
The Computer Science of Concurrency:

The Early Years

Leslie Lamport
Microsoft Research

28 February 2015

To Edsger Dijkstra

It is insufficiently considered that men more
often require to be reminded than informed.

Samuel Johnson

Contents

1 Foreword 2

2 The Beginning: Mutual Exclusion 2
2.1 The Problem . 2
2.2 The First “Real” Solution . 3
2.3 A Rigorous Proof of Mutual Exclusion 4

3 Producer-Consumer Synchronization 6
3.1 The FIFO Queue . 6
3.2 Another Way of Looking at a FIFO Queue 8
3.3 Mutual Exclusion versus Producer-Consumer Synchronization 9
3.4 The FIFO Queue as an N-Process System 10
3.5 Generalized Producer-Consumer Synchronization 10
3.6 The Two-Arrow Formalism Revisited 11

4 Distributed Algorithms 12

5 Afterwards 13

1

1 Foreword

I don’t know if concurrency is a science, but it is a field of computer sci-
ence. What I call concurrency has gone by many names, including parallel
computing, concurrent programming, and multiprogramming. I regard dis-
tributed computing to be part of the more general topic of concurrency. I
also use the name algorithm for what were once usually called programs and
were generally written in pseudo-code.

This is a personal view of the first dozen years of the history of the
field of concurrency—a view from today, based on 40 years of hindsight. It
reflects my biased perspective, so despite covering only the very beginning
of what was then an esoteric field, it is far from complete. The geneses of
my own contributions are described in comments in my publications web
page.

The omission that would have seemed most striking to someone read-
ing this history in 1977 is the absence of any discussion of programming
languages. In the late 1960s and early 1970s, most papers considered to be
about concurrency were about language constructs for concurrent programs.
A problem such as mutual exclusion was considered to be solved by intro-
ducing a language construct that made its solution trivial. This article is
not about concurrent programming; it is about concurrent algorithms and
their underlying principles.

2 The Beginning: Mutual Exclusion

2.1 The Problem

While concurrent program execution had been considered for years, the com-
puter science of concurrency began with Edsger Dijkstra’s seminal 1965 pa-
per that introduced the mutual exclusion problem [5]. He posed the problem
of synchronizing N processes, each with a section of code called its critical
section, so that the following properties are satisfied:

Mutual Exclusion No two critical sections are executed concurrently. (Like
many problems in concurrency, the goal of mutual exclusion is to elim-
inate concurrency, allowing us to at least pretend that everything hap-
pens sequentially.)

Livelock Freedom If some process is waiting to execute its critical section,
then some process will eventually execute its critical section.

2

Mutual exclusion is an example of what is now called a safety property, and
livelock freedom is called a liveness property. Intuitively, a safety property
asserts that something bad never happens; a liveness property asserts that
something good must eventually happen. Safety and liveness were defined
formally in 1985 [1].

Dijkstra required a solution to allow any computer to halt outside its
critical section and associated synchronizing code. This is a crucial require-
ment that rules out simple, uninteresting solutions–for example, ones in
which processes take turns entering their critical sections. The 1-buffer case
of the producer-consumer synchronization algorithm given below essentially
is such a solution for N = 2.

Dijkstra also permitted no real-time assumption. The only progress
property that could be assumed was process fairness, which requires every
process that hasn’t halted to eventually take a step. In those days, concur-
rency was obtained by having multiple processes share a single processor.
One process could execute thousands of steps while all other processors did
nothing. Process fairness was all one could reasonably assume.

Dijkstra was aware from the beginning of how subtle concurrent algo-
rithms are and how easy it is to get them wrong. He wrote a careful proof
of his algorithm. The computational model implicit in his reasoning is that
an execution is represented as a sequence of states, where a state consists
of an assignment of values to the algorithm’s variables plus other necessary
information such as the control state of each process (what code it will ex-
ecute next). I have found this to be the most generally useful model of
computation—for example, it underlies a Turing machine. I like to call it
the standard model.

The need for careful proofs should have become evident a few months
later, when the second published mutual exclusion algorithm [9] was shown
to be incorrect [10]. However, incorrect concurrent algorithms are still being
published and will no doubt continue to be for a long time, despite mod-
ern tools for catching errors that require little effort—in particular, model
checkers.

