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Abstract The Byzantine Generals Problem requires processes to reach agreement upon a value even 
though some of them may fad. It is weakened by allowing them to agree upon an "incorrect" value if a 
failure occurs. The transaction eormmt problem for a distributed database Js a special case of the weaker 
problem. It is shown that, like the original Byzantine Generals Problem, the weak version can be solved 
only ff fewer than one-third of the processes may fad. Unlike the onginal problem, an approximate 
solution exists that can tolerate arbaranly many failures. 

Categories and Subject Descnptors: D.4.5 [Operating Systems]: Reliability, F.2.m [Analysis of Algorithms 
and Problem Complexity]: Mzscellaneous 

General Terms: Reliabthty 

Addmonal Key Words and Phrases: Agreement, interactive consistency, dlstnbuted systems 

1. Introduction 

The Byzantine Generals  Problem involves obtaining agreement  a m o n g  a collection 
o f  processes, some o f  which m a y  be faulty. It can be stated precisely as follows. 

Byzant ine Generals Problem: Given  a collection o f  processes numbered  f rom 0 to 
n - 1 which communica te  by sending messages to one  another,  to  fmd  an a lgor i thm 
by which Process 0 can transmit  a value v to all the processes such that: 

(1) I f  Process 0 is nonfaul ty,  then any  nonfaul ty  Process i obtains the value v. 
(2) I f  Processes i and j are nonfaul ty,  then they both  obtain  the same value. 

Note  that  condi t ion 2 follows f rom condi t ion 1 if  Process 0 is nonfaul ty.  

Nonfau l ty  processes are assumed to correctly follow their algorithm, but  faulty 
processes may  do anything.  W e  assume that  the absence o f  a message is detectable, 
which is equivalent  to assuming that  a faulty process sends every message that  it is 
supposed t o - - a l t h o u g h  it need not  send the correct message. The  difficulty o f  the 
problem lies in the fact that  a faulty process m a y  send conflicting informat ion  to two 
different processes. 

This p roblem was described in [1] in terms o f  a Byzant ine general  m e t a p h o r - -  
hence its name.  Essentially the same problem appeared in [2], where it was called the 
Interactive Consis tency Problem. The  problem was shown there to be solvable if  and  
only if  fewer than  one-third o f  the processes are fau l ty - -un less  unforgeable,  signed 
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messages are assumed. In particular, no solution works for three processes in the 
presence of a single fault. 

In this paper, we consider a weaker version of the problem, in which condition 1 
is replaced by the following: 

(1) If all processes are nonfaulty, then every Process i obtains the value v. 

The transaction commit problem for a distributed database is an instance of this 
weaker problem, in which Process 0 represents a transaction coordinator, and the 
other processes represent the database sites affected by the transaction [3]. The 
commit coordinator's "value" is its decision of whether to commit or abort the 
transaction. All sites must agree on whether the transaction is committed or aborted 
(condition 2), but the failure of any site is allowed to abort the transaction--hence 
the weaker version of condition 1. 

Any solution to the original Byzantine Generals Problem is obviously a solution 
to the Weak Byzantine Generals (WBG) Problem, so the WBG Problem is solvable 
if fewer than one-third of the processes may be faulty. In Section 2, we prove the 
converse: no solution exists if one-third or more of the processes are faulty. Hence, 
the WBG Problem is solvable in precisely those situations in which the original 
Byzantine Generals Problem is. However, in Section 3 we give a "solution" that 
works with any number of faulty processes, but requires the processes to send an 
infmite number of messages before choosing their values. Of course, this "solution" 
is of no practical interest, since it cannot be implemented. Its interest lies in the fact 
that the original Byzantine Generals Problem does not possess such a "solution". 
(The impossibility proof of [2] did not assume a t'mite number of messages.) Hence, 
the WBG Problem is in some sense strictly weaker than the Byzantine Generals 
Problem. 

In Section 3, we also show that if condition 2 of the WBG Problem is replaced by 
a weaker condition requiring only approximate equality, then the problem is solvable 
with any number of faulty processes. More precisely, if the set of possible values is 
a bounded set of numbers, then for any ~ > 0 there is an algorithm which guarantees 
that the values chosen by any two nonfaulty processes differ by less than ~. It was 
shown in [1] that no such approximate solution exists for the original Byzantine 
Generals Problem. 

