Teaching Concurrency

Leslie Lamport

26 January 2009
minor corrections: 30 November 2009, 26 February 2018

I am not an academic. I have never even taken a computer science
course. However, I have worked with a number of computer engineers (both
hardware and software engineers), and I have seen what they knew and
what they didn’t know that I felt they should have. So, I have some thoughts
about how concurrent computing should be taught. I am not concerned with
traditional questions of curriculum—what facts should be stuffed into the
student’s brain. I long ago forgot most of the facts that I learned in school.
What I have used throughout my career are the ways of thinking I learned
when I was young, by some learning process that I have never understood.
I can’t claim to know the best way to teach computer engineers how to cope
with concurrency. I do know that what they seem to be learning now is not
helping them very much. I believe that what I am proposing here is worth
a try.

I expect that the first question most computer scientists would ask about
the teaching of concurrency is, what programming language should be used?
This reflects the widespread syndrome in computer science of concentrating
on language rather than substance. The modern field of concurrency started
with Dijkstra’s 1965 paper on the mutual exclusion problem [1]. For most of
the 1970s, one “solved” the mutual exclusion problem by using semaphores
or monitors or conditional critical regions or some other language construct.
This is like solving the sorting problem by using a programming language
with a sort command. Most of your colleagues can explain how to imple-
ment mutual exclusion using a semaphore. How many of them can answer
the following question: Can one implement mutual exclusion without us-
ing lower-level constructs that, like semaphores, assume mutually exclusive
access to a resource? Quite a few people who think they are experts on
concurrency can’t.

Teaching about concurrency requires teaching some very basic things

about computer science that are not now taught. The basic subject of
computer science is computation. One would expect a computer science
education to answer the question, what is a computation? See how many
of your colleagues can give a coherent answer to that question. While there
is no single answer that is appropriate in all contexts, there is one that is
most useful to engineers: A computation is a sequence of steps.

The obvious next question is, what’s a step? Western languages are verb
oriented. Every sentence, even one asserting that nothing happens, contains
a verb. At least to westerners, the obvious answer is that a step is the
acting out of a verb. An add step performs an addition; a send step sends
a message. However, the obvious answer is not the most useful one. Floyd
and Hoare taught us to think of a computation as a sequence of states [2, 3].
A step is then a transition from one state to the next. It is more useful to
think about states than sequences of steps because what a computing device
does next depends on its current state, not on what steps it took in the past.
Computer engineers should learn to think about a computation in terms of
states rather than verbs.

I have found that a major problem confronting engineers when design-
ing a system is understanding what the system is supposed to do. They
are seldom faced with well-understood tasks like sorting. Most often they
begin with only a vague idea of what the system should do. All too often
they start implementing at that point. A problem must be understood be-
fore it can be solved. The great contribution of Dijkstra’s paper on mutual
exclusion was not his solution; it was stating the problem. (It is remarkable
that, in this first paper on the subject, Dijkstra stated all the requirements
that distinguish mutual exclusion from fundamentally simpler and less inter-
esting problems.) Programming and hardware-design languages don’t help
an engineer understand what problem a system should solve. Thinking of
computations as sequences of states, rather than as something described by
a language, is the first step towards such understanding.

How should we describe computations? Most computer scientists would
probably interpret this question to mean, what language should we use?
Imagine an art historian answering “how would you describe impressionist
painting?” by saying “in French”. To describe a computation we need to
describe a sequence of states. More often, we need to describe the set of
computations that can be produced by some particular computing device,
such as an algorithm. There is one method that works in practice: describing
a set of computations by (1) the set of all initial states and (2) a next-state
relation that describes, for every state, the possible next states—that is, the
set of states reachable from that state by a single step. The languages used

by computer engineers describe computations in this way, but how many
engineers or computer scientists understand this?

Once an engineer understands what a computation is and how it is de-
scribed, she can understand the most important concept in concurrency:
invariance. A computing device does the correct thing only because it main-
tains a correct state. Correctness of the state is expressed by an invariant—a
predicate that is true in every state of every computation. We prove that
a predicate is an (inductive) invariant by showing that it is true in every
initial state, and that the next-state relation implies that if it is true in any
state then it remains true in the next state. This method of reasoning, often
called the inductive assertion method, was introduced by Floyd and Hoare.
However, they expressed the invariant as a program annotation; most peo-
ple were distracted by the language and largely ignored the essential idea
behind the method.

