
TLZ (Abstract)

Leslie Lamport

Fri 13 May 1994 [18:54]

A Z schema can specify a functional system—one that produces an out-
put in response to an input. For example, a simple text editor is a functional
system; it can be specified by a Z schema that describes the effect of each
keystroke on the screen. A reactive system interacts with its environment in
a more complex fashion. Adding an interrupt key, which allows the user to
stop a long operation before it completes, turns a simple text editor into a
reactive system. Concurrent and distributed systems are usually best viewed
as reactive systems. Z by itself is inadequate for specifying reactive systems.

In principle, temporal logic is ideal for specifying reactive systems. In
practice, conventional temporal logic does not work very well. Real systems
are complex, and complex formulas involving temporal operators are difficult
to understand and easy to get wrong.

TLA, the Temporal Logic of Actions, is a form of temporal logic that does
work well for specifying reactive systems. It combines nontemporal action
specifications with a soupcon of temporal logic. Complexity is relegated to
the action specifications, not the temporal operators.

Formally, an action is a Boolean-valued expression containing primed
and unprimed variables. An action is interpreted as a predicate on pairs
of states, where a state is an assignment of values to variables. The action
x′ = x+y is true on the pair 〈s, t〉 of states iff the value of x in state t equals
the sum of the values of x and y in state s. TLA uses two temporal operators:
the familiar ✷ of linear-time temporal logic, which means always, and ∃∃∃∃∃∃,
existential quantification over flexible variables, which is a hiding operator.
A temporal formula is interpreted as a predicate on behaviors, which are
infinite sequences of states. The canonical form of a TLA specification is

∃∃∃∃∃∃ y : I ∧ ✷[N ]〈x,y〉 ∧ L

where x and y are tuples of variables, I is a state predicate (an action with

1



no primed variables), N is an action, and L is the conjunction of fairness
conditions on actions. This formula essentially asserts of a behavior that
there exist values for the variables y (possibly different values for each state
in the behavior) such that I holds in the initial state, every successive pair
of states satisfies N or leaves x and y unchanged, and L is satisfied. There
are two fairness conditions that can be asserted about an action A: weak
fairness, which asserts that an A step must occur if A remains continuously
enabled, and strong fairness, which asserts that an A step must occur if A
is repeatedly enabled.

A Z schema can be viewed as the specification of an action. One can
obtain a language TLZ for specifying reactive systems by using Z as the
logic of actions in TLA. Most of a TLA specification consists of action
specifications, so most of a TLZ specification will consist of ordinary Z.

TLA specifications are logical formulas, and they are combined with log-
ical operators. Implementation is implication; a specification S2 implements
a specification S1 iff the TLA formula S2 ⇒ S1 is valid. Parallel composition
is conjunction; S1 ∧ S2 is the composition of specifications S1 and S2. TLZ
can be viewed as Z with the schema calculus extended with the operators
✷ and ∃∃∃∃∃∃. We can also take the opportunity to simplify Z before adding the
“TL”.

2