The Byzantine Generals Problem arises in practice when trying to get the nonfaulty 
processes to agree upon the value of some input quantity. As discussed in [1], it is 
central to the implementation of fault-tolerant computer systems. The WBG Problem 
arises when trying to get the nonfaulty processes simply to agree, regardless of what 
they agree upon. To eliminate the trivial possibility of having them agree upon a 
prearranged value, we can assume that each process chooses a private value, and that 
these private values are used in reaching agreement upon a single public value. The 
general problem of reaching agreement can then be formulated as follows: 

Weak Interactive Consistency Problem: Each Process i chooses a private value w,. 
The processes must then communicate among themselves to allow each process to 
compute a public value, such that: 

(1) If all processes are nonfaulty and all the w, have the same value, then every 
process computes this value as its public value. 

(2) Any two nonfaulty processes compute the same public value. 

It is easy to show that this is equivalent to the WBG Problem. First of all, it is easy 
to see that if Process 0 transmits the value Wo to all processes using a solution to the 
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WBG problem, and all nonfaulty processes choose the value they obtain as their 
public value, then the above two conditions hold, so this is a solution to the 
Weak Interactive Consistency Problem. Conversely, given a solution to the Weak 
Interactive Consistency Problem, a solution to the WBG problem is obtained by 
having Process 0 send its value v to all the processes, and then letting each Process i 
use the value it received as its private value in the Weak Interactive Consistency 
solution. 

2. Impossibility Result 

In this section, we prove that no solution to the WBG problem exists if  one-third or 
more of the processes are faulty. This requires a precise statement of  what constitutes 
a WBG solution. We begin with some notation. (A glossary of  all our notation 
appears at the end of the paper.) Let P denote the set {0 . . . . .  n - 1}, and P* the set 
of  all finite sequences of  elements of P (including the null sequence). Let H denote 
the set of all finite sequences of the form 0, ~r with ~r ~ P*--i.e., all elements of P* 
whose first element is 0. We think of  0, pl . . . . .  pk as the path of  length k traveled by 
a message that starts at Process 0 and is relayed via Processes pl . . . . .  pk-~ to Process 
pk. (This is different from the notation used in [2].) Let II, denote the subset of II  
consisting of  all sequences ending in/--i .e. ,  all message paths leading from Process 
0 to Process i. 

A scenario ~ is a mapping from II into a set of values V. If  we think of  an element 
~r of  H as a message path, then ¢(~r) is the contents of the message received at its 
final destination. We say that Process i is nonfaulty in a scenario ¢ if for every 
message path ~r, i E I I  and every j E P: O(,r, i, j ) ' =  ¢(~r, i). In other words, i is 
nonfaulty in • i f  Process i correctly relays all messages. I f  all processes are nonfaulty 
in ~,  then ~(~r) = ~(0) for all 7r E H. 

We define an i-scenario to be a mapping from l-I, to V. An/-scenario thus describes 
the contents of the messages received by Process i. For any scenario ~, we let O, 
be the/-scenario that is the restriction of • to IL, so ~, is the part of * "seen" by 
Process i. 

A solution to the WBG problem consists of  an algorithm by which the processes 
send messages to one another based upon the contents of messages already received. 
Initially, the only information is the value v, which is known only to Process 0. 
Therefore, all information travels along paths in I13 To send the maximum amount 
of  information to one another, Process 0 would send the value v to all processes, and 
then processes would send one another the contents of  every message they receive. 
Thus, if  ¢(0) equals v, then a scenario • describes the maximum amount of  
information that the processes could send to one another. A nonfaulty process can 
always ignore information that it receives, and a faulty process can do anything--  
including guess any information that was withheld from it. Hence, any algorithm for 
choosing values based upon information sent among the processes can be described 
in terms of  an algorithm based upon the entire scenario ¢.  We therefore make the 
following definition. 

Definition. An m-fault WBG Algorithm B consists of  a set of  mappings B, from 
/-scenarios into V, for all i E P, such that for any scenario • in which at least n - m 

We could have considered paths startmg from other processes than Process 0 as well, and the unposslbdlty 
proof would remam essentially the same. However, for simplicity we have restncted ourselves to message 
paths m H 
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processes are nonfaulty: 

(1) If  all processes in P are nonfaulty in 4,  then for all i ~ P: B,(¢9i) --- ¢~(0). 
(2) For any i , j  E P: i f / a n d j  are nonfaulty in 4,  then B,(t~,) ffi Bj(d~j). 

