[〈m,n 〉]
can hold all messages representing tokens on 〈m,n 〉. The messages need not
contain any data.

Our goal is an algorithm that does not assume message-passing primi-
tives. We implement a process marked graph using read and write operations

2TLC can execute only +cal algorithms that involve finite computations. For example,
we have not assumed that the graph Γ is finite, and algorithm MGSpec is perfectly well-
defined for infinite graphs. However, TLC can execute the algorithm only if Γ is finite.
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to shared memory. We derive the implementation by a series of refinements,
starting in Section 3.3.1 with an algorithm that is a straightforward descrip-
tion of what it means to execute a process marked graph. Section 3.3.2
develops an algorithm using unbounded counters; the following section re-
fines it to one with bounded counters that still has unrealistically large
atomic steps. The grain of atomicity is refined in Section 3.3.4. Finally,
Section 3.3.5 describes an optimization to improve memory performance.
This derivation is mathematical and rather abstract. The reader may want
to skim it and read the examples in Sections 3.4 and 3.5 before studying the
derivation in detail.

3.3.1 A Simple Algorithm

Recall that a simple cycle is a sequence 〈p1, . . . , pk 〉 of distinct nodes such
that each pair 〈pi , p(i%k)+1 〉 is an edge of Γ. Two cycles are disjoint iff they
contain disjoint sets of nodes.

A process marked graph is a triple 〈Γ, µ0, Π〉 where

• 〈Γ, µ0 〉 is a marked graph.

• Π is a set of disjoint simple cycles of Γ called processes such that each process
node of Γ is in exactly one process.

• For each process 〈p1, . . . , pk 〉, the initial marking µ0 assigns one token
to edge 〈pk , p1 〉 and no tokens to the other k − 1 edges of the process.

In any execution of a process marked graph, each process 〈p1, . . . , pk 〉 has
a single token that cycles through its edges. The nodes of the process fire
in cyclic order, starting with p1.

We execute a process marked graph with an algorithm having one process
for every process in Π, each algorithm process firing the nodes of the corre-
sponding process in Π. We identify a process π in Π with the algorithm’s
process that executes π.

Process π can remember in its internal state which edge of the cycle
contains a token. It need only examine edges coming from other processes
to determine when to fire a node. Let a synchronizing edge be an edge of Γ
whose endpoints belong to different processes. Let SInEdges(n) be the set
of synchronizing in-edges of node n. The algorithm PMGAlg1 of Figure 2
then describes the execution of the process marked graph 〈Γ, µ0, Π〉. (The
variable i is local, with a separate copy for each process.) It should be clear
that algorithms PMGAlg1 and MGSpec are equivalent, meaning that any equivalence
execution of the marked graph 〈Γ, µ0 〉 allowed by one is allowed by the
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--algorithm PMGAlg1
variable µ = µ0 ;
process Proc ∈ Π

variable i = 1 ;
begin lab : while true do

when ∀ e ∈ SInEdges(self [i ]) : µ[e] > 0 ;
µ : = Fire(self [i ], µ) ;
i : = (i %Len(self )) + 1 ;

end while
end process

end algorithm

Figure 2: A simple algorithm describing the execution of process marked
graph 〈Γ, µ0, Π〉.

other. More precisely, for each behavior of one, there is a behavior of the
other with the same sequence of changes to µ.

3.3.2 An Algorithm With Unbounded Counters

We now introduce a set Ctrs of counters and two arrays, CtrOf of counters Ctrs, CtrOf ,
Incrand an array Incr of natural numbers, both indexed by the set of nodes.

Every time node n is fired, counter CtrOf [n] is incremented by Incr [n]. (If
Incr [n] = 0, then the value of CtrOf [n] doesn’t matter, since firing n does
not change the counter.) We make the following requirements on the arrays
CtrOf and Incr .

C1. For any nodes m and n, if CtrOf [m] = CtrOf [n] then m and n belong
to the same process. (We allow the same counter to be assigned to
multiple nodes, but only if they all belong to the same process.)

C2. If a node n has a synchronizing out-edge, then Incr [n] > 0.

C3. For any counter c, let IncrSum(c) equal the sum of Incr [n] for all IncrSum
nodes n with CtrOf [n] = c. Then IncrSum(c) has the same value for
all counters c; we call this value Q .

As we explain in Section 3.3.4 below, condition C3 can be weakened.
Let algorithm PMGAlg2 be obtained from algorithm PMGAlg1 by adding PMGAlg2

a global variable ct , where ct [c] is the value of counter c. We add to the ct
global variable statement the declaration
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ct = [c ∈ Ctrs 7→ 0]

that initializes ct [c] to 0 for every counter c. We add to the body of the
while loop, before the assignment to i , the statement

ct [CtrOf [self [i ]]] : = ct [CtrOf [self [i ]]] + Incr [self [i ]] ;

In algorithm PMGAlg2, the counters do nothing except count. We now
modify this algorithm by replacing the when test with an expression that
depends on ct rather than µ. But first, we need some definitions.

Let cnt0(n) be the amount by which node n’s counter is incremented be- cnt0
fore n is fired for the first time. In other words, for each process 〈p1, . . . , pk 〉,
we define cnt0(pi) to be the sum of all Incr [pj ] such that j < i and
CtrOf [pj ] = CtrOf [pi ]. Let bct(n) equal ct [CtrOf [n]] − cnt0(n), so bct(n) bct
equals 0 just before n fires for the first time.

By condition C3, any time in the execution that n is about to fire, bct(n)
equals Q ∗#(n). More generally, if n is the next node of its process to fire,
or if Incr [n] > 0, then

Q ∗#(n) = dbct(n)eQ(9)

By Observation 1 and condition C1, this implies:

Observation 2 Throughout the execution of Algorithm PMGAlg2, if
〈m,n 〉 is a synchronizing edge and n = π[i ] for some process π (so n is
the next node of process π to fire), then

(a) Q ∗ µ[〈m,n 〉] = Q ∗ µ0[〈m,n 〉] + dbct(m)eQ − dbct(n)eQ
(b) dbct(n)eQ − dbct(m)eQ ∈ −Q ∗ δµ0(n,m) . .Q ∗ µ0[〈m,n 〉]

Let 〈m,n 〉 be a synchronizing in-edge of a node n. It follows from part
(a) of Observation 2 that, if n is the next node of its process to fire, then
µ[〈m,n 〉] > 0 iff

Q ∗ µ0[〈m,n 〉] + dbct(m)eQ − dbct(n)eQ > 0

This inequality is equivalent to

dbct(n)eQ − dbct(m)eQ ≤ Q ∗ µ0[〈m,n 〉]− 1

which by part (b) of Observation 2 is equivalent to

dbct(n)eQ − dbct(m)eQ 6= Q ∗ µ0[〈m,n 〉](10)
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Define CtTest(〈m,n 〉) to equal formula (10). (The formula depends only on CtTest
ct , the edge 〈m,n 〉, and constants.)

