
The Wildfire Challenge Problem

Leslie Lamport, Madhu Sharma, Mark Tuttle, and Yuan Yu

Compaq

4 Jan 2001



Abstract

We pose as a challenge to the verification community the problem of finding er-
rors in the specification of a complicated cache-coherence protocol. It specifies
a simplified version of the protocol used in an actual multiprocessor computer,
except with one error deliberately introduced and another introduced by ac-
cident. The protocol and the memory model it is supposed to implement are
described here; their complete specifications are posted on the Web.



Contents

1 Introduction 1

2 The History of the Problem 1

3 The Alpha Memory Specification 2

4 The Wildfire Specification 4

5 Discussion 6

Bibliography 7



1 Introduction

A few problems have become benchmarks for verification techniques. For ex-
ample, Tomasulo’s algorithm is a popular one for concurrent-system verifica-
tion [2, 4, 6, 7, 12]. Such problems have posed the task of verifying an algorithm
that is already known to be correct. A solution must be examined carefully to
discover what has really been verified, since an error in formalizing the problem
could render it vacuous. The Wildfire challenge problem poses a very different
task: finding the error in an incorrect algorithm. As long as the solution has
not been revealed in advance, we know that the problem has been solved if, and
only if, the error has been found.

Wildfire was the code name for the Compaq AlphaServer GS series [5], a
family of multiprocessor computers containing up to 32 Alpha processors. It
has the most complicated cache-coherence protocol we know of, into which we
have deliberately inserted a bug. We provide formal specifications, written in
TLA+ [10], of the incorrect protocol and of the Alpha memory model, which the
protocol is supposed to implement. We challenge the verification community to
find the error.

In most industrial applications, the function of verification is to find errors.
It is only for certain life-critical applications that one performs the kind of
complete verification that attempts to verify the correctness of the entire system.
So, the problem of finding errors in a system design is a realistic one. The one
unrealistic aspect of the challenge is that we announce in advance the presence
of a serious error.

The problem has already been solved by Georges Gonthier. In addition to
the error we had planted, he found another bug that we were not aware of—a
bug in our specification, not in the actual protocol. Later, Abdelwaheb Ayari
found that other bug, but not the one we had deliberately inserted. Gonthier
solved the problem by inspection; Ayari used a state-enumeration tool. No other
solutions have been reported to us.

This paper describes the history of the problem, the Alpha memory specifi-
cation, and the Wildfire protocol specification. We do not attempt to present
the specifications themselves. They are posted on the Web [11] and are thor-
oughly commented. For obvious reasons, we do not divulge any information
that might help locate the errors. We reveal only that both errors are violations
of safety properties, so they are demonstrated by finite traces.

2 The History of the Problem

Three of the authors (LL, MT, and YY) are researchers and the fourth (MS) is
an engineer who was a member of the Wildfire design team. From the fall of 1996
through the summer of 1997, the three researchers engaged in a project to verify
the correctness of the Wildfire cache-coherence protocol. They worked closely
with the designers—especially the designer/author. The project began with the
writing of a fairly low-level TLA+ specification of the protocol, which was about

1



1900 lines long (exclusive of comments). The researchers then wrote a 200-
line TLA+ specification of the Alpha memory model, which any multiprocessor
Alpha must implement. A complete verification that the low-level protocol im-
plements the specification was impossible in the time available. Working closely
with the designer, the researchers wrote a detailed hand proof for a high-level
view of part of the protocol. They then wrote an even more detailed proof for
certain parts of the low-level protocol that seemed most error-prone. The proofs
revealed one error in the Alpha reference manual [1], the official description of
the Alpha architecture, and one minor low-level error in the protocol.

In early 2000, we wrote a high-level view of the protocol that abstracts away a
number of complicating details in the lower-level specification. This specification
consists of about 730 lines of TLA+. We hope eventually to publish a rigorous
proof of its correctness.

When first writing the lower-level TLA+ specification, the researchers were
puzzled by one detail in the protocol. The designer had to explain to them
why it was necessary. Overlooking this detail seemed easy, and it would result
in the kind of subtle error that verification is supposed to catch. We decided
to publish the higher-level specification with the detail omitted and challenge
the verification community to find the error. We posted the problem on the
Web [11] in mid-June, 2000.