We will show that no m-fault WBG algorithm exists if  3 _ n _< 3m. (The problem 
becomes trivial if n -- 2.) 

If  the value of  B,(~,) depended upon the entire infinite/-scenario ~,, then the 
algorithm B would require an infinite amount of  message passing and would not be 
a real solution to the WBG Problem. We thus make the following definition, where 
rI ck) is defined to be the set of message paths in II  of length at most k, and 
I'll k~ -- H <k) n H,. 

Definition. A WBG algorithm B is said to befinite if for every scenario • there 
is an integer k such that for any scenario xI, and all i ~ P: if  the restrictions of  4,  and 
~ to II <k) are equal, then B,(~) = B,('~). 

A finite WBG algorithm is one in which for every scenario, there is a k such that 
each process can choose its value after k rounds of message passing. This is a natural 
definition, since it insures that every process is eventually able to choose a value. 
However, it does not immediately rule out the possibility that the required number 
of rounds k can become arbitrarily large. We now show that this is not the case, and 
that a single value of k can be chosen for all scenarios. 

LV.MMA 1. For any finite WBG algorithm B there is a nonnegative integer k such 
that for  any scenarios dp and xp and all i E P: if the restrictions o f  tb, and x~ to II~ k) 
are equal, then B,(t~,) = B,( '~).  

PROOF. Define an r-level fmite scenario to be a mapping from rl  <r~ to v. For any 
luted i, we define a tree structure on the set of  all such finite scenarios by letting an 
r-level scenario ~ be an ancestor of an r'-level scenario 4 '  if  r < r' and 4 ,  is the 
restriction of ~ to 1-II r>. Consider the subtree consisting of r-level scenarios 4,  for all 
r, such that there exist (infinite) scenarios xI, and f~ whose restrictions to IIl ~> 
equal ~ ,  and for which B,(~,) does not equal B,(~,). I f  this subtree were infinite, 
then by Konig's lemma it would have an infinite path. Such an infinite path defines 
an infinite scenario d~ which contradicts the definition of  finiteness. Hence, this 
subtree must be finite, which implies the existence of a ks such that for any scenarios 

and ~: if the restrictions o f ~ ,  and xI', to IIl h') are equal, then Bi(¢~,) ffi B,(~,). To 
complete the proof, we let k equal sup{k,: i E P}. [] 

To prove the nonexistence of an m-fault algorithm when n ___ 3m, we first prove 
the nonexistence of a l-fault algorithm for n = 3. Therefore, until further notice, we 
assume that P ffi {0, 1, 2}. 

We define the signed distance function 8 on P by: 

8(0, 1) = 8(1, 2) = 8(2, 0) -- 1, 
8(i, j )  = -8 ( j ,  i). 

For any path Ir = 0, p~ . . . . .  pk we define o0r ) to equal 
k 

Y. 8(p,_~, p,). 

If  we think of  the processes 0, 1 and 2 being arranged clockwise in a circle, then 
8(i, j )  is the clockwise angular distance from i t o j  (where a distance of 3 represents 
a full circle), and o(~r) is the signed angular distance traveled by the path ~-. 
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LEMMA 2. For any path 0,pl  . . . . .  pk E H: o(O, pl,  . . .  ,pk) mod 3 = p~. 

PROOF. This is a simple consequence of  the observation that 

6(r, s) + 6(s, t) - 6(r, t) mod  3. [] 

For any integer r, we let b" denote r mod  3, which equals 0, 1, or 2. 
We now choose two particular elements of  V, which we denote T and F. The 

following lemma asserts the existence of  a sequence of  scenarios O ~') for integral 
values of  r (including negative integers) which will form the basis for a proof  by 
contradiction. Only two values, denoted T and F, appear in O <r). In this scenario, 
Processes r + 1 and r + 2 are nonfaulty, so they relay values correctly. The 
faulty Process F acts correctly except when relaying messages or for which o(~) = F, 
in which case it sends the value T to Process r + 1 and the value F to Process r - 1 
= r + 2 .  