We have seen that, if n = π[i ] for some process π and 〈m,n 〉 is a syn-
chronizing in-edge of n, then CtTest(〈m,n 〉) is equivalent to µ[〈m,n 〉] > 0.
We therefore obtain an algorithm that is equivalent to algorithm PMGAlg2
by replacing the when statement of PMGAlg2 with

when ∀ e ∈ SInEdges(self [i ]) : CtTest(e)

(Remember that PMGAlg2 is the same as algorithm PMGAlg1 of Figure 2
except with counter ct added.) We call the resulting algorithm PMGAlg3. PMGAlg3

In algorithm PMGAlg3, the variable µ is never read, only written. In
this and our subsequent algorithms for executing a process marked graph,
the variable µ is a history variable whose only function is to demonstrate
the equivalence of the algorithm with the specification MGSpec of a marked
graph. It will not appear in the actual code for synchronizing a dataflow
computation that is obtained from our final algorithm.

3.3.3 Bounding the Counters

We now modify algorithm PMCAlg3 to bound the counter values by incre-
menting them modulo N , for a suitably chosen N . By part (b) of Observa-
tion 2, applying number Fact 2 with

a ← dbct(n)eQ − dbct(m)eQ
b ← −Q ∗ δµ0(n,m)
p ← Q ∗ δµ0(n,m) + Q ∗ µ0[〈m,n 〉]

shows that if
N > Q ∗ δµ0(n,m) + Q ∗ µ0[〈m,n 〉](11)

then (10) is equivalent to

dbct(n)eQ ª dbct(m)eQ 6= (Q ∗ µ0[〈m,n 〉])%N(12)

We assume that (11) holds for all synchronizing edges 〈m,n 〉. If N is also
a multiple of Q , then applying number Facts 1 and 3 shows that (12) is
equivalent to

dbct(n)%N eQ ª dbct(m)%N eQ 6= (Q ∗ µ0[〈m,n 〉])%N(13)

The definition of bct implies that bct(n)%N equals ct [CtrOf [n]]ª cnt0(n),
which by number Fact 1 equals (ct [CtrOf [n]]%N ) ª cnt0(n). Let cnt , be cnt
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--algorithm PMGAlg4
variable µ = µ0 ; cnt = [c ∈ Ctrs 7→ 0]
define CntTest(e) ∆=

let bcnt(p) ∆= cnt [CtrOf [p]] ª cnt0(p)
m ∆= e[1]
n ∆= e[2]

in dbcnt(n)eQ ª dbcnt(m)eQ 6= (Q ∗ µ0[〈m,n 〉]) %N
process Proc ∈ Π

variable i = 1 ;
begin lab : while true do

when ∀ e ∈ SInEdges(self [i ]) : CntTest(e) ;
µ : = Fire(self [i ], µ) ;
cnt [CtrOf [self [i ]]] : = cnt [CtrOf [self [i ]]]⊕ Incr [self [i ]] ;
i : = (i %Len(self )) + 1 ;

end while
end process

end algorithm

Figure 3: An algorithm describing the execution of the process marked graph
〈Γ, µ0, Π〉.

an array such that cnt [c] = ct [c]%N for every counter c. Define bcnt by bcnt

bcnt(n) ∆= cnt [CtrOf [n]]ª cnt0(n)

Then bcnt(n) = bct(n)%N for every node n. Formula (13) is therefore
equivalent to

dbcnt(n)eQ ª dbcnt(m)eQ 6= (Q ∗ µ0[〈m,n 〉])%N(14)

Define CntTest(〈m,n 〉) to equal formula (14). We have seen that, if CntTest
cnt [c] = ct [c]%N for every counter c, then CntTest(e) is equivalent to
CtTest(e). Number fact 1 therefore implies that we obtain an algorithm
equivalent to PMGAlg3 by replacing ct with an array cnt of counters that
are incremented modulo N and replacing CtTest(e) with CntTest(e). This
algorithm, which we call PMGAlg4, is given in Figure 3. Unlike operators
such as ⊕ that are defined solely in terms of constants, CntTest is defined in
terms of the variable cnt . Its definition therefore appears with the algorithm
code in a define statement.
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--algorithm MGFGSpec
variable µ = µ0 ;
process Node ∈ Γ.nodes

variable ToCheck
begin lab : while true do

ToCheck : = InEdges(self ) ;
loop : while ToCheck 6= {} do

with e ∈ ToCheck do
if µ[e] > 0 then ToCheck : = ToCheck \ {e} end if

end with
end while

fire : µ : = Fire(self , µ) ;
end while

end process
end algorithm

Figure 4: A finger-grained algorithm for executing the marked graph 〈Γ, µ0〉.

3.3.4 A Fine-Grained Algorithm

Algorithm PMGAlg4 uses bounded counters. However, execution of a com-
plete step of the while loop (from label lab back to itself) is an atomic step.
Thus, in a single atomic step it reads the counters of every node with a syn-
chronizing in-edge to self [i ] and writes self [i ]’s counter. Our final algorithm
is a finer-grained version that performs these reads and writes as separate
atomic steps.

To see why such a finer-grained algorithm works, we first write a corre-
sponding finer-grained version of the simple algorithm MGSpec for executing
a marked graph. For each node n, algorithm MGSpec reads µ[e] for every
in-edge e of n in one atomic step. When a token is placed on an edge of
a marked graph, it remains on that edge until the edge’s destination node
is fired. Hence, the algorithm will work if the read of each µ[e] is made a
separate action. This is done in algorithm MGFGSpec of Figure 4. (It will
not matter that the write of µ[e] for all out-edges of n is a single atomic
step.)

Algorithm MGFGSpec uses the local process variable ToCheck to keep
track of the set of in-edges of node self that have not yet been found to
contain a token. Its initial value is irrelevant and is left unspecified. The
empty set is written {} and \ is set difference, so S\{e} is the set of all
elements of S other than e. The with statement nondeterministically sets
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e to an arbitrary element of ToCheck , so the inner while loop checks the
in-edges of node self in an arbitrary order, exiting after finding that they all
contain a token. The atomic actions are the first assignment to ToCheck ,
each iteration of the inner while loop, and the assignment to µ. Because
only the process for node n removes tokens from n’s in-edges, algorithm
MGFGSpec is equivalent to the specification MGSpec of the execution of
marked-graph 〈Γ, µ0 〉.

In a similar way, we can replace the simple algorithm PMGAlg1 by an
equivalent one in which the read of µ[e] for each edge e in SInEdges(self [i ])
is made a separate action. If we add a modulo-N counter cnt to this finer-
grained algorithm, it remains the case that if n is the next node in its
process to be fired, then µ[〈m,n 〉] > 0 is equivalent to CntTest(〈m,n 〉) for
any synchronizing in-edge 〈m,n 〉 of n. The same argument that showed
algorithm PMGAlg4 to be equivalent to MGSpec therefore shows that algo-
rithm FGAlg of Figure 5 is equivalent to algorithm MGFGSpec, and hence
to the specification MGSpec.

Each iteration of the outer while loop implements the firing of node
self [i ]. When applying the algorithm, we usually unroll this loop as a se-
quence of separate copies of the body for each value of i . If self [i ] has
no input synchronizing edges, then the inner while statement performs 0
iterations and can be eliminated, along with the preceding assignment to
ToCheck , for that value of i . If Incr [self [i ]] = 0, then the statement labeled
fire does nothing and can be eliminated.

