When Does a Correct Mutual Exclusion
Algorithm Guarantee Mutual Exclusion?

Leslie Lamport, Sharon Perl, William Weihl

23 November 1998
revised 23 Mar 2000

Dijkstra introduced mutual exclusion for an N-process system as the re-
quirement “that at any moment only one of these N cyclic processes is in its
critical section” [1]. This requirement, which we call true mutual exclusion, is
still the standard definition of mutual exclusion.

Mutual exclusion algorithms for shared-memory multiprocessors do not guar-
antee true mutual exclusion. We give a simple example that shows why a mutual
exclusion algorithm can permit two critical sections to be executing at the same
time. We prove that a shared-memory mutual exclusion algorithm does provide
true mutual exclusion if a processor does not know in advance what memory
operations will follow the critical section. Modern processors can look ahead
at operations that follow a critical section. If true mutual exclusion is needed,
this look-ahead must be inhibited. However, as we will explain, true mutual
exclusion is seldom useful in practice.

One of the strongest and most common assumptions made about multi-
processor shared memory is sequential consistency. Sequential consistency is
defined as follows:

[Tlhe result of any execution is the same as if the operations of
all the processors were executed in some sequential order, and the
operations of each individual processor appear in this sequence in
the order specified by its program. [2]

Sequential consistency says nothing about the order in which the operations are
actually executed. A mutual exclusion algorithm executed on sequentially con-
sistent memory guarantees only what we call virtual mutual exclusion: memory
operations act as if all those in one critical section were performed either before
or after all those in another. Virtual mutual exclusion says nothing about when
the operations are really performed.

As an example, consider the following basic mutual exclusion protocol that
is used by several standard algorithms.

Processor A: a :=1; if b =0 then critical section; a :=0 fi
Processor B: b :=1; if a =0 then critical section; b :=0 fi



Suppose neither of the critical sections accesses a, b, or any variable accessed by
the other. A multiprocessor could execute processor A’s assignment a := 1, its
if test, and its assignment a := 0, and then arbitrarily interleave the execution
of its critical section with the execution of processor B’s protocol. Because the
memory operations of processor A’s critical section commute with all the mem-
ory operations of processor B’s protocol, the resulting execution is equivalent
to executing the two protocols sequentially (in either order). Thus, the defi-
nition of sequential consistency, which says nothing about the order in which
operations are actually executed, is satisfied. Hence virtual but not real mutual
exclusion is satisfied.

Executing a mutual exclusion algorithm without satisfying real mutual ex-
clusion requires aggressive reordering of instructions based on knowledge of more
than one processor’s instruction stream. It probably cannot occur on existing
multiprocessors. However, processors and memory systems are becoming in-
creasingly sophisticated, and this kind of interprocessor optimization may be
possible in future systems that have multiple processors on the same chip.

If the critical sections do nothing but access memory, virtual mutual exclu-
sion is good enough. It doesn’t matter when they really are executed. However,
the critical sections may contain I/O operations to external devices. If a mutual
exclusion algorithm is being used to ensure that I/O operations by different pro-
cessors are not issued to the device at the same time, then it must implement
true mutual exclusion.

In many computers, I/O is performed by memory operations to certain ad-
dresses. If an external device is accessed by operations to only a single address,
then virtual mutual exclusion disallows the interleaving of I/O operations from
different critical sections to the same device. (The only way a memory system
can make I/O operations to the same address act as if they occur in a certain
order is to execute them in that order.) But, operations to two different ad-
dresses might affect the same device. Moreover, mutual exclusion might be used
to prevent certain sequences of operations to different devices. In these cases,
true mutual exclusion is needed.

We will show that true mutual exclusion is implied by virtual mutual ex-
clusion if a processor cannot look ahead to instructions past its critical section.
Let a processor be a device that takes as input a sequence of issued instructions
that it executes, perhaps in a different order. An algorithm is then a rule that
determines the sequence of instructions to be issued. We assume conditional in-
structions with the usual semantics, so executing (the sequence of instructions
issued by) the statement

if x =0 then S fi

causes the instructions of S to be executed only if executing the read of z
obtains the value 0. We assume that the result of executing an instruction
is independent of instructions that have not yet been issued. For example,
issuing an instruction from a particular address does not imply that the next
instruction issued from that address will be the same. We posit a statement (a
finite sequence of instructions) Lull such that no instructions will be issued to a



processor after the Lull statement until the processor has finished executing all
instructions issued to it before the Lull statement—that is, until it has issued
all reads and writes preceding the Lull, and has received the results of all the
reads. (The processor does not have to wait for writes to complete.) More
precisely, we assume:

Al. The result of executing an instruction cannot depend on what instructions
are issued after any Lull that has not yet been executed.

We prove the following result:

If two processors execute critical sections each containing a Lull
statement, then critical-section instructions that precede the Lull
statements cannot be concurrently executed by the two processors.

