
Formal Specification of a Web Services
Protocol

James E. Johnson, David E. Langworthy, Leslie Lamport
Microsoft

Friedrich H. Vogt
University of Technology Hamburg-Harburg

February, 2004

To appear in the proceedings of the First International
Workshop on Web Services and Formal Methods (WS-FM
2004), held February 23–24, 2004 in Pisa, Italy



WS-FM 2004 Preliminary Version

Formal Specification of a Web Services
Protocol

James E. Johnson, David E. Langworthy, Leslie Lamport

Microsoft

Friedrich H. Vogt

University of Technology Hamburg-Harburg

Abstract

We describe a use of formal methods to specify and check a Web Services protocol.
The Web Services Atomic Transaction protocol was specified in TLA+ and checked
with the TLC model checker. A modest effort revealed oversights that caused
unanticipated behaviors of the protocol; these were corrected by clarifications and
changes to the protocol.

Key words: specification, standards, tla, verification

1 Introduction

Web Services (WS) are meant to overcome the integration problem for hetero-
geneous distributed applications [2]. A large number of protocols that use the
SOAP [9] conventions for message exchange are now under development. Cur-
rent and future applications will depend on the correctness of these protocols.
As with any distributed system, WS protocols can permit obscure behaviors
that are hard to understand, and it will be very difficult to debug them. Since
the dependence on Internet-based systems is increasing dramatically, it is im-
portant that these protocols operate correctly.

Our goal is to apply formal methods to the process of standardizing WS pro-
tocols. To test our approach, we selected a non-trivial example—namely, the
WS Atomic Transaction protocol [3]. (Two of the authors were involved in
designing the protocol.) Our experience, reported here, shows that writing
and model checking a TLA+ specification can help eliminate errors and ambi-
guities in a protocol. TLA+ can be used to help achieve the reliability required
in the design of a WS protocol standard. We also believe that writing formal
specifications can aid in the process of designing WS protocols.

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs



2 Example: Web Service Atomic Transaction

In a distributed application system, resources like databases and/or caches are
accessed by different processes. If the resources’ state changes must satisfy the
well-known ACID properties [6], updates must use a commit protocol. WS
Atomic Transaction (WS-AT) is a protocol designed for this purpose.

The transaction protocol is begun by an initiator process and controlled by
a transaction coordinator. Participant processes that manage the resources
register for the transaction. At some point, the initiator can decide to abort
or try to commit the transaction. Roughly speaking, the goal of the protocol
is to guarantee that the initiator and the participants agree on whether the
transaction is committed or aborted.

All of the protocol’s messages go to or from the transaction coordinator. Any
communication between the initiator and the participants is application spe-
cific and is not part of the protocol.

WS-AT is based on the well-known two-phase commit (2PC) protocol [1].
However, it has two non-standard features. The first is the registration pro-
cedure. Registration is often ignored in textbook descriptions of 2PC. The
second non-standard feature is that it distinguishes two classes of partici-
pants, called volatile and durable, based on the type of resource that they are
expected to manage. A cache is an example of a volatile resource; a conven-
tional database is a durable resource. The standard 2PC protocol uses two
phases, prepare and commit. WS-AT uses three phases, prepare for volatile
participants, prepare for durable participants, and commit. A participant may
register any time before the beginning of the prepare phase for its class. Thus,
durable participants can still be registering during the volatile participants’
prepare phase.

3 Formal Specification and TLA+

A WS protocol standard should describe precisely the behavior relevant for
interoperability. It should omit internal implementation details such as when
records are written to stable storage. It should permit someone to implement
one of the parties in the protocol without knowing anything about how the
other parties are implemented. Therefore, a standard should be an unam-
biguous and complete description of the allowed behavior of the protocol’s
participants. WS standards have formal mechanisms to specify the format of
XML data structures [10] and service interfaces [5]. However, they generally
do not have methods of precisely specifying the complete behavior of a pro-
tocol. They instead employ informal descriptions of the protocol that can be
imprecise, ambiguous, or incomplete; they often fail to consider unusual cases.

The need for precision and completeness in a standard naturally suggests
the use of formal methods. Such methods use a well-defined language with
a precise semantics for writing formal specifications of a protocol’s allowed

2



behaviors. Tools can be applied to analyze those behaviors and help check the
correctness of the protocol.

There is no generally accepted method of formally specifying a WS protocol.
State tables that are given in some specifications are a step in that direction,
but they are usually not written as precisely as formal specifications.