2.2 The First “Real” Solution

Although of little if any practical use, the bakery algorithm [11] has be-
come a popular example of a mutual exclusion algorithm. It is based on a
protocol sometimes used in retail shops: customers take successively num-
bered tickets from a machine, and the lowest-numbered waiting customer
is served next. A literal implementation of this approach would require a

3

ticket-machine process that never halts, violating Dijkstra’s requirements.
Instead, an entering process computes its own ticket number by reading the
numbers of all other synchronizing processes and choosing a number greater
than any that it sees.

A problem with this algorithm is that ticket numbers can grow without
bound. This shouldn’t be a practical problem. If each process chooses
a number at most one greater than one that was previously chosen, then
numbers should remain well below 2128. However, a ticket number might
have to occupy more than one memory word, and it was generally assumed
that a process could atomically read or write at most one word.

The proof of correctness of the algorithm revealed that the read or write
of an entire number need not be atomic. The bakery algorithm is correct
as long as reading a number returns the correct value if the number is not
concurrently being written. It doesn’t matter what value is returned by a
read that overlaps a write. The algorithm is correct even if reading a number
while it is changing from 9 to 10 obtains the value 2496.

This amazing property of the bakery algorithm means that it implements
mutual exclusion without assuming that processes have mutually exclusive
access to their ticket numbers. It was the first algorithm to implement
mutual exclusion without assuming any lower-level mutual exclusion. In
1973, this was considered impossible [4, page 88]. Even in 1990, experts still
thought it was impossible [21, question 28].

One problem remained: How can we maintain a reasonable bound on
the values of ticket numbers if a read concurrent with a write could obtain
any value? For example, what if reading a number while it changes from 9
to 10 can obtain the value 22496? A closely related problem is to implement
a system clock that provides the current time in nanoseconds if reads and
writes of only a single byte are atomic, where a read must return a time that
was correct sometime during the read operation. Even trickier is to imple-
ment a cyclic clock. I recommend these problems as challenging exercises.
Solutions have been published [12].

2.3 A Rigorous Proof of Mutual Exclusion

Previous correctness proofs were based on the standard model, in which
an execution is represented as a sequence of states. This model assumes
atomic transitions between states, so it doesn’t provide a natural model of
the bakery algorithm with its non-atomic reads and writes of numbers.

Before I discuss a more suitable model, consider the following conun-
drum. A fundamental problem of interprocess synchronization is to ensure

4

that an operation executed by one process precedes an operation executed
by another process. For example, mutual exclusion requires that if two pro-
cesses both execute their critical sections, then one of those operation exe-
cutions precedes the other. Many modern multiprocessor computers provide
a Memory Barrier (MB) instruction for implementing interprocess synchro-
nization. Executing an instruction A then an MB then instruction B in
a single process ensures that the execution of A precedes that of B . Here
is the puzzle: An MB instruction enforces an ordering of two operations
performed by the same process. Why is that useful for implementing in-
terprocess synchronization, which requires ordering operations performed
by different processes? The reader should contemplate this puzzle before
reading the following description of the two-arrow model.

In the two-arrow model, an execution of the algorithm is represented by
a set of operation executions that are considered to have a finite duration
with starting and stopping times. The relations - and - on this set are
defined as follows, for arbitrary operation executions A and B :

A -B is true iff (if and only if) A ends before B begins.

A -B is true iff A begins before B ends.

It is easy to check that these relations satisfy the following properties, for
any operation executions A, B , C , and D :

A1. (a) A -B -C implies A -C (- transitively closed)

(b) A -/ A. (- irreflexive)

A2. A -B implies A -B and B -/ A.

A3. A -B -C or A -B -C implies A -C .

A4. A -B -C -D implies A -D .

The model abstracts away the explicit concept of time and assumes only a
set of operation executions and relations - and - on it satisfying A1–A4.
(An additional property is needed to reason about liveness, which I ignore
here.)

Proving correctness of the bakery algorithm requires some additional
assumptions:

• All the operation executions within a single process are totally ordered
by - .

5

• For any read R and write W of the same variable, either R -W or
W -R holds.

Each variable in the algorithm is written by only a single process, so all
writes to that variable are ordered by - . We assume that a read that
doesn’t overlap a write obtains the correct value. More precisely, if a read R
of a variable satisfies R -W or W -R for every write W of the variable,
then R obtains the value written by the latest write W with W -R.

With these assumptions, the two-arrow formalism provides the most
elegant proof of the bakery algorithm that I know of. Such a proof of a
variant of the algorithm appears in [14].