For convenience, we list here all the assumptions that we used in showing
that FGAlg is equivalent to MGSpec.

C0. 〈Γ, µ0, Π〉 is a live process marked graph.

C1. For any nodes m and n, if CtrOf [m] = CtrOf [n], then m and n belong
to the same process.

C2. If node n has a synchronizing out-edge, then Incr [n] > 0.

C3. IncrSum(c) = Q for every counter c.

C4. (a) N is divisible by Q , and

(b) N > Q ∗ (δµ0(n,m) + µ0[〈m,n 〉]), for every synchronizing edge
〈m,n 〉.

Note that the expression δµ0(n,m)+µ0[〈m,n 〉] in assumption C4(b) equals
the length of (number of tokens on) a minimal-length cycle containing edge
〈m,n 〉.
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--algorithm FGAlg
variable µ = µ0 ; cnt = [c ∈ Ctrs 7→ 0]
define CntTest(e) ∆=

let bcnt(p) ∆= cnt [CtrOf [p]] ª cnt0(p)
m ∆= e[1]
n ∆= e[2]

in dbcnt(n)eQ ª dbcnt(m)eQ 6= (Q ∗ µ0[〈m,n 〉]) %N
process Proc ∈ Π

variables i = 1 ; ToCheck
begin lab : while true do

ToCheck : = SInEdges(self [i ]) ;
loop : while ToCheck 6= {} do

with e ∈ ToCheck do
if CntTest(e) then

ToCheck : = ToCheck \ {e} end if
end with

end while
fire : cnt [CtrOf [self [i ]]] : = cnt [CtrOf [self [i ]]]⊕ Incr [self [i ]] ;

µ : = Fire(self , µ) ;
i : = (i%Len(self )) + 1 ;

end while
end process

end algorithm

Figure 5: Our fine-grained algorithm for executing the process marked graph
〈Γ, µ0, Π〉.

Assumption C3 is stronger than necessary. If we replace Q by IncrSum(n)
in the definition of CntTest(e) (formula (14)), then we can replace C3 and
C4(a) by

C3. IncrSum(CtrOf [m]) = IncrSum(CtrOf [n]) for every synchronizing
edge 〈m,n 〉.

C4. (a) N is divisible by IncrSum(c), for every counter c.

However, we expect that most applications will use either a single counter
for all nodes of a process or else enough counters so that IncrSum(c) = 1
for every counter c. With a single counter for each process, the generalized
version of C3 implies that IncrSum(c) is the same for all counters c if the

19



graph Γ is connected. This generalization therefore does not seem to be
useful.

3.3.5 An Optimization

When implementing a multiprocess algorithm like FGAlg on today’s multi-
processors, an access to a shared memory location that is not in the proces-
sor’s cache is many times slower than an operation local to the process. We
can optimize FGAlg by eliminating some unnecessary reads by one process
of another process’s counters if there can be more than one token on a syn-
chronizing edge. (This is the case for our producer/consumer examples, but
not for barrier synchronization.)

When process self computes CntTest(e), it is determining whether the
number of tokens on edge e is greater than 0. It could just as easily determine
µ[e], the actual number of tokens on e. If it finds that µ[e] > 1, then the
process knows that the tokens needed to fire node self [i ] the next µ[e] − 1
times are already on edge e. Therefore, it can eliminate the next µ[e] − 1
tests for a token on edge e, eliminating those reads of the counter for e’s
source node.

A derivation similar to that of the definition (14) of CntTest(〈m,n 〉)
shows that, if n is the next node of its process to fire, then

dbcnt(m)eQ ª dbcnt(n)eQ ⊕ Q ∗ µ0[〈m,n 〉]

equals Q ∗ µ[〈m,n 〉]. Hence, µ[〈m,n 〉] equals

dbcnt(m)eQ ª dbcnt(n)eQ
Q

⊕ µ0[〈m,n 〉](15)

Define CntMu(〈m,n 〉) to equal (15). We modify the inner while statement CntMu
of FGAlg so it evaluates CntMu(e) rather than CntTest(e), removing e
from ToCheck if it finds CntMu(e) > 0. We also make the process remove e
from ToCheck the next CntMu(e)−1 times it executes the while statement
before re-evaluating CntMu(e). To do this, we add a local variable toks[e]
whose value is set to CntMu(e)− 1 when that expression is evaluated. Let
ProcInEdges(π) be the set of all synchronizing in-edges of process π’s nodes.
We optimize algorithm FGAlg by adding the local variable declaration

toks = [e ∈ ProcInEdges(self ) 7→ µ0[e]− 1]

to process Proc and changing the do clause of the with statement within
the inner while loop to
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if toks[e] ≤ 0 then toks[e] : = CntMu(e)− 1
else toks[e] : = toks[e]− 1

end if ;
if toks[e] 6= −1 then ToCheck : = ToCheck \ {e} end if

Remember that this optimization can eliminate memory accesses only for
edges e of the process marked graph that can contain more than one token.
It accomplishes nothing for barrier synchronization.

3.4 The Producer/Consumer System

As our first example, let us apply algorithm FGAlg to the process marked
graph (3) representing producer/consumer synchronization, except with an
arbitrary number B of tokens on edge 〈c2, p1 〉 instead of just 3. Recall that
each of those tokens represents a buffer, a token on edge 〈p1, p2 〉 represents
a Produce operation, and a token on edge 〈c1, c2 〉 represents a Consume
operation. We let the producer and consumer processes each have a single
counter that is incremented by 1 when p2 or c2 is fired. We then have Q = 1,
and condition C4 becomes N > B .

Since firing p1 or c1 does not increment a counter, statement fire can be
eliminated in the iterations of the outer while loop for i = 1. Since p2 and
c2 have no synchronizing in-edges, statement loop can be eliminated in the
iteration for i = 2. We unroll the loop to combine the iterations for i = 1
and i = 2 into one loop body that contains the statement loop for i = 1
followed by statement fire for i = 2. Since the execution of the Produce
or Consume operation begins with the firing of p1 or c1 and ends with the
firing of p2 or c2, its code comes between the code for the two iterations.

Instead of a single array cnt of variables, we use variables p and c for the
producer’s and consumer’s counters. We have cnt0(p1) = cnt0(c1) = 0, so
the conditions CntTest(〈c2, p1 〉) and CntTest(〈p2, c1 〉) become p ª c 6= B
and pª c 6= 0, respectively. Writing the producer and consumer as separate
process statements, we get the algorithm of Figure 6. The statements
Produce and Consume represent the code for executing those operations.
This algorithm was apparently first published in [6]. It can be optimized as
described in Section 3.3.5 above.