TLA+ [8] is a language for writing high-level specifications of concurrent sys-
tems. Unlike most specification languages, it is based on mathematics rather
than programming-language constructs. This makes it extremely expressive.
It has no built-in constructs for operations like sending a message, but the
language is expressive enough that such operations are easily defined within a
specification. Thus, instead of having to use some particular message passing
semantics built into the language (for example, lossless FIFO delivery), one
can specify whatever assumptions one wants to make about message delivery.

The WS-AT protocol is straightforward enough that it should be easy to de-
scribe in any serious specification language. However, as explained in Section 4
below, there is one place in the specification where what one process does de-
pends upon the internal state of another process. This can be hard to model
in some languages designed expressly for distributed systems. TLA+ has been
used to describe a wide range of concurrent systems, so we are confident of its
ability to specify any desired WS protocol.

Because it is so mathematical, TLA+ seems foreign to most engineers. How-
ever, we have found that engineers can very quickly learn to read TLA+ spec-
ifications. Learning to write TLA+ specifications seems to be about as hard
as learning a new programming language.

4 Modeling the Protocol in TLA+

In the summer of 2003, we began a small project to write a TLA+ specification
of the WS Atomic Transaction protocol. Two of the authors are researchers
experienced in using formal methods; the other two are experts on this partic-
ular protocol, having participated in its design. The project lasted 21

2
months.

It was a background activity, so the actual time spent was not large—perhaps
11

2
man-months. The result of the project was a TLA+ specification of the pro-

tocol, written by the researchers, and two higher-level specifications, written
by the designers with the assistance of the researchers.

The protocol specification has been read by the designers to determine that
it corresponds to their idea of what the protocol does. It has been checked
with the TLC model checker to determine that it is complete (specifies what
should occur on the receipt of any possible message) and that it satisfies the
basic correctness property of the protocol (agreement on the outcome of the
transaction).

The researchers were initially given a preliminary version of the official speci-
fication [3]. (Its state table was the part that they found most useful.) They
met with the designers three times, and they also asked questions of the de-

3



signers by email.

The first task we faced was deciding what kind of specification to write. There
is no notion of a “right” specification of a system. A specification is an ab-
straction that is meant to serve some purpose. We found that there were
basically two ways to model the protocol. One was to faithfully formalize
the description of the protocol in the official specification. The second was
to write a simpler model whose primary goal was to verify the completeness
and correctness of the protocol. We chose the second option. We therefore
collapsed multiple states from the official specification’s state table into single
states in the TLA+ specification. This reduced the total number of protocol
states, making the specification easier to check. Other modeling questions
that we faced were:

• Whether communication between the initiator and the coordinator should
be internal or by messages. The designers decided it was all right to let it
be internal.

• What assumptions should be made about the message-passing infrastruc-
ture. The designers decided that the specification should allow messages to
be reordered, lost, and duplicated.

Additional questions arose because some aspects of the protocol were not
described clearly enough in the official specification to permit their formal
specification. An important example of this was the registration procedure.
The researchers did not understand why a Register message from a new par-
ticipant could not arrive after the coordinator had forgotten all about the
transaction. This could not be resolved by inspecting the official specification
because registration is described in a different standard (the WS-Coordination
protocol standard [4]). The official specification did not clearly explain the
interaction between these two protocols. We eventually decided to let the
TLA+ specification describe the necessary synchronization between register-
ing processes and the coordinator without indicating how it is achieved. Thus,
the specification has an action by one process enabled by a predicate on the
state of another process, without describing how the first process learns about
the second process’s state. (This is easily expressed in TLA+, but would be
difficult in a specification language based on communicating automata.)

Most of the effort consisted of resolving these issues, many of which were
discovered only while writing the specification. The complete specification
consists of about 350 lines of TLA+ plus 500 lines of comments. Once one
understands what a protocol does and how is should be modeled, actually
writing its specification is not hard.

The specification is well suited to model checking. TLC checked that the basic
agreement property is satisfied by a model containing four participants. For
this model, the protocol has about 500,000 reachable states, with its longest
non-repeating behavior containing 45 states. TLC checked it in about 41

4
min-

utes on a 2-processor, 2.4GHz PC. The protocol is straightforward enough

4



that the specification is highly unlikely to contain any error that would man-
ifest itself only on a larger model, given the topology of the communication
patterns and the indistinguishability of transaction participants.

Our effort did not reveal any major issues with the core durable 2PC pro-
tocol. This was to be expected, since that part of the protocol is very well
understood. However, it did expose several problems with registration and
with the volatile 2PC protocol. The use of the WS-Coordination protocol to
control registration within a transaction commit protocol is new, as is the use
of separate volatile and durable 2PC protocols. The interaction of these new
features turned out to be more complicated than expected. Model checking
revealed behaviors of the protocol that were not anticipated by the designers.
This led to clarifications and changes to the official specification.