In early August, Georges Gonthier sent us a solution, which he had obtained
by simply thinking about the problem. We were surprised and impressed by
how quickly he solved it. He found not only the bug we had planted, but
another, unintentional error. That error had also been present in our original
specification. It was in a part of the specification that we had not examined in
either our low-level or high-level proofs; it was not present in the actual protocol.
It is much more obvious than the error we planted, and we are rather surprised
and embarrassed that we hadn’t noticed it ourselves. Gonthier reported:

I did spot a bug, but was a bit disappointed because it seemed too
trivial, so I carried on, as I was interested in understanding how the
whole thing ticked. . . It just dawned on me last night that there was
indeed a more subtle problem with the spec.

We decided not to correct the unintentional error and to make finding it an
additional part of the challenge. In late October, Abdelwaheb Ayari found this
more obvious error, using a state-enumeration Haskell program that was based
on ideas by David Basin [3]. Ayari reports having spent about four weeks on
the problem, most of it modeling the protocol with his tool.

As of January, 2000, the problem had been downloaded from about 270
different sites. No-one else has reported finding either bug.

3 The Alpha Memory Specification

The Alpha memory model describes the result of concurrent memory accesses
by different processes. To permit efficient implementation of multiprocessor

2



memories, the Alpha designers wanted the weakest model possible that would
provide the mechanisms needed for multiprocess programming. The model is
specified informally in the Alpha Reference Model [1]. It allows a processor to
reorder operations to different memory addresses, except where prohibited by
explicit memory barrier instructions. The Alpha also provides load-locked and
store-conditional instructions for interprocess synchronization.

The informal specification and our TLA+ specification of the memory model
differ in several ways:

• The informal specification describes the result of concurrent operations to
different parts of the same word. The TLA+ specification eliminates this
complication by describing only operations that access a complete cache
line, since that is the level of granularity at which the Wildfire protocol
operates.

• The informal specification is in terms of abstract operations, with no men-
tion of when the operations are issued. It originally allowed certain vio-
lations of causality that were only later ruled out by inserting additional
restrictions. The TLA+ specification is in terms of states and transitions,
and issuing an operation is an explicit action. The straightforward way of
writing such a specification makes it easy to ensure causality.

• We have simplified the TLA+ specification for the challenge problem by
omitting some features of the Alpha memory system, such as the write
memory barrier instruction.

• The informal specification describes the memory system’s interface with
the program, while the TLA+ specification describes its interface with the
processors.

One difficulty posed by the challenge problem arises because the TLA+ spec-
ification contains two “hidden” variables:

reqSeq: An array, indexed by processor, such that reqSeq[p] is the sequence of
requests issued by processor p, together with their execution status.

beforeOrder : A partial order on the set of all issued requests that “explains”
their results.

The informal specification is mirrored in a predicate BeforeOrderOK on these
variables that is required to hold after each step. For example, BeforeOrderOK
asserts that the value returned by a read is obtained from the latest write
that precedes it in the partial order beforeOrder . In TLA, variable hiding is
expressed by temporal existential quantification, so the specification has the
form ∃∃∃∃∃∃ reqSeq, beforeOrder : F for a temporal formula F . A protocol satisfies
this specification iff, for each of its possible behaviors, there exists a sequence of
values for reqSeq and for beforeOrder such that F is satisfied. The large number
of potential choices of such sequences makes brute-force mechanical verification
infeasible.

3



To a first approximation, the Alpha memory model is a simple weakening of
sequential consistency [9]. Sequential consistency asserts that the memory acts
as if all instructions are executed in some sequence that has just one requirement:
any pair of operations from the same processor appear in the order that they
are issued. The Alpha memory model weakens this requirement so it applies
only to instructions that access the same address or are separated by a memory
barrier instruction.

4 The Wildfire Specification

As shown in Figure 1, the Wildfire system consists of a network of processors
and memories connected via local switches, which are in turn connected via a
single global switch. Any processor can access any memory address, but access
is faster if that address resides on the processor’s local switch.

The two levels of switches make the system more complicated than tradi-
tional multiprocessor memories. This complication is exacerbated by the design
decision that, if a memory address is accessed only by processors on the same
local switch, then no messages are sent to the global switch. Unlike conventional

processor

�
�
�

processor ✆

✞

�

✝
local

switch

memory

✆

✞

�

✝

�
�
�

processor

�
�
�

processor ✆

✞

�

✝
local

switch

memory

global

switch

Figure 1: The structure of the Wildfire system.

4



bus-based protocols, the Wildfire protocol has no central point of synchroniza-
tion through which all requests pass. This makes it trickier to satisfy the memory
model.