LEMMA 3. For any values T and F in V, and any integer r there is a scenario 0 (r) 

such that f o r  i = 1, 2: 

(1) Process r + i is nonfaulty in • ~r). 
(2) For any ~r E H~-~: 

O~,)(~r)={F i f  o(~r) >_ r + i, 
i f  o ( I r ) < r + i .  

PROOF. By Lemma 2, condition 2 defines ~,+~¢b~r--'~ for i = 1, 2. Since there are no 
~ ( r )  requirements on qJF, and Process F is allowed to be faulty, we need only show that 

Condition 2 is achievable when Processes r + 1 and r + 2 correctly relay messages 
to one another. However, this follows easily from the observation that if  ~ E H;~,, 
then o(~',  r + i +  1) = o(~r) + 1. [ ]  

Note that the two conditions of  Lemma 3 define the values of  all messages in the 
scenario O t~) except for the ones that Process r sends to itself. 

The following result is a simple corollary of  Lemma 3. 

LEMMA 4. For any integer r: i f  O ~ is as in L e m m a  3, then O~f>+~ ffi 0 ~  1). 

We can now prove the impossibility of  a 1-fault W BG  algorithm with three 
processes. 

LEMMA 5. I f  there are at least two distinct elements in V, then there does not exist 
a 1-fault W B G  algorithm fo r  n = 3. 

PROOF. Let B be such an algorithm~ and let T and F be distinct elements of  V. 
Let • r and • F be the scenarios defined by oT(~r) ---- T and OF(~r) ---- F for all ~r ~ H. 
It follows from condition 1 of  the definition of  a W BG  algorithm that B,(OT) = T 
and B,(O~)  = F for all i. For  each integer r, let • t~) be the scenario whose existence 
was proved in Lemma 3. 

Let k be the nonnegative integer whose existence is guaranteed by Lemma 1, with 
O T substituted for O. Since o(~r) is less than or equal to the length of  ~r, for any ~r in 
n~k_k> tk) "'k+l, we have o(~r) <_ k < k + 1, so • (or) = T. Hence, the restrictions of  the 

(k) T (k) (k) scenarios O~-i and 0~-,-~ to H~-i are equal, so we must have Br~  (Ok-~-~) = T. Similarly, 
choosing such a nonnegative integer k '  for • F, since -o(~r) is less than or equal to 

( k )  r f the length o f ~ ,  for any 7r inH'_~,  we have o(~r) _ - k  ffi ( - k  - 1) + 1, so 
( - k ' - l )  • • F ( - k ' - l )  (k') O_-~ (~r) = F. Hence, the restnctmns of  O_--~ and O_--~ to 1"[_~ are equal, so 

(--k ' --1) B_~---~, ( ~  )ffi F. 
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B;~(~; ;~)  = t~--i~ ~-~ ~. Since r + 1 and It follows from Lemma 4 that for any r: <r) ~ ((b~l)~ 
r + 2 are nonfaulty in (I) (r), it follows from condition 2 of  the definition o f  a WBG 

• ( r )  ( r )  ( r )  ( r + l )  
algorithm that B ~ ( ~ - i )  -- B~+--~((I);-~). Hence, for each r: B~( ( I )~ ) - - -Br - -~ ( (b~  ). 
A simple induction argument then shows that B~((I)~+)I) = B--~((I)~-1)). However, 
we saw above that B~-~ ((I)(k-~) ---- T and B--~(~(-~k ~, -a)) = F. Since T and F are distinct 
elements, this provides the required contradiction. [] 

We can now prove our main result. 

THEOREM I. I f  n > 2 and V contains at least two distinct elements, then there exists 
an m-fault W B G  algorithm i f  and only i f  n > 3m. 

PROOF. The " i f"  part follows from the existence of  algorithms to solve the 
original Byzantine Generals Problem, demonstrated in [1] and [2]. To prove the 
"only i f"  part, we assume the existence of  such an algorithm and derive a con- 
tradiction. 