5 Overview of the TLA+ Protocol Specification

The complete TLA+ specification with comments is too long to present here;
and like most formal specifications, it would be very hard to understand with-
out comments. Instead, we describe its “flavor”, showing just small pieces of
the specification. The complete specifications are posted on the Web [7].

Recall that the protocol involves an initiator, a transaction coordinator (TC),
and a set of participants. The TC exchanges messages with the participants.
As noted above, we modeled the initiator and TC as a single process. The
specification declares the constant parameter Participant , which represents
the set of participants.

We specify only the safety properties of the protocol (what is permitted to
happen), not its liveness properties (what must eventually happen). This
enables a very simple representation of message passing. A variable msgs
represents the set of all messages that have ever been sent. An action that,
in an implementation, would be enabled by the receipt of certain messages
is, in the specification, enabled by the existence of those messages in msgs .
Recall that we decided to allow messages to be lost, duplicated, or received
out of order. Since msgs is a set, messages can be received in any order. Loss
of a message is represented by simply not executing that action, even though
the action is enabled. (Because we specify only safety properties, there is
no requirement that an enabled action is ever executed.) Duplicate message
delivery is allowed because messages are never removed from msgs , so once a
message is in the set, the action of receiving that message is always enabled.

There are three other variables: iState is a record describing the initiator’s
state, tcData is a record describing the data maintained by the coordinator,
and pData is an array, where pData[p] is a record describing the state of
participant p.

Correctness of the protocol is expressed by invariance of a state predicate
Consistency . It asserts that the protocol is not in an inconsistent final or
finishing state—that is, where one process thinks the protocol committed and

5



another thinks it has aborted. It has two separate conjuncts, one asserting
what is true if the initiator has reached the committed state, and the other
asserting what is true if a participant has reached the committed state. These
two conjuncts are not logically independent, but we have not eliminated the
redundancy in order to make it clear what is being asserted. The definition
is as follows. We do not expect the reader to understand the predicate in
detail, but rather to appreciate the essentially mathematical nature of the
specification. TLA+ uses the convention that a list of expressions bulleted by
∧ or ∨ represents their conjunction or disjunction, and indentation is used to
eliminate parentheses.

Consistency
∆
=

∧ (iState = “committed”)
⇒ ∨ ∧ tcData.st = “ended”

∧ tcData.res = “committed”
∧ ∀ p ∈ Participant :

∨ pData[p].st = “unregistered”
∨ ∧ pData[p].st = “ended”
∧ pData[p].res ∈ {“?”, “committed”}

∨ ∧ tcData.st = “committing”
∧ ∀ p ∈ Participant :

∨ pData[p].st ∈ {“unregistered”, “prepared”}
∨ ∧ pData[p].st = “ended”
∧ pData[p].res ∈ {“?”, “committed”}

∧ ∀ p ∈ Participant :
∧ pData[p].st = “ended”
∧ pData[p].res = “committed”
⇒ ∧ iState = “committed”

∧ ∨ ∧ tcData.st = “ended”
∧ tcData.res = “committed”
∧ iState = “committed”

∨ tcData.st = “committing”
∧ ∀ pp ∈ Participant :

∨ pData[pp].st ∈ {“unregistered”, “prepared”}
∨ ∧ pData[pp].st = “ended”
∧ pData[pp].res ∈ {“?”, “committed”}

A TLA+ safety specification has the form Init ∧ 2[Next ]vars , where Init is
a predicate describing the initial state, Next is a formula that describes the
next-state relation, and vars is the tuple of specification variables. The bulk
of a specification consists of the definition of Next . Its high-level definition is

Next
∆
= TCInternal ∨ TCRcvMsg ∨ PInternal ∨ PRcvMsg

where the four disjuncts have the following meaning:

• TCInternal describes the “spontaneous” steps of the initiator and of the

6



TC—that is, steps not taken in response to receipt of a message.

• TCRcvMsg describes the response of the TC to receipt of a participant’s
message.

• PInternal describes the participants’ spontaneous steps.

• PRcvMsg describes the participants’ responses to a message from the TC.

The initiator does not send or receive explicit messages.

Action TCInternal is defined to be A ∧ (unchanged pData), where A is a
disjunction of formulas describing the different operations performed by the
TC or initiator. Here is one of those disjunctions. (An action describes a state
change as a relation between the new and old values of the variables, where
a primed occurrence of a variable represents the new value and an unprimed
occurrence represents the old value.)