Invariance is the key to understanding concurrent systems, but few en-
gineers or computer scientists have learned to think in terms of invariants.
Here is a simple example. Consider N processes numbered from 0 through
N — 1 in which each process ¢ executes

z[i] =1,
y[i] :=z[(4 — 1) mod N]

and stops, where each z[i] initially equals 0. (The reads and writes of
each z[i] are assumed to be atomic.) This algorithm satisfies the following
property: after every process has stopped, y[i] equals 1 for at least one
process i. It is easy to see that the algorithm satisfies this property; the last
process i to write y[i¢] must set it to 1. But that process doesn’t set y[i] to 1
because it was the last process to write y. What a process does depends only
on the current state, not on what processes wrote before it. The algorithm
satisfies this property because it maintains an inductive invariant. Do you
know what that invariant is? If not, then you do not completely understand
why the algorithm satisfies this property. How can a computer engineer
design a correct concurrent system without understanding it? And how can
she understand it if she has not learned how to understand even a simple
concurrent algorithm?

To describe a set of computations, we must describe its initial states and
its next-state relation. How do we describe them? Ultimately, a description
must be written in some language. An art historian must decide whether to
describe impressionism in French or another language. I used some simple
programming notation and English to describe the algorithm in the pre-
ceding paragraph. However, programming notation obscures the underlying

concepts, and English by itself is unsatisfactory. There is a simple language
that is good for describing states and relations. It’s the language used in just
about every other science: mathematics. But what mathematics? Every-
one who works on formalizing computation says that they use mathematics.
Process algebra is algebra, which is certainly math. Category theory and
temporal logic are also math. These esoteric forms of math have their place,
but that place is not in the basic education of a computer engineer. The
only mathematics we need to describe computations are sets, functions, and
simple predicate logic.

For historical reasons, mathematicians use and teach mathematics in
ways that are not well suited for computer science. For example, while it is
crucial for computer engineers, an understanding of simple logic is not impor-
tant for most mathematicians. Consequently, although it has been centuries
since mathematicians wrote algebraic formulas in words, they still usually
obscure simple logical concepts like quantification by expressing them in
prose. This is perhaps why many computer scientists feel that the standard
method of formalizing ordinary mathematics used by logicians for almost a
century, consisting of predicate (first-order) logic and elementary set theory,
is inadequate for computer science. This is simply not true. Other, more
complicated logical systems that introduce concepts such as types may be
useful for some applications. However, there is no more need to use them
in basic computer science education than there is to use them in teaching
calculus (or arithmetic). Computer science should be based on the same
standard mathematics as the rest of science.

Another problem with the way mathematicians use mathematics is its
informality. Informal mathematics is fine for explaining concepts like states
and relations, and for explaining invariants of simple algorithms like the one
in the example above. However, a defining characteristic of computing is the
need for rigor. Incorrectly writing > instead of > in the statement of a theo-
rem is considered in mathematics to be a trivial mistake. In an algorithm, it
could be a serious error. Almost no mathematicians know how to do mathe-
matics with the degree of formal rigor needed to avoid such mistakes. They
may study formal logic; they don’t use it. Most think it impractical to do
mathematics completely rigorously. I have often asked mathematicians and
computer scientists the following question: How long would a purely formal
definition of the Riemann integral (the definite integral of elementary calcu-
lus) be, assuming only the arithmetical operators on the real numbers and
simple math? The answer usually ranges from 50 lines to 50 pages.

TLA™ is one of those esoteric languages based on temporal logic [5].
However, if one ignores the TL (the temporal logic operators), one obtains

a language for ordinary math I will call here A-Plus. For example, here is
an A-Plus definition of the operator GCD such that GCD(m, n) equals the
greatest common divisor of positive integers m and n.