The conundrum of the MB command described at the beginning of this
section is easily explained in terms of the two-arrow formalism. Suppose
we want to ensure that an operation execution A in process p precedes an
operation execution D in a different process q—that is, to ensure A -D .
Interprocess communication by accessing shared registers can reveal only
that an operation execution C in q sees the effect of an operation execution
B in p, which implies B -C . The only way to deduce a - relation from
a - relation is with A4. It allows us to deduce A -D from B -C if
A -B and C -D . The latter two - relations can be ensured by using
MB instructions, which enforces - relations between operation executions
by the same process.

3 Producer-Consumer Synchronization

3.1 The FIFO Queue

The second fundamental concurrent programming problem to be studied was
producer-consumer synchronization. This form of synchronization was used
at the hardware level in the earliest computers, but it was first identified
as a concurrency problem by Dijkstra in 1965, though not published in
this formulation until 1968 [6]. Here, I consider an equivalent form of the
problem: a bounded FIFO (first-in-first-out) queue. It can be described as
an algorithm that reads inputs into an N -element buffer and then outputs
them. The algorithm uses three variables:

in The infinite sequence of unread input values.

buf A buffer that can hold up to N values.

out The sequence of values output so far.

6

--algorithm PC {
variables in = Input , out = 〈 〉, buf = 〈 〉 ;

fair process (Producer = 0) {
P : while (true) {

await Len(buf) < N ;

buf : = Append(buf ,Head(in)) ;

in : = Tail(in) }}
fair process (Consumer = 1) {

C : while (true) {
await Len(buf) > 0 ;

out : = Append(out ,Head(buf)) ;

buf : = Tail(buf) }} }

Figure 1: Producer-consumer synchronization in = 〈v1, v2, . . . 〉
out = 〈 〉
buf = 〈 〉

 P−→

 in = 〈v2, v3, . . . 〉
out = 〈 〉
buf = 〈v1〉

 C−→

 in = 〈v2, v3, . . . 〉
out = 〈v1〉
buf = 〈 〉

 P−→

 in = 〈v3, v4, . . . 〉
out = 〈v1〉
buf = 〈v2〉

 P−→ · · ·

Figure 2: An execution of the FIFO queue.

A Producer process moves values from in to buf , and a Consumer pro-
cess moves them from buf to out . In 1965 the algorithm would have been
written in pseudo-code. Today, we can write it in the PlusCal algorithm
language [15] as algorithm PC of Figure 1. The initial value of the variable
in is the constant Input , which is assumed to be an infinite sequence of
values; variables buf and out initially equal the empty sequence. The pro-
cesses Producer and Consumer are given the identifiers 0 and 1. In PlusCal,
an operation execution consists of execution of the code from one label to
the next. Hence, the entire body of each process’s while loop is executed
atomically. The await statements assert enabling conditions of the actions.
The keywords fair specify process fairness.

Figure 2 shows the first four states of an execution of the algorithm rep-
resented in the standard model. The letter P or C atop an arrow indicates
which process’s atomic step is executed to reach the next state.

7

P P P P P
J
J
Ĵ

J
J
Ĵ

J
J
Ĵ

J
J
Ĵ

J
J
Ĵ

- - - - . . .

CC C C C C
���

���
���

��:

��
���

���
���:

��
���

���
��

��
���

. . .

. . .

- - - - . . .

Figure 3: An event history for the FIFO queue with N = 3.

Algorithm PC is a specification; a bounded FIFO queue must implement
that specification. A specification is a definition, and it makes no formal
sense to ask if a definition is correct. However, we can gain confidence that
this algorithm does specify a bounded FIFO queue by proving properties of
it. The most important class of properties one proves about an algorithm
are invariance properties. A state predicate is an invariant iff it is true in
every state of every execution. The following invariant of algorithm PC
suggests that it is a correct specification of an N -element bounded queue:

(Len(buf) ≤ N) ∧ (Input = out ◦ buf ◦ in)

where Len(buf) is the length of the sequence buf and ◦ is sequence concate-
nation.

The basic method for proving that a predicate Inv is an invariant of a
concurrent algorithm was introduced by Edward Ashcroft in 1975 [2]. We
find a suitable predicate I (the inductive invariant) and prove that (i) I is
true in every initial state, (ii) I is left true by every step of the algorithm,
and (iii) I implies Inv . It is easy to prove that the state predicate above is
an invariant of algorithm PC . The appropriate inductive invariant I is the
conjunction of this invariant with a predicate asserting that each variable
has a “type-correct” value. (PlusCal is an untyped language.)