The Wildfire protocol is directory based. All read and write operations are
performed to data in a processor’s cache. If the cache does not have a valid copy
of the data in the appropriate state, it sends a request to the local switch at
which the memory address resides (the “directory”). The switch either satisfies
the request from memory or else sends a message to the processor that currently
“owns” the address. On a Write request, the requester becomes the new owner,
and the message causes the current owner to invalidate the copy in its cache.

In a conventional directory-based protocol, when the owner of an address
receives a message invalidating its copy, it replies to the directory with a message
that both acknowledges receipt of the invalidating message and returns the data.
The directory then forwards the data to the new owner. In Wildfire, the old
owner sends the data directly to the new owner, and it sends nothing back to
the directory. In general:

• Processors do not acknowledge cache-invalidate messages. This eliminates
the need to wait for those acknowledgments.

• Control signals and data are sent in separate messages. This allows a
processor to perform an operation before control signals return, and to
execute operations that follow a memory barrier before all operations that
precede the barrier have been completed.

To illustrate how these optimization complicate the protocol, we describe one
scenario. Suppose that process P1 on local switch LS1 is the current owner of an
address A that resides on local switch LS2, and processes P2 and P3 on LS2 each
wants to execute a partial write to address A, followed by a memory barrier,
followed by additional operations. Here is one possible execution sequence:

• P2 sends a Write request to LS2, which receives it, records P2 as the
new owner of address A, and sends a ForwardedGet message for P1 to the
global switch.

• The global switch relays the ForwardedGet to LS1 and sends an acknowl-
edgement, called a ShadowClear, back to LS2.

• LS1 receives the ForwardedGet and relays it to P1, which receives it, inval-
idates address A in its cache, and sends the data to P2. (The data actually
travels to P2 via the switches, but our model simplifies the protocol by
using separate virtual channels, not shown in Figure 1, for data.)

• P3 sends a Write request to LS2, which receives it, records P3 as the new
owner of address A, and issues a ForwardedGet message for P2. Because
the ShadowClear has not returned, LS2 does not send the ForwardedGet
directly to P2, but instead sends it to the global switch, which relays it
back to LS2.

5



• LS2 receives the ShadowClear and sends an acknowledgement, called a
Comsig message, to P2.

• P2 receives the Comsig, which allows it to execute the memory barrier
instruction and begin executing its next operations.

• LS2 receives the ForwardedGet from the global switch, sends it to P2 and
sends a Comsig message to P3.

• P3 receives the Comsig, which allows it to execute the memory barrier
instruction and begin executing its next operations.

• P2 receives the data from P1, which it puts in its cache and updates with
the write operation.

• P2 receives the ForwardedGet, invalidates addressA in its cache, and sends
the data to P3, which will then be able to perform its write operation.

Observe that P2 and P3 execute operations that follow the memory barrier
instructions before the writes that precede those memory barriers are completed.
Observe also that LS2 sends a ForwardedGet message to P2, one of its own
processors, via the global switch. Had the ShadowClear message arrived first,
LS2 would have responded to P3’s Write request by sending the ForwardedGet
directly to P2 and sending a Comsig directly to P3.

Of course, this is just one of many possible scenarios. The protocol contains
several complicating details that we have not even mentioned. Its full complexity
can be appreciated only by reading the formal specification.

5 Discussion

Verification of cache-coherence protocols has been a popular activity, as the sur-
vey of Pong and Dubois [13] shows. No protocol verified thus far is as complex
as Wildfire’s, which is the most complicated cache-coherence protocol we know
of. Even our high-level description, which abstracts away many of the details,
is probably more complicated than any published protocol. As ever more com-
plicated algorithms are implemented in hardware, we can expect this degree
of complexity to become the norm. We therefore feel that our challenge prob-
lem provides a good benchmark for methods that hope to verify the concurrent
algorithms in real systems.

By providing a formal specification of the Wildfire protocol, we have elimi-
nated a major task that arises in practical verification—namely, writing a formal
model of the algorithm at a suitable level of abstraction. Our specification is
written in TLA+, a language based on TLA (the temporal logic of actions).
Various documents explaining TLA and TLA+ appear on the TLA Web site [8].
(Two of those documents are distributed with the challenge problem.) However,
comments describe the TLA+ constructs as they occur in the specification, and
most readers will probably need no further explanation of the language. We

6



have found that engineers can learn to read the safety part of a TLA+ specifica-
tion in about half an hour, so understanding our specifications should pose no
problem to verification researchers. (We don’t have enough experience explain-
ing liveness to engineers to say with confidence how long it takes, but we expect
that researchers will have little trouble understanding the protocol’s liveness
properties.)