3.5 Barrier Synchronization

We now apply algorithm FGAlg to barrier synchronization. We begin with
the process marked graph (7) of Section 2 (page 6). We use one counter
per process, incremented by 1 by the process’s first node and left unchanged
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--algorithm ProdCons
variables p = 0 ; c = 0
process Prod = “p”

begin lab : while true do
loop : while p ª c = B do skip end while

Produce ;
fire : p : = p ⊕ 1 ;

end while
end process

process Cons = “c”
begin lab : while true do

loop : while p ª c = 0 do skip end while
Consume ;

fire : c : = c ⊕ 1 ;
end while

end process
end algorithm

Figure 6: The producer/consumer algorithm obtained from algorithm
FGAlg for the process marked graph (3), with B buffers instead of 3.

by its second node. Hence, Q = 1. Condition C4(b) requires N > 2—for
example, for edge 〈a1, b2 〉 we have δµ0(b2, a1) + µ0[〈a1, b2 〉] equals 2 + 0.
We use the name of the process as its counter name, so process a (the top
process of (7)) uses counter a. Since cnt0(a1) = 0, cnt0(b2) = 1, and
µ0[〈a1, b2 〉] = 0, formula CntTest(〈a1, b2 〉) equals

(cnt [b]ª 1)ª (cnt [a]ª 0) 6= 0

which is equivalent to
cnt [b]ª cnt [a] 6= 1(16)

We generalize from (7) in the obvious way to a process marked graph
with a set Π of processes, and we apply algorithm FGAlg to this process
marked graph. We let the set of counters be the set of processes, and we
let each process π increment cnt [π] by 1 when firing node π[1] and leave it
unchanged when firing node π[2]. Since π[1] has no synchronizing in-edges
and firing π[2] does not increment counter π, unrolling the body of the outer
while yields a loop body with statement fire for i = 1 followed by statement
loop for i = 2. The statement PerformComputation containing the code for
the computation corresponding to edge 〈self [2], self [1]〉 precedes the fire
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--algorithm Barrier1
variable cnt = [c ∈ Π 7→ 0]
process Proc ∈ Π

variable ToCheck
begin lab : while true do

Perform Computation ;
fire : cnt [self ] : = cnt [self ]⊕ 1 ;

ToCheck : = Π \ {self } ;
loop : while ToCheck 6= {} do

with π ∈ ToCheck do
if cnt [self ]ª cnt [π] 6= 1 then

ToCheck : = ToCheck \ {π} end if
end with

end while
end while

end process
end algorithm

Figure 7: The barrier synchronization algorithm obtained from algorithm
FGAlg for the generalization of process marked graph (7).

statement. For each process π, we have cnt0(π[1]) = 0 and cnt0(π[2]) = 1,
so CntTest(〈π[1], self [2]〉) equals cnt [self ] ª cnt [π] 6= 1, for any process
π 6= self . We then get algorithm Barrier1 of Figure 7, for any N > 2.
This algorithm appears to be new. It is the simplest barrier synchronization
algorithm using only reads and writes that we know of.

In a similar fashion, we can derive a barrier synchronization algorithm
from algorithm FGAlg applied to the generalization of the process marked
graph (8) of Section 2 (page 7). In that generalization, a single distinguished
process π0 plays the role of process b (the middle process). Again, each
process has a single counter. The algorithm for every process self other
than π0 is the same as in algorithm Barrier1, except that node self [2] has
only a single synchronizing in-edge for whose token it must wait. Since
nodes π0[1] and π0[3] have neither synchronizing in-edges nor out-edges, the
iterations of process π0’s loop for i = 1 and i = 3 do nothing. For any process
π 6= π0 we have CntTest(〈π[1], π0[2]〉) equals cnt [π0] ª cnt [π] 6= 0 which is
equivalent to cnt [π0] 6= cnt [π], since cnt [π0] and cnt [π] are in 0 . . (N − 1).
This leads to the algorithm Barrier2 of Figure 8, where assumption C4 again
requires N > 2. This algorithm is also new. It may be more efficient than
algorithm Barrier1 because it performs fewer memory operations (about
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--algorithm Barrier2
variable cnt = [c ∈ Π 7→ 0]
process Proc ∈ Π \ {π0}

begin lab : while true do
Perform Computation ;

fire : cnt [self ] : = cnt [self ]⊕ 1 ;
loop : while cnt [self ]ª cnt [π0] = 1 do skip

end while
end while

end process
process Proc0 = π0

variable ToCheck
begin lab : while true do

Perform Computation ;
ToCheck : = Π \ {π0} ;

loop : while ToCheck 6= {} do
with π ∈ ToCheck do

if cnt [π0] = cnt [π] then
ToCheck : = ToCheck \ {π} end if

end with
end while

fire : cnt [π0] : = cnt [π0]⊕ 1 ;
end while

end process
end algorithm

Figure 8: The barrier synchronization algorithm obtained from algorithm
FGAlg for the generalization of process marked graph (8).
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2P rather than P2, for P processes). However, the synchronization uses
a longer information-flow path (length 2 rather than length 1), which can
translate into a longer synchronization delay.

Let us unroll the loops once in the marked graph (7) to obtain the
following process marked graph.
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Each process π has two computation edges, 〈π[4], π[1]〉 and 〈π[2], π[3]〉. This
graph also describes barrier synchronization, where successive executions of
the processes’ computations are represented by separate computation edges.

We implement this process marked graph with two counters per process
that are each incremented by 1, one when π[1] fires and the other when
π[3] fires. We call process π’s two counters 〈π, 0〉 and 〈π, 1〉, and we write
cnt [π, j ] instead of cnt [〈π, j 〉]. We again have Q = 1, but this time condi-
tion C4(b) requires only N > 1, so we can let N = 2 and use 1-bit counters.
Again, CntTest(〈a1, b2 〉) equals (16), which for N = 2 is equivalent to
cnt [b] = cnt [a]. Algorithm FGAlg therefore yields the barrier synchroniza-
tion algorithm Barrier3 of Figure 9. Algorithm Barrier3 is known and is
used in the BSP toolkit [4].

We can also obtain Barrier3 from algorithm Barrier1 by letting N = 4
and representing counter values with a 2-bit Gray code.3 We let cnt [π, j ]
be bit j of the Gray code representation of cnt [π], and we use part (b) of
Observation 2 to show that the tests in Barrier1 and Barrier3 are equivalent.

These three barrier synchronization algorithms require that at least one
process reads the counters of every other process. This may be impracti-
cal for a large set of processes. A number of multi-stage composite bar-
rier synchronization algorithms have been proposed; in every stage multiple

3A k -bit Gray code represents the integers from 0 through 2k−1 using k bits in such a
way that incrementing a number by 1 modulo 2k changes only one bit of its representation.
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--algorithm Barrier3
variable cnt = [π ∈ Π, i ∈ {0, 1} 7→ 0]
process Proc ∈ Π

variables ToCheck ; j = 0
begin lab : while true do

Perform Computation ;
fire : cnt [self , j ] : = cnt [self , j ]⊕ 1 ;

ToCheck : = Π \ {self } ;
loop : while ToCheck 6= {} do

with π ∈ ToCheck do
if cnt [self , j ] = cnt [π, j ] then

ToCheck : = ToCheck \ {π} end if
end with

end while ;
j : = j ⊕ 1

end while
end process

end algorithm

Figure 9: The barrier synchronization algorithm obtained from algorithm
FGAlg for the generalization of process marked graph (17).
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Figure 10: The marked graph describing a two-stage composite barrier syn-
chronization algorithm.

barrier synchronizations are performed, each involving a small number of
processes [12]. It is easy to implement these algorithms using multiple in-
stances of any barrier synchronization algorithm, each with its own set of
variables, for the component barriers.