3.2 Another Way of Looking at a FIFO Queue

The FIFO queue specification allows only a single initial state, and executing
either process’s action can produce only a single next state. Hence the
execution of Figure 2 is completely determined by the sequence P → C →
P → P → · · · of atomic-action executions. For N = 3, all such sequences
are described by the graph in Figure 3. The nodes of the graph are called
events, each event representing an atomic execution of the algorithm step
with which the event is labeled. The graph defines an irreflexive partial
order ≺ on the events, where e ≺ f iff e 6= f and there is a path through
the graph from event e to event f . For want of a standard term for it, I will

8

call such a partially ordered set of events, in which events are labeled with
atomic steps, an event history.

This event history describes all sequences of states that represent exe-
cutions of algorithm PC in the standard model. Such a sequence of states
is described by a sequence of infinitely many P and C events—that is, by
a total ordering of the events in the event history. A total ordering of these
events describes a possible execution of algorithm PC iff it is consistent
with the partial order ≺. To see this, observe that the downward pointing
diagonal arrows imply that the i th P event (which moves the i th input to
the buffer) must precede the i th C event (which moves that input from the
buffer to the output). The upward pointing diagonal arrows indicate that
the i th C event must precede the (i + 3)rd P event, which is necessary to
ensure that there is room for the (i + 3)rd input value in the buffer, which
can hold at most 3 elements.

We can view the event history of the figure to be the single “real” ex-
ecution of algorithm PC . The infinitely many different executions in the
standard model are artifacts of the model; they are not inherently different.
Two events not ordered by the ≺ relation—for example, the second C event
and the fourth P event—represent operations that can be executed concur-
rently. However, the standard model requires concurrent executions of the
two operations to be modeled as occurring in some order.

3.3 Mutual Exclusion versus Producer-Consumer Synchro-
nization

Producer-consumer synchronization is inherently deterministic. On the other
hand, mutual exclusion synchronization is inherently nondeterministic. It
has an inherent race condition: two processes can compete to enter the
critical section, and either might win.

Resolving a race requires an arbiter, a device that decides which of two
events happens first [3]. An arbiter can take arbitrarily long to make its
decision. (A well-designed arbiter has an infinitesimal probability of taking
very long.) Any mutual exclusion algorithm can therefore, in principle, take
arbitrarily long to allow some waiting process to enter its critical section.
This is not an artifact of any model. It appears to be a law of nature.

Producer-consumer synchronization has no inherent nondeterminism,
hence no race condition. It can be implemented without an arbiter, so each
operation can be executed in bounded time. It is a fundamentally different
class of problem than mutual exclusion.

9

P - C - P - C - P . . .

P

J
J
Ĵ

C P C . . .- - - -

P - C - P - C . . .

J
J
Ĵ

J
J
Ĵ

J
J
Ĵ

J
J
Ĵ

J
J
Ĵ

J
J
Ĵ

J
J
Ĵ

� � �

. .
.

Figure 4: Another view of the FIFO queue for N = 3.

3.4 The FIFO Queue as an N -Process System

The graph in Figure 3 is drawn with two rows, each containing the events
corresponding to actions of one of the two processes. Figure 4 is the same
graph drawn with three rows. We can consider the three rows to be three
separate processes. If we number these rows 0, 1, and 2 and we number the
elements in the Input sequence starting from 0, then the events correspond-
ing to the reading and outputting of element i of Input are in row i mod 3.
We can consider each of those rows to be a process, making the FIFO queue
a 3-process system for N = 3, and an N -process system in general. If we
were to implement the variable buf with an N -element cyclic buffer, each of
these processes would correspond to a separate buffer element.

In the event history model, any totally ordered subset of events can
be considered a process. The standard model has no inherent notion of
processes. In that model, an execution is just a sequence of states. Processes
are an artifact of the way the sequence of states is represented. The set of
executions of algorithm PC can also be described by an N -process PlusCal
algorithm.

3.5 Generalized Producer-Consumer Synchronization

The generalization of producer-consumer synchronization is marked-graph
synchronization. Marked graphs were introduced by Holt and Commoner in
1970 [8]. A marked graph is a directed graph together with a marking that
assigns a finite set of indistinguishable tokens to each arc. A node is fired
in a marking by removing one token from each of its input arcs and adding
one token to each of its output arcs (producing a new marking). A firing
sequence of a marked graph is a sequence of firings that can end only with
a marking in which no node may be fired. (By definition of firing, a node

10

can be fired iff it has at least one token on each input arc.)
A marked graph synchronization problem is described by labeling the

nodes of a marked graph with the names of atomic operations. This specifies
that a sequence of atomic operation executions is permitted iff it is the
sequence of labels of the nodes in a possible firing sequence of the marked
graph. For example, the following marked graph describes the FIFO queue
for N = 3.