We obviously do not expect the problem to be easy. As with any complicated
concurrent algorithm, the large number of possible states makes a brute-force
approach unlikely to succeed. In our abstraction, the processors maintain un-
bounded queues of unfulfilled requests, so the state space is infinite. Since the
errors are violations of safety properties, they can be found by placing a large
enough bound on the number of requests. However, the number of reachable
states grows very fast as a function of the number of requests. For a configura-
tion with one-bit data words, two local switches each containing one processor
and one memory address, and a fixed initial memory state, the number of reach-
able states is about 160 thousand with a bound of two requests and about 38
million with a bound of three requests.

Although it has been downloaded from over 275 sites, we do not know how
many researchers have seriously tried to solve the problem. We suspect that a
number of them began working on it but gave up because it was more difficult
than they expected. We hope that by publishing the challenge here, we will
encourage the verification community to try harder.

References

[1] Alpha Architecture Committee. Alpha Architecture Reference Manual. Dig-
ital Press, Boston, third edition, 1998.

[2] Tamarah Arons and Amir Pnueli. Verifying Tomasulo’s algorithm by re-
finement. In 12th International Conference on VLSI Design, 1999.

[3] David Basin. Lazy infinite-state analysis of security protocols. In Se-
cure Networking—CQRE [Secure] ’99, volume 1740 of Lecture Notes in
Computer Science, pages 30–42, Düsseldorf, Germany, November 1999.
Springer-Verlag.

[4] Werner Damm and Amir Pnueli. Verifying out-of-order executions. In
Hon F. Li and David K. Probst, editors, Advances in Hardware Design and
Verification: IFIP WG10.5 International Conference on Correct Hardware
Design and Verification Methods (CHARME), pages 23–47. Chapman and
Hall, 1997.

[5] Kourosh Gharachorloo, Madhu Sharma, Simon Steely, and Stephen Van
Doren. Architecture and design of AlphaServer GS320. In Anoop Gupta,
editor, Proceedings of the Ninth International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS IX),
pages 13–24, November 2000.

7



[6] Thomas A. Henzinger, Shaz Qadeer, and Sriram K. Rajamani. You assume,
we guarantee: Methodology and case studies. In Alan J. Hu and Moshe Y.
Vardi, editors, Computer-aided Verification 10th International Conference,
CAV ’98, volume 1427 of Lecture Notes in Computer Science, pages 440–
451. Springer-Verlag, 1998.

[7] Daniel Kröning, Silvia M. Müller, and Wolfgang Paul. A rigorous correct-
ness proof of the Tomasulo scheduling algorithm with precise interrupts.
In Proc. of the SCI’99/ISAS’99 International Conference, 1999.

[8] Leslie Lamport. TLA—temporal logic of actions. At URL http://www.
research.digital.com/SRC/tla/ on the World Wide Web. It can also be
found by searching the Web for the 21-letter string formed by concatenating
uid and lamporttlahomepage.

[9] Leslie Lamport. How to make a multiprocessor computer that correctly
executes multiprocess programs. IEEE Transactions on Computers, C-
28(9):690–691, September 1979.

[10] Leslie Lamport. Specifying concurrent systems with TLA+. In Manfred
Broy and Ralf Steinbrüggen, editors, Calculational System Design, pages
183–247, Amsterdam, 1999. IOS Press.

[11] Leslie Lamport, Madhu Sharma, Mark Tuttle, and Yuan Yu. The
wildfire verification challenge problem. At URL http://www.research.
compaq.com/SRC/tla/wildfire-challenge.html on the World Wide
Web. It can also be found by searching the Web for the 24-letter string
wildfirechallengeproblem.

[12] Kenneth L. McMillan. Verification of an implementation of Tomasulo’s
algorithm by compositional model checking. In Alan J. Hu and Moshe Y.
Vardi, editors, Computer-aided Verification 10th International Conference,
CAV ’98, volume 1427 of Lecture Notes in Computer Science, pages 110–
121. Springer-Verlag, 1998.

[13] Fong Pong and Michel Dubois. Verification techniques for cache coherence
protocols. Computing Surveys, 29(1):82–126, March 1997.

8