∨ The TC ends the volatile prepare and begins the durable prepare. It does this
when it has received Prepared or ReadOnly messages from every participant
that registered as volatile, and it sends a Prepare message to every participant
that registered as durable.

∧ tcData.st = “preparingVolatile”
∧ ∀ p ∈ Participant : tcData.reg [p] 6= “volatile”
∧ tcData ′ = [tcData except !.st = “preparingDurable”]
∧msgs ′ = msgs ∪ [type : {“Prepare”},

dest : {p ∈ Participant :
tcData.reg [p] = “durable”}]

∧ unchanged iState

Action TCRcvMsg has the form ∃m ∈ msgs : B , where B is a disjunction,
each disjunct representing the receipt of a different type of message m. We
have written these disjuncts in a rather unusual way. A typical subaction has
the form

(B1 ∧ P1) ∨ . . . ∨ (Bn ∧ Pn)

where the Bi (called the “guards”) are mutually exclusive state predicates
and the Pi describe the new values of variables. If none of the guards is true,
then the subaction equals false and no step is possible. To be able to check
the completeness of our specification, we wanted TLC to flag an error if it
evaluated this subaction and found none of the guards true. So, we instead
wrote the subaction as

case B1 → P1 2 . . . 2 Bn → Pn

These two expressions have the same meaning if exactly one of the guards
is true. But the latter expression is undefined if none of the guards is true,
causing TLC to report an error. Here is one of the disjuncts in the definition
of TCRcvMsg .

∨ m is a Committed message.

∧m.type = “Committed”

7



∧ case The normal case, in which the TC is in the committing state. In
this case, it sets the element of tcData.reg corresponding to the
sender to committed .

tcData.st = “committing”
→

tcData ′ = [tcData except !.reg [m.src] = “committed”]

2 If the TC has forgotten the transaction, then the transaction has
been committed and m is ignored.

∧ tcData.st = “ended”
∧ tcData.res = “committed”
→

unchanged tcData
∧ unchanged 〈iState, pData, msgs〉

The initiator’s state and the participants’ data are unchanged, and no mes-
sages are sent.

The definitions of PInternal and PRcvMsg are similar, except they involve an
additional existential quantification over the set of participants.

The specification ends with the definition of Spec, the complete specification,
and a theorem asserting the invariance of Consistency and of TypeOK , a
state predicate describing the types of the variables. (TLA+ is an untyped
language.)

Spec
∆
= Init ∧ 2[Next ]vars

theorem Spec ⇒ 2(TypeOK ∧ Consistency)

This is the theorem that TLC checked.

6 More Abstract Specifications

We have also written two higher-level specifications—a 70-line abstract speci-
fication that describes only the behavior of the initiator and the participants,
and an intermediate-level shared-memory specification that also describes the
transaction coordinator but eliminates all messages. We have checked that
both of these higher-level specifications are implemented by the protocol spec-
ification described above.

The purpose of Web services is to provide a framework of interoperable stan-
dards that allow the development of secure and reliable transactional systems
and applications. We therefore want to specify not only WS-AT, but also
systems built on top of it. Our abstract specification is useful for this because
it is simpler than the complete specification.

The complete WS-AT protocol specification can be verified quickly on a mod-
ern processor. But once this is done, it does not need to be done again every
time a client system is validated. TLC requires 253 seconds to check all be-
haviors of the full specification for a system with four participants. But it can

8



check the behaviors of the abstract specification with 4 participants in less
than 7 seconds. This savings in time, accompanied by a large reduction in
the size of the state space, will allow the checking of client systems on larger
models. The procedure can be carried further by providing abstract specifica-
tions of the client systems to permit their clients to be modeled and validated
more efficiently.

The abstract specification can also be used as the specification of other pro-
tocols. For example, one could obtain a new protocol by replacing 2PC with
a commit protocol that uses a different communication topology. If the new
protocol satisfied the abstract specification, then a client could safely use it in
place of WS-AT.

Before specifying the fully abstract protocol, we specified its behavior using
shared memory. The shared-memory specification is about the same length as
the complete protocol specification. It specifies the requirements of the WS-
AT protocol that are independent of what messages are sent. All the internal
data structures and basic transitions are preserved from the complete protocol
specification.

During the design of WS-AtomicTransaction, there was a great deal of discus-
sion about the details of the protocol’s messages. The shared-memory spec-
ification, in conjunction with a detailed design, would have helped to clarify
the issues. It would have provided a quick test of whether a proposed change
to the specification impacted the semantics, or if it was merely a different way
of expressing the same basic protocol.