Each of these composite barrier synchronization algorithms can be de-
scribed by a process marked graph. If we assign a separate counter to every
node with synchronizing out-edges and apply algorithm FGAlg , we get a
version of the composite algorithm using Barrier1 as the component algo-
rithm. For example, Figure 10 describes a two-stage barrier synchronization
algorithm. In the first stage process a synchronizes with process b, and c
synchronizes with d ; in the second stage a synchronizes with c, and b syn-
chronizes with d . Applying our algorithm to this marked graph, assigning
separate counters to the first two nodes of each process, we get the same
synchronization algorithm obtained by using a separate copy of Barrier1 for
each of the two-process synchronizations. However, we can also use only a
single counter per process. Applying FGAlg then gives a simpler version of
the composite algorithm in which all the component synchronizations use
the same variables. It appears that implementing composite barrier syn-
chronization with only one synchronization variable per process is a new
idea.
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3.6 Implementing the Algorithm

FGAlg is an algorithm for executing a process marked graph. The discussion
of barrier synchronization above shows that it is easy to turn FGAlg into an
algorithm for performing a dataflow computation described by the graph.
If the process out-edge from node self [i ] is a computation edge, the com-
putation represented by that edge is executed immediately after statement
fire.

To implement a multithreaded dataflow computation, we must translate
algorithm FGAlg into an actual program. Unlike an algorithm, a program
has no clearly defined atomic actions. Conventional wisdom says that we
can turn a multiprocess algorithm directly into multithreaded code if it sat-
isfies the following condition: Each atomic action of the algorithm accesses
only a single shared variable whose value can be stored in a single word of
memory. This condition does not quite hold of algorithm FGAlg because
the evaluation of CntTest(e) accesses the counters of both the source and
destination nodes of edge e, which are shared variables. Also, statement fire
contains two accesses to the counter of node self [i ]. (The shared variable
µ can be ignored, since it is a history variable that is not implemented.)
The destination of edge e is self [i ], and the counter of self [i ] is modified
only by process self . The process can therefore read from a local copy of
that counter, so these two actions access only a single shared variable—the
counter of the source node of e in the evaluation of CntTest(e) and the
counter of self [i ] in statement fire. With most memory systems, it is not
necessary to introduce a separate local copy of the counter. The thread’s
read of a variable that only it modifies is performed from a local cache that
is not accessed by any other thread, so it is effectively a read of a local
variable.

Conventional wisdom implies that we can therefore implement algorithm
FGAlg directly as a multithreaded program. However, this conventional
wisdom applies only to an implementation in which reads and writes of
shared variables are atomic. More precisely, it applies only to programs
run on a multiprocessor with a sequentially consistent memory [7]. It can
be shown that if N is at least one larger than is required by condition
C4(b), then a simple modification to the definition of CntTest makes the
algorithm work with regular memory registers—a weaker class than atomic
registers [8]. However, most modern multiprocessors provide neither sequen-
tially consistent memories nor regular memory registers. An implementation
of algorithm FGAlg on such computers requires additional synchronization
operations. We now examine what operations are needed.
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3.6.1 Memory Models

We cannot consider every type of multiprocessor memory that has been
proposed. Instead, we make some general observations that apply to most
of them. Most memory models are defined in terms of two (transitive) partial
orders on memory accesses—a program order → and a memory order ≺. The
relation → is defined by A → B iff A and B are accesses by the same process →
and A precedes B in the process’s program. The memory model requires
that, for any execution of a program, there exists a relation ≺ satisfying
certain properties. The following properties are common to most models.

M1. All accesses to the same memory location are totally ordered by ≺.

M2. If A → B and A and B are accesses to the same memory location,
then A ≺ B .

M3. A read R obtains the value written by the write W to the same location
such that W ≺ R and there is no write W ′ of the same location with
W ≺ W ′ ≺ R. (Read R obtains the initial value if there is no write
W of the same location with W ≺ R.)

In sequential consistency, M1 and M2 is strengthened to require that ≺
orders all accesses and that A → B implies A ≺ B even for accesses A
and B to different memory locations. We assume a multiprocessor memory
satisfying M1–M3.

Let R D→ A mean that R → A and that R is a read whose value was D→
used to determine that access A should have occurred. For example, R D→ A
holds if R was executed in evaluating an if test that equaled true and A
was executed in the then clause. (The precise definition of D→ depends on
the machine’s instruction set and is generally not provided by published
descriptions of memory models.) Many memories models also assume:

M4. If R D→ A, then R ≺ A.

Condition M4 does not hold for the Alpha memory model [1], and execu-
tions by some Alpha processors violate it. We suspect that memory models
satisfying M4 will be less common as engineers aggressively optimize mul-
tiprocessor memory access—especially for processors on different chips. We
therefore do not assume it.

Multiprocessors that do not have sequentially consistent memories usu-
ally provide a memory barrier (MB) instruction for synchronizing memory
accesses. Execution of an MB instruction is a memory access that neither
reads nor writes, but satisfies:
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MB. If A → M → B and M is an execution of an MB instruction, then
A ≺ B .

3.6.2 Conditions S1 and S2

MB instructions are expensive, often stalling a processor until the executions
of all previously issued memory accesses are completed. We therefore want
to use as few as possible. We will show that the following rules imply that an
implementation of algorithm FGAlg ensures the necessary synchronization
in any memory model satisfying M1–M3 and MB.

S1. For any computation code E , there must be an MB between the end of
E and both (a) the beginning of the next computation code in the same
process (which may be E itself) and (b) the next non-zero increment
of a counter by the process.

S2. If M4 is not satisfied, then there must be an MB between the code
generated for the inner while loop and for the fire statement in al-
gorithm FGAlg . This MB must occur in the obvious place even if
either the loop or the fire statement is a no-op and is omitted (either
because there are no synchronizing in-edges or because the fire state-
ment increments the counter by 0). The MB is not needed if both are
no-ops.

Condition S1 can be satisfied by putting an MB at the end of each compu-
tation code. This is sufficient if M4 is satisfied.

As an example of how S1 and S2 are satisfied for a memory model in
which M4 does not hold, we consider the algorithm for the graph (8). An
MB after the computation code corresponding to edge 〈a2, a1 〉 satisfies S1
for that computation code. It also satisfies S2 for the code corresponding to
node a1, since a1 has no synchronizing in-edges and hence no inner while
loop. An MB at the beginning of that process’s computation code satis-
fies S2 for the code corresponding to node a2, since that code has no fire
statement. Similarly, barriers at the beginning and end of the computa-
tion code corresponding to 〈c2, c1 〉 satisfy S1 and S2 for process c. Process
b just needs a single MB between the inner while and the fire statement
of the code that implements node b2. This obviously satisfies S2 for that
node. Nodes b1 and b3 generate no code, since they have no synchronizing
in-edges and increment the counter by 0. Therefore, S2 does not apply to
those two nodes, and this single MB also satisfies S1 for the computation
corresponding to edge 〈b3, b1 〉.
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3.6.3 Sufficiency of S1 and S2

We now show that conditions S1 and S2 are sufficient for any arbitrary im-
plementation of FGAlg . Let E1 and E2 be the computation code represented
by edges e1 and e2 of the marked graph. Let E 1 and E 2 be executions of
E1 and E2, respectively, such that E 2 must follow E 1. Remember that each
execution E i is represented by the presence of a token on edge e i , and ex-
ecution E 2 must follow E 1 if the token representing E 1 must be removed
from e1 before the token representing E 2 can be placed on e2. We must
ensure that if A1 and A2 are memory accesses in E 1 and E 2, then A1 ≺ A2.