P C

j

Y w ww
A token on the top arc represents a value in the buffer, and a token on
the bottom arc represents space for one value in the buffer. Observe that
the number of tokens on this marked graph remains constant throughout a
firing sequence. The generalization of this observation to arbitrary marked
graphs is that the number of tokens on any cycle remains constant.

All executions of a marked graph synchronization algorithm are de-
scribed by a single event history. Marked graph synchronization can be
implemented without an arbiter, so each operation can be executed in a
bounded length of time.

Marked graphs can be viewed as a special class of Petri nets [18]. Petri
nets are a model of concurrent computation especially well-suited for ex-
pressing the need for arbitration. Although simple and elegant, Petri nets
are not expressive enough to formally describe most interesting concurrent
algorithms. Petri nets have been used successfully to model some aspects of
real systems, and they have been generalized to more expressive languages.
But to my knowledge, neither Petri nets nor their generalizations have sig-
nificantly influenced the field of concurrent algorithms.

3.6 The Two-Arrow Formalism Revisited

Let E be an event history with partial order ≺ . Suppose we partition E into
nonempty disjoint subsets called operation executions. We can define two
relations - and - on the set of operation executions as follows, for any
operation executions A and B :

A -B iff ∀ e ∈ A, f ∈ B : e ≺ f .

A -B iff ∃ e ∈ A, f ∈ B : e ≺ f .

11

p
1

p
2

p
3

p
4

q
1

q
2

q
3

q
4

q
5

q
6

q
7

r
1

r
2

r
3

r
4

6

6

6

6

6

6

6

6

6

6

6

6
�

i

:

:

i
}

Figure 5: An Event History for a Distributed System

It is straightforward to see that these definitions (and the assumption that
≺ is an irreflexive partial order) imply properties A1–A4 of Section 2.3.
Thus, we can obtain a two-arrow representation of the execution of an al-
gorithm with non-atomic operations from an event history whose events are
the atomic events that make up the operation executions. The event history
does not have to be discrete. Its events could be points in a space-time
continuum, where ≺ is the causality relation introduced by Minkowski [17].

4 Distributed Algorithms

Pictures of event histories were first used to describe distributed systems.
Figure 5 is an event history that appeared as an illustration in [13]. The
events come from three processes, with time moving upwards. A diagonal arc
joining events from two different processes represents the causality relation
requiring that a message must be sent before it is received. For example,
the arc from q4 to r3 indicates that event q4 of the second process sent a
message that was received by event r3 of the third process.

In general, executions of such a distributed system can produce differ-
ent event histories. For example, in addition to the history of Figure 5,
there might be an event history in which the message sent by event q1 is
received before the message sent by event q4. In such a case, there is true
nondeterminism and the system requires arbitration.

Let a consistent cut of an event system consist of a set C of events such

12

that for every two events c and d , if event c is in C and d ≺ c, then d is in
C . For example, {p1, q1, q2, r1, r2} is a consistent cut of the event history
of Figure 5. Every consistent cut defines a global state of the system during
some execution in the standard model—the state after executing the steps
associated with the events in the consistent cut.

An event history like that of Figure 5 allows incompatible consistent
cuts—that is two consistent cuts, neither of which is a subset of the other.
They describe possible global states that, in the standard model, may not
occur in the same execution. This shows that there is no meaningful concept
of a unique global state at an instant. For example, there are different
consistent cuts containing only events q1 and q2 of the second process. They
represent different possible global states immediately after the process has
executed event q2. There is no reason to distinguish any of those global
states as the global state at that instant.

Because the standard model refers to global states, it has been argued
that the model should not be used for reasoning about distributed algo-
rithms and systems. While this argument sounds plausible, it is wrong. An
invariant of a global system is a meaningful concept because it is a state
predicate that is true for all possible global states, and so does not depend
on any preferred global states. The problem of implementing a distributed
system can often be viewed as that of maintaining a global invariant even
though different processes may have incompatible views of what the current
state is at any instant.

Thinking is useful, and multiple ways of thinking can be even more
useful. However, while event histories may be especially useful for helping us
understand distributed systems, the best way to reason about these systems
is usually in terms of global invariants. The standard model provides the
most practical way to reason about invariance.