Assume B is an m-fault WBG algorithm, with 3 < n < 3m. We will use it to 
construct a l-fault WBG algorithm for three processes, thereby contradicting Lemma 
5. We first partition the (n-element) set P into three nonempty, disjoint sets Po, P1, P2 
each containing at most m elements• (We can do this because 3 _< n __. 3m.) Let 0 be 
an element of  P0. We define the mapping ~: P ~ {0', 1', 2'} by letting X(p) = i '  i f  
and only i f p  E P,. We extend X to a mapping from P* into {0', 1', 2 ')* in the 
obvious way by letting X(p0 . . . . .  pk) = X(p0), . . . ,  ~(PD. We also let 0", 1", 2" be 
elements in P such that 0" = 0, 1" ~ Pa and 2" ~ / 2 .  Hence, ~(i") = i'. 

We construct a l-fault WBG algorithm B' for the set P '  = {0', 1', 2'} as follows. 
For any scenario ~ '  on P', we define the scenario A[~'] on P by A[~'](~r) = 

B' ta), ~ A ' ~P'(h(~r)). The WBG algorithm B' is defined by , ,~,,~ = B , . ( [ ( Ih -] ) .  Observe that 
if i' is nonfaulty in (I)', then every process in P, (including i") is nonfaulty in A[(I)']. 

To show that B' is a l-fault WBG algorithm, we must verify the following two 
conditions. 

t p l  , , (1) IfaU processes in P '  are nonfaulty in ~P, then for all i' E :B,,(@,,) = ~'(0'). 
• , , //, (¢I~ p -~ , , (2) For any l ,  j '  ~ P': if  i' and f are nonfaulty in (I), then ~,,~ o -- Bj,((I)~,). 

To prove these conditions, we use our observation that i f  Process i' is nonfaulty in 
(I)', then every process in P, is nonfaulty in A[(I)']. Hence, if  all processes in P '  are 
nonfaulty in ~ ' ,  then all processes in P are nonfaulty in A[~']. Using condition 1 for 
the m-fault WBG algorithm B, we see that 

B '  ( ~ '  ~ = ,',.:,'z B,.,(A[~'], .) 
= A [ ~ , ' ] ( 0 " )  

= ~'(0'), 

which proves condition 1 for B'. 
Next, assume that the i' and j '  are nonfaulty in q~'. Since i" and j "  are nonfaulty 

in A[~'], condition 2 for B yields 

# t B,,((I),,) = B,. (A[~ ' ] , . )  
= Bf (A[~P ' ] f )  

# , 
= B , , ( ~ ' : , ) .  

This proves condition 2 for B'. We have thus constructed a l-fault WBG algorithm 
for the three processes 0', 1', 2', contradicting Lemma 5. []  
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3. Approximate and Infinite Solutions 

We now describe an approximate solution to the W BG  problem that works in the 
presence of  any number  of  faulty processes. By taking the limit of  a sequence of  such 
solutions, we obtain an exact solution using an infinite number of  messages. In order 
to make the concept of  an approximate solution meaningful, we assume that the set 
V of  possible values is a set of  real numbers. 

For  each integer k > 0, we define an algorithm A G  tk~ that requires k rounds of  
message passing. Rather than describing it in terms of  formal scenarios, we will 
simply talk about processes sending messages to one another. Nonfaulty processes 
are constrained to follow the algorithm, while faulty ones may do anything. We 
assume that a faulty process sends every message that it is supposed to, although 
possibly with an incorrect value. However, every value it sends is assumed to be 
some element of  V. It should be obvious how this description can be translated into 
a definition of  mappings on i-scenarios. 

Algorithm AGtk): The following k rounds of message passing are executed to compute the 
values v~, ~> for i E P and 1 _< r < k. 

--Round 1: 
• Process 0 sends the value v to every Process i. 
• Each Process i sets vl 1) equal to the value it receives from Process 0. 

--Round r: (1 < r --< k) 
• Each Processj sends the value v~ r-~ to every Process i. 
• Each Process i sets vl r) equal to the maximum of the n values it receives. 

Each Process i then sets v, equal to the average of the k values v~ r~. 

We now prove the following result about this algorithm, which shows that it is an 
approximate solution to the WBG problem. 

THEOREM II. I f  Iv[ < D for all v E V, then the algorithm AG tk) satisfies the 
following properties. 

(1) I f  all processes are nonfauhy, then v, = v for  every i. 
(2) I f  Processes i and j  are nonfaulty, then Iv, - vj[ < 2D/k.  

Note that no limit is placed upon the number of  faulty processes. The proof  of  this 
theorem uses the following lemma. 