By assumption MB, condition S1 implies that A1 ≺ A2 if E1 and E2 are
in the same process. We now consider the case in which E1 and E2 are in
different processes.

Let p be the destination node of edge e1 and let q be the source node of
edge e2. Computation E1 must precede E2 iff the firing of p that removes
from e1 the token corresponding to E1 must precede the firing of q that
places on e2 the token corresponding to E2. Let F p and F q be these two
node-firing events. Event F p must precede F q iff there is a path 〈n1, . . . ,nk 〉
with p = n1 and q = nk , and there are firing events F i of n i for each i ,
with F p = F 1 and F q = F k , such that each F i precedes F i+1.

For each i , let W i be the write of the counter value during the firing
F i , or a no-op if the counter is not written (because it is incremented by
0). For i > 1, let Ri be the read of node n i−1’s counter during the firing F i

if 〈n i−1,n i 〉 is a synchronizing edge; otherwise let Ri be a no-op. For the
purposes of the proof, we pretend that those no-ops are actual instructions
that appear in the code. We then have Ri → W i for each i in 2 . . k .

For an edge 〈n i−1,n i 〉, firing F i−1 must precede firing F i iff the token
removed from 〈n i−1,n i 〉 by F i is the one placed on that edge by F i−1 or by
a later firing of node n i−1. If 〈n i−1,n i 〉 is process edge (not a synchronizing
edge), then this is the case iff W i−1 → Ri . If 〈n i−1,n i 〉 is a synchronizing
edge, then this is the case iff the value of node n i−1’s counter read by Ri is
the one written by W i−1 or by a later write. By M1, M3, and the transitivity
of ≺, this implies W i−1 ≺ Ri . We therefore have a sequence of reads, writes,
and no-ops W 1, R2, W 2, . . .W k−1, Rk with, for each i > 1

• Ri → W i , with Ri
D→ W i if Ri is not a no-op.

• W i−1 → Ri if W i−1 and Ri are performed by the same process, and
W i−1 ≺ Ri if they are performed by different processes. (In the latter,
case C2 implies that neither W i−1 nor Ri is a no-op.)
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Moreover, since W 1 occurs during the firing F p and Rk occurs during the
firing F q , we also have A1 → W 1 and Rk → A2, with Rk

D→ A2 if Rk is not
a no-op.

It is not hard to see that if we remove the W i and Ri that are no-ops
and renumber them to remove gaps in the sequence, we obtain a sequence
W 1, R2, W 2, . . .W j−1, Rj with Ri

D→ W i and W i−1 ≺ Ri for all i > 1,
and with A1 → W 1 and Rj

D→ A2. (Since E1 and E2 are assumed to be
in different processes, j > 1 and the sequence is non-empty.) Condition S1
implies A1 ≺ W 1. If we can replace the relations Ri

D→ W i and Rj
D→

A2 by Ri ≺ W i and Rj ≺ A2, the required conclusion A1 ≺ A2 follows
from the transitivity of ≺. Condition M4 obviously allows us to make this
replacement. If M4 does not hold, then the required ≺ relations follow from
S2 and MB. This completes the proof that S1 and S2 suffice.

3.7 Caching Behavior

We now consider the efficiency of the optimized version of algorithm FGAlg
with caching memories. In a caching memory system, a process may acquire
either a read/write copy of a memory location or a read-only copy in its
cache. Acquiring a read-write copy invalidates any copies in other processes’
caches. We first consider systems in which multiple processors can have read-
only copies, so acquiring a read-only copy does not invalidate other copies,
but converts a read/write copy to read-only. A memory delay occurs on a
read if the process’s cache does not have a valid copy of the location being
read. A memory delay may occur on a write if another process has a copy of
the data location being read in its cache that needs to be invalidated. Data
read during interprocess synchronization will generally remain in a process’s
cache until it is invalidated, so minimizing memory delays is equivalent to
minimizing cache invalidations.

As observed above, the read of a process’s counter by that process is
local or can be performed on a local copy of the counter. The accesses
of shared variables are the write by process self of node self [i ]’s counter
in statement fire, and its read of a node m’s counter by the evaluation of
CntMu(〈m, self [i ]〉). After π performs that read of m’s counter, the value
it read will remain in its cache until the counter is written again.

Assume now that each counter is incremented when firing only one node,
in which case we can let Q = 1. Each write of node m’s counter then an-
nounces the placing of another token on edge 〈m, self [i ]〉. Therefore, when
the previous value of the counter is invalidated in process self ’s cache, the
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next value self reads allows it to remove the edge from ToCheck . This
implies that there is exactly one invalidation of self ’s copy of m’s counter
for every time self waits on that counter. Since transferring a new value
to self ’s cache is the only way another process communicates with it, no
implementation of marked graph synchronization can use fewer cache inval-
idations. Hence, the optimized version of algorithm FGAlg is optimal with
respect to caching when each counter is incremented by firing only one node.

If a node m’s counter is incremented by nodes other than m, then there
are writes to that counter that do not put a token on edge 〈m, self [i ]〉. A
process waiting for the token on that edge may read values of the counter
written when firing those other nodes, leading to additional cache invalida-
tions. Therefore, cache utilization is optimal only when we can let Q = 1.
Of course, we can always assign counters to nodes to make Q equal 1.

We have been assuming a memory system that allows multiple proces-
sors to share read-only copies of a memory location. Some systems allow
only a single processor to have a valid copy of a memory location. A read
of a counter value can then invalidate another reader’s copy of that value.
To minimize invalidations, we must insure that a read can invalidate only
the copy in the cache of the process that wrote the value. We can do this
by having our algorithm maintain multiple shared copies of a counter—one
for each process that reads it—plus a local copy for the counter’s writer. A
process writes the counter by writing each of those copies separately. Be-
cause the counter is written by only a single process, this implementation is
equivalent to the algorithm that uses just a single copy. Hence, the resulting
algorithm makes optimal use of caching if Q = 1.

4 Keeping Track of Buffers

In the producer/consumer examples of Section 2, certain subgraphs of the
marked graph represent buffer pools. A token on each of those subgraphs
represents a buffer in the pool. The two-consumer example (5) has one pool
of three buffers. A token on 〈c1, c2 〉 and one on 〈d1, d2 〉 could represent the
same buffer. This means that the computations represented by those two
edges can only read from a buffer.4 In the two-producer example (6), there
are two buffer pools—one with three buffers and one with two. A single
token on 〈c1, c2 〉 represents one buffer from each pool. This means that the
computation represented by the edge accesses a buffer from each pool.