5 Afterwards

After distributed systems, the next major step in concurrent algorithms was
the study of fault tolerance. The first scientific examination of fault tolerance
was Dijkstra’s seminal 1974 paper on self-stabilization [7]. However, as
sometimes happens with work that is ahead of its time, that paper received
little attention and was essentially forgotten for a decade. A survey of fault
tolerance published in 1978 [20] does not mention a single algorithm, showing
that fault tolerance was still the province of computer engineering, not of
computer science.

13

At about the same time that the study of fault-tolerant algorithms began
in earnest, the study of models of concurrency blossomed. Arguably, the
most influential of this work was Milner’s CCS [16]. These models were
generally event-based, and avoided the use of state. They did not easily
describe algorithms or the usual way of thinking about them based on the
standard model. As a result, the study of concurrent algorithms and the
study of formal models of concurrency split into two fields. A number of
formalisms based on the standard model were introduced for describing and
reasoning about concurrent algorithms. Notable among them is temporal
logic, introduced by Amir Pnueli in 1977 [19].

The ensuing decades have seen a huge growth of interest in concurrency—
particularly in distributed systems. Looking back at the origins of the field,
what stands out is the fundamental role played by Edsger Dijkstra, to whom
this history is dedicated.

References

[1] Bowen Alpern and Fred B. Schneider. Defining liveness. Information
Processing Letters, 21(4):181–185, October 1985.

[2] E. A. Ashcroft. Proving assertions about parallel programs. Journal of
Computer and System Sciences, 10:110–135, February 1975.

[3] J. C. Barros and B. W. Johnson. Equivalence of the arbiter, the syn-
chronizer, the latch, and the inertial delay. IEEE Transactions on Com-
puters, C-32(7):603–614, July 1983.

[4] Per Brinch Hansen. Operating System Principles. Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey, 1973.

[5] E. W. Dijkstra. Solution of a problem in concurrent programming
control. Communications of the ACM, 8(9):569, September 1965.

[6] E. W. Dijkstra. Cooperating sequential processes. In F. Genuys, editor,
Programming Languages, pages 43–112. Academic Press, New York,
1968. Originally appeared as EWD123 (1965).

[7] Edsger W. Dijkstra. Self-stabilizing systems in spite of distributed con-
trol. Communications of the ACM, 17(11):643–644, November 1974.

[8] A. Holt and F. Commoner. Events and conditions. In Record of the
Project MAC Conference on Concurrent Systems and Parallel Compu-
tation, pages 3–52. Project MAC, June 1970.

14

[9] Harris Hyman. Comments on a problem in concurrent programming
control. Communications of the ACM, 9(1):45, January 1966.

[10] D. E. Knuth. Additional commments on a problem in concurrent pro-
gram control. Communications of the ACM, 9(5):321–322, May 1966.

[11] Leslie Lamport. A new solution of Dijkstra’s concurrent programming
problem. Communications of the ACM, 17(8):453–455, August 1974.

[12] Leslie Lamport. Concurrent reading and writing. Communications of
the ACM, 20(11):806–811, November 1977.

[13] Leslie Lamport. Time, clocks, and the ordering of events in a distributed
system. Communications of the ACM, 21(7):558–565, July 1978.

[14] Leslie Lamport. A new approach to proving the correctness of multi-
process programs. ACM Transactions on Programming Languages and
Systems, 1(1):84–97, July 1979.

[15] Leslie Lamport. The PlusCal algorithm language. In Martin Leucker
and Carroll Morgan, editors, Theoretical Aspects of Computing, ICTAC
2009, volume 5684 of Lecture Notes in Computer Science, pages 36–60.
Springer-Verlag, 2009.

[16] R. Milner. A Calculus of Communicating Systems, volume 92 of Lecture
Notes in Computer Science. Springer-Verlag, Berlin, Heidelberg, New
York, 1980.

[17] H. Minkowski. Space and time. In The Principle of Relativity, pages
73–91. Dover, 1952.

[18] C. A. Petri. Fundamentals of a theory of asynchronous information
flow. In Cicely M. Popplewell, editor, Information Processing 1962,
Proceedings of IFIP Congress 62, pages 386–390. North-Holland, 1962.

[19] Amir Pnueli. The temporal logic of programs. In Proceedings of the 18th
Annual Symposium on the Foundations of Computer Science, pages 46–
57. IEEE, November 1977.

[20] B. Randell, P. A. Lee, and P.C. Treleaven. Reliability issues in com-
puting system design. Computing Surveys, 10(2):123–165, June 1978.

[21] Brian A. Rudolph. Self-assessment procedure xxi. Communications of
the ACM, 33(5):563–575, May 1990.

15