The proof requires five additional assumptions. First, we make three assump-
tions about the shared memory:

A2. A memory cell can assume at least two values, which we take to be 0
and 1.

A3. If memory cell z is initially 0 and no write to z is ever executed, then
every read of = obtains the value 0.

A4. If memory cell z is initially 0 and a processor executes z := 1, then any
other processor that keeps reading the cell will eventually find it equal to
1. (The operation z := 1 could include some form of “cache flush” or
memory synchronization operation.)

A memory system that didn’t satisfy these assumptions would not be very useful.
We make the following assumption about the mutual exclusion algorithm. It
rules out uninteresting algorithms that have to access all of memory.

A5. The algorithm remains correct if three memory cells, not currently used
by any processor, are added to the system.

We have defined virtual mutual exclusion for sequentially consistent memories.
However, our result applies to a much larger class of memories. Instead of trying
to find the appropriate generalization, we make the following assumption about
the interaction of mutual exclusion and the memory’s semantics.

A6. If a memory cell z is initially 0, and the critical sections of two processors
both read z and then execute z := 1, then it is impossible for both reads
to obtain the value 0.

This assumption holds for a virtual mutual exclusion algorithm executed on
sequentially consistent memory, since the read by the processor whose critical
section acts as if it were executed last must see the value written by the other
processor. For other memory models, mutual exclusion wouldn’t be of much use
if it didn’t satisfy this condition.



We now prove our result by contradiction. We assume that processors A
and B are both in their critical sections, executing instructions that precede the
critical sections’ Lull statements, and we obtain a contradiction. Since neither
processor has executed its Lull, assumption Al implies that we would obtain
the same execution if the following instruction sequences are issued after those
Lulls, where z, y, and z are memory cells, initially equal to 0, that are not used
by either processor:

Processor A: if z =0 then y := 1; while 2 = 0 do od fi; Lull
Processor B: if £ =0 then z :=1; while y = 0 do od fi; Lull

We suppose that A and B issue no other writes to y or z, and that any write
to z is executed after these Lull statements.

At least one of the processors must execute its read of = before either pro-
cessor has issued any instructions past its subsequent Lull statement. Without
loss of generality, we may assume it is processor A. We now reason as follows.

1. Processor A’s read of z obtains the value 0.
PROOF: By the assumption that A reads z before either processor executes
the following Lull, assumption Al implies that the result of the read cannot
depend on what instructions follow those Lulls. If neither A nor B contains
any write of x, then assumption A3 implies that the read obtains 0. Hence,
it must obtain that value regardless of whether there is a subsequent write
to z.

2. Processor B’s read of x obtains the value 0.
PROOF: Suppose B’s read of = obtains a value other than 0. Because we are
assuming that there are no writes to z except the one in B’s code above, A3
implies that processor A cannot exit its while loop. Hence, it never executes
the following Lull. Since neither Lull has been executed when B reads z,
A1 implies that the result of the read cannot depend on the instructions that
follow the Lulls. Since there might be no writes to z following the Lulls, A3
implies that the read could not have obtained any value other than 0.

3. The reads of z by A and B cannot both obtain the value 0.
PROOF: Suppose both A and B both read z equal to 0. Assumptions A4 and
A5 then imply that both processors will exit their while loops. We could then
violate assumption A6 by following the Lull in each processor’s code above
with z : =1 and then the instructions to exit its critical section. Hence, the
reads of z by A and B cannot both obtain 0.

Steps 1-3 provide the required contradiction.

We have shown that a shared-memory mutual exclusion algorithm guaran-
tees true mutual exclusion—two processors are never in their critical sections
at the same time—if each critical section is ended with a Lull statement that
inhibits look-ahead. Implementation of the Lull statement will depend on the
particular processor and memory-system architecture.

True mutual exclusion can be used to implement mutually exclusive access
to external devices if and only if there is a bound on the time needed for an op-
eration generated by a processor to reach and be completed by the device. With



such a bound, mutually exclusive access is achieved by having the processor re-
main in its critical section until the operation it generated has been completed
by the device. However, this kind of real-time bound is seldom known. Without
it, mutually exclusive access requires a completion signal from the device. A
processor enters its critical section, issues the operation to the device, and then
remains in the critical section until it receives the completion signal. It is easy to
see that, since the processor has no way of predicting that the completion signal
will actually arrive, this guarantees mutually exclusive access to the device even
when the critical-section algorithm implements only virtual mutual exclusion.

Acknowledgment

Mike Burrows pointed out to us that true mutual exclusion does not help achieve
mutually exclusive access to an external device without a bound on how long it
takes to access the device.

References

[1] E. W. Dijkstra. Solution of a problem in concurrent programming control.
Communications of the ACM, 8(9):569, September 1965.

[2] Leslie Lamport. How to make a correct multiprocess program execute cor-
rectly on a multiprocessor. IEEE Transactions on Computers, 46(7):779—
782, July 1997.