4The two computations could write to different parts of the buffers, but that is equiv-
alent to splitting each buffer in two and having two separate buffer pools.
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Using pools of more than a single buffer allows pipelining of a dataflow
computation, so processes can compute concurrently even though they can-
not concurrently access the same data at the same time. Increasing the
number of buffers can prevent processes from having to wait because of vari-
ation in the time it takes to perform a computation. In order to implement a
dataflow computation using buffer pools, we must determine which buffers
are to be accessed by the computations. This means determining which
buffers are represented by the token on the corresponding computation edge.
We indicate how this is done using the two-consumer producer/consumer
system as an example. Here is the subgraph of that marked graph that
represents the buffer pool, where we have assigned buffer numbers to the
tokens.
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Any assignment of tokens to the edges of this subgraph that occurs when
executing the complete marked graph can occur when executing this sub-
graph. (The converse is not true, since an execution of the complete graph
can put only a single token on the three vertical edges.) Consider the fol-
lowing marking of this graph that can arise during an execution, where we
have labeled each node with the number of the next buffer to pass through
that node.
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We call such an assignment β of a value β[n] to each node n a buffer assign-
ment for the marking µ. A buffer assignment β for a marking µ satisfies buffer

assignment
β[m] = (β[n] + µ[〈m,n 〉])%B(18)

where B is the number of buffers in the pool. A buffer assignment β de-
termines an assignment of buffer numbers to tokens in the obvious way,
assigning to the first token on an arc 〈m,n 〉 the buffer number β[n].
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We define a buffer marked graph with B buffers to be a triple 〈Γ, µ0, β0 〉
such that 〈Γ, µ0 〉 is a marked graph and β0 is a buffer assignment for µ0. It
is not hard to see that we can find a buffer assignment that turns a marked
graph into a buffer marked graph with B buffers iff every simple cycle in
the marked graph 〈Γ, µ〉 contains B tokens.

We define the result of firing node n in a buffer assignment β to equal
the buffer assignment obtained from β by replacing β[n] by (β[n] + 1) %B .
If β is a buffer assignment for µ and n is fireable in µ, then firing n in β
produces a buffer assignment for the marking obtained by firing n in µ. We
can therefore define an execution of a buffer marked graph to consist of a
sequence of buffer marked graphs obtained by repeatedly firing arbitrarily
chosen fireable nodes. To specify executions of a buffer marked graph, we
modify algorithm MGSpec of Figure 1 by adding a variable β initialized to
β0 and adding the statement

β[self ] : = (β[self ] + 1)%B

to the body of the while loop.
To keep track of buffers in a dataflow computation defined by a marked

graph, we can add a variable β for each buffer pool and increment β[n]
modulo the number of buffers whenever node n is fired, for each node n
in the subgraph corresponding to the buffer pool. (Each counter β[n] is
accessed only by node n’s process.) The computation corresponding to a
computation edge 〈m,n 〉 then uses buffer β[n].

It is not necessary to add new counters. If we take N to be a multiple
of Q ∗ B , we can use the modulo N counters that implement the marked
graph synchronization. For the algorithms with the array ct of unbounded
counters, formula (9), which holds when n is the next node of its process to
fire, implies that

β[n] = (dbct(n)eQ/Q + β0[n])%B

Since bcnt(n) = bct(n)%N , number fact 4 then implies that, if Q ∗B divides
N , in algorithm FGAlg the computation corresponding to computation edge
〈m,n 〉 uses buffer number

(dbcnt(n)eQ/Q + β0[n])%B

5 Conclusion

We have shown how to implement an arbitrary dataflow computation with
multiple threads using shared buffers. Threads are synchronized by reads
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and writes to shared memory, using memory barriers where needed.
We know of two special cases of our algorithm that have been published—

the producer/consumer example in Section 3.4 and algorithm Barrier3 in
Section 3.5. An instance of Section 4’s method for keeping track of buffers
in the producer/consumer algorithm appears in [11]. A method of imple-
menting an arbitrary process marked graph using even weaker primitives
than read and write appeared in [9]. However, that implementation is not
designed for shared-memory multiprocessors and is mainly of theoretical
interest.

If multiple buffering is not used, so each buffer pool contains only a single
buffer, then dataflow computations can be implemented using conventional
barrier synchronization. However, the use of multiple buffers permits greater
concurrency when there is variance in the amount of time needed to per-
form a computation. For example, if the times to perform the produce and
consume operations have Poisson distributions with the same mean and
standard deviation, then the throughput of a producer/consumer system
with B buffers approaches twice that of a system with a single buffer as B
goes to infinity.

The performance of our method for synchronizing dataflow computations
will depend on the multiprocessor hardware. Hardware message passing
primitives are likely to provide more efficient synchronization. However,
shared memory may be better for passing the computation’s data from one
process to the next.

In many if not most cases, we expect our implementation to perform bet-
ter than ones based on special hardware-supported synchronization primi-
tives such as locks and atomic test-and-set operations. Reads and writes are
less expensive than those more powerful synchronization operations and our
algorithm can provide optimal caching performance, requiring the minimum
number of cache invalidations.

Algorithms Barrier1–3 of Section 3.5 were compared to the barrier algo-
rithm used in the Windows operating system—namely, the “sense-reversing
centralized barrier” of [12, Figure 8] that uses a fetch-and-decrement opera-
tion. Tests were preformed on a 4-processor Pentium 4 system using 4 and
8 threads—in the latter case, using the Pentium’s hyper-threading feature.
The performance of the three algorithms using only reads and writes were
within 15% of one another. Because performance depends on the details of
the machine architecture, we cannot draw any conclusions from a 15% dif-
ference. The fetch-and-decrement algorithm was about twice as slow with 4
threads and 3 times as slow with 8 threads. The superiority of Barrier3 over
algorithms based on more complicated operations was also reported by Hill
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and Skillicorn [4]. These data suggest that our algorithm’s use of reading
and writing with optimal caching behavior yields good performance.

Dataflow is a natural way to describe many data processing tasks. It
may provide a good way to program the coming generation of multiprocessor
chips. The only other general method we know for synchronizing dataflow
computations with reads and writes is to use barrier synchronization every-
where one thread must wait for others—a method that rules out pipelin-
ing. Our algorithm can efficiently implement dataflow computations with
pipelining on a shared-memory architecture.
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Appendix: Formal Definitions

We now formalize the informal mathematical definitions of Section 3. This is
done in the TLA+ specification language [10]. Most of the TLA+ constructs
used here have already been introduced or are sufficiently close to standard
mathematics that they should be easily understood by a mathematically
sophisticated reader. We briefly explain the rest.

The definitions appear in a module named Definitions. The module
starts with an extends statement that imports some common mathemat-
ical operators from the standard modules Naturals and Sequences.

module Definitions

extends Naturals,Sequences

Most of the nonstandard notation introduced in the Naturals and Sequences
modules is explained in Section 3.1.1. Not mentioned there is that Nat is
the set of natural numbers.
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We now define some operators that are needed later on. First is the
operator SeqSum that sums a sequence of numbers, so

SeqSum(〈s1, . . . , sn 〉) =
∑

n
i=1s i(19)

for any sequence 〈s1, . . . , sn 〉 of numbers. Because TLA+ allows recursive
definitions only of functions, we define the sum (19) in terms of a function
sum with domain 0 . .n such that sum[i ] equals

∑ i
j=1s i .