The higher-level specifications can also be used for explanation and exper-
imentation. The two parts of any design activity are determining what to
build and how to build it. These two parts form the two levels of a design—
namely, the requirements and the detailed design. Each level informs the other
through an iterative design activity. TLA+ provides a lingua franca that can
be used to specify both levels precisely. The TLC model checker can automat-
ically verify that the detailed design satisfies the requirements. This allows
changes in the design to be checked quickly for their impact on the require-
ments. Model checking can also show how changing the requirements affects
the current detailed design.

The 2PC protocol is very well established and well understood, so with WS-
AT it was clear from the beginning what we were building. With other new
systems, this is often not the case. The requirements develop along with the
detailed design. As soon as users have a clear understanding of what a system
actually does, they think of new applications—many with new requirements.
Any tool that increases the amount, fidelity, or speed of this feedback accel-
erates the design process.

9



7 Conclusion

The WS-AT official specification contains a great deal of detail that is not
captured in the TLA+ specification. It very carefully describes data formats
and some messaging interfaces. These are details of the protocol that are
ignored by the TLA+ specification, which describes only its behavioral prop-
erties. Such details are straightforward and fairly non-controversial.

The TLA+ specification therefore describes the part of the protocol that is
generally left imprecise in current specifications, and ignores those aspects of
the protocol that are already specified quite precisely. TLA+thus complements
the approach taken in most existing standards. Having a TLA+ specification
can help prevent incompatibility among different implementations.

A precise description of a proposed standard can also help avoid misunder-
standing among the writers of the standard. In a standards committee, dis-
cussions can become very abstract. It is easy for different people to interpret
statements in different ways. A mathematical formula is unambiguous.

Writing formal specifications can help in designing a protocol. Being able
to check quickly if a protocol specification satisfies a more abstract specifica-
tion can speed the design process. A high-level specification of the protocol’s
requirements can also be used to check the correctness of a protocol’s clients.

TLA+ is a particularly good language for writing standards because it is based
on ordinary mathematics. This makes its semantics particularly simple, since
the semantics of a specification language is, by definition, a translation into
mathematics of specifications written in the language. As one engineer said
about TLA+, “If I want to find out what an expression means, I can look it
up in a math book.”

We are now specifying other WS protocols in TLA+.

Acknowledgement

Colin Campbell found a minor error in our specification when translating it
into the AsmL specification language.

References

[1] Bernstein, P. A., V. Hadzilacos and N. Goodman, “Concurrency Control
and Recovery in Database Systems,” Addison-Wesley, Reading, Massachusetts,
1987.

[2] Box, D., Understanding gxa, Technical report, Microsoft Corporation
(2002), available at http://msdn.microsoft.com/library/en-us/dngxa
/html/understandgxa.asp.

[3] Cabrera, F. et al., Specification: Web services transaction (ws-transaction)
(2002), bEA Systems, International Business Machines Corporation, Microsoft

10



Corporation, Inc. Available at http://msdn.microsoft.com/ws/2003/09
/wsat/.

[4] Cabrera, L. F. et al., Web services coordination (ws-coordination) (2003), bEA
Systems, International Business Machines Corporation, Microsoft Corporation.
Available at http://msdn.microsoft.com/ws/2003/09/wscoor/.

[5] Christensen, E., F. Curbera, G. Meredith and S. Weerawarana, Web services
description language (wsdl) 1.1 (2001), w3C Note, available at http://www.
w3.org/TR/2001/NOTE-wsdl-20010315.

[6] Gray, J. and A. Reuter, “Transaction Processing: Concepts and Techniques,”
Morgan Kaufmann Publishers, Inc., San Francisco, 1993.

[7] Johnson, J. E., D. E. Langworthy, L. Lamport and F. H. Vogt, Specification of
the web services atomic transaction protocol (2004), uRL http://research.
microsoft.com/users/lamport/tla/ws-at.html. It can also be found by
searching the Web for the 26-letter string obtained by removing the dashes
from “wsatom-ictransac-tion-tlaspec”.

[8] Lamport, L., “Specifying Systems,” Addison-Wesley, Boston, 2003.

[9] Mitra, N., Soap version 1.2 part 0: Primer, Technical report, World Wide
Web Consortium (W3C) (2003), available at http://www.w3.org/TR/2003
/REC-soap12-part0-20030624/.

[10] Thompson, H. S., D. Beech, M. Maloney and N. Mendelsohn, Xml schema part
1: Structures (2001), w3C Recommendation, available at http://www.w3.org
/TR/2001/REC-xmlschema-1-20010502/.

11