LEMMA 6. Assume that Ivl < D for all v E V. I f  Sr, tr are elements of  Vsuch that: 

Sr <: t r + l ,  tr ~ Sr+ l  

for all r with 1 <_ r < k, then 

PROOF. 

I sr-- ~ tr < 2 D .  
r ~ l  r--1 

It follows from the first inequality of  the hypothesis that 
k k 

E S r ~ S k +  E tr. 
r.=l r--2 

From this, we deduce that 
k k 

Y, st--  ~, t r < - - s ~ - t l < 2 D .  
r--1 r--1 
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The symmetric argument, interchanging s and t, yields 
k k 
Z t ~ -  2 s r < 2 D ,  

r~l  I',=1 

and combining the two inequalities proves the lemma. [] 

PROOF OF THEOREM. To prove the first property, we simply observe that if  all 
processes are nonfaulty, then they correctly relay values, so all the v~ ~) equal v. 
To prove the second property, we note that if Processes i and j are nonfaulty, then 

(~) and -  (~) to one another in round r + 1. It they correctly relay the values of  v, vj 
therefore follows that for each r ___ 1: 

v~r) < v~ ~+1), v (f) <_ v~r+~). 

The second property then follows immediately from the above lemma, substituting 
(r) (r) 

v, f o r s r a n d v j  fort~. [] 

To construct an infinite-message solution to the WBG problem, we let each Process 
i take as its value of  v, the limit as k goes to infinity of  the values obtained by the 
algorithms AG (k). I f  the set Vis unbounded, then this limit could be infinite, in which 
case some arbitrary preassigned value is used. This gives us the following. 

Algorithm AG(®): Compute the values v(, r) as described m Algorithm AG (k), for all i E P and 
r (r) r _~ I. For each i, define v, to equal sup (L : r ~ l }, where oo is interpreted to be some arbitrary 

fixed element of V. 

We now show that AG (~) is a "solution" to the W BG  problem that can tolerate 
any number of  faults. Of  course, since it requires choosing a value based upon an 
infinite sequence of  messages, it cannot be regarded as a solution in any practical 
s e n s e .  

THEOREM III. I f  V is a bounded set of  numbers, then AG t°°) is an infinite m-fault 
WBG algorithm, for  any m. 

PROOF. The proof  is quite simple, and rests upon the observation that if  i and j 
are nonfaulty, then 

v~(r) --< ]))r+l), I)j(r) .~ vt(r+l) 

for all r > 0, which in turn implies that sup(vl r)} = sup(v(f)). The details are 
left to the reader. [] 

Glossary of  Notation 

General Notation: 

- -n :  the number of  processes. 
- - P :  the set (0 . . . . .  n - 1} of  processes. 
- - P * :  the set of  finite sequences of  processes. 
- - I I :  the set of  message paths from ()--sequences in P* beginning with 0. 
- - I I , :  the set of  message paths from 0 to / - -sequences  in II  ending in L 
--IItk): set of  message paths of  length _< k in II. 
--II~k): set of  message paths of  length __ k in IL. 
- -  V: the set of  all possible values v. 
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--scenario: a mapping ¢:  H ~ V--specifying the value of  the contents of  every 
message. 

--/-scenario: a mapping ~,: 17, ~ V-- the part of  a scenario "seen" by Process i. 
- - W B G  algorithm B: a collection o f  mappings Bi from/-scenarios to V. 

Notation for n = 3: 

- -8( i ,  j ) :  the signed, clockwise distance from i to j .  
--o(~'): the signed angular distance traveled by the path ~r. 
--F: r m o d  3. 
--l-I('): a scenario in which a faulty Process ~'relays each message ~r correctly unless 

o(~r) -- r, in which case it relays the value F t o r  - l and the value T t o r  + 1. 

Notation used in proof  of  Theorem I: 

- -P ' :  the set of  processes {0', 1', 2'}. 
--A: a mapping assigning to each process in P a process in P', which assigns at 

most m processes to each process in P'.  Also, its extension to a mapping from 
message paths in P to message paths in P'. 

- - i " :  an element in P that is assigned by ~, to i', where i = 0, 1 or 2. 
- -A:  a mapping that takes scenarios on P'  into scenarios on P, defmed by let- 

ting the value of  A[d#'] on the message path ~r equal the value of  ~ '  on the 
path A(~r). 
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