SeqSum(seq) ∆=
let sum[i ∈ 0 . .Len(seq)] ∆= if i = 0 then 0

else seq [i ] + sum[i−1]
in sum[Len(seq)]

We next define SeqToSet(σ) to be the set of elements contained in sequence
σ and Min(S ) to be the minimum element of a set S of numbers, if S has
one. The TLA+ expression choose x ∈ S : exp equals an arbitrary element
x in S satisfying exp, if such an element exists.

SeqToSet(seq) ∆= {seq [i ] : i ∈ 1 . .Len(seq)}
Min(S ) ∆= choose s ∈ S : ∀ t ∈ S : s ≤ t

We next declare all the constants that we have assumed. We write G , mu0,
and Pi instead of Γ, µ0, and Π.

constants N , G , mu0, Pi , CtrOf , Incr

The arithmetic operators introduced in Section 3.1.2 are defined as follows,
where we write ceiling(k ,Q) instead of dkeQ .

a ⊕ b ∆= (a + b)%N

a ª b ∆= (a − b)%N

ceiling(k ,Q) ∆= choose i ∈ {k + j : j ∈ 0 . . (Q − 1)} : i %Q = 0

We now formalize the concepts introduced above for the graph G . In addi-
tion to the operator InEdges, we define the analogous operator OutEdges,
the set Paths of all paths in G , the set PathsFromTo(m,n) of paths from m
to n, the predicate IsStronglyConnectedGraph asserting that G is a strongly
connected directed graph, and the set SimpleCycles of all simple cycles of G .

InEdges(n) ∆= {e ∈ G .edges : e[2] = n}
OutEdges(n) ∆= {e ∈ G .edges : e[1] = n}
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Paths ∆= {pi ∈ Seq(G .nodes) : ∧ Len(pi) > 0
∧ ∀ i ∈ 1 . . (Len(pi)−1) :

〈pi [i ], pi [i+1]〉 ∈ G .edges}
PathsFromTo(m,n) ∆= {pi ∈ Paths : (pi [1] = m)∧(pi [Len(pi)] = n)}
IsStronglyConnectedDirectedGraph ∆=

∧ G .nodes 6= {}
∧ G .edges ⊆ G .nodes ×G .nodes
∧ ∀m,n ∈ G .nodes : PathsFromTo(m,n) 6= {}

SimpleCycles ∆= {pi ∈ Paths : ∧ 〈pi [Len(pi)], pi [1]〉 ∈ G .edges
∧ ∀ i , j ∈ 1 . .Len(pi) :

(i 6= j ) ⇒ (pi [i ] 6= pi [j ])}
Next come definitions for the marked graph 〈G ,mu0〉 (originally called
〈Γ, µ0 〉). We define Dist to be the distance function δµ0 of Section 3.2, first
defining PathLen(π) to be the length of the path π in that distance measure.
We also define the operator Fire and the assertion IsLiveMarkedGraph that
〈G ,mu0〉 is a live marked graph. The latter definition uses the fact that a
marked graph is live iff every cycle contains a token.

PathLen(pi) ∆=
SeqSum( [i ∈ 1 . . (Len(pi)− 1) 7→ mu0[〈pi [i ], pi [i + 1]〉] ] )

Dist(m,n) ∆= Min({PathLen(pi) : pi ∈ PathsFromTo(m,n)})
Fire(n,mu) ∆=

[e ∈ G .edges 7→ if e ∈ InEdges(n) \OutEdges(n)
then mu[e]− 1
else if e ∈ OutEdges(n) \ InEdges(n)

then mu[e] + 1
else mu[e] ]

IsLiveMarkedGraph ∆=
∧ IsStronglyConnectedDirectedGraph
∧ mu0 ∈ [G .edges → Nat ]
∧ ∀ pi ∈ SimpleCycles :

PathLen(pi) + mu0[〈pi [Len(pi)], pi [1]〉] > 0

The following definitions are related to process marked graph 〈G ,mu0,Pi 〉,
starting with the assertion C0 that it is indeed a process marked graph. We
also define ProcOf (n) to be the process containing node n, SyncEdges to
be the set of synchronization edges, and SinEdges(n) and SOutEdges(n) to
be the sets of in- and out-edges of node n.
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C0 ∆= ∧ IsLiveMarkedGraph
∧ Pi ⊆ SimpleCycles
∧ ∀n ∈ G .nodes : ∃ pi ∈ Pi : n ∈ SeqToSet(pi)
∧ ∀ pi1, pi2 ∈ Pi :

(pi1 6= pi2) ⇒ (SeqToSet(pi1) ∩ SeqToSet(pi2) = {})
∧ ∀ pi ∈ Pi : ∧ PathLen(pi) = 0

∧ mu0[〈pi [Len(pi)], pi [1]〉] = 1

ProcOf (n) ∆= choose pi ∈ Pi : n ∈ SeqToSet(pi)

SyncEdges ∆= {e ∈ G .edges : ProcOf (e[1]) 6= ProcOf (e[2])}
SInEdges(n) ∆= InEdges(n) ∩ SyncEdges

SOutEdges(n) ∆= OutEdges(n) ∩ SyncEdges

We next define IncrSum and Q , first defining the set Ctrs of all counters.
We also define properties C1–4. For our algorithms to be correct in the
trivial case of a single process, we need to add the requirement Q > 0.
(This is implied by C0 and C2 if there is more than one process.) We add
the requirement to C3. We also add to C4 the explicit assumption that N
is a natural number.

Ctrs ∆= {CtrOf [n] : n ∈ G .nodes}
IncrSum(c) ∆=

let pic ∆= ProcOf (choose n ∈ G .nodes : c = CtrOf [n])
seq ∆= [i ∈ 1 . .Len(pic) 7→ if CtrOf [pic[i ]] = c

then Incr [pic[i ]]
else 0 ]

in SeqSum(seq)

Q ∆= IncrSum(choose c : c ∈ Ctrs)

C1 ∆= ∀m,n ∈ G .nodes :
(CtrOf [m] = CtrOf [n]) ⇒ (ProcOf (m) = ProcOf (n))

C2 ∆= ∧ Incr ∈ [G .nodes → Nat ]
∧ ∀n ∈ G .nodes : (SOutEdges(n) 6= {}) ⇒ (Incr [n] > 0)

C3 ∆= ∧ Q > 0
∧ ∀ c ∈ Ctrs : IncrSum(c) = Q
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C4 ∆= ∧ (N ∈ Nat) ∧ (N %Q = 0)
∧ ∀n ∈ G .nodes :

∀ e ∈ SInEdges(n) :
let m ∆= e[1]
in N > Q ∗Dist(n,m) + Q ∗mu0[〈m,n 〉]

Finally, we define the operator cnt0.

cnt0(n) ∆=
let pi ∆= ProcOf (n)

k ∆= choose i ∈ 1 . .Len(pi) : n = pi [i ]
seq ∆= [i ∈ 1 . . (k − 1) 7→ if CtrOf [pi [i ]] = CtrOf [n]

then Incr [pi [i ]]
else 0 ]

in SeqSum(seq)

The operator CtTest , used in algorithm PMGAlg3, would be defined within
the algorithm just like CntTest .
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