GCD(m,n) £ LET DivisorsOf(p) = {del..p:
Jdgel..p:p=dxgq}
MazElementOf(S) = CHOOSE s € S :
VteS:s>1t
IN MazElementOf (DivisorsOf (m) N DivisorsOf (n))

A-Plus is obtained by deleting from TLA™ all non-constant operators ex-
cept the prime operator (") that is used to express next-state relations—for
example, ' = 1 + z is a relation that is true iff the value of z in the next
state equals 1 plus its value in the current state. A-Plus is a practical lan-
guage for writing formal mathematics. An A-Plus definition of the Riemann
integral takes about a dozen lines. One can use A-Plus to describe computa-
tions, and those descriptions can be executed by the TLC model checker to
find and eliminate errors. Using A-Plus is a lot like programming, except it
teaches users about math rather than about a particular set of programming
language constructs.

A-Plus is not the best of all possible languages for mathematics. It
has its idiosyncrasies, and some people will prefer different ways of formal-
izing elementary mathematics—for example, Hilbert-Bernays rather than
Zermelo-Fraenkel set theory. Any language for ordinary first-order logic
and set theory will be fine, as long as it eschews complicated computer-
science concepts like types and objects. However, it should have tools for
checking descriptions of computations. Despite the inherent simplicity of
mathematics, it’s almost as hard to write error-free mathematical descrip-
tions of computations as it is to write error-free programs.

Mathematics is an extremely powerful language, and it’s a practical
method for describing many classes of computing devices. However, pro-
gramming language constructs such as assignment were developed for a rea-
son. Although more complicated than ordinary mathematics, a simple lan-
guage based on traditional programming constructs can be convenient for
describing certain kinds of algorithms. Such a language is a useful tool rather
than a barrier to understanding only if we realize that it is just a shorthand
for writing mathematical descriptions of computations. The language must
be simple enough that the user can translate an algorithm written in the lan-
guage to the equivalent mathematical description. There are several rather
simple languages that have this property—for example, the Unity program-

ming language. The most powerful such language I know of is PlusCal [4]. A
PlusCal algorithm is essentially translated to an A-Plus description, which
can be checked using the TLA™ tools. Because any A-Plus expression can be
used as an expression in a PlusCal algorithm, PlusCal’s expression language
has the full power of ordinary math, making PlusCal enormously expressive.

Students with an understanding of computations and how to express
them mathematically and of invariance are ready to learn about concur-
rency. What they should be taught depends on their needs. If they need
to learn how to write real concurrent programs, they will need to learn a
real programming language. Programming languages are much more com-
plicated than mathematics, and it is impractical to try to explain them
precisely and completely. However, their basic features can be understood
with the aid of mathematics. The difference between = and .equals in an
object-oriented programming language is easily explained in terms of sets
and functions.

Teaching concurrency generally includes teaching about concurrent al-
gorithms. Distributed algorithms are usually easy to describe directly in
mathematics, using a language like A-Plus. Multithreaded algorithms are
usually more convenient to describe with the aid of programming constructs
such as the ones in PlusCal. In any case, an algorithm should be explained
in terms of its invariant. When you use invariance, you are teaching not just
an algorithm, but how to think about algorithms.

Even more important than an algorithm is the precise specification of
what the algorithm is supposed to do. A specification is a set of computations—
namely, the set of all computations that satisfy the specification. An engi-
neer can find algorithms in a textbook. A textbook won’t explain how to
figure out what problem a system needs to solve. That requires practice.
Carefully specifying a problem before presenting an algorithm that solves
it can teach an engineer how to understand and describe what a system is
supposed to do.

Education is not the accumulation of facts. It matters little what a
student knows after taking a course. What matters is what the student
is able to do after taking the course. I've seldom met engineers who were
hampered by not knowing facts about concurrency. I've met quite a few
who lacked the basic skills they needed to think clearly about what they
were doing.

References

1]

2]

[5]

E. W. Dijkstra. Solution of a problem in concurrent programming con-
trol. Communications of the ACM, 8(9):569, September 1965.

R. W. Floyd. Assigning meanings to programs. In Proceedings of the
Symposium on Applied Math., Vol. 19, pages 19-32. American Mathe-
matical Society, 1967.

C.A.R. Hoare. An axiomatic basis for computer programming. Commu-
nications of the ACM, 12(10):576-583, October 1969.

Leslie Lamport. The pluscal algorithm language. @ URL http:
//research.microsoft.com/users/lamport/tla/pluscal.html. The
page can also be found by searching the Web for the 25-letter string
obtained by removing the “~” from uid-lamportpluscalhomepage.

Leslie Lamport. Specifying Systems. Addison-Wesley, Boston, 2003